CN106896856B - 放大电路及电压调节器 - Google Patents

放大电路及电压调节器 Download PDF

Info

Publication number
CN106896856B
CN106896856B CN201611119800.0A CN201611119800A CN106896856B CN 106896856 B CN106896856 B CN 106896856B CN 201611119800 A CN201611119800 A CN 201611119800A CN 106896856 B CN106896856 B CN 106896856B
Authority
CN
China
Prior art keywords
voltage
amplifier circuit
circuit
source
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611119800.0A
Other languages
English (en)
Other versions
CN106896856A (zh
Inventor
杉浦正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Publication of CN106896856A publication Critical patent/CN106896856A/zh
Application granted granted Critical
Publication of CN106896856B publication Critical patent/CN106896856B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/468Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • H03F1/342Negative-feedback-circuit arrangements with or without positive feedback in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F3/505Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/02Manually-operated control
    • H03G3/04Manually-operated control in untuned amplifiers
    • H03G3/10Manually-operated control in untuned amplifiers having semiconductor devices
    • H03G3/12Manually-operated control in untuned amplifiers having semiconductor devices incorporating negative feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/297Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/69Indexing scheme relating to amplifiers the amplifier stage being a common drain coupled MOSFET, i.e. source follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5036Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source follower has a resistor in its source circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Amplifiers (AREA)

Abstract

放大电路及电压调节器。提供能够改善相位特性的放大电路以及具有该放大电路的电压调节器。放大电路放大所输入的电压并输出,其具有:电流源;栅极被施加所述输入的电压的第1晶体管;以及第2晶体管,其栅极被施加与所述输入的电压同步的电压,源极具有电容。

Description

放大电路及电压调节器
技术领域
本发明涉及能够改善相位特性的放大电路以及具有该放大电路的电压调节器。
背景技术
图5是现有的负反馈放大电路的电路图。
现有的负反馈放大电路500由源极接地放大电路的放大电路510和放大电路520构成。放大电路510由串联连接的电流源511和NMOS晶体管512构成。
放大电路510的输出与放大电路520的输入连接。放大电路520的输出与放大电路510的NMOS晶体管512的栅极连接。
放大电路510基于NMOS晶体管512的驱动电流,放大并输出被输入至放大电路510的电压。放大电路520放大并输出放大电路510的输出电压V1a。由放大电路520生成的反馈电压V2输入至放大电路510。
因此,负反馈放大电路500以将工作点保持为固定值的方式进行工作。例如,根据NMOS晶体管512的驱动电流与电流源511的电流几乎相等这一点,放大电路510的输出电压V1a和放大电路520的输出电压V2要保持为固定值(例如参照专利文献1)。
专利文献1:日本特开平7-183736号公报
发明内容
但是,现有的负反馈放大电路500由于在放大电路的输出中出现的极,存在导致反馈电压的相位延迟、负反馈电路振荡的可能性较大的问题。
出现极的频率受负载电容和负载电阻的影响。例如,当负载电容小且负载电阻小时,极出现在高频率,导致相位延迟。又例如,当负载电容大且负载电阻大时,极出现在低频率,导致相位延迟。另外,根据应用的不同,负载电容、负载电阻的条件不同。
为了降低导致负反馈电路振荡的可能性,重要的是基于面对的应用的负载电容、负载电阻的条件,准确捕获出现极的频率来进行应对。
本发明是为了解决这样的问题而完成的,目的在于提供能够改善相位特性的放大电路以及具有该放大电路的电压调节器。
为了解决现有问题,本发明的放大电路以及具有该放大电路的电压调节器如下构成。
即,放大电路对输入至输入端子的电压进行放大而输出至输出端子,所述放大电路的特征在于,具有:电流源;第1晶体管,其栅极与所述输入端子连接;第2晶体管,其漏极与所述电流源连接,源极与所述第1晶体管的漏极连接,栅极与所述输入端子连接;以及电容,其一个端子与所述第2晶体管的源极连接,所述第2晶体管的漏极与所述输出端子连接。
此外,电压调节器具有该放大电路。
发明的效果
根据本发明的能够改善相位特性的放大电路以及具有该放大电路的电压调节器,由于具有基于产生相位超前电流的电容的信号传播路径,因此缓和了反馈电压的相位延迟。因此,能提供可降低导致负反馈电路振荡的可能性、可改善相位特性的放大电路以及具有该放大电路的电压调节器。
附图说明
图1是示出本实施方式的放大电路的一例的电路图。
图2是示出本实施方式的放大电路的另一例的电路图。
图3是具有本实施方式的放大电路的电压调节器的电路图。
图4是示出具有本实施方式的放大电路的电压调节器的另一例的电路图。
图5是现有的负反馈放大电路的电路图。
标号说明
110、120、130、140:放大电路;111:电流源;212、213:电压源。
具体实施方式
图1是示出本实施方式的放大电路的一例的电路图。
图1的本实施方式的放大电路110具有电流源111、NMOS晶体管112及113和电容114。
NMOS晶体管112的源极与接地端子(VSS)连接,栅极与放大电路110的输入端子连接。NMOS晶体管113的源极与NMOS晶体管112的漏极连接,栅极与放大电路110的输入端子连接。电流源111连接于电源端子(VDD)与NMOS晶体管113的漏极之间。电容114连接于NMOS晶体管113的源极与接地端子之间。放大电路110的输出端子与NMOS晶体管113的漏极连接。
对本实施方式的放大电路110的动作进行说明。
NMOS晶体管112的栅极被施加放大电路110的输入电压即电压V2。NMOS晶体管112的栅极/源极间电压成为与电压V2同步的电压,因此,NMOS晶体管112流过与电压V2相应的电流。
NMOS晶体管113的栅极也被施加电压V2。NMOS晶体管113由于所谓的源极跟随器,源极上出现与电压V2同步的电压。电容114产生的电流与施加于电容114的电压相比,相位超前,因此,在被施加与电压V2同步的电压的电容114中流过相位比电压V2超前的电流。
放大电路110根据NMOS晶体管112驱动的电流与经过电容114的电流相加而得的电流,放大所输入的电压V2并作为电压V1a输出。
电容的频率越高,阻抗越低。因此,经过电容114的电流的频率越高,则该电流越大。电压V2的频率提高时,相位比电压V2超前的、经过电容114的电流变得比较大,因此,电压V1a的相位超前。
因此,在将本实施方式的放大电路用于负反馈放大电路的情况下,反馈电压(电压V2)的相位延迟得到缓和,即,得到相位补偿效果,能够构成稳定的负反馈放大电路。
如以上说明的那样,根据本实施方式的放大电路,设置基于产生相位超前电流的电容的信号传播路径,因此,具有该放大电路的负反馈放大电路缓和了反馈电压的相位延迟,能够改善相位特性。因此,具有该放大电路的负反馈放大电路(例如电压调节器)能够降低导致振荡的可能性,从而能稳定地工作。
另外,电流源111是承担放大电路110中的负载的元件即可,不必限定为电流源。例如,从电阻等能够使用的元件中适当地选择即可。
此外,如图2所示,电容114可以串联地具有电阻211。该情况下,经过电容114的电流受到电阻211的限制,因此,放大电路210能期待限制频带的效果,可以预期能实现耐高频噪声特性优良的放大电路的优点。
此外,电容114构成为与接地端子连接,但如图2所示,即使具有以接地端子的电压为基准的电压源212,也可得到同样的效果。例如,电压源212的电压可以与电源端子的电压相同。
此外,在NMOS晶体管113的栅极处,可以在放大电路的输入端子与NMOS晶体管113的栅极之间具有电压源213。即,可知即使在NMOS晶体管113的源极出现与放大电路的输入电压V2加上电压源213的电压后的电压同步的电压,也可得到同样的效果。此外,电压源213也可以设置在放大电路的输入端子与NMOS晶体管112的栅极之间。
此外,在以上的说明中,以本实施方式的放大电路使用NMOS晶体管为前提进行了说明,以使用PMOS晶体管为前提的放大电路也同样地,通过设置基于产生相位超前电流的电容的信号传播路径,能够改善相位特性。因此,具有该放大电路的负反馈放大电路(例如电压调节器)能够降低导致振荡的可能性,从而能稳定地工作。
接着,对图3所示的具有本实施方式的放大电路的电压调节器的例子进行说明。
电压调节器100具有图1所示的放大电路110、放大电路120、输出端子101。放大电路120具有NMOS晶体管121、电阻122、电阻123。
放大电路110的输出端子与放大电路120的输入端子连接。放大电路120的输出端子与电压调节器100的输出端子101连接,反馈电压输出端子与放大电路110的输入端子连接。
NMOS晶体管121、电阻122以及电阻123在电源端子与接地端子之间串联连接。NMOS晶体管121的栅极与放大电路120的输入端子连接,源极与放大电路120的输出端子连接。电阻122与电阻123的连接点连接至放大电路120的反馈电压输出端子。
接着,对电压调节器100的动作进行说明。
放大电路120基于输入的电压V1a进行放大工作,输出放大的电压VOUT。此外,放大电路120利用电阻122及电阻123对电压VOUT进行分压,将反馈电压即电压V2输出至放大电路110的输入端子。因此,放大电路110和放大电路120彼此输入端子与输出端子连接,因此,构成负反馈放大电路。当电压VOUT降低时,即作为反馈电压的电压V2降低时,由于NMOS晶体管112及113截止,因此,放大电路110输出的电压V1a提高。由于NMOS晶体管121导通,因此,放大电路120输出的电压VOUT提高。此外,当电压VOUT提高时,即作为反馈电压的电压V2提高时,由于NMOS晶体管112及113导通,因此,放大电路110输出的电压V1a降低。由于NMOS晶体管121截止,因此,放大电路120输出的电压VOUT降低。即,电压调节器100以使得电压VOUT保持恒定的方式进行工作。
在图1的实施方式的说明中,可知放大电路110实现了缓和反馈电压的相位延迟的效果。因此,具有本实施方式的放大电路110的负反馈放大电路即电压调节器100缓和了反馈电压的相位延迟,因此,能稳定地工作。
另外,如上所述,即使电压调节器100将放大电路110设成例如放大电路210那样的电路结构,也可得到同样的效果。
图4是具有本实施方式的放大电路的电压调节器的另一例的电路图。
电压调节器200具有放大电路110、放大电路130、放大电路140、以及输出端子101。
放大电路130具有NMOS晶体管131和电阻132。放大电路140具有PMOS晶体管141、电阻142以及电阻143。
电压调节器200具有基于PMOS晶体管141的放大电路140,因此,具有使放大电路110输出的电压V1a的放大极性反转的放大电路130。
这样构成的电压调节器200与电压调节器100同样地构成负反馈放大电路,因此,显然可得到同样的效果。
如以上所说明那样,根据本实施方式的放大电路,能够改善相位特性。因此,由于作为具有该放大电路的负反馈放大电路的电压调节器缓和了反馈电压的相位延迟,所以能提供可降低导致振荡的可能性即稳定地工作的电压调节器。

Claims (6)

1.一种放大电路,其对输入至输入端子的电压进行放大而输出至输出端子,其特征在于,该放大电路具有:
电流源;
第1晶体管,其栅极与所述输入端子连接,源极与接地端子连接;
第2晶体管,其漏极与所述电流源连接,源极与所述第1晶体管的漏极连接,栅极与所述输入端子连接;以及
电容,其一个端子与所述第2晶体管的源极连接,另一个端子与所述接地端子连接,
所述第2晶体管的漏极与所述输出端子连接。
2.根据权利要求1所述的放大电路,其特征在于,
所述电流源是电阻元件。
3.根据权利要求1所述的放大电路,其特征在于,
在所述电容的另一个端子与接地端子之间具有电压源。
4.根据权利要求1所述的放大电路,其特征在于,
所述放大电路具有与所述电容串联的电阻元件。
5.根据权利要求1所述的放大电路,其特征在于,
在所述第1晶体管的栅极与所述第2晶体管的栅极之间具有电压源。
6.一种电压调节器,其特征在于,该电压调节器具有权利要求1至5中的任意一项所述的放大电路,该放大电路的输入端子被输入与输出电压对应的反馈电压。
CN201611119800.0A 2015-12-11 2016-12-08 放大电路及电压调节器 Active CN106896856B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-242546 2015-12-11
JP2015242546A JP6632358B2 (ja) 2015-12-11 2015-12-11 増幅回路及びボルテージレギュレータ

Publications (2)

Publication Number Publication Date
CN106896856A CN106896856A (zh) 2017-06-27
CN106896856B true CN106896856B (zh) 2020-07-07

Family

ID=59020177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611119800.0A Active CN106896856B (zh) 2015-12-11 2016-12-08 放大电路及电压调节器

Country Status (5)

Country Link
US (1) US9800156B2 (zh)
JP (1) JP6632358B2 (zh)
KR (1) KR102110110B1 (zh)
CN (1) CN106896856B (zh)
TW (1) TWI716500B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6938620B2 (ja) * 2016-05-07 2021-09-22 インテレソル,エルエルシー 高効率ac−dcコンバータおよび方法
US11056981B2 (en) 2018-07-07 2021-07-06 Intelesol, Llc Method and apparatus for signal extraction with sample and hold and release
US11581725B2 (en) 2018-07-07 2023-02-14 Intelesol, Llc Solid-state power interrupters
US11671029B2 (en) 2018-07-07 2023-06-06 Intelesol, Llc AC to DC converters
TWI680366B (zh) * 2018-08-24 2019-12-21 新唐科技股份有限公司 單一電晶體控制的穩壓器及應用此穩壓器的積體電路
US11334388B2 (en) 2018-09-27 2022-05-17 Amber Solutions, Inc. Infrastructure support to enhance resource-constrained device capabilities
US11205011B2 (en) 2018-09-27 2021-12-21 Amber Solutions, Inc. Privacy and the management of permissions
US10985548B2 (en) 2018-10-01 2021-04-20 Intelesol, Llc Circuit interrupter with optical connection
US11349296B2 (en) 2018-10-01 2022-05-31 Intelesol, Llc Solid-state circuit interrupters
EP3900487A4 (en) 2018-12-17 2022-09-21 Intelesol, LLC ALTERNATELY DRIVEN LIGHT EMITTING DIODE SYSTEMS
US11373831B2 (en) 2019-05-18 2022-06-28 Amber Solutions, Inc. Intelligent circuit breakers
JP7554272B2 (ja) 2020-01-21 2024-09-19 アンバー セミコンダクター,インク. インテリジェント回路遮断
EP4197086A4 (en) 2020-08-11 2024-09-04 Amber Semiconductor Inc INTELLIGENT POWER SOURCE SELECTION AND MONITORING CONTROL SYSTEM
US12113525B2 (en) 2021-09-30 2024-10-08 Amber Semiconductor, Inc. Intelligent electrical switches

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290204A (ja) * 1986-06-10 1987-12-17 Fujitsu Ltd カスケ−ド回路を含む電子回路
US4947063A (en) * 1987-10-09 1990-08-07 Western Digital Corporation Method and apparatus for reducing transient noise in integrated circuits
JPH03159405A (ja) * 1989-11-17 1991-07-09 Sumitomo Electric Ind Ltd 増幅回路
JPH05243861A (ja) * 1992-02-29 1993-09-21 Sony Corp 広帯域増幅回路
FR2691306B1 (fr) * 1992-05-18 1994-08-12 Sgs Thomson Microelectronics Amplificateur avec limitation de courant de sortie.
JPH07183736A (ja) * 1993-12-22 1995-07-21 Toshiba Corp 電子回路
US5519357A (en) * 1995-02-21 1996-05-21 Apex Microtechnology Biasing arrangement for a quasi-complementary output stage
JP4095174B2 (ja) * 1997-08-05 2008-06-04 株式会社東芝 液晶ディスプレイ装置
US6278321B1 (en) * 1999-10-21 2001-08-21 Infineon Technologies Corporation Method and apparatus for an improved variable gain amplifier
FR2911445B1 (fr) * 2007-01-16 2009-02-27 Commissariat Energie Atomique Amplificateur a transconductance a linearite amelioree
US8072267B2 (en) * 2009-06-09 2011-12-06 Infineon Technologies Ag Phase margin modification in operational transconductance amplifiers
TWI406120B (zh) * 2010-04-20 2013-08-21 Novatek Microelectronics Corp 展頻電路
JP5715401B2 (ja) * 2010-12-09 2015-05-07 セイコーインスツル株式会社 ボルテージレギュレータ
JP5715525B2 (ja) * 2011-08-05 2015-05-07 セイコーインスツル株式会社 ボルテージレギュレータ
US8912855B2 (en) * 2012-02-08 2014-12-16 Mediatek Inc. Relaxation oscillator
JP5865815B2 (ja) * 2012-10-12 2016-02-17 旭化成エレクトロニクス株式会社 演算増幅器
TWI516020B (zh) * 2012-12-14 2016-01-01 敦泰電子股份有限公司 可自動調整輸出電阻之運算放大裝置
JP6342240B2 (ja) * 2013-08-26 2018-06-13 エイブリック株式会社 ボルテージレギュレータ
JP6376874B2 (ja) * 2014-01-21 2018-08-22 エイブリック株式会社 増幅回路
JP6316632B2 (ja) * 2014-03-25 2018-04-25 エイブリック株式会社 ボルテージレギュレータ
JP6457887B2 (ja) * 2015-05-21 2019-01-23 エイブリック株式会社 ボルテージレギュレータ

Also Published As

Publication number Publication date
US9800156B2 (en) 2017-10-24
KR20170069923A (ko) 2017-06-21
CN106896856A (zh) 2017-06-27
JP2017108355A (ja) 2017-06-15
KR102110110B1 (ko) 2020-05-13
JP6632358B2 (ja) 2020-01-22
TWI716500B (zh) 2021-01-21
US20170170730A1 (en) 2017-06-15
TW201722066A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
CN106896856B (zh) 放大电路及电压调节器
KR101939843B1 (ko) 볼티지 레귤레이터
CN110096086B (zh) 电压调节器装置
US20140354249A1 (en) Voltage regulator
KR101689897B1 (ko) 볼티지 레귤레이터
JP2010244255A (ja) 非反転増幅回路及び半導体集積回路と非反転増幅回路の位相補償方法
US9531336B2 (en) Operational amplifier and driving circuit
CN104950970A (zh) 稳压器
KR20160022819A (ko) 볼티지 레귤레이터
US20150137858A1 (en) Buffer circuit
JP2009159508A (ja) 演算増幅器及び積分回路
JP2016051208A (ja) 基準電流設定回路
CN108183691B (zh) 折叠共源共栅运算放大器
CN103955251A (zh) 一种高压线性稳压器
KR101974657B1 (ko) 전압 레귤레이터
KR102304514B1 (ko) 증폭 회로
JP6470156B2 (ja) 通信ノード
JP5883477B2 (ja) 電圧制御発振器
US9231525B2 (en) Compensating a two stage amplifier
CN107404291B (zh) 偏置电路和低噪声放大器
US20130002355A1 (en) Differential amplifier and comparator
JP2014164702A (ja) ボルテージレギュレータ
KR101496004B1 (ko) 피드백 신호를 이용한 전력 증폭기
CN108183704B (zh) 源极跟随器
US9438215B2 (en) Buffer circuit for buffering and settling input voltage to target voltage level and operation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Chiba County, Japan

Applicant after: ABLIC Inc.

Address before: Chiba County, Japan

Applicant before: DynaFine Semiconductor Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: Nagano

Patentee after: ABLIC Inc.

Address before: Chiba County, Japan

Patentee before: ABLIC Inc.