TWI716500B - 放大電路以及電壓調整器 - Google Patents
放大電路以及電壓調整器 Download PDFInfo
- Publication number
- TWI716500B TWI716500B TW105138742A TW105138742A TWI716500B TW I716500 B TWI716500 B TW I716500B TW 105138742 A TW105138742 A TW 105138742A TW 105138742 A TW105138742 A TW 105138742A TW I716500 B TWI716500 B TW I716500B
- Authority
- TW
- Taiwan
- Prior art keywords
- amplifier circuit
- voltage
- terminal
- source
- nmos transistor
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 22
- 230000005669 field effect Effects 0.000 claims 7
- 230000001360 synchronised effect Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 5
- 230000008054 signal transmission Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/561—Voltage to current converters
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/468—Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/08—Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
- H03F1/22—Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
- H03F1/223—Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/34—Negative-feedback-circuit arrangements with or without positive feedback
- H03F1/342—Negative-feedback-circuit arrangements with or without positive feedback in field-effect transistor amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/50—Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
- H03F3/505—Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/02—Manually-operated control
- H03G3/04—Manually-operated control in untuned amplifiers
- H03G3/10—Manually-operated control in untuned amplifiers having semiconductor devices
- H03G3/12—Manually-operated control in untuned amplifiers having semiconductor devices incorporating negative feedback
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/297—Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising a capacitor
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/69—Indexing scheme relating to amplifiers the amplifier stage being a common drain coupled MOSFET, i.e. source follower
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/50—Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
- H03F2203/5036—Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source follower has a resistor in its source circuit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
- Amplifiers (AREA)
Abstract
本發明提供一種可改善相位特性的放大電路以及具備該放大電路的電壓調整器。本發明採用了下述構成,即,一種放大電路,對所輸入的電壓進行放大並輸出,該放大電路包括:電流源;第1電晶體,閘極被施加所述所輸入的電壓;以及第2電晶體,閘極被施加與所述所輸入的電壓同步的電壓,且在源極具備電容。
Description
本發明是有關於一種能夠改善相位特性的放大電路以及具備該放大電路的電壓調整器(voltage regulator)。
圖5是習知的負反饋放大電路的電路圖。
習知的負反饋放大電路500包含源極(source)接地的放大電路510以及放大電路520。放大電路510包含串聯連接的電流源511與N通道金屬氧化物半導體(N-channel Metal Oxide Semiconductor,NMOS)電晶體(transistor)512。
放大電路510的輸出連接於放大電路520的輸入。放大電路520的輸出連接於放大電路510的NMOS電晶體512的閘極(gate)。
放大電路510基於NMOS電晶體512的驅動電流,對輸入至放大電路510的電壓進行放大並輸出。放大電路520對放大電路510的輸出電壓V1a進行放大並輸出。由放大電路520所生成的反饋電壓V2被輸入至放大電路510。
因而,負反饋放大電路500以將動作點保持為固定值的方式進行動作。例如,藉由NMOS電晶體512的驅動電流與電流
源511的電流大致相等以將放大電路510的輸出電壓V1a與放大電路520的輸出電壓V2保持為固定值(例如參照專利文獻1)。
[專利文獻1]日本專利特開平7-183736號公報
然而,習知的負反饋放大電路500存在下述問題:由於在放大電路的輸出中出現的極點,反饋電壓的相位發生延遲,負反饋電路達到振盪的可能性高。
出現極點的頻率受到負載電容與負載電阻的影響。例如,當負載電容小且負載電阻小時,極點在高頻率出現,造成相位延遲。而且,例如當負載電容大且負載電阻大時,極點在低頻率出現,造成相位延遲。此外,根據應用(application),負載電容或負載電阻的條件不同。
為了降低負反饋電路達到振盪的可能性,關鍵在於基於所面向的應用的負載電容或負載電阻的條件,準確捕捉出現極點的頻率以進行應對。
本發明是為了消除如上所述的問題而完成,提供一種可改善相位特性的放大電路以及具備該放大電路的電壓調整器。
為了解決習知的問題,本發明的放大電路以及具備該放
大電路的電壓調整器採用了如下所述的構成。
即,一種放大電路,對輸入至輸入端子的電壓進行放大並輸出至輸出端子,所述放大電路的特徵在於包括:電流源;第1電晶體,閘極連接於所述輸入端子;第2電晶體,汲極連接於所述電流源,源極連接於所述第1電晶體的汲極,閘極連接於所述輸入端子;以及電容,一個端子連接於所述第2電晶體的源極,所述第2電晶體的汲極連接於所述輸出端子。以及具備所述放大電路的電壓調整器。
根據本發明的可改善相位特性的放大電路以及具備該放大電路的電壓調整器,由於具備包含產生相位超前電流的電容的信號傳輸路徑,因此可實現反饋電壓的相位延遲的緩和。因此,能夠提供一種可降低負反饋電路達到振盪的可能性,從而可改善相位特性的放大電路以及具備該放大電路的電壓調整器。
100、200:電壓調整器
101:輸出端子
110、120、130、140、510、520:放大電路
111、511:電流源
112、113、121、131、512:NMOS電晶體
114:電容
122、123、132、142、143:電阻
141:PMOS電晶體
212、213:電壓源
500:負反饋放大電路
V1a、V2、VOUT:電壓
VDD:電源端子
VSS:接地端子
圖1是表示本實施形態的放大電路的一例的電路圖。
圖2是表示本實施形態的放大電路的另一例的電路圖。
圖3是具備本實施形態的放大電路的電壓調整器的電路圖。
圖4是表示具備本實施形態的放大電路的電壓調整器的另一例的電路圖。
圖5是習知的負反饋放大電路的電路圖。
圖1是表示本實施形態的放大電路的一例的電路圖。
圖1的本實施形態的放大電路110具備電流源111、NMOS電晶體112及NMOS電晶體113以及電容114。
NMOS電晶體112的源極連接於接地端子(VSS),閘極連接於放大電路110的輸入端子。NMOS電晶體113的源極連接於NMOS電晶體112的汲極,閘極連接於放大電路110的輸入端子。電流源111連接於電源端子(VDD)與NMOS電晶體113的汲極之間。電容114連接於NMOS電晶體113的源極與接地端子之間。放大電路110的輸出端子連接於NMOS電晶體113的汲極。
對本實施形態的放大電路110的動作進行說明。
對於NMOS電晶體112的閘極,給予放大電路110的輸入電壓即電壓V2。NMOS電晶體112的閘極/源極間電壓為與電壓V2同步的電壓,因此NMOS電晶體112流經有與電壓V2相應的電流。
對於NMOS電晶體113的閘極亦給予電壓V2。NMOS電晶體113為所謂的源極隨耦器(source follower),因此在源極出現與電壓V2同步的電壓。電容114中產生的電流較施加至電容114的電壓相位超前,因此在與電壓V2同步的電壓所施加的電容114中,流經有相位較電壓V2超前的電流。
放大電路110基於將NMOS電晶體112所驅動的電流與經由電容114的電流相加所得的電流,對所輸入的電壓V2進行放
大並作為電壓V1a而輸出。
頻率越高,則電容的阻抗(impedance)越低。因此,頻率越高,經由電容114的電流越大。若電壓V2的頻率變高,則相位較電壓V2超前的經由電容114的電流變得相對較大,因此電壓V1a的相位超前。
因而,當將本實施形態的放大電路用於負反饋放大電路時,反饋電壓(電壓V2)的相位延遲得到緩和,即獲得相位補償效果,可構成穩定的負反饋放大電路。
如以上所說明般,根據本實施形態的放大電路,由於設有包含產生相位超前電流的電容的信號傳輸路徑,因此具備該放大電路的負反饋放大電路可緩和反饋電壓的相位延遲,改善相位特性。因而,具備該放大電路的負反饋放大電路(例如電壓調整器)可降低達到振盪的可能性,因此可穩定地進行動作。
另外,電流源111只要是擔負放大電路110中的負載的元件即可,並不需要限定於電流源。例如只要從電阻等可使用的元件中適當選擇即可。
而且,電容114亦可如圖2所示般與電阻211串聯。此時,經由電容114的電流由於受到電阻211的限制,因此放大電路210可期待限制頻帶的效果,能期望可實現耐高頻雜訊(noise)特性良好的放大電路的優點(merit)。
而且,電容114採用了連接於接地端子的構成,但如圖2所示般具備以接地端子的電壓為基準的電壓源212,亦可獲得同
樣的效果。例如,電壓源212的電壓亦可與電源端子的電壓相同。
而且,對於NMOS電晶體113的閘極,亦可在放大電路的輸入端子與NMOS電晶體113的閘極之間具備電壓源213。即,可明確的是,即使NMOS電晶體113的源極出現與將放大電路的輸入電壓V2加上電壓源213的電壓所得的電壓同步的電壓,亦可獲得同樣的效果。而且,電壓源213亦可配設於放大電路的輸入端子與NMOS電晶體112的閘極之間。
而且,以上的說明中,對於本實施形態的放大電路,是以NMOS電晶體的使用為前提進行了說明,但即使是以P通道金屬氧化物半導體(P-channel Metal Oxide Semiconductor,PMOS)電晶體的使用為前提的放大電路,亦可同樣地藉由設置包含產生相位超前電流的電容的信號傳輸路徑來改善相位特性。因而,具備該放大電路的負反饋放大電路(例如電壓調整器)可降低達到振盪的可能性,因此可穩定地進行動作。
接下來,對具備圖3所示的本實施形態的放大電路的電壓調整器的示例進行說明。
電壓調整器100具備圖1所示的放大電路110、放大電路120及輸出端子101。放大電路120具備NMOS電晶體121、電阻122及電阻123。
放大電路110的輸出端子連接於放大電路120的輸入端子。放大電路120的輸出端子連接於電壓調整器100的輸出端子101,反饋電壓輸出端子連接於放大電路110的輸入端子。
NMOS電晶體121與電阻122及電阻123串聯連接於電源端子與接地端子之間。NMOS電晶體121的閘極連接於放大電路120的輸入端子,源極連接於放大電路120的輸出端子。電阻122與電阻123的連接點連接於放大電路120的反饋電壓輸出端子。
接下來,對電壓調整器100的動作進行說明。
放大電路120基於所輸入的電壓V1a來進行放大動作,並輸出經放大的電壓VOUT。而且,放大電路120將電壓VOUT以電阻122及電阻123進行分壓,並將作為反饋電壓的電壓V2輸出至放大電路110的輸入端子。因而,放大電路110與放大電路120彼此將輸入端子與輸出端子予以連接,因此構成負反饋放大電路。當電壓VOUT變低時,即,當作為反饋電壓的電壓V2變低時,由於使NMOS電晶體112及NMOS電晶體113斷開,因此放大電路110所輸出的電壓V1a變高。由於NMOS電晶體121導通,因此放大電路120所輸出的電壓VOUT變高。而且,當電壓VOUT變高時,即,當作為反饋電壓的電壓V2變高時,由於使NMOS電晶體112及NMOS電晶體113導通,因此放大電路110所輸出的電壓V1a變低。由於NMOS電晶體121斷開,因此放大電路120所輸出的電壓VOUT變低。即,電壓調整器100以將電壓VOUT保持為固定的方式進行動作。
對於放大電路110在圖1的實施形態的說明中實現反饋電壓的相位延遲的緩和的效果已明確。因而,具備本實施形態的
放大電路110的負反饋放大電路即電壓調整器100由於可實現反饋電壓的相位延遲的緩和,因此可穩定地進行動作。
另外,電壓調整器100即使將放大電路110如上所述般設為例如放大電路210之類的電路構成,亦可獲得同樣的效果。
圖4是表示具備本實施形態的放大電路的電壓調整器的另一例的電路圖。
電壓調整器200具備放大電路110、放大電路130、放大電路140及輸出端子101。
放大電路130具備NMOS電晶體131及電阻132。放大電路140具備PMOS電晶體141、電阻142及電阻143。
電壓調整器200具備包含PMOS電晶體141的放大電路140,因此具備使放大電路110所輸出的電壓V1a的放大極性反轉的放大電路130。
以此方式構成的電壓調整器200由於是與電壓調整器100同樣地構成負反饋放大電路,因此可獲得同樣的效果,這是不言自喻的。
如以上所說明般,根據本實施形態的放大電路,可改善相位特性。因而,具備該放大電路的負反饋放大電路即電壓調整器可實現反饋電壓的相位延遲的緩和,因此能夠提供一種電壓調整器,可降低達到振盪的可能性,即,可穩定地進行動作。
110‧‧‧放大電路
111‧‧‧電流源
112、113‧‧‧NMOS電晶體
114‧‧‧電容
V1a、V2‧‧‧電壓
VDD‧‧‧電源端子
VSS‧‧‧接地端子
Claims (6)
- 一種放大電路,對輸入至輸入端子的電壓進行放大並輸出至輸出端子,所述放大電路的特徵在於包括:電流源,一個端子連接於電源端子;第1N型場效電晶體,閘極連接於所述輸入端子,源極連接於接地端子;第2N型場效電晶體,汲極連接於所述電流源的另一個端子,源極連接於所述第1N型場效電晶體的汲極,閘極連接於所述輸入端子;以及電容,一個端子連接於所述第2N型場效電晶體的源極,另一個端子連接於所述接地端子,其中所述第2N型場效電晶體的汲極連接於所述輸出端子。
- 如申請專利範圍第1項所述的放大電路,其中所述電流源為電阻元件。
- 如申請專利範圍第1項所述的放大電路,其中在所述電容的另一個端子側具備電壓源。
- 如申請專利範圍第1項所述的放大電路,其中所述放大電路具備與所述電容串聯的電阻元件。
- 如申請專利範圍第1項所述的放大電路,其中在所述第1N型場效電晶體的閘極與所述第2N型場效電晶體的閘極之間具備電壓源。
- 一種電壓調整器,其特徵在於包括: 如申請專利範圍第1項至第5項中任一項所述的放大電路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-242546 | 2015-12-11 | ||
JP2015242546A JP6632358B2 (ja) | 2015-12-11 | 2015-12-11 | 増幅回路及びボルテージレギュレータ |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201722066A TW201722066A (zh) | 2017-06-16 |
TWI716500B true TWI716500B (zh) | 2021-01-21 |
Family
ID=59020177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105138742A TWI716500B (zh) | 2015-12-11 | 2016-11-25 | 放大電路以及電壓調整器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9800156B2 (zh) |
JP (1) | JP6632358B2 (zh) |
KR (1) | KR102110110B1 (zh) |
CN (1) | CN106896856B (zh) |
TW (1) | TWI716500B (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3453107A4 (en) * | 2016-05-07 | 2019-11-20 | Intelesol, LLC | HIGHLY EFFICIENT DC-AC INVERTER AND METHOD |
US11671029B2 (en) | 2018-07-07 | 2023-06-06 | Intelesol, Llc | AC to DC converters |
US11581725B2 (en) | 2018-07-07 | 2023-02-14 | Intelesol, Llc | Solid-state power interrupters |
US11056981B2 (en) | 2018-07-07 | 2021-07-06 | Intelesol, Llc | Method and apparatus for signal extraction with sample and hold and release |
TWI680366B (zh) * | 2018-08-24 | 2019-12-21 | 新唐科技股份有限公司 | 單一電晶體控制的穩壓器及應用此穩壓器的積體電路 |
US11205011B2 (en) | 2018-09-27 | 2021-12-21 | Amber Solutions, Inc. | Privacy and the management of permissions |
US11334388B2 (en) | 2018-09-27 | 2022-05-17 | Amber Solutions, Inc. | Infrastructure support to enhance resource-constrained device capabilities |
US11349296B2 (en) | 2018-10-01 | 2022-05-31 | Intelesol, Llc | Solid-state circuit interrupters |
US10985548B2 (en) | 2018-10-01 | 2021-04-20 | Intelesol, Llc | Circuit interrupter with optical connection |
JP7475351B2 (ja) | 2018-12-17 | 2024-04-26 | インテレソール エルエルシー | Ac駆動型の発光ダイオードシステム |
US11551899B2 (en) | 2019-05-18 | 2023-01-10 | Amber Semiconductor, Inc. | Intelligent circuit breakers with solid-state bidirectional switches |
US11349297B2 (en) | 2020-01-21 | 2022-05-31 | Amber Solutions, Inc. | Intelligent circuit interruption |
EP4197086A4 (en) | 2020-08-11 | 2024-09-04 | Amber Semiconductor Inc | INTELLIGENT POWER SOURCE SELECTION AND MONITORING CONTROL SYSTEM |
US12113525B2 (en) | 2021-09-30 | 2024-10-08 | Amber Semiconductor, Inc. | Intelligent electrical switches |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6278321B1 (en) * | 1999-10-21 | 2001-08-21 | Infineon Technologies Corporation | Method and apparatus for an improved variable gain amplifier |
US20100176884A1 (en) * | 2007-01-16 | 2010-07-15 | Commissariat A L'energie Atomique | Transconductance amplifier with improved linearity |
US20100308915A1 (en) * | 2009-06-09 | 2010-12-09 | Infineon Technologies Ag | Phase Margin Modification In Operational Transconductance Amplifiers |
TWI406120B (zh) * | 2010-04-20 | 2013-08-21 | Novatek Microelectronics Corp | 展頻電路 |
US20140035623A1 (en) * | 2012-02-08 | 2014-02-06 | Mediatek Inc. | Comparator with transition threshold tracking capability |
US20140167847A1 (en) * | 2012-12-14 | 2014-06-19 | Orise Technology Co., Ltd. | Operational Amplifying Device with Auto-adjustment Output Impedance |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62290204A (ja) * | 1986-06-10 | 1987-12-17 | Fujitsu Ltd | カスケ−ド回路を含む電子回路 |
US4947063A (en) * | 1987-10-09 | 1990-08-07 | Western Digital Corporation | Method and apparatus for reducing transient noise in integrated circuits |
JPH03159405A (ja) * | 1989-11-17 | 1991-07-09 | Sumitomo Electric Ind Ltd | 増幅回路 |
JPH05243861A (ja) * | 1992-02-29 | 1993-09-21 | Sony Corp | 広帯域増幅回路 |
FR2691306B1 (fr) * | 1992-05-18 | 1994-08-12 | Sgs Thomson Microelectronics | Amplificateur avec limitation de courant de sortie. |
JPH07183736A (ja) * | 1993-12-22 | 1995-07-21 | Toshiba Corp | 電子回路 |
US5519357A (en) * | 1995-02-21 | 1996-05-21 | Apex Microtechnology | Biasing arrangement for a quasi-complementary output stage |
JP4095174B2 (ja) * | 1997-08-05 | 2008-06-04 | 株式会社東芝 | 液晶ディスプレイ装置 |
JP5715401B2 (ja) * | 2010-12-09 | 2015-05-07 | セイコーインスツル株式会社 | ボルテージレギュレータ |
JP5715525B2 (ja) * | 2011-08-05 | 2015-05-07 | セイコーインスツル株式会社 | ボルテージレギュレータ |
JP5865815B2 (ja) * | 2012-10-12 | 2016-02-17 | 旭化成エレクトロニクス株式会社 | 演算増幅器 |
JP6342240B2 (ja) * | 2013-08-26 | 2018-06-13 | エイブリック株式会社 | ボルテージレギュレータ |
JP6376874B2 (ja) * | 2014-01-21 | 2018-08-22 | エイブリック株式会社 | 増幅回路 |
JP6316632B2 (ja) * | 2014-03-25 | 2018-04-25 | エイブリック株式会社 | ボルテージレギュレータ |
JP6457887B2 (ja) * | 2015-05-21 | 2019-01-23 | エイブリック株式会社 | ボルテージレギュレータ |
-
2015
- 2015-12-11 JP JP2015242546A patent/JP6632358B2/ja active Active
-
2016
- 2016-11-25 TW TW105138742A patent/TWI716500B/zh active
- 2016-11-30 KR KR1020160161377A patent/KR102110110B1/ko active IP Right Grant
- 2016-12-02 US US15/367,840 patent/US9800156B2/en active Active
- 2016-12-08 CN CN201611119800.0A patent/CN106896856B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6278321B1 (en) * | 1999-10-21 | 2001-08-21 | Infineon Technologies Corporation | Method and apparatus for an improved variable gain amplifier |
US20100176884A1 (en) * | 2007-01-16 | 2010-07-15 | Commissariat A L'energie Atomique | Transconductance amplifier with improved linearity |
US20100308915A1 (en) * | 2009-06-09 | 2010-12-09 | Infineon Technologies Ag | Phase Margin Modification In Operational Transconductance Amplifiers |
TWI406120B (zh) * | 2010-04-20 | 2013-08-21 | Novatek Microelectronics Corp | 展頻電路 |
US20140035623A1 (en) * | 2012-02-08 | 2014-02-06 | Mediatek Inc. | Comparator with transition threshold tracking capability |
US20140167847A1 (en) * | 2012-12-14 | 2014-06-19 | Orise Technology Co., Ltd. | Operational Amplifying Device with Auto-adjustment Output Impedance |
Also Published As
Publication number | Publication date |
---|---|
JP6632358B2 (ja) | 2020-01-22 |
KR20170069923A (ko) | 2017-06-21 |
KR102110110B1 (ko) | 2020-05-13 |
US9800156B2 (en) | 2017-10-24 |
TW201722066A (zh) | 2017-06-16 |
CN106896856A (zh) | 2017-06-27 |
CN106896856B (zh) | 2020-07-07 |
JP2017108355A (ja) | 2017-06-15 |
US20170170730A1 (en) | 2017-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI716500B (zh) | 放大電路以及電壓調整器 | |
US8040187B2 (en) | Semiconductor integrated circuit device | |
US9531336B2 (en) | Operational amplifier and driving circuit | |
JP2015046876A5 (zh) | ||
TWI548205B (zh) | Balanced upscale mixer | |
US9571052B1 (en) | Transconductance (gm) boosting transistor arrangement | |
CN108183691B (zh) | 折叠共源共栅运算放大器 | |
JP5883477B2 (ja) | 電圧制御発振器 | |
US10187024B2 (en) | Input feed-forward technique for class AB amplifier | |
KR101496004B1 (ko) | 피드백 신호를 이용한 전력 증폭기 | |
WO2021117181A1 (ja) | ドライバ回路 | |
JP5684697B2 (ja) | クリッピング回路、差動増幅回路および増幅回路 | |
JP6845680B2 (ja) | アナログスイッチ回路 | |
US10574193B2 (en) | Class AB amplifier having cascode stage with filter for improving linearity | |
KR101363818B1 (ko) | 고조파 감쇄를 위한 전력 증폭기 | |
JP6571518B2 (ja) | 差動増幅回路 | |
JP2010109710A (ja) | 利得可変型増幅器 | |
TWI619345B (zh) | 功率放大器 | |
CN108155882B (zh) | 运算放大器及其差分放大电路 | |
KR101480224B1 (ko) | 피드포워드 신호를 이용한 전력 증폭기 | |
JP2019115008A (ja) | 入力回路 | |
JP2017143473A (ja) | 差動増幅回路 | |
US20140232462A1 (en) | Power amplifier using differential structure | |
JP2018505609A (ja) | 高電圧スイッチ | |
JP2010034859A (ja) | 出力回路 |