CN106744733A - 一种二维过渡金属碳化物或氮化物的制备方法 - Google Patents

一种二维过渡金属碳化物或氮化物的制备方法 Download PDF

Info

Publication number
CN106744733A
CN106744733A CN201710075874.7A CN201710075874A CN106744733A CN 106744733 A CN106744733 A CN 106744733A CN 201710075874 A CN201710075874 A CN 201710075874A CN 106744733 A CN106744733 A CN 106744733A
Authority
CN
China
Prior art keywords
alc
nitride
preparation
mixture
highly basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710075874.7A
Other languages
English (en)
Inventor
李亮
李庚南
谭理
张宇萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201710075874.7A priority Critical patent/CN106744733A/zh
Publication of CN106744733A publication Critical patent/CN106744733A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种二维过渡金属碳化物或氮化物的制备方法,包括步骤:将金属碳化物或者金属氮化物与强碱混合均匀得到混合物,该金属碳化物或者金属氮化物选自由Ti2AlC、Ti3AlC2、Ti3SiC2、Ti4SiC3、Ti2AlN、V2AlC、V3AlC2、V4AlC3、V4SiC3、Nb2AlC、Nb4AlC3、Nb4SiC3、Ta2AlC、Ta3AlC2和Ta3SiC2组成的组中的至少一种,该强碱选自由KOH、RbOH和CsOH组成的组中的至少一种;将所述混合物用去离子水洗,得到单层分散的二维过渡金属碳化物或氮化物胶体溶液。根据本发明的制备方法是一种绿色环保无污染的得到单层二维纳米片层的方法。

Description

一种二维过渡金属碳化物或氮化物的制备方法
技术领域
本发明涉及二维过渡金属碳化物或氮化物,更具体地涉及一种二维过渡金属碳化物或氮化物的制备方法。
背景技术
MAX是一种含C或N的金属碳化物或者金属氮化物,其化学式为Mn+1AXn,其中‘M’代表过渡金属元素(Ti、Nb、V、Ta等),‘A’主要为第三和第四主族元素(Al、Si等),‘X’是碳或氮元素。利用化学法将前驱体MAX相中A层元素选择性腐蚀可获得新型的二维纳米材料称作二维过渡金属碳化物或氮化物(MXene)。这种二维纳米材料具有独特且优异的力学、电子、磁学性能。以含有Al元素的Ti3AlC2相为例,将Ti3AlC2粉末加入到一定浓度的HF水溶液中,搅拌一段时间。离心过滤得到混合物,利用去离子水清洗固体物质。最终,紧密堆积的MAX相颗粒转变成为一种像手风琴一样松散堆积的结构,即MXene纳米片。
在MAX相腐蚀过程中,用到的HF溶液具有强烈的腐蚀性,且毒性较大。同时,M元素在含F的溶液中不稳定。因此,HF溶液对MAX相中Al、Si元素的腐蚀过程,容易对MXene片层的结构造成破坏,导致各片层腐蚀不均匀。当MAX相中Al、Si元素没有完全除掉时,HF处理后各片层之间通常通过残留的Al、Si元素结合在一起而仍然具有较强的结合力,仅通过后续超声难以得到较好的剥离效果,所得产物中大部分仍然是粘附在一起的多层MXene片,而单层或几层纳米片所占的比重很少。如需获得单层结构的MXene纳米片,还需逐级离心分离,从而造成单层MXene纳米片的制备效率很低。而且,HF腐蚀产物中AlF3,是一种不溶于酸和碱的杂质,难以除去,对MXene的性质有很大的影响。因此,须研究一种绿色环保、可控及高效率制备高质量的单层MXene纳米片的新技术,进一步推动MXene的基础研究,提升材料的实际应用价值。
发明内容
为了解决上述现有技术存在的无法得到单层MXene纳米片的问题,本发明旨在提供一种二维过渡金属碳化物或氮化物的制备方法。
本发明所述的二维过渡金属碳化物或氮化物的制备方法,包括步骤:S1,将金属碳化物或者金属氮化物与强碱混合均匀得到混合物,其中,该金属碳化物或者金属氮化物选自由Ti2AlC、Ti3AlC2、Ti3SiC2、Ti4SiC3、Ti2AlN、V2AlC、V3AlC2、V4AlC3、V4SiC3、Nb2AlC、Nb4AlC3、Nb4SiC3、Ta2AlC、Ta3AlC2和Ta3SiC2组成的组中的至少一种,该强碱选自由KOH、RbOH和CsOH组成的组中的至少一种;S2,将所述混合物用去离子水洗,得到单层分散的二维过渡金属碳化物或氮化物胶体溶液。
令人意外的是,强碱NaOH无法进入MAX的M层和X层之间,因此无法实现腐蚀A(Al或Si)的目的。
所述步骤S1包括:S11,将金属碳化物或者金属氮化物与强碱混合均匀得到第一混合物;S12,将所述第一混合物置于水热釜中,50-200℃反应10-48h得到第二混合物。
令人意外的是,直接将步骤S11的第一混合物用去离子水洗得到的MXene的收率大概在50%左右;而经过步骤S12的水热处理可以促进A(Al或Si)的腐蚀,利用去离子水洗第二混合物得到的MXene的收率接近100%。
所述步骤S12在180-200℃反应10-24h。
所述步骤S1具体为将固体的金属碳化物或者金属氮化物与固体的强碱研磨均匀得到混合物。
所述步骤S1中的强碱与金属碳化物或者金属氮化物的摩尔比不小于1。
所述步骤S1中的强碱与金属碳化物或者金属氮化物的质量比为3.5-35。
所述步骤S1包括将金属碳化物或者金属氮化物、强碱和水搅拌均匀得到混合物。
所述步骤S1中的水与强碱的摩尔比为0.04-120。
令人意外的是,水的下限可以趋于0,因为强碱具有很强的吸水性,在研磨过程中,其可以吸附空气中的水分,其足以维持水热过程中腐蚀的进行。
所述步骤S1中的水与强碱的摩尔比为22.5-120。
根据本发明的二维过渡金属碳化物或氮化物的制备方法,其不涉及到有毒有害的HF溶液,仅利用强碱将MAX相中的Al、Si层完全腐蚀掉,得到片层之间不会相互粘连的MXene,即所得MXene纳米片可以在水溶液中以单层形式分散。总之,本发明的制备方法是一种绿色环保无污染的得到单层二维纳米片层的方法。
附图说明
图1是根据本发明的实施例得到的Ti3C2纳米片的扫描电子显微镜照片;
图2是根据本发明的实施例得到的Ti3C2纳米片的原子力显微镜照片。
具体实施方式
下面结合附图,给出本发明的较佳实施例,并予以详细描述。
实施例1
1.将Ti2AlC(0.1g),KOH固体(3.5g)和水(135ml)搅拌均匀,其中,H2O/KOH摩尔比=120;
2.将研磨后的混合物置于水热釜中,继续200℃反应10小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
该MXene胶体溶液中的MXene(Ti3C2)纳米片的扫描电子显微镜照片如图1所示,由此可知,相比HF处理后手风琴松散堆积的结构,根据本实施例所得材料的片层为透明状,说明此方法所得的MXene片层较薄,比HF处理方法要更好。
该MXene胶体溶液中的MXene(Ti3C2)纳米片的原子力显微镜(AFM)照片如图2所示,由此可知,片层的厚度约为1.2纳米,小于两层MXene的厚度,确认为单层的结构。单层的MXene片厚度为~0.95nm,从原子力显微镜图中可以看出,实验所得MXene纳米片的厚度为1.2nm左右。因此,实验中强碱腐蚀并洗涤后得到的为单层分散的MXene胶体溶液。
实施例2
1.将V2AlC(0.1g)和KOH固体(0.35g)空气中研磨均匀;
2.将研磨后的混合物置于水热釜中,继续180℃反应24小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例3
1.将Nb2AlC(0.1g)和KOH固体(3.5g)研磨均匀;
2.将研磨后的混合物置于水热釜中,继续180℃反应24小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例4
1.将Ti2AlN(0.1g),KOH固体(0.35g)和水(135ml)搅拌均匀,其中,H2O/KOH摩尔比=120;
2.将研磨后的混合物置于水热釜中,继续50℃反应48小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例5
1.将Ta2AlC(0.1g)和RbOH固体(0.35g)空气中研磨均匀;
2.将研磨后的混合物置于水热釜中,继续80℃反应36小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例6
1.将Ti3AlC2(0.1g),KOH固体(0.35g)和水(0.05ml)搅拌均匀,其中,H2O/KOH摩尔比=22.5;
2.将研磨后的混合物置于水热釜中,继续180℃反应24小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例7
1.将V3AlC2(0.1g),KOH固体(3.5g)和水(0.05ml)搅拌均匀,其中,H2O/KOH摩尔比=0.04;
2.将研磨后的混合物置于水热釜中,继续180℃反应24小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例8
1.将Ti3SiC2(0.1g),KOH固体(0.35g)和水(135ml)搅拌均匀,其中,H2O/KOH摩尔比=120;
2.将研磨后的混合物置于水热釜中,继续180℃反应24小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例9
1.将Ta3SiC2(0.1g)和KOH固体(0.35g)空气中研磨均匀;
2.将研磨后的混合物置于水热釜中,继续100℃反应24小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例10
1.将V4SiC3(0.1g),KOH固体(0.35g)和水(0.05ml)研磨均匀,其中,H2O/KOH摩尔比=0.04;
2.将研磨后的混合物置于水热釜中,继续180℃反应24小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例11
1.将Nb4SiC3(0.1g),CsOH固体(0.35g)和水(0.05ml)研磨均匀,其中,H2O/KOH摩尔比=0.04;
2.将研磨后的混合物置于水热釜中,继续180℃反应24小时;
3.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例12
1.将Ti3AlC2(0.1g),KOH固体(0.35g)和水(0.05ml)搅拌均匀,其中,H2O/KOH摩尔比=22.5;
2.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
实施例13
1.将Ti3AlC2(0.1g)和KOH固体(0.35g)研磨均匀;
2.将所得混合物用去离子水洗,即可得到单层分散的MXene胶体溶液。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (9)

1.一种二维过渡金属碳化物或氮化物的制备方法,其特征在于,该方法包括步骤:
S1,将金属碳化物或者金属氮化物与强碱混合均匀得到混合物,其中,该金属碳化物或者金属氮化物选自由Ti2AlC、Ti3AlC2、Ti3SiC2、Ti4SiC3、Ti2AlN、V2AlC、V3AlC2、V4AlC3、V4SiC3、Nb2AlC、Nb4AlC3、Nb4SiC3、Ta2AlC、Ta3AlC2和Ta3SiC2组成的组中的至少一种,该强碱选自由KOH、RbOH和CsOH组成的组中的至少一种;
S2,将所述混合物用去离子水洗,得到单层分散的二维过渡金属碳化物或氮化物胶体溶液。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤S1包括:
S11,将金属碳化物或者金属氮化物与强碱混合均匀得到第一混合物;
S12,将所述第一混合物置于水热釜中,50-200℃反应10-48h得到第二混合物。
3.根据权利要求2所述的制备方法,其特征在于,所述步骤S12在180-200℃反应10-24h。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤S1具体为将固体的金属碳化物或者金属氮化物与固体的强碱研磨均匀得到混合物。
5.根据权利要求4所述的制备方法,其特征在于,所述步骤S1中的强碱与金属碳化物或者金属氮化物的摩尔比不小于1。
6.根据权利要求4所述的制备方法,其特征在于,所述步骤S1中的强碱与金属碳化物或者金属氮化物的质量比为3.5-35。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤S1包括将金属碳化物或者金属氮化物、强碱和水搅拌均匀得到混合物。
8.根据权利要求7所述的制备方法,其特征在于,所述步骤S1中的水与强碱的摩尔比为0.04-120。
9.根据权利要求8所述的制备方法,其特征在于,所述步骤S1中的水与强碱的摩尔比为22.5-120。
CN201710075874.7A 2017-02-13 2017-02-13 一种二维过渡金属碳化物或氮化物的制备方法 Pending CN106744733A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710075874.7A CN106744733A (zh) 2017-02-13 2017-02-13 一种二维过渡金属碳化物或氮化物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710075874.7A CN106744733A (zh) 2017-02-13 2017-02-13 一种二维过渡金属碳化物或氮化物的制备方法

Publications (1)

Publication Number Publication Date
CN106744733A true CN106744733A (zh) 2017-05-31

Family

ID=58956406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710075874.7A Pending CN106744733A (zh) 2017-02-13 2017-02-13 一种二维过渡金属碳化物或氮化物的制备方法

Country Status (1)

Country Link
CN (1) CN106744733A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946256A (zh) * 2017-03-14 2017-07-14 昆明理工大学 一种三元碳化物纳米带的制备方法
CN108346519A (zh) * 2018-01-26 2018-07-31 陕西科技大学 一种MXene-羟基修饰碳化钛超薄纳米带及其无氟合成方法
CN108470633A (zh) * 2018-04-10 2018-08-31 中国科学院合肥物质科学研究院 一种高比容量优循环稳定性的超级电容器电极材料
CN109201002A (zh) * 2018-11-12 2019-01-15 南京林业大学 一种炭包裹的过渡金属碳化物复合材料、制备方法及其吸附用途
CN109369186A (zh) * 2018-11-05 2019-02-22 大连理工大学 一种钛碳化铝的低温制备方法
CN109701397A (zh) * 2019-01-16 2019-05-03 华南理工大学 一种电泳沉积法制备的二维MXene膜在离子截留中的应用
CN110371979A (zh) * 2019-07-31 2019-10-25 北京科技大学 一种碱液刻蚀制备MXene量子点的方法
CN111232981A (zh) * 2020-01-17 2020-06-05 北京理工大学 一种高储锂容量Ti3C2Tx的机械化学制备方法
CN113248738A (zh) * 2021-06-24 2021-08-13 西南科技大学 一种二维材料改性环氧树脂复合材料及其制备方法
CN114031078A (zh) * 2021-11-19 2022-02-11 徐州纳烯新材料研究院有限公司 一种无氟MXene二维纳米片的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082313A (zh) * 2016-05-31 2016-11-09 陕西科技大学 棒状二氧化锡/二维纳米碳化钛复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082313A (zh) * 2016-05-31 2016-11-09 陕西科技大学 棒状二氧化锡/二维纳米碳化钛复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIUMING PENG ET AL.: "Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
XIAOHONG XIE ET AL.: "Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system", 《NANOSCALE》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946256A (zh) * 2017-03-14 2017-07-14 昆明理工大学 一种三元碳化物纳米带的制备方法
CN108346519A (zh) * 2018-01-26 2018-07-31 陕西科技大学 一种MXene-羟基修饰碳化钛超薄纳米带及其无氟合成方法
CN108470633A (zh) * 2018-04-10 2018-08-31 中国科学院合肥物质科学研究院 一种高比容量优循环稳定性的超级电容器电极材料
CN109369186A (zh) * 2018-11-05 2019-02-22 大连理工大学 一种钛碳化铝的低温制备方法
CN109201002B (zh) * 2018-11-12 2021-07-23 南京林业大学 一种炭包裹的过渡金属碳化物复合材料、制备方法及其吸附用途
CN109201002A (zh) * 2018-11-12 2019-01-15 南京林业大学 一种炭包裹的过渡金属碳化物复合材料、制备方法及其吸附用途
CN109701397B (zh) * 2019-01-16 2021-12-21 华南理工大学 一种电泳沉积法制备的二维MXene膜在离子截留中的应用
CN109701397A (zh) * 2019-01-16 2019-05-03 华南理工大学 一种电泳沉积法制备的二维MXene膜在离子截留中的应用
CN110371979B (zh) * 2019-07-31 2021-07-20 北京科技大学 一种碱液刻蚀制备MXene量子点的方法
CN110371979A (zh) * 2019-07-31 2019-10-25 北京科技大学 一种碱液刻蚀制备MXene量子点的方法
CN111232981A (zh) * 2020-01-17 2020-06-05 北京理工大学 一种高储锂容量Ti3C2Tx的机械化学制备方法
CN111232981B (zh) * 2020-01-17 2020-12-29 北京理工大学 一种高储锂容量Ti3C2Tx的机械化学制备方法
CN113248738A (zh) * 2021-06-24 2021-08-13 西南科技大学 一种二维材料改性环氧树脂复合材料及其制备方法
CN113248738B (zh) * 2021-06-24 2022-07-01 西南科技大学 一种二维材料改性环氧树脂复合材料及其制备方法
CN114031078A (zh) * 2021-11-19 2022-02-11 徐州纳烯新材料研究院有限公司 一种无氟MXene二维纳米片的制备方法
CN114031078B (zh) * 2021-11-19 2024-04-12 徐州纳烯新材料研究院有限公司 一种无氟MXene二维纳米片的制备方法

Similar Documents

Publication Publication Date Title
CN106744733A (zh) 一种二维过渡金属碳化物或氮化物的制备方法
JP5933374B2 (ja) 薄層黒鉛または薄層黒鉛化合物の製造方法
CN104313606B (zh) 用于金属件表面除油、除锈的清洗溶液
CN108658122A (zh) 一种二维金属碳氮化物衍生纳米材料及其制备方法
CN102093700B (zh) 一种石墨烯/水性聚氨酯导电复合材料的制备方法
CN107857258A (zh) 一种全碳面氧化调控功能化石墨烯官能团种类的方法
CN106185895A (zh) 一种石墨烯分散液制备方法
RU2007130690A (ru) Ультрадисперсный порошок из многокристаллических алмазных частиц и способ его получения
CA2999904A1 (en) Industrial method for preparing large-sized graphene
CN109665520A (zh) 一种石墨烯表面修饰改性的方法及二氧化硅/石墨烯类复合材料
CN107857259A (zh) 一种全碳面氧化制备低含氧量可分散功能化石墨烯的方法
CN102585569B (zh) 用于硬质合金烧结的涂料、配制方法、以及使用方法
KR102294440B1 (ko) 그래핀옥사이드-탄소나노튜브 복합체, 이의 제조방법 및 이를 포함하는 시멘트 페이스트
CN104291330A (zh) 一种改性功能化石墨烯纳米材料的制备方法
CN108687339A (zh) 低氧含量的钛或钛合金球形粉末及其制备方法和用途
CN103193225A (zh) 纳米金属氧化物石墨烯复合材料的制备方法
CN104128180B (zh) 电子束辐照法合成氧化亚铜/石墨烯光催化复合纳米材料的方法
JP2021063002A (ja) 単層グラフェンの製造方法、単層グラフェン分散体の製造方法及び単層グラフェン分散体
Ding et al. Efficient exfoliation of layered materials by waste liquor
CN108545784A (zh) 一种小尺寸金属氧化物纳米片及其制备方法
CN108671888A (zh) 一种N-CDs@δ-MnO2纳米复合材料的制备方法及应用
CN105502357B (zh) 一种机械剥离制备石墨烯专用剥离剂及制备方法
JP6283847B2 (ja) コア・シェル複合粒子の製造方法
JP5937812B2 (ja) イソシアネート基変成炭素材料及びその製造方法
CN104261394B (zh) 石墨烯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531

WD01 Invention patent application deemed withdrawn after publication