CN106611781A - 量子阱器件及其形成方法 - Google Patents

量子阱器件及其形成方法 Download PDF

Info

Publication number
CN106611781A
CN106611781A CN201510707771.9A CN201510707771A CN106611781A CN 106611781 A CN106611781 A CN 106611781A CN 201510707771 A CN201510707771 A CN 201510707771A CN 106611781 A CN106611781 A CN 106611781A
Authority
CN
China
Prior art keywords
quantum well
forming method
fin structure
well devices
cushion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510707771.9A
Other languages
English (en)
Inventor
肖德元
张汝京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zing Semiconductor Corp
Original Assignee
Zing Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zing Semiconductor Corp filed Critical Zing Semiconductor Corp
Priority to CN201510707771.9A priority Critical patent/CN106611781A/zh
Priority to TW105106939A priority patent/TWI578531B/zh
Priority to US15/077,867 priority patent/US20170117398A1/en
Priority to US15/491,988 priority patent/US20170222034A1/en
Publication of CN106611781A publication Critical patent/CN106611781A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/158Structures without potential periodicity in a direction perpendicular to a major surface of the substrate, i.e. vertical direction, e.g. lateral superlattices, lateral surface superlattices [LSS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • H01L29/7784Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material with delta or planar doped donor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7789Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提出了一种量子阱器件及其形成方法,能够形成具有高迁移率的量子阱器件,并且形成的量子阱器件具有较高的击穿电压,从而获得具有较好的性能及可靠性的量子阱器件。

Description

量子阱器件及其形成方法
技术领域
本发明涉及半导体制造领域,尤其涉及一种量子阱器件及其形成方法。
背景技术
高电子迁移率晶体管(HEMT)的基本结构由一个调制掺杂异质结及其源漏结构组成。存在于调制掺杂异质结中的二维电子气(2-DEG),由于不受电离杂质离子散射的影响,其迁移率非常高。HEMT是电压控制器件,栅极电压Vg可控制异质结势阱的深度,从而控制势阱中2-DEG的面密度,进而控制器件的工作电流。对于GaAs体系的HEMT,通常其中的n-AlxGa1-xAs控制层应该是耗尽的。若n-AlxGa1-xAs层厚度较大、掺杂浓度又高,则在Vg=0时就存在有2-DEG,为耗尽型器件,反之则为增强型器件(Vg=0时,肖特基耗尽层即延伸到本征GaAs层内部);对于HEMT,主要是要控制好宽禁带半导体层(控制层)的掺杂浓度和厚度,特别是厚度。在考虑HEMT中的2-DEG面密度Ns时,通常只需要考虑异质结势阱中的两个二维子能带(i=0和1)即可。2-DEG面电荷密度Ns将受到栅极电压Vg的控制。
发明内容
本发明的目的在于提供一种量子阱器件及其形成方法,能够获得具有高迁移率的量子阱器件。
为了实现上述目的,本发明提出了一种量子阱器件的形成方法,包括步骤:
提供衬底,在所述衬底的表面形成具有鳍状结构的缓冲层;
在所述缓冲层及鳍状结构表面上依次沉积量子阱沟道层、阻挡层及介质层;
在所述鳍状结构两侧的介质层表面形成金属栅极,所述金属栅极高度低于所述鳍状结构的高度;
在鳍状结构两侧暴露出的介质层表面及金属栅极的两侧形成侧墙;
依次刻蚀位于鳍状结构及缓冲层表面暴露出的介质层及阻挡层,暴露出源漏区域的所述量子阱沟道层;
在暴露出的源漏区域的量子阱沟道层内进行掺杂,形成源极和漏极;
在所述源极和漏极上形成源漏电极。
进一步的,在所述的量子阱器件的形成方法中,所述具有鳍状结构的缓冲层的形成步骤包括:
在所述衬底上形成所述缓冲层;
在所述缓冲层表面形成图案化的光阻;
以所述图案化的光阻作为掩膜,干法刻蚀所述缓冲层,形成鳍状结构。
进一步的,在所述的量子阱器件的形成方法中,所述缓冲层的材质为AlN,厚度范围是100nm~5000nm。
进一步的,在所述的量子阱器件的形成方法中,所述缓冲层采用MOCVD、ALD或者MBE工艺形成。
进一步的,在所述的量子阱器件的形成方法中,所述量子阱沟道层的材质为N-型GaN,厚度范围是1nm~100nm。
进一步的,在所述的量子阱器件的形成方法中,所述阻挡层的材质为AlN。
进一步的,在所述的量子阱器件的形成方法中,所述量子阱沟道层及阻挡层均采用外延生长工艺形成。
进一步的,在所述的量子阱器件的形成方法中,所述介质层的材质为二氧化硅、氧化铝、氧化锆或氧化铪,厚度范围是1nm~5nm。
进一步的,在所述的量子阱器件的形成方法中,所述介质层采用CVD、MOCVD、ALD或MBE工艺形成。
进一步的,在所述的量子阱器件的形成方法中,所述金属栅极的材质为NiAu或CrAu。
进一步的,在所述的量子阱器件的形成方法中,所述金属层采用CVD、PVD、MOCVD、ALD或MBE工艺形成。
进一步的,在所述的量子阱器件的形成方法中,所述侧墙的材质为氮化硅。
进一步的,在所述的量子阱器件的形成方法中,采用选择性刻蚀工艺依次刻蚀位于鳍状结构及缓冲层表面暴露出的介质层及阻挡层,暴露出源漏区域的所述量子阱沟道层。
进一步的,在所述的量子阱器件的形成方法中,采用离子注入或离子扩散工艺对所述量子阱沟道层进行N+离子注入,形成源极和漏极。
在本发明中,还提出了一种量子阱器件,采用如上文所述的量子阱器件的形成方法形成,其特征在于,包括:衬底、设有鳍状结构的缓冲层、量子阱沟道层、阻挡层、金属栅极、介质层、侧墙及源漏极,其中,所述设有鳍状结构的缓冲层形成在所述衬底上,所述量子阱沟道层、阻挡层、介质层及金属栅极依次形成在所述鳍状结构的两侧,所述侧墙形成在鳍状结构两侧暴露出的介质层表面及金属栅极的两侧,所述源极形成在金属栅极两侧的量子阱沟道层内,所述漏极形成在所述及鳍状结构顶部暴露出的量子阱沟道层内。
进一步的,在所述的量子阱器件中,还包括源漏极电极,所述源漏极电极形成在所述源极和漏极上。
与现有技术相比,本发明的有益效果主要体现在:提出了一种量子阱器件的形成方法,能够形成具有高迁移率的量子阱器件,并且形成的量子阱器件具有较高的击穿电压,从而获得具有较好的性能及可靠性的量子阱器件。
附图说明
图1为本发明一实施例中量子阱器件的形成方法的流程图;
图2至图9为本发明一实施例中形成量子阱器件过程中的剖面示意图。
具体实施方式
下面将结合示意图对本发明的量子阱器件及其形成方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
请参考图1,在本发明中,提出了一种量子阱器件的形成方法,包括步骤:
S100:提供衬底,在所述衬底的表面形成具有鳍状结构的缓冲层;
S200:在所述缓冲层及鳍状结构表面上依次沉积量子阱沟道层、阻挡层及介质层;
S300:在所述鳍状结构两侧的介质层表面形成金属栅极,所述金属栅极高度低于所述鳍状结构的高度;
S400:在鳍状结构两侧暴露出的介质层表面及金属栅极的两侧形成侧墙;
S500:依次刻蚀位于鳍状结构及缓冲层表面暴露出的介质层及阻挡层,暴露出源漏区域的所述量子阱沟道层;
S600:在暴露出的源漏区域的量子阱沟道层内进行掺杂,形成源极和漏极;
S700:在所述源极和漏极上形成源漏电极。
具体的,请参考图2,在步骤S100中,所述衬底100可以为硅衬底、蓝宝石衬底或者SiC衬底等,其还可以是设有Σ型凹槽等图形的衬底。
在所述衬底100表面形成缓冲层200;所述缓冲层200材质为AlN,其厚度范围是100nm~5000nm,例如是3000nm。所述缓冲层200可以采用MOCVD(Metal-organic Chemical Vapor Deposition,金属有机化合物化学气相沉淀)、ALD(Atomic layer deposition,原子层沉积)或者MBE(Molecular Beam Epitaxy,分子束外延)工艺形成。
接着,在所述缓冲层200上形成鳍形结构210,其形成步骤包括:
在所述衬底上形成所述缓冲层;
在所述缓冲层表面形成图案化的光阻;
以所述图案化的光阻作为掩膜,干法刻蚀所述缓冲层,形成鳍状结构(Fin)。
接着,请参考图3和图4,在所述缓冲层200及鳍状结构210表面上依次沉积量子阱沟道层310、阻挡层320及介质层330;其中,所述量子阱沟道层310材质为N-型GaN,在本实施例中,其厚度范围是1nm~100nm,例如是50nm。所述阻挡层320材质为AlN。所述介质层330的材质为二氧化硅、氧化铝、氧化锆或氧化铪,其厚度范围是1nm~5nm,例如是3nm。其中,所述量子阱沟道层310、阻挡层320及介质层330均可以采用CVD、MOCVD、ALD或MBE等工艺形成。
接着,请参考图5,在所述鳍状结构两侧的介质层330表面形成金属栅极400,所述金属栅极400高度低于所述鳍状结构210的高度;其中,所述金属栅极400的材质为NiAu或CrAu等,其可以采用PVD(Physical Vapor Deposition,物理气相沉积)、MOCVD、ALD或MBE工艺形成。
请参考图6,在鳍状结构两侧暴露出的介质层330表面及金属栅极400的两侧形成侧墙500;所述侧墙500的材质为氮化硅。
接着,请参考图7,刻蚀位于鳍状结构210及缓冲层200表面暴露出的介质层330及阻挡层320,暴露出源漏区域的所述量子阱沟道层310;其中,采用选择性刻蚀工艺进行刻蚀,去除所述部分介质层330及阻挡层320,暴露出位于鳍状结构210顶部的量子阱沟道层310,后续作为漏极,以及位于金属栅极400两侧缓冲层200上的量子阱沟道层310,后续作为源极。
接着,请参考图8,采用离子注入或离子扩散工艺对所述量子阱沟道层310进行N+离子注入,形成源极311和漏极312。形成的量子阱层310、阻挡层320及源极311和漏极312结构,调制掺杂异质结中的量子阱层310可以形成二维电子气(2-DEG,如图中虚线所示),由于不受电离杂质离子散射的影响,其迁移率非常高,从而可以使形成的量子阱器件具有较高的迁移率。
接着,请参考图9,在所述源极311和漏极312上形成源漏电极600。
在本实施例的另一方面还提出了一种量子阱器件,采用如上文所述的量子阱器件的形成方法形成,包括:衬底100、设有鳍状结构210的缓冲层200、量子阱沟道层310、阻挡层320、金属栅极400、介质层330、侧墙500及源极311和漏极312,其中,所述设有鳍状结构的缓冲层200形成在所述衬底100上,所述量子阱沟道层310、阻挡层320、介质层330及金属栅极400依次形成在所述鳍状结构210的两侧,所述侧墙500形成在鳍状结构210两侧暴露出的介质层330表面及金属栅极400的两侧,所述源极311形成在金属栅极400两侧的量子阱沟道层310内,所述漏极312形成在所述及鳍状结构210顶部暴露出的量子阱沟道层310内。
其中,量子阱器件还包括源漏极电极600,所述源漏极电极600形成在所述源极311和漏极312上。
综上,在本发明实施例提供的量子阱器件及其形成方法中,提出了一种量子阱器件的形成方法,能够形成具有高迁移率的量子阱器件,并且形成的量子阱器件具有较高的击穿电压,从而获得具有较好的性能及可靠性的量子阱器件。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (16)

1.一种量子阱器件的形成方法,其特征在于,包括步骤:
提供衬底,在所述衬底的表面形成具有鳍状结构的缓冲层;
在所述缓冲层及鳍状结构表面上依次沉积量子阱沟道层、阻挡层及介质层;
在所述鳍状结构两侧的介质层表面形成金属栅极,所述金属栅极高度低于所述鳍状结构的高度;
在鳍状结构两侧暴露出的介质层表面及金属栅极的两侧形成侧墙;
依次刻蚀位于鳍状结构及缓冲层表面暴露出的介质层及阻挡层,暴露出源漏区域的所述量子阱沟道层;
在暴露出的源漏区域的量子阱沟道层内进行掺杂,形成源极和漏极;
在所述源极和漏极上形成源漏电极。
2.如权利要求1所述的量子阱器件的形成方法,其特征在于,所述具有鳍状结构的缓冲层的形成步骤包括:
在所述衬底上形成所述缓冲层;
在所述缓冲层表面形成图案化的光阻;
以所述图案化的光阻作为掩膜,干法刻蚀所述缓冲层,形成鳍状结构。
3.如权利要求2所述的量子阱器件的形成方法,其特征在于,所述缓冲层的材质为AlN,厚度范围是100nm~5000nm。
4.如权利要求2所述的量子阱器件的形成方法,其特征在于,所述缓冲层采用MOCVD、ALD或者MBE工艺形成。
5.如权利要求1所述的量子阱器件的形成方法,其特征在于,所述量子阱沟道层的材质为N-型GaN,厚度范围是1nm~100nm。
6.如权利要求1所述的量子阱器件的形成方法,其特征在于,所述阻挡层的材质为AlN。
7.如权利要求5或6所述的量子阱器件的形成方法,其特征在于,所述量子阱沟道层及阻挡层均采用外延生长工艺形成。
8.如权利要求1所述的量子阱器件的形成方法,其特征在于,所述介质层的材质为二氧化硅、氧化铝、氧化锆或氧化铪,厚度范围是1nm~5nm。
9.如权利要求8所述的量子阱器件的形成方法,其特征在于,所述介质层采用CVD、MOCVD、ALD或MBE工艺形成。
10.如权利要求1所述的量子阱器件的形成方法,其特征在于,所述金属栅极的材质为NiAu或CrAu。
11.如权利要求10所述的量子阱器件的形成方法,其特征在于,所述金属层采用CVD、PVD、MOCVD、ALD或MBE工艺形成。
12.如权利要求1所述的量子阱器件的形成方法,其特征在于,所述侧墙的材质为氮化硅。
13.如权利要求1所述的量子阱器件的形成方法,其特征在于,采用选择性刻蚀工艺依次刻蚀位于鳍状结构及缓冲层表面暴露出的介质层及阻挡层,暴露出源漏区域的所述量子阱沟道层。
14.如权利要求1所述的量子阱器件的形成方法,其特征在于,采用离子注入或离子扩散工艺对所述量子阱沟道层进行N+离子注入,形成源极和漏极。
15.一种量子阱器件,采用如权利要求1至14中任一种所述的量子阱器件的形成方法形成,其特征在于,包括:衬底、设有鳍状结构的缓冲层、量子阱沟道层、阻挡层、金属栅极、介质层、侧墙及源极和漏极,其中,所述设有鳍状结构的缓冲层形成在所述衬底上,所述量子阱沟道层、阻挡层、介质层及金属栅极依次形成在所述鳍状结构的两侧,所述侧墙形成在鳍状结构两侧暴露出的介质层表面及金属栅极的两侧,所述源极形成在金属栅极两侧的量子阱沟道层内,所述漏极形成在所述及鳍状结构顶部暴露出的量子阱沟道层内。
16.如权利要求15所述的量子阱器件,其特征在于,还包括源漏极电极,所述源漏极电极形成在所述源极和漏极上。
CN201510707771.9A 2015-10-27 2015-10-27 量子阱器件及其形成方法 Pending CN106611781A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510707771.9A CN106611781A (zh) 2015-10-27 2015-10-27 量子阱器件及其形成方法
TW105106939A TWI578531B (zh) 2015-10-27 2016-03-07 量子阱元件及其形成方法
US15/077,867 US20170117398A1 (en) 2015-10-27 2016-03-22 METHOD FOR FORMATION OF VERTICAL CYLINDRICAL GaN QUANTUM WELL TRANSISTOR
US15/491,988 US20170222034A1 (en) 2015-10-27 2017-04-20 METHOD FOR FORMATION OF VERTICAL CYLINDRICAL GaN QUANTUM WELL TRANSISTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510707771.9A CN106611781A (zh) 2015-10-27 2015-10-27 量子阱器件及其形成方法

Publications (1)

Publication Number Publication Date
CN106611781A true CN106611781A (zh) 2017-05-03

Family

ID=58562019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510707771.9A Pending CN106611781A (zh) 2015-10-27 2015-10-27 量子阱器件及其形成方法

Country Status (3)

Country Link
US (2) US20170117398A1 (zh)
CN (1) CN106611781A (zh)
TW (1) TWI578531B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129139A (zh) * 2018-11-01 2020-05-08 西安电子科技大学 一种基于悬浮场板的自对准栅氮化镓增强型垂直功率器件
CN113611741A (zh) * 2021-08-02 2021-11-05 电子科技大学 一种具有鳍状结构的GaN HMET器件
CN113921609A (zh) * 2021-09-27 2022-01-11 深圳大学 一种垂直氮化镓场效应晶体管及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099480B2 (ja) * 2018-02-06 2022-07-12 日産自動車株式会社 半導体装置
JP7021063B2 (ja) * 2018-12-10 2022-02-16 株式会社東芝 半導体装置
CN110224019B (zh) * 2019-04-12 2023-12-01 广东致能科技有限公司 一种半导体器件及其制造方法
US11417764B2 (en) * 2020-01-29 2022-08-16 Taiwan Semiconductor Manufacturing Co., Ltd. Interface profile control in epitaxial structures for semiconductor devices
CN114203867B (zh) * 2021-10-19 2023-12-05 闽都创新实验室 电场调控型发光三极管器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157353A1 (en) * 2001-03-13 2004-08-12 International Business Machines Corporation Ultra scalable high speed heterojunction vertical n-channel MISFETs and methods thereof
CN1574253A (zh) * 2003-06-17 2005-02-02 国际商业机器公司 低泄漏异质结垂直晶体管及其高性能器件
US20060289916A1 (en) * 2004-10-07 2006-12-28 Chanho Park Power Trench MOSFETs Having SiGe/Si Channel Structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432180B2 (ja) * 1999-12-24 2010-03-17 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体
DE102012217073A1 (de) * 2012-09-21 2014-03-27 Robert Bosch Gmbh Vertikales mikroelektronisches Bauelement und entsprechendes Herstellungsverfahren
US9129889B2 (en) * 2013-03-15 2015-09-08 Semiconductor Components Industries, Llc High electron mobility semiconductor device and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157353A1 (en) * 2001-03-13 2004-08-12 International Business Machines Corporation Ultra scalable high speed heterojunction vertical n-channel MISFETs and methods thereof
CN1574253A (zh) * 2003-06-17 2005-02-02 国际商业机器公司 低泄漏异质结垂直晶体管及其高性能器件
US20060289916A1 (en) * 2004-10-07 2006-12-28 Chanho Park Power Trench MOSFETs Having SiGe/Si Channel Structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129139A (zh) * 2018-11-01 2020-05-08 西安电子科技大学 一种基于悬浮场板的自对准栅氮化镓增强型垂直功率器件
CN111129139B (zh) * 2018-11-01 2021-03-30 西安电子科技大学 一种基于悬浮场板的自对准栅氮化镓增强型垂直功率器件
CN113611741A (zh) * 2021-08-02 2021-11-05 电子科技大学 一种具有鳍状结构的GaN HMET器件
CN113611741B (zh) * 2021-08-02 2023-04-28 电子科技大学 一种具有鳍状结构的GaN HMET器件
CN113921609A (zh) * 2021-09-27 2022-01-11 深圳大学 一种垂直氮化镓场效应晶体管及其制备方法

Also Published As

Publication number Publication date
TW201715730A (zh) 2017-05-01
US20170222034A1 (en) 2017-08-03
US20170117398A1 (en) 2017-04-27
TWI578531B (zh) 2017-04-11

Similar Documents

Publication Publication Date Title
CN106611781A (zh) 量子阱器件及其形成方法
US9653605B2 (en) Fin field effect transistor (FinFET) device and method for forming the same
US9117850B2 (en) Method and system for a gallium nitride vertical JFET with self-aligned source and gate
JP6373509B2 (ja) 半導体デバイス、及び半導体デバイスの製造方法
CN104241350B (zh) 用于常关化合物半导体晶体管的栅极堆叠
CN106611780A (zh) 量子阱器件及其形成方法
CN108886052A (zh) 用于iii-n晶体管的单块集成的半导体结构与蚀刻技术
KR20140042871A (ko) 전류 애퍼쳐 수직 전자 트랜지스터들
CN105190896A (zh) Resurf iii-n高电子迁移率晶体管
JP2504376B2 (ja) 電界効果型トランジスタ
US11843047B2 (en) Integration of p-channel and n-channel E-FET III-V devices without parasitic channels
CN113178480B (zh) 具有栅漏复合阶梯场板结构的增强型hemt射频器件及其制备方法
JP2022027722A (ja) 段階的フィールドプレートを備えた窒化ガリウム系デバイス及びその製造方法
CN106684145B (zh) 具有漂移区的高压无结场效应器件及其形成方法
US10964803B2 (en) Gallium nitride transistor with a doped region
CN106684138A (zh) 高压无结场效应器件及其形成方法
JP2006190988A (ja) 半導体装置
TWI737603B (zh) 具有電洞阻擋層的電晶體
JP2015073002A (ja) 化合物半導体装置及びその製造方法
CN106684123B (zh) 高压无结场效应器件及其形成方法
CN106876447A (zh) 具有渐变沟道的高压无结场效应器件及其形成方法
Endoh et al. Threshold voltage shifts in decananometre-gate AlGaN/GaN HEMTs
Rouly et al. Design Optimization of a New Nanostructured P-GaN Gate for Normally-off GaN HEMTs
CN116646375A (zh) 半导体元件及其制造方法
Heo et al. Fabrication of Recessed-Gate Algan/Gan Mosfets Using Tmah Wet Etching with Cu Ion Implantation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170503