CN106536793A - 碳化硅半导体装置的制造方法以及碳化硅半导体装置 - Google Patents

碳化硅半导体装置的制造方法以及碳化硅半导体装置 Download PDF

Info

Publication number
CN106536793A
CN106536793A CN201580039339.5A CN201580039339A CN106536793A CN 106536793 A CN106536793 A CN 106536793A CN 201580039339 A CN201580039339 A CN 201580039339A CN 106536793 A CN106536793 A CN 106536793A
Authority
CN
China
Prior art keywords
silicon carbide
semiconductor device
carbide semiconductor
sic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580039339.5A
Other languages
English (en)
Other versions
CN106536793B (zh
Inventor
宫崎正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of CN106536793A publication Critical patent/CN106536793A/zh
Application granted granted Critical
Publication of CN106536793B publication Critical patent/CN106536793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/005Oxydation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • B24B37/245Pads with fixed abrasives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

提供能够减少形成在SiC基板上的SiC外延膜的缺陷的SiC半导体装置的制造方法以及通过该方法获得的SiC半导体装置。使用SiC半导体装置的制造方法,其包括:工序(A),在SiC基板上形成SiC外延膜;工序(B),以对该外延膜的表面进行化学机械研磨的方式进行平坦化处理直到算数平均表面粗糙度Ra成为0.3nm以下为止;工序(C),使上述外延膜的表面热氧化而形成牺牲氧化膜;工序(D),除去该牺牲氧化膜;以及工序(E),利用纯水对外延膜的经除去上述牺牲氧化膜的表面进行清洗。

Description

碳化硅半导体装置的制造方法以及碳化硅半导体装置
技术领域
本发明涉及碳化硅半导体装置的制造方法和碳化硅半导体装置,更具体地说,涉及减少形成在碳化硅基板上的碳化硅外延膜的缺陷数量的方法。
背景技术
现有的功率半导体装置形成在硅基板上,但对于硅材料而言,在物理性能方面接近性能极限,基板耐压高、电力损耗低、能够进行高温工作和高频工作的碳化硅(SiC)半导体装置正备受瞩目。对SiC半导体装置而言,通常有将低电阻的SiC基板作为基底,在其上形成SiC外延膜,以离子方式注入杂质来改善器件结构的方法。
在SiC中,由于Si与C结合时的周期结构的不同,因此具有存在大量2H、3C、4H、6H、15R等的多型体(多结晶形),结晶生长中易发生不匹配的问题。因此,在制作SiC单晶时,无法避免不同种类多型体的结晶混在一起,存在大量因结晶不匹配而导致的错位等结晶缺陷。如果在SiC基板上形成SiC外延膜,则存在直接以贯穿SiC基板表面的螺旋错位和/或贯穿SiC基板表面的刃状错位等的形态,或者转换为基底面错位和/或胡萝卜缺陷,并传播到外延膜,成为外延膜的缺陷的可能性。
另一方面,在SiC外延膜还存在并非因基底而引起的缺陷。例如,因成膜而产生的台阶聚集(Step bunching),除此以外还存在称为塌陷(downfall)的因在外延生长中异物附着在晶片表面而产生的缺陷等。
由于如果在SiC外延膜中存在结晶缺陷,则在制造出的SiC半导体装置出现漏电流异常和/或耐压不良,因此产品的成品率降低。
在下述的专利文献1~专利文献5中,公开了在外延膜形成前对SiC基板表面实施的减少缺陷的方法。另外,在专利文献6中公开了这样的减少外延膜的缺陷的方法,即,在SiC基板上形成SiC外延膜,加热至该外延膜的表面粗糙度Ra变为1nm以上为止,接着进行平坦化处理至Ra变为小于0.5nm为止。
现有技术文献
专利文献
专利文献1:日本特开2005-311348号公报
专利文献2:日本特开2006-32655号公报
专利文献3:日本特开2008-230944号公报
专利文献4:日本特开2010-182782号公报
专利文献5:国际公开2010/090024号
专利文献6:日本特开2008-222509号公报
发明内容
技术问题
然而,在记载于专利文献1~5的方法中,存在无法除去并非因基底而导致的外延膜的缺陷这样的问题。另一方面,在专利文献6记载的方法中,存在作为副作用而产生台阶聚集这样的问题。
因此,本发明的目的在于,提供能够减少在碳化硅基板上形成的碳化硅外延膜的缺陷的碳化硅半导体装置的制造方法,以及通过该方法获得的碳化硅半导体装置。
技术方案
为了实现上述目的,本发明的碳化硅半导体装置的制造方法的特征在于,包括:工序(A),在碳化硅基板上形成碳化硅的外延膜;工序(B),以对该外延膜的表面进行化学机械研磨的方式进行平坦化处理直到算数平均表面粗糙度Ra成为0.3nm以下为止;工序(C),使上述外延膜的表面热氧化而形成牺牲氧化膜;工序(D),除去该牺牲氧化膜;以及工序(E),利用去离子水对外延膜的经除去上述牺牲氧化膜的表面进行清洗。
根据本发明,能够通过化学机械研磨来除去在外延膜的生长中产生的缺陷,并且进一步将因化学机械研磨而引起的加工损伤与牺牲氧化膜一起除去。
在本发明的碳化硅半导体装置的制造方法中,优选通过化学机械研磨,使上述工序(A)中使用的碳化硅基板平坦化为算数平均表面粗糙度Ra为1nm以下。
根据上述形态,通过在外延膜生长前除去在碳化硅基板的表面露出的缺陷,从而能够减少外延膜的以碳化硅基板的结晶缺陷为起点的缺陷数量。
在本发明的碳化硅半导体装置的制造方法中,优选上述工序(B)的上述外延膜的研磨量为0.3μm以上且1μm以下。
根据上述形态,能够除去外延膜的缺陷,特别是能够除去占缺陷大多数的坑状缺陷。
在本发明的碳化硅半导体装置的制造方法中,优选上述工序(C)的上述牺牲氧化膜的厚度为20nm以上且100nm以下。
根据上述形态,能够除去因化学机械研磨导致的加工损伤。
在本发明的碳化硅半导体装置的制造方法中,优选上述工序(C)的上述牺牲氧化膜的形成温度为800℃以上且1350℃以下。
根据上述形态,能够准确地控制牺牲氧化膜的膜厚。
在发明的碳化硅半导体装置的制造方法中,优选利用含有氢氟酸的水溶液来除去上述工序(D)的上述牺牲氧化膜。
根据上述形态,能够相对于碳化硅外延层选择性地除去牺牲氧化膜,因此能够维持牺牲氧化前的光滑的表面粗糙度。
本发明的碳化硅半导体装置优选为通过上述任一方法制造出的碳化硅半导体装置。
通过减少外延膜的缺陷数量,从而能够以高成品率生产可靠性和电特性优异的碳化硅半导体装置。
有益效果
根据本发明,能够通过化学机械研磨除去在外延膜的生长中产生的结晶缺陷,并能够将因化学机械研磨而导致的加工损伤与牺牲氧化膜一起除去。通过减少外延膜的缺陷数量,从而能够以高成品率生产可靠性和电特性优异的碳化硅半导体装置。
附图说明
图1是表示本发明的SiC半导体装置的制造方法的一个实施方式的工序图。
图2是表示实施例的SiC外延膜的缺陷分布的图。
图3是表示比较例的SiC外延膜的缺陷分布的图。
图4是实施例的SiC外延膜表面的原子力显微镜的图像。
图5是比较例的SiC外延膜表面的原子力显微镜的图像。
符号说明
1:SiC基板
2:SiC外延膜
3:牺牲氧化膜
4:缺陷
具体实施方式
本发明的SiC半导体装置的制造方法的特征在于,由按顺序包括以下工序的制造工序构成:
(A)形成SiC外延膜的工序;
(B)化学机械研磨(CMP)工序;
(C)形成牺牲氧化膜的工序;
(D)除去牺牲氧化膜的工序;以及
(E)清洗工序。
其中,在上述各工序的前后,也可以插入其他工序。例如,在工序(A)之前插入化学机械研磨工序,能够提高SiC基板的平坦性。或者,在工序(A)之前插入照射反应性等离子体的工序,能够清洁SiC基板的表面。另外,在工序(B)之后插入磨砂(scrub)清洗,能够除去附着在SiC外延膜的表面的研磨剂。
在图1示意性地图示出了上述工序流程。在工序(A)中,在SiC基板1上形成SiC外延膜2,在工序(B)中,对SiC外延膜2进行化学机械研磨,在工序(C)中,形成牺牲氧化膜3,在工序(D)中,除去牺牲氧化膜3,在工序(E)中,用去离子水(DIW)进行清洗。在工序(A)产生的缺陷4通过工序(B)的化学机械研磨来除去。
[SiC基板]
本发明所使用的SiC基板没有特别限定,可使用例如对通过升华法或者化学气相生长(CVD)法所获得的块状结晶进行切片而得的基板。
SiC单晶的多型体没有特别限定,例如可列举4H-SiC、6H-S iC、3C-SiC等,但在功率半导体装置中优选使用绝缘耐压和载流子迁移率高的4H-SiC。进行外延生长的基板主面没有特别限定,例如在4H-SiC基板中,可列举(0001)Si面、(0001)C面等。
另外,为了防止在外延生长时混入多型体,优选为相对于[0001]方向具有1~12°的偏离角的偏离基板,更加优选以4°或者8°的偏离角倾斜而切割出的基板。
另外,优选使SiC基板的表面平坦化为算数平均表面粗糙度Ra成为1nm以下。例如,可以在形成SiC外延膜之前,对SiC基板的表面进行化学机械研磨。通过这样的方式,能够减少从SiC基板表面传播到SiC外延膜的缺陷数量。
[形成SiC外延膜的工序]
在SiC基板上形成SiC外延膜的方法没有特别限定,可以通过例如减压CVD法或者常压CVD法形成。
原料气体之中,可列举甲硅烷、二氯甲硅烷等作为Si的供给源,可列举丙烷、甲烷等作为C的供给源。另外,可以适当添加氮、氨水等作为n型掺杂气体,三甲基铝等作为p型掺杂气体。另外,为了稀释上述气体,可以使用氢、氩等作为载流气体。
CVD温度优选为1400℃以上且1800℃以下,更加优选为1500℃以上且1750℃以下。如果低于1500℃则生长速度缓慢,如果高于1750℃则产生表面缺陷,因此不优选。在利用减压CVD法的情况下,CVD压力优选为0Pa以上且20Pa以下,更加优选为1Pa以上且15Pa以下。
用于形成SiC外延膜的CVD装置没有特别限定,例如,可列举在水冷双重圆筒管内具有由石墨形成的热壁且利用感应线圈进行加热的方式等。
应予说明,可以在形成SiC外延膜时,对SiC基板的表面进行气体蚀刻来作为前处理。例如,使氯化氢气体接触到已加热至1000℃以上的SiC基板,来对SiC表面进行蚀刻,能够减少表面缺陷。
[化学机械研磨工序]
在本发明中,可以通过化学机械研磨进行平坦化,以使SiC外延膜的算数平均表面粗糙度Ra为0.3nm以下。如果SiC外延膜的Ra大于0.3nm,则形成在SiC外延膜上的栅氧化膜成为针孔和/或界面态多的膜,可靠性和/或器件性能降低,因此不优选。
另外,SiC外延膜的研磨量优选为0.3μm以上且1μm以下。如果如此进行研磨,则能够除去SiC外延膜的缺陷,特别是能够除去占缺陷大多数的坑状的缺陷。
对SiC外延膜的表面进行化学机械研磨的方法没有特别限定,例如,可以是使用固定磨料的化学机械研磨法、使用软质的研磨垫和研磨剂溶液的化学机械研磨法、或者在使用固定磨粒而进行研磨之后使用软质的研磨垫和研磨剂溶液的化学机械研磨法。研磨垫和研磨剂溶液可以使用市售的产品。
[形成牺牲氧化膜的工序]
在本发明中,为了除去因化学机械研磨而引入的SiC外延膜的加工损伤,可以使SiC外延膜的表面热氧化而形成厚度20nm以上且100nm以下的牺牲氧化膜。在此,加工损伤是指,因SiC外延膜的表面与磨料和/或研磨垫摩擦所产生的细小的划伤、晶格的紊乱以及异物粘着,这些加工损伤伴随着牺牲氧化膜的生长,被吸收到牺牲氧化膜中而消失,或者被分解而升华,因此可以在牺牲氧化膜下保留结晶性好的SiC外延膜。
形成牺牲氧化膜的方法没有特别限定,例如可以使用在800℃以上且1350℃以下,使包含水蒸气的氧化性气体流通的湿式氧化法,或者使经干燥的包含氧的氧化性气体流通的干式氧化法。此时,为了积极地除去金属污染,也可以在上述氧化性气体中混合包含卤族元素的气体(例如氯化氢)。
另外,在热氧化之前,可以用混合氨水和过氧化氢水而成的水溶液、混合盐酸和过氧化氢水而成的水溶液、或者含有氢氟酸的水溶液来清洗SiC外延膜。如此,能够在有机物和/或金属污染少的状态下,氧化SiC外延膜。
[除去牺牲氧化膜的工序]
牺牲氧化膜是吸收SiC外延膜的缺陷的同时生长而成的针孔和/或陷阱能级多的膜,因此不优选用作栅绝缘膜或隔离膜。因此,在本发明中,可以将热氧化SiC外延膜而形成的牺牲氧化膜浸渍在例如含有氢氟酸的水溶液而选择性地除去牺牲氧化膜。由于SiC在氢氟酸中不溶解,因此能够维持牺牲氧化前的光滑的表面粗糙度,并在其上形成高品质的栅绝缘膜。
[清洗工序]
在本发明中,可以在除去牺牲氧化膜后,用去离子水(DIW)进行流水清洗,然后干燥,获得清洁表面。干燥方法没有特别限定,例如可以使用旋转干燥、异丙醇蒸气干燥等。
[SiC半导体装置的制造]
可以使用具有通过上述工序所获得的缺陷数量少的SiC外延膜的SiC基板,来制造SiC半导体装置。
如此制造出的SiC半导体装置具有无针孔且界面态少的栅绝缘膜,其绝缘耐压高,漏电流小,饱和电流大,可靠性和性能优异。
实施例
[实施例]
对SiC基板(多型体4H,4°偏离基板)的表面进行化学机械研磨,通过原子力显微镜测定出算数平均表面粗糙度Ra。接着,在通过减压CVD法形成膜厚10μm的SiC外延膜后,通过化学机械研磨来研磨除去从表面起算50nm深度的SiC外延膜。然后,通过使用共聚焦显微镜的表面缺陷检查装置来获取缺陷分布图,进一步通过原子力显微镜来测定出SiC外延膜的算数平均表面粗糙度Ra。
[比较例]
对SiC基板(多型体4H,4°偏离基板)的表面进行化学机械研磨,通过原子力显微镜测定出算数平均表面粗糙度Ra。接着,在通过减压CVD法形成膜厚10μm的SiC外延膜后,通过使用共聚焦显微镜的表面缺陷检查装置来获取缺陷图,进一步通过原子力显微镜来测定出SiC外延膜的算数平均表面粗糙度Ra。
在图2、图3示出获取的缺陷分布图。SiC外延膜的缺陷用黑点表示。在SiC外延膜形成后,相对于未进行化学机械研磨的比较例(图3),在经化学机械研磨的实施例(图2)中,缺陷数量急剧减少。
在图4、图5,示出利用原子力显微镜测定出的SiC外延膜的表面凹凸图像。在SiC外延膜形成后,在未进行化学机械研磨的比较例(图5)中,Ra为1.0nm,而经化学机械研磨的实施例(图4)中,Ra减小至0.254nm,实现了目标值0.3nm以下。

Claims (7)

1.一种碳化硅半导体装置的制造方法,其特征在于,包括:
工序(A),在碳化硅基板上形成碳化硅的外延膜;
工序(B),以对所述外延膜的表面进行化学机械研磨的方式进行平坦化处理直到算数平均表面粗糙度Ra成为0.3nm以下为止;
工序(C),使所述外延膜的表面热氧化而形成牺牲氧化膜;
工序(D),除去所述牺牲氧化膜;以及
工序(E),利用去离子水对外延膜的经除去所述牺牲氧化膜的表面进行清洗。
2.根据权利要求1所述的碳化硅半导体装置的制造方法,其特征在于,通过化学机械研磨,使所述工序(A)中使用的碳化硅基板平坦化为算数平均表面粗糙度Ra为1nm以下。
3.根据权利要求1所述的碳化硅半导体装置的制造方法,其特征在于,在所述工序(B)中,所述外延膜的研磨量为0.3μm以上且1μm以下。
4.根据权利要求1所述的碳化硅半导体装置的制造方法,其特征在于,在所述工序(C)中,所述牺牲氧化膜的厚度为20nm以上且100nm以下。
5.根据权利要求1所述的碳化硅半导体装置的制造方法,其特征在于,在所述工序(C)中,所述牺牲氧化膜的形成温度为800℃以上且1350℃以下。
6.根据权利要求1所述的碳化硅半导体装置的制造方法,其特征在于,在所述工序(D)中,利用含有氢氟酸的水溶液来除去所述牺牲氧化膜。
7.一种通过权利要求1~6中任一项记载的碳化硅半导体装置的制造方法制造而成的碳化硅半导体装置。
CN201580039339.5A 2015-02-02 2015-12-16 碳化硅半导体装置的制造方法以及碳化硅半导体装置 Active CN106536793B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-018481 2015-02-02
JP2015018481 2015-02-02
PCT/JP2015/085248 WO2016125404A1 (ja) 2015-02-02 2015-12-16 炭化ケイ素半導体装置の製造方法及び炭化ケイ素半導体装置

Publications (2)

Publication Number Publication Date
CN106536793A true CN106536793A (zh) 2017-03-22
CN106536793B CN106536793B (zh) 2019-04-05

Family

ID=56563761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580039339.5A Active CN106536793B (zh) 2015-02-02 2015-12-16 碳化硅半导体装置的制造方法以及碳化硅半导体装置

Country Status (5)

Country Link
US (1) US10208400B2 (zh)
JP (1) JP6361747B2 (zh)
CN (1) CN106536793B (zh)
DE (1) DE112015002906B4 (zh)
WO (1) WO2016125404A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403273A (zh) * 2020-03-12 2020-07-10 上海华力集成电路制造有限公司 晶圆减薄工艺方法
TWI716304B (zh) * 2020-03-30 2021-01-11 環球晶圓股份有限公司 碳化矽晶片的表面加工方法
CN112259451A (zh) * 2020-09-22 2021-01-22 山东天岳先进科技股份有限公司 一种碳化硅晶片的位错识别方法及碳化硅晶片与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762484B2 (ja) * 2017-01-10 2020-09-30 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
US11189518B2 (en) * 2019-11-15 2021-11-30 Advanced Semiconductor Engineering, Inc. Method of processing a semiconductor wafer
IT202000016279A1 (it) * 2020-07-06 2022-01-06 St Microelectronics Srl Procedimento di fabbricazione di un dispositivo semiconduttore in carburo di silicio con migliorate caratteristiche

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311348A (ja) * 2004-03-26 2005-11-04 Kansai Electric Power Co Inc:The バイポーラ型半導体装置およびその製造方法
JP2006032655A (ja) * 2004-07-16 2006-02-02 Kyoto Univ 炭化珪素基板の製造方法
CN101052754A (zh) * 2005-06-23 2007-10-10 住友电气工业株式会社 碳化硅衬底的表面重建方法
JP2008222509A (ja) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd SiCエピタキシャル膜付き単結晶基板の製造方法
JP2008230944A (ja) * 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素基板の表面平坦化方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
WO2010090024A1 (ja) * 2009-02-04 2010-08-12 日立金属株式会社 炭化珪素単結晶基板およびその製造方法
JP2010182782A (ja) * 2009-02-04 2010-08-19 Hitachi Metals Ltd 炭化珪素単結晶基板およびその製造方法
US20110309376A1 (en) * 2010-06-16 2011-12-22 Sumitomo Electric Industries, Ltd. Method of cleaning silicon carbide semiconductor, silicon carbide semiconductor, and silicon carbide semiconductor device
CN102484069A (zh) * 2009-09-07 2012-05-30 罗姆股份有限公司 半导体装置及其制造方法
JP2012248859A (ja) * 2012-07-17 2012-12-13 Hitachi Ltd 半導体装置の製造方法
CN102985601A (zh) * 2010-05-27 2013-03-20 克里公司 半导体材料的平滑方法及使用其制造的晶片
JP2013063891A (ja) * 2011-08-31 2013-04-11 Rohm Co Ltd SiCエピタキシャルウエハおよびそれを用いたSiC半導体素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510072A (ja) 2001-11-20 2005-04-14 レンセラール ポリテクニック インスティチュート 基板表面を研磨するための方法
CN1938820A (zh) 2004-03-26 2007-03-28 关西电力株式会社 双极型半导体装置及其制造方法
DE102009030296B4 (de) 2009-06-24 2013-05-08 Siltronic Ag Verfahren zur Herstellung einer epitaxierten Siliciumscheibe
JP5459585B2 (ja) 2009-06-29 2014-04-02 日立金属株式会社 炭化珪素単結晶基板およびその製造方法
CN104979184B (zh) 2011-10-07 2018-02-02 旭硝子株式会社 碳化硅单晶基板及研磨液
JP2016063190A (ja) * 2014-09-22 2016-04-25 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法、炭化珪素エピタキシャル基板および炭化珪素半導体装置
DE112015004795T5 (de) * 2014-10-23 2017-10-12 Sumitomo Electric Industries Ltd. Siliziumkarbidsubstrat und Verfahren zur Herstellung desselben
JP2016127177A (ja) * 2015-01-06 2016-07-11 住友電気工業株式会社 炭化珪素基板、炭化珪素半導体装置および炭化珪素基板の製造方法
DE102015201606A1 (de) 2015-01-30 2016-08-04 Schaeffler Technologies AG & Co. KG Kupplungseinrichtung

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311348A (ja) * 2004-03-26 2005-11-04 Kansai Electric Power Co Inc:The バイポーラ型半導体装置およびその製造方法
JP2006032655A (ja) * 2004-07-16 2006-02-02 Kyoto Univ 炭化珪素基板の製造方法
CN101052754A (zh) * 2005-06-23 2007-10-10 住友电气工业株式会社 碳化硅衬底的表面重建方法
JP2008222509A (ja) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd SiCエピタキシャル膜付き単結晶基板の製造方法
JP2008230944A (ja) * 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素基板の表面平坦化方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
WO2010090024A1 (ja) * 2009-02-04 2010-08-12 日立金属株式会社 炭化珪素単結晶基板およびその製造方法
JP2010182782A (ja) * 2009-02-04 2010-08-19 Hitachi Metals Ltd 炭化珪素単結晶基板およびその製造方法
CN102484069A (zh) * 2009-09-07 2012-05-30 罗姆股份有限公司 半导体装置及其制造方法
CN102985601A (zh) * 2010-05-27 2013-03-20 克里公司 半导体材料的平滑方法及使用其制造的晶片
US20110309376A1 (en) * 2010-06-16 2011-12-22 Sumitomo Electric Industries, Ltd. Method of cleaning silicon carbide semiconductor, silicon carbide semiconductor, and silicon carbide semiconductor device
JP2013063891A (ja) * 2011-08-31 2013-04-11 Rohm Co Ltd SiCエピタキシャルウエハおよびそれを用いたSiC半導体素子
JP2012248859A (ja) * 2012-07-17 2012-12-13 Hitachi Ltd 半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.E. SADDOW,ET AL.: "Effects of Substrate Surface Preparation on Chemical Vapor Deposition Growth of 4H-SiC Epitaxial Layers", 《JOURNAL OF ELECTRONIC MATERIALS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403273A (zh) * 2020-03-12 2020-07-10 上海华力集成电路制造有限公司 晶圆减薄工艺方法
CN111403273B (zh) * 2020-03-12 2022-06-14 上海华力集成电路制造有限公司 晶圆减薄工艺方法
TWI716304B (zh) * 2020-03-30 2021-01-11 環球晶圓股份有限公司 碳化矽晶片的表面加工方法
CN112259451A (zh) * 2020-09-22 2021-01-22 山东天岳先进科技股份有限公司 一种碳化硅晶片的位错识别方法及碳化硅晶片与应用
CN112259451B (zh) * 2020-09-22 2022-11-29 山东天岳先进科技股份有限公司 一种碳化硅晶片的位错识别方法及碳化硅晶片与应用

Also Published As

Publication number Publication date
US20170121850A1 (en) 2017-05-04
CN106536793B (zh) 2019-04-05
WO2016125404A1 (ja) 2016-08-11
JPWO2016125404A1 (ja) 2017-04-27
US10208400B2 (en) 2019-02-19
DE112015002906T5 (de) 2017-03-02
DE112015002906B4 (de) 2022-12-22
JP6361747B2 (ja) 2018-07-25

Similar Documents

Publication Publication Date Title
CN106536793B (zh) 碳化硅半导体装置的制造方法以及碳化硅半导体装置
JP6904899B2 (ja) 昇華による大径シリコンカーバイド結晶の製造方法及び関連する半導体sicウェハ
CN102656297B (zh) SiC外延晶片及其制造方法
CN105755534B (zh) 衬底、半导体器件及其制造方法
CN103765559B (zh) SiC外延晶片及其制造方法
CN104952708B (zh) 外延晶圆、半导体装置以及碳化硅半导体装置的制造方法
TW529084B (en) Epitaxially coated semiconductor wafer and process for producing it
JP5839069B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
CN100380580C (zh) 硅半导体基板及其制造方法
US9988738B2 (en) Method for manufacturing SiC epitaxial wafer
JP6908160B2 (ja) 炭化珪素エピタキシャル基板、炭化珪素半導体装置の製造方法および炭化珪素半導体装置
US20090291523A1 (en) Method of Manufacturing High Quality ZnO Monocrystal Film on Silicon(111) Substrate
JP2006328455A (ja) エピタキシャル炭化珪素単結晶基板及びその製造方法
CN102433586A (zh) 在4H/6H-SiC硅面外延生长晶圆级石墨烯的方法
JP2014210690A (ja) 炭化珪素基板の製造方法
JP2023029930A (ja) ウエハの洗浄方法及び不純物が低減されたウエハ
CN104465721B (zh) 一种碳化硅外延材料及其制备方法
CN106233430B (zh) 碳化硅外延晶片及其制造方法
JP6260603B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
Arima et al. Mechanism of atomic-scale passivation and flattening of semiconductor surfaces by wet-chemical preparations
JP2009239103A (ja) 平坦化処理方法
JP2018067736A (ja) 炭化珪素半導体装置及びその製造方法
CN104505338B (zh) 一种碳化硅晶片外延前预清洗方法
Chunli et al. CMP of GaN using sulfate radicals generated by metal catalyst
CN109559972A (zh) 碳化硅衬底回收方法、碳化硅衬底及回收系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant