CN106414952B - 用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统和方法 - Google Patents

用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统和方法 Download PDF

Info

Publication number
CN106414952B
CN106414952B CN201580014401.5A CN201580014401A CN106414952B CN 106414952 B CN106414952 B CN 106414952B CN 201580014401 A CN201580014401 A CN 201580014401A CN 106414952 B CN106414952 B CN 106414952B
Authority
CN
China
Prior art keywords
fuel
exhaust
stream
combustion chamber
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201580014401.5A
Other languages
English (en)
Other versions
CN106414952A (zh
Inventor
K·D·明托
I·A·斯洛巴蒂安斯克伊
L·B·小戴维斯
J·J·利平斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co, General Electric Co filed Critical Exxon Production Research Co
Publication of CN106414952A publication Critical patent/CN106414952A/zh
Application granted granted Critical
Publication of CN106414952B publication Critical patent/CN106414952B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/228Dividing fuel between various burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/611Sequestration of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

燃气涡轮机系统(14)包含被配置成控制至一个或更多个燃烧室(160)的燃料流的燃料控制系统(264)和被配置成控制至一个或更多个燃烧室的每个燃烧室的氧化剂流的氧化剂控制系统(262),其中,氧化剂流被配置成与一个或更多个燃烧室内的燃料流至少部分反应以形成排气流。该系统也包含排气系统,该排气系统被配置成将排气流的再循环流(276)引导至一个或更多个燃烧室的每个燃烧室;以及联接至燃料控制系统、氧化剂控制系统和排气系统的控制器(118)。控制器被配置成独立地控制燃料与氧化剂的比(FOR)和排气与氧化剂的比(EGOR)。FOR为燃料流除以氧化剂流,以及EGOR为再循环流除以氧化剂流。

Description

用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统 和方法
相关申请的交叉引用
本申请要求在2014年1月21日提交的题为“SYSTEM AND METHOD FOR CONTROLLINGTHE COMBUSTION PROCESS IN A GAS TURBINE OPERATING WITH EXHAUST GASRECIRCULATION(用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统和方法)”的美国临时专利申请No.61/929,868以及在2015年1月19日提交的题为“SYSTEMAND METHODFOR CONTROLLING THE COMBUSTION PROCESS IN A GAS TURBINE OPERATING WITHEXHAUST GAS RECIRCULATION(用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统和方法)”的美国非临时专利申请No.14/599,739的优先权和权益,所述专利申请的全部内容通过引用并入本文以用于所有目的。
技术领域
本文公开的主题涉及利用排气再循环的燃气涡轮发动机。
背景技术
燃气涡轮发动机应用领域广泛,例如发电、飞行器以及各种机械设备。燃气涡轮发动机通常在燃烧室部利用氧化剂(例如,空气)燃烧燃料以生成热燃烧产物,然后驱动涡轮机部中的一个或更多个涡轮机级。进而,涡轮机部驱动压缩机部中的一个或更多个压缩机级,从而将氧化剂连同燃料从入口压缩到燃烧室部中。再者,燃料与氧化剂在燃烧室部中混合,并接着燃烧以产生热燃烧产物。燃烧产物可被再循环回到燃烧室部。一般来讲,燃烧产物的性质,诸如在燃烧产物(例如,氮氧化物(NOx)和二氧化碳(CO2))中的特定气体的相对水平会受用在燃烧过程中的燃料与氧化剂的比的影响。遗憾的是,燃料与氧化剂或再循环燃烧产物与氧化剂的特定比会降低在燃烧室部内的燃烧的稳定性。
发明内容
范围与最初要求保护的本发明匹配的某些实施例在下面概述。这些实施例并不旨在限制要求保护的本发明的范围,而是这些实施例仅旨在提供本发明可能形式的简短概括。实际上,本发明可涵盖与下面阐述的实施例类似或不同的各种形式。
在第一实施例中,系统包含被配置成控制至一个或更多个燃烧室的燃料流的燃料控制系统和被配置成控制至一个或更多个燃烧室的每个燃烧室的氧化剂流的氧化剂控制系统,其中,氧化剂流被配置成与一个或更多个燃烧室内的燃料流至少部分反应以形成排气流。该系统也包含排气系统,该排气系统被配置成将排气流的再循环流引导至一个或更多个燃烧室的每个燃烧室;以及联接至燃料控制系统、氧化剂控制系统和排气系统的控制器。控制器被配置成独立地控制燃料与氧化剂的比(FOR)和排气与氧化剂的比(EGOR)。FOR为燃料流除以氧化剂流,以及EGOR为再循环流除以氧化剂流。
在第二实施例中,系统包含燃烧室、涡轮机和涡轮机旁通阀。燃烧室包含:被配置成接收氧化剂流的氧化剂入口;多个燃料喷嘴,其中,多个燃料喷嘴中的每个燃料喷嘴被配置成接收燃料流;以及第一燃料微调(trim)阀,其被配置成控制至多个燃料喷嘴的至少一个燃料喷嘴的燃料流。第一燃料微调阀至少部分基于燃料与氧化剂的比(FOR)来控制。燃烧室也包含:再循环入口,其被配置成从再循环系统接收再循环流,其中,至少氧化剂流和燃料流被配置成在燃烧室内燃烧并形成排气流;以及一个或更多个抽取端口,其被配置成将再循环流的第一部分抽取到抽取歧管。涡轮机被配置成接收排气流和来自燃烧室和排气流的再循环流的第二部分以驱动负载,并将排气流的第二部分引导到再循环系统。涡轮机旁通阀被配置成将来自再循环流的第一部分的旁通流抽取到抽取歧管,其中,涡轮机旁通阀被配置成至少部分基于排气与氧化剂的比(EGOR)将旁通流引导到再循环系统,其中,再循环流包括排气流的第二部分和旁通流,以及涡轮机旁通阀独立于第一燃料微调阀来控制。
在第三实施例中,操作排气再循环(EGR)燃气涡轮发动机的方法包含:至少部分基于所需的当量比和在EGR燃气涡轮发动机上的负载控制至燃烧室的燃料与氧化剂的比(FOR);在燃烧室中燃烧燃料和氧化剂以形成排气;将排气的再循环部分再循环到燃烧室;并且至少部分基于对应于FOR的可操作性限制控制排气与氧化剂的比(EGOR)。
附图说明
当参照附图阅读下列具体实施方式时,本发明的这些和其它特征、方面和优点将变得更加容易理解,其中,在整个附图中,相同符号表示相同部件,其中:
图1为具有联接到碳氢化合物生产系统的基于涡轮机的服务系统的系统的实施例的示意图;
图2为图1的系统的实施例的示意图,该图进一步示出控制系统和组合循环系统;
图3为图1和图2的系统的实施例的示意图,其进一步示出燃气涡轮发动机、排气供应系统和排气处理系统的细节;
图4为用于运行图1至图3的系统的过程的实施例的流程图;
图5为图1至图3的系统的实施例的示意图,该图进一步示出控制系统、用于燃料和氧化剂流的感测系统和具有涡轮机旁通阀的排气抽取系统;
图6为在操作图5的系统的实施例期间当量比和燃烧室可操作性的曲线图;
图7为图5的系统的燃料控制系统的实施例的示意图;以及
图8A和图8B为用于独立地控制燃料与氧化剂的比和排气与氧化剂的比的过程的实施例的流程图。
具体实施方式
本发明的一个或更多个具体实施例将在下面描述。在提供这些实施例的简要描述的工作中,实际实施方式的所有特征可能不在本说明书中进行描述。应当明白,在作为任何工程或设计项目的任何此类实际实施方式的开发中,必须做出众多与实施方式相关的决定以实现开发者的指定目标,诸如符合在不同实施方式中彼此不同的系统相关和商业相关约束。而且,应当明白,此类开发工作可能是复杂和费时的,然而,对本领域的普通技术人员来说,承担具有本公开益处的设计、装配和制造仍然是例行工作。
因此,在示例实施例能够进行各种更改和替换形式时,其实施例借助于附图中的示例示出并将在本文中详细描述。不过,应当理解,本发明并不旨在将示例实施例限制在所公开的特定形式,而是相反,示例实施例旨在覆盖落入本发明的范围内的所有更改、等效物和替代。
本文所使用术语仅用于描述某些实施例,并不旨在限制示例实施例。如本文所用,单数形式“一个(a、an)”、“该(the)”旨在也包含复数形式,除非上下文明确指出。术语“包括(comprises/comprising)”和/或“包含(includes/including)”当用于本文时指定所陈述的特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多个其它特征、整数、步骤、操作、元件、部件和/或其组的存在或添加。
虽然术语第一、第二、主要、次要等可以在本文中被用于描述各个元件,但是这些元件不应受这些术语限制。这些术语仅用于将一个要素与另一个要素区分开。例如但不限于,在没有偏离示例实施例的范围的情况下,第一元件可以被称为第二元件,以及同样,第二元件可以被称为第一元件。正如本文所使用的,术语“和/或”包含一个或更多个关联列出项目的任何一个和全部组合。
仅为了方便读者,特定术语可以被用于本文中,但是不应被视为本发明的范围的限制。例如,词组像“上面”、“下面”、“左侧”、“右侧”、“前面”、“后面”、“顶部”、“底部”、“水平的”、“垂直的”、“上游”、“下游”、“前部”、“后部”等;仅描述在附图中示出的构形。实际上,本发明的实施例的(一个或更多个)元件可以在任何方向取向,且因此,所述术语应当被理解为涵盖此类变化,除非以其他方式指出。
如下面所详细论述的,所公开的实施例主要涉及具有排气再循环(EGR)的燃气涡轮机系统,且特别地,涉及使用EGR的燃气涡轮机系统的化学计量操作。例如,燃气涡轮机系统可被配置成沿排气再循环路径再循环排气,连同至少一些再循环排气一起化学计量燃烧燃料和氧化剂,并收集排气用于各种目标系统。排气再循环连同化学计量燃烧可帮助增加排气中二氧化碳(CO2)的浓度水平,该排气然后能够被后处理以分离和提纯CO2和氮气(N2)以用于各种目标系统。燃气涡轮机系统也可采用沿排气再循环路径的各种排气处理(例如,热回收、催化反应等),从而增加CO2的浓度水平、减少其它排放(例如,一氧化碳、氮氧化物以及未燃烧碳氢化合物)的浓度水平并增加能量回收(例如,用热回收单元)。此外,燃气涡轮发动机可被配置成与一个或更多个扩散火焰(例如,使用扩散燃料喷嘴)、预混火焰(例如,使用预混合燃料喷嘴)或它们的任何组合来燃烧燃料和氧化剂。在某些实施例中,扩散火焰可帮助将化学计量燃烧稳定性和操作保持在特定限度内,这继而有助于增加CO2的产量。例如,与用预混合火焰运行的燃气涡轮机系统相比,用扩散火焰运行的燃气涡轮机系统可使更大量的EGR可行。EGR的增加量继而帮助增加CO2产量。可能的目标系统包含管道、储罐、固碳(carbon sequestration)系统,以及碳氢化合物生产系统,诸如提高原油采收率(EOR)系统。
本文所述的系统和方法可独立地控制提供给燃气涡轮机系统的一个或更多个燃烧室的混合物的燃料与氧化剂的比(FOR)和混合物的排气与氧化剂的比(EGOR)。在燃气涡轮机系统的启动序列期间,在稳定状态操作(例如,驱动负载、向排气抽取系统供应排气流以用于提高原油采收率)期间,或在燃气涡轮机系统的停机期间,或它们的任何组合,FOR和EGOR可被独立控制。在一些实施例中,FOR至少部分基于在燃气涡轮机系统上的负载和/或燃气涡轮机系统的运行速度来控制,以及EGOR至少部分基于燃气涡轮机系统的燃烧室的可操作性限制来控制。燃烧室的可操作性限制可对应于用于FOR和EGOR的一组值,其中,低于可操作性限制的FOR和EGOR的值可描述在燃烧室内的燃烧,该燃烧可以不良火焰井喷、闪回、自动点火或谐波振动或它们的任何组合的减少的可能性被保持。
通过调节至燃烧室的氧化剂流和/或燃料流,FOR可被控制。例如,FOR可基于前馈控制和/或反馈控制来控制。在某些实施例中,前馈控制可基于燃料和氧化剂的组成、至燃气涡轮机系统的燃料和/或氧化剂的当前流率以及所需的化学计量燃料空气比。在一些实施例中,反馈控制可基于所测得的再循环排气的组成。控制系统(例如,具有处理器、存储器和存储在该存储器上并由该处理器可执行以执行控制功能的指令的工业控制器)可利用前馈控制、反馈控制或它们的任何组合来控制至燃气涡轮机系统的燃料流和/或氧化剂流。FOR可被控制以驱动负载、启动燃气涡轮机系统和/或实现所需的排气的组成,诸如在排气中实现更高水平的二氧化碳(CO2)。通过调节至每个燃烧室的相对燃料和/或氧化剂流,控制系统可单独控制至燃气涡轮机系统的一个或更多个燃烧室的FOR。在一些实施例中,控制系统相对于至第二组(例如,外)燃料喷嘴的燃料流差别(differentially)控制至燃烧室的第一组(例如,中心)燃料喷嘴的燃料流。
通过调节与氧化剂流和燃料流混合的排气流(例如,再循环排气),EGOR可被控制。排气流可被供应给燃烧室以冷却燃烧气体、稀释氧化剂或减少排气流中的残留氧化剂和/或燃料的量或它们的任何组合。控制系统控制排气以调节EGOR,以便保持与燃料流稳定反应的充足氧化剂流。供应给燃烧室的排气流的一部分可被抽取到抽取歧管以用于传送到排气供应系统(例如,提高原油采收率、储罐、管道)和/或再循环到排气压缩机。控制系统可控制涡轮机旁通阀以控制绕过涡轮机部并从抽取歧管流向排气压缩机以用于再循环到燃烧室的排气的旁通部分。控制系统可控制涡轮机旁通阀以调节被抽取到抽取歧管的排气的量。在一些实施例中,对涡轮机旁通阀的调节可不减少从抽取歧管供应到排气供应系统的排气。因此,通过控制与燃烧气体混合的排气的量,控制系统可控制EGOR。另外或另选地,控制系统可控制至排气压缩机的入口导向叶片,从而调节从涡轮机部再循环到排气压缩机的排气的量。控制系统可控制经由控制入口导向叶片供应给燃烧室的排气,并且该控制系统可控制经由控制涡轮机旁通阀从燃烧室抽取的排气。
图1为具有与基于涡轮机的服务系统14相关联的碳氢化合物生产系统12的系统10的实施例的示意图。如下面进一步详细论述的,基于涡轮机的服务系统14的各个实施例被配置成向碳氢化合物生产系统12提供各种服务,诸如电力、机械功率和流体(例如,排气),以促进油和/或气生产或回收。在所示出的实施例中,碳氢化合物生产系统12包含油/气抽取系统16和联接到地下储层20(例如,油、气或碳氢化合物储层)的提高原油采收率(EOR)系统18。油/气抽取系统16包含各种地面设备22,诸如联接到油/气井26的采油树或生产树24。而且,井26可包含一个或更多个管件28,其延伸通过地球32中的钻孔30至地下储层20。树24包含一个或更多个阀、扼流圈、隔离套、防喷器以及各种流量控制装置,其调节压力并控制到地下储层20和来自该地下储层20的流量。虽然树24通常被用于控制从地下储层20流出的生产流体(例如,油或气)的流量,EOR系统18可通过将一种或更多种流体喷射到地下储层20中以增加油或气的生产。
因此,EOR系统18可包含流体喷射系统34,其具有一个或更多个管件36,该一个或更多个管件36延伸通过地球32中的孔38至地下储层20。例如,EOR系统18可以将一种或更多种流体40例如气体、蒸汽、水、化学物或其任何组合传送到流体喷射系统34中。例如,如下面所进一步详细论述的,EOR系统18可被联接到基于涡轮机的服务系统14,使得系统14将排气42(例如,基本没有或完全没有氧)传送到EOR系统18以用作喷射流体40。流体喷射系统34将流体40(例如,排气42)传送通过一个或更多个管件36到地下储层20中,如箭头44所指示的。喷射流体40通过与油/气井26的管件28距离偏移距离46的管件36进入地下储层20。因此,喷射流体40置换沉积在地下储层20中的油/气48,并通过碳氢化合物生产系统12的一个或更多个管件28驱动油/气48上升,如箭头50所指示的。如下面所进一步详细论述的,喷射流体40可包括源自基于涡轮机的服务系统14的排气42,该基于涡轮机的服务系统14能够生成在碳氢化合物生产系统12所需的现场排气42。换句话说,基于涡轮机的系统14可同时生成供碳氢化合物生产系统12使用的一种或更多种服务(例如,电力、机械功率、蒸汽、水(例如,淡化水)以及排气(例如,基本没有氧)),从而减少或消除此类服务对外部源的依赖。
在所示出的实施例中,基于涡轮机的服务系统14包含化学计量排气再循环(SEGR)燃气涡轮机系统52和排气(EG)处理系统54。燃气涡轮机系统52可被配置成以化学计量燃烧运行模式(例如,化学计量控制模式)和非化学计量燃烧运行模式(例如,非化学计量控制模式)诸如贫燃料控制模式或富燃料控制模式来运行。在化学计量控制模式中,燃烧通常以燃料和氧化剂的大致化学计量比发生,从而产生大致化学计量燃烧。具体地,化学计量燃烧通常包括在燃烧反应中基本消耗全部的燃料和氧化剂,使得燃烧产物基本没有或完全没有未燃烧燃料和氧化剂。化学计量燃烧的一个量度是当量比,或phi(φ),其是实际燃料/氧化剂比相对于化学计量燃料/氧化剂比的比。大于1.0的当量比产生燃料和氧化剂的富燃料燃烧,反之,小于1.0的当量比产生燃料和氧化剂的贫燃料燃烧。相反,1.0的当量比产生既不是富燃料又不是贫燃料的燃烧,从而使得燃烧反应基本消耗所有的燃料和氧化剂。在本公开实施例的背景下,术语化学计量或基本化学计量可指的是约0.95到约1.05的当量比。不过,所公开的实施例也可包含1.0加上或减去0.01、0.02、0.03、0.04、0.05或更多的当量比。再者,在基于涡轮机的服务系统14中的燃料和氧化剂的化学计量燃烧可产生基本没有未燃烧燃料或氧化剂剩下的燃烧产物或排气(例如,42)。例如,排气42可具有小于1、2、3、4或5体积百分比的氧化剂(例如,氧)、未燃烧燃料或碳氢化合物(例如,HC)、氮氧化物(例如,NOx)、一氧化碳(CO)、硫氧化物(例如,SOx)、氢和其它未完全燃烧产物。通过进一步示例,排气42可以具有小于约每百万份体积的10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000份的氧化剂(例如,氧)、未燃烧燃料或碳氢化合物(例如,HC)、氮氧化物(例如,NOx)、一氧化碳(CO)、硫氧化物(例如,SOx)、氢和其它未完全燃烧产物的量。不过,所公开实施例也可在排气42中产生其它范围的残留燃料、氧化剂和其它排放水平。如本文所使用的,术语排放、排放水平和排放目标可指的是特定燃烧产物(例如,NOx、CO、SOx、O2、N2、H2、HC等)的浓度水平,其可以存在于再循环气体流、排出的气体流(例如,排放到大气中)以及用于各种目标系统(例如,碳氢化合物生产系统12)中的气体流中。
虽然不同实施例中的SEGR燃气涡轮机系统52和EG处理系统54可包含各种部件,所示出的EG处理系统54包括接收和处理源自SEGR燃气涡轮机系统52的排气60的热回收蒸汽发生器(HRSG)56以及排气再循环(EGR)系统58。HRSG 56可以包括一个或更多个热交换器、冷凝器和各种热回收设备,所述设备集中起将排气60的热传递给水流从而生成蒸汽62的作用。蒸汽62可被用在一个或更多个蒸汽涡轮机、EOR系统18或油气生产系统12的任何其他部分中。例如,HRSG 56可以生成低压、中压和/或高压蒸汽62,其可以被选择性应用于低压、中压和高压蒸汽涡轮机级或EOR系统18的不同应用。除了蒸汽62之外,处理水64(例如,淡化水)可以通过HRSG 56、EGR系统58和/或EG处理系统54的其他部分或SEGR燃气涡轮机系统52生成。处理水64(例如,淡化水)在例如内陆或沙漠地区的水短缺区域会是特别有用的。处理水64可以至少部分由于驱动SEGR燃气涡轮机系统52内燃料燃烧的大体积空气生成。虽然蒸汽62和水64的现场生成可能在许多应用中是特别有益的(包含碳氢化合物生产系统12),排气42、60的现场生成对EOR系统18可能是特别有益的,这是由于来源于SEGR燃气涡轮机系统52的其低氧含量、高压和热量。因此,HRSG 56、EGR系统58和/或EG处理系统54的另一部分可输出排气66或将排气66再循环到SEGR燃气涡轮机系统52中,同时还将排气42传送到EOR系统18以与碳氢化合物生产系统12一起使用。同样,排气42可从SEGR燃气涡轮机系统52直接抽取(即,没有经过EG处理系统54),以用于碳氢化合物生产系统12的EOR系统18。
排气再循环通过EG处理系统54的EGR系统58来处理。例如,EGR系统58包含一个或更多个管道、阀、鼓风机、排气处理系统(例如,过滤器、微粒去除单元、气体分离单元、气体净化单元、热交换器、热回收单元、水分去除单元、催化剂单元、化学品喷射单元或它们的任何组合)以及控制装置,以将排气沿排气再循环路径从SEGR燃气涡轮机系统52的输出端(例如,排放的排气60)再循环到输入端(例如,进气排气66)。在所示出的实施例中,SEGR燃气涡轮机系统52将排气66吸入到具有一个或更多个压缩机的压缩机部,从而将排气66压缩连同氧化剂68和一个或更多个燃料70的吸气供燃烧室部使用。氧化剂68可包括环境空气、纯氧、富氧空气、氧减少空气、氧-氮混合物或促进燃料70燃烧的任何合适氧化剂。燃料70可包括一种或更多种气体燃料、液体燃料或它们的任何组合。例如,燃料70可包括天然气、液化天然气(LNG)、合成气、甲烷、乙烷、丙烷、丁烷、石脑油、煤油、柴油、乙醇、甲醇、生物燃料或它们的任何组合。
SEGR燃气涡轮机系统52在燃烧室部中混合并燃烧排气66、氧化剂68和燃料70,从而生成热燃烧气体或排气60,以驱动涡轮机部中的一个或更多个涡轮机级。在某些实施例中,在燃烧室部中的每个燃烧室包含一个或更多个预混合燃料喷嘴、一个或更多个扩散燃料喷嘴或它们的任何组合。例如,每个预混合燃料喷嘴可被配置成混合在燃料喷嘴内和/或部分在该燃料喷嘴上游的氧化剂68和燃料70,从而将氧化剂燃料混合物从燃料喷嘴喷射到用于预混合燃烧(例如,预混合火焰)的燃烧区中。通过进一步示例,每个扩散燃料喷嘴可被配置成将燃料喷嘴内的氧化剂68流与燃料70流隔离,从而将来自燃料喷嘴的氧化剂68和燃料70分别喷射到用于扩散燃烧(例如,扩散火焰)的燃烧区中。具体地,通过扩散燃料喷嘴提供的扩散燃烧延迟氧化剂68与燃料70的混合,直到初始燃烧点,即火焰区域。在采用扩散燃料喷嘴的实施例中,扩散火焰可提供增加的火焰稳定性,因为扩散火焰通常在氧化剂68与燃料70的单独流之间的化学计量点(即,在氧化剂68与燃料70在混合时)形成。在某些实施例中,一种或更多种稀释剂(例如,排气60、蒸汽、氮或另一惰性气体)可在扩散燃料喷嘴或预混合燃料喷嘴中与氧化剂68、燃料70或两者预混合。此外,一种或更多种稀释剂(例如,排气60、蒸汽、氮或另一惰性气体)可在每个燃燃烧室内的燃烧点处或在其下游被喷射到燃烧室中。使用这些稀释剂可帮助调剂火焰(例如,预混合火焰或扩散火焰),从而帮助减少NOx(诸如一氧化氮(NO)和二氧化氮(NO2))排放。与火焰的类型无关,燃烧产生热燃烧气体或排气60,以驱动一个或更多个涡轮机级。在每个涡轮机级被排气60驱动时,SEGR燃气涡轮机系统52生成机械功率72和/或电力74(例如,经由发电机)。系统52也输出排气60,并且可进一步输出水64。再者,水64可为处理水,诸如淡化水,这在各种现场或非现场应用中是有用的。
排气抽取也由使用一个或更多个抽取点76的SEGR燃气涡轮机系统52提供。例如,所示出的实施例包含具有排气(EG)抽取系统80和排气(EG)处理系统82的排气(EG)供应系统78,其从抽取点76接收排气42、处理排气42并接着向各个目标系统供应或分配排气42。目标系统可包含EOR系统18和/或其它系统,诸如管道86、储罐88或固碳系统90。EG抽取系统80可包含一个或更多个管道、阀、控制装置和流分离件,这促进排气42与氧化剂68、燃料70以及其它杂质的隔离,同时也控制被抽取排气42的温度、压力和流率。EG处理系统82可包含一个或更多个热交换器(例如,热回收单元,诸如热回收蒸汽发生器、冷凝器、冷却器或加热器)、催化剂系统(例如,氧化催化剂系统)、微粒和/或水去除系统(例如,气体脱水单元、惯性分离器、聚结过滤器、不透水过滤器以及其它过滤器)、化学品喷射系统、溶剂型处理系统(例如,吸收剂、闪蒸罐等)、碳收集系统、气体分离系统、气体净化系统和/或溶剂型处理系统、排气压缩机或它们的任何组合。EG处理系统82的这些子系统能够控制温度、压力、流率、水分含量(例如,水去除量)、微粒含量(例如,微粒去除量)以及气体成分(例如,CO2、N2等的百分比)。
根据目标系统,被抽取排气42通过EG处理系统82的一个或更多个子系统进行处理。例如,EG处理系统82可引导全部或部分排气42通过碳收集系统、气体分离系统、气体净化系统和/或溶剂型处理系统,其被控制以分离和净化含碳气体(例如,二氧化碳)92和/或氮气(N2)94以供各种目标系统使用。例如,EG处理系统82的实施例可执行气体分离和净化以产生排气42的多个不同流95,诸如第一流96、第二流97和第三流98。第一流96可具有富二氧化碳和/或贫氮气(例如,富CO2贫N2流)的第一成分。第二流97可具有含有在中间浓度水平的二氧化碳和/或氮气(例如,中间浓度CO2、N2流)的第二成分。第三流98可具有贫二氧化碳和/或富氮气(例如,贫CO2富N2流)的第三成分。每个流95(例如,96、97和98)可包含气体脱水单元、过滤器、气体压缩机或它们的任何组合,以促进流95输送到目标系统。在某些实施例中,富CO2贫N2流96可具有大于约70、75、80、85、90、95、96、97、98或99体积百分比的CO2纯度或浓度水平,以及小于约1、2、3、4、5、10、15、20、25或30体积百分比的N2纯度或浓度水平。相反,贫CO2富N2流98可具有小于约1、2、3、4、5、10、15、20、25或30体积百分比的CO2纯度或浓度水平,以及大于约70、75、80、85、90、95、96、97、98或99体积百分比的N2纯度或浓度水平。中间浓度的CO2、N2流97可具有在约30到70、35到65、40到60或45到55体积百分比之间的CO2纯度或浓度水平和/或N2纯度或浓度水平。不过前述范围仅仅是非限制性示例,富CO2贫N2流96和贫CO2富N2流98可能特别适合与EOR系统18和其它系统84一起使用。不过,这些富、贫或中间浓度CO2流95中的任何一个可单独或以各种组合与EOR系统18和其它系统84一起使用。例如,EOR系统18和其它系统84(例如,管道86、储罐88、以及固碳系统90)中的每个可以接收一个或更多个富CO2贫N2流96、一个或更多个贫CO2富N2流98、一个或更多个中间浓度CO2、N2流97、以及一个或更多个未处理的排气42流(即,绕过EG处理系统82)。
EG抽取系统80沿压缩机部、燃烧室部和/或涡轮机部在一个或更多个抽取点76处抽取排气42,使得排气42可以以合适温度和压力用在EOR系统18和其它系统84中。EG抽取系统80和/或EG处理系统82还可以循环流体流(例如,排气42)向EG处理系统54和从EG处理系统54循环流体流。例如,经过EG处理系统54的排气42的一部分可以被EG抽取系统80抽取以用于EOR系统18和其它系统84中。在某些实施例中,EG供应系统78和EG处理系统54可彼此独立或集成在一起,并因此可使用单独或共同的子系统。例如,EG处理系统82可被EG供应系统78和EG处理系统54两者使用。从EG处理系统54抽取的排气42可经历多级气体处理,诸如在EG处理系统54中的一个或更多个气体处理级,接着是EG处理系统82中的一个或更多个气体处理附加级。
在每个抽取点76处,由于在EG处理系统54中的基本上化学计量燃烧和/或气体处理,被抽取排气42可基本不含氧化剂68和燃料70(例如,未燃烧的燃料或碳氢化合物)。而且,根据目标系统,被抽取排气42可在EG供应系统78的EG处理系统82中经受进一步处理,从而进一步降低任何残留氧化剂68、燃料70或其它不良燃烧产物。例如,在EG处理系统82中的处理之前或之后,被抽取排气42可具有小于1、2、3、4或5体积百分比的氧化剂(例如,氧)、未燃烧燃料或碳氢化合物(例如,HC)、氮氧化物(例如,NOx)、一氧化碳(CO)、硫氧化物(例如,SOx)、氢和其它未完全燃烧产物。通过进一步示例,在EG处理系统82中的处理之前或之后,被抽取排气42可以具有小于约每百万份体积的10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000份的氧化剂(例如,氧)、未燃烧燃料或碳氢化合物(例如,HC)、氮氧化物(例如,NOx)、一氧化碳(CO)、硫氧化物(例如,SOx)、氢和其他未完全燃烧产物。因此,排气42特别适合与EOR系统18一起使用。
涡轮机系统52的EGR运行具体使能在多个位置76处的排气抽取。例如,系统52的压缩机部可被用于压缩没有任何氧化剂68的排气66(即,只压缩排气66),使得基本上无氧排气42可在输入氧化剂68和燃料70之前从压缩机部和/或燃烧室部抽取。抽取点76可被定位在毗邻压缩机级之间的级间端口处、在沿压缩机排气套管的端口处、在沿燃烧室部中的每个燃烧室的端口处或它们的任何组合。在某些实施例中,排气66可不与氧化剂68和燃料70混合,直到其到达燃烧室部中的每个燃烧室的盖端部和/或燃料喷嘴。而且,一个或更多个流动隔板(例如,壁、分隔器、挡板等)可被用于将氧化剂68和燃料70与抽取点76隔离。通过这些流动隔板,抽取点76可沿燃烧室部中每个燃烧室的壁直接布置。
一旦排气66、氧化剂68和燃料70流过该盖端部(例如,通过燃料喷嘴)进入每个燃烧室的燃烧部分(例如,燃烧腔室)中,SEGR燃气涡轮机系统52被控制提供排气66、氧化剂68和燃料70的大致化学计量燃烧。例如,系统52可保持约0.95到约1.05的当量比。结果,在每个燃烧室中的排气66、氧化剂68和燃料70的混合物的燃烧产物基本是没有氧和未燃烧燃料。因此,燃烧产物(或排气)可从SEGR燃气涡轮机系统52的涡轮机部被抽取以用作被传送到EOR系统18的排气42。沿涡轮机部,抽取点76可被设置在任何涡轮机级处,例如毗邻涡轮机级之间的级间端口处。因此,通过使用任何前述抽取点76,基于涡轮机的服务系统14可生成排气42、抽取排气42并输送排气42到碳氢化合物生产系统12(例如,EOR系统18)以用于地下储层20的油/气48生产。
图2为图1系统10的实施例的示意图,该图示出被联接到基于涡轮机的服务系统14和碳氢化合物生产系统12的控制系统100。在所示出的实施例中,基于涡轮机的服务系统14包含组合循环系统102,该组合循环系统102包含作为顶循环(topping cycle)的SEGR燃气涡轮机系统52、作为底循环(bottoming cycle)的蒸汽涡轮机104、和HRSG 56以从排气60回收热量以生成用于驱动蒸汽涡轮机104的蒸汽62。再者,SEGR燃气涡轮机系统52接收、混合并化学计量燃烧排气66、氧化剂68和燃料70(例如,预混合火焰和/或扩散火焰),从而产生排气60、机械功率72、电力74和/或水64。例如,SEGR燃气涡轮机系统52可驱动一个或更多个负载或机器106,诸如发电机、氧化剂压缩机(例如,主空气压缩机)、齿轮箱、泵、碳氢化合物生产系统12的设备或它们的任何组合。在一些实施例中,机器106可包含其它驱动件,诸如与SEGR燃气涡轮机系统52串联的电动马达或蒸汽涡轮机(例如,蒸汽涡轮机104)。因此,由SEGR燃气涡轮机系统52(以及任何附加驱动件)驱动的机器106的输出可包含机械功率72和电力74。机械功率72和/或电力74可用于向碳氢化合物生产系统12现场提供动力,电力74可被分配到电网或它们的任何组合。机器106的输出还可包含压缩流体,诸如用于吸入到SEGR燃气涡轮机系统52的燃烧部中的压缩氧化剂68(例如,空气或氧)。这些输出中的每个(例如,排气60、机械功率72、电力74和/或水64)可被认为是基于涡轮机的服务系统14的服务。
SEGR燃气涡轮机系统52产生可基本不含氧的排气42、60,并且将这种排气42、60传送到EG处理系统54和/或EG供应系统78。EG供应系统78可处理排气42(例如,流95)并将其输送到碳氢化合物生产系统12和/或其它系统84。如上所讨论的,EG处理系统54可包含HRSG56和EGR系统58。HRSG 56可包含一个或更多个热交换器、冷凝器和各种热回收设备,该热回收设备可被用于回收排气60的热量或将该热量传递给水108以生成用于驱动蒸汽涡轮机104的蒸汽62。类似于SEGR燃气涡轮机系统52,蒸汽涡轮机104可驱动一个或更多个负载或机器106,从而生成机械功率72和电力74。在所示出的实施例中,SEGR燃气涡轮机系统52和蒸汽涡轮机104被串联布置以驱动相同的机器106。不过,在另一些实施例中,SEGR燃气涡轮机系统52和蒸汽涡轮机104可单独驱动不同的机器106,以独立生成机械功率72和/或电力74。在蒸汽涡轮机104被来自HRSG 56的蒸汽62驱动时,蒸汽62的温度和压力逐渐减小。因此,蒸汽涡轮机104将使用过的蒸汽62和/或水108再循环回到HRSG 56中,以用于经由排气60的热回收生成另外的蒸汽。除了蒸汽生成之外,HRSG 56、EGR系统58和/或EG处理系统54的另一个部分可产生水64、与碳氢化合物生产系统12一起使用的排气42、以及用作至SEGR燃气涡轮机系统52的输入的排气66。例如,水64可为处理水64,诸如用于其它应用中的淡化水。淡化水在低可用水量的地区是特别有用的。关于排气60,EG处理系统54的实施例可被配置成通过EGR系统58再循环排气60,排气60可经过或不经过HRSG 56。
在所示出的实施例中,SEGR燃气涡轮机系统52具有排气再循环路径110,该排气再循环路径110从系统52的排气出口延伸到排气入口。沿着路径110,排气60经过EG处理系统54,在所示出的实施例中,EG处理系统54包含HRSG 56和EGR系统58。EGR系统58可包含沿路径110串联和/或并联布置的一个或更多个管道、阀、鼓风机、气体处理系统(例如,过滤器、微粒去除单元、气体分离单元、气体净化单元、热交换器、诸如热回收蒸汽发生器的热回收单元、水分去除单元、催化剂单元、化学品喷射单元或它们的任何组合)。换句话说,EGR系统58可包含沿在系统52的排气出口与排气入口之间的排气再循环路径110的任何流量控制部件、压力控制部件、温度控制部件、水分控制部件和气体成分控制部件。因此,在具有沿路径110的HRSG 56的实施例中,HRSG 56可被认为是EGR系统58的部件。不过,在某些实施例中,HRSG 56可沿独立于排气再循环路径110的排气路径设置。不管HRSG 56是否沿着单独路径或与EGR系统58共用的路径,HRSG 56和EGR系统58吸入排气60并输出再循环排气66、与EG供应系统78(例如,用于碳氢化合物生产系统12和/或其它系统84)一起使用的排气42、或另一种排气输出。再者,SEGR燃气涡轮机系统52吸入、混合和化学计量燃烧排气66、氧化剂68和燃料70(例如,预混合火焰和/或扩散火焰),以产生用于分配到EG处理系统54、碳氢化合物生产系统12或其它系统84的基本不含氧和不含燃料的排气60。
如上面参照图1所指出的,碳氢化合物生产系统12可包含各种设备,以促进通过油/气井26从地下储层20回收或生产油/气48。例如,碳氢化合物生产系统12可包含具有流体喷射系统34的EOR系统18。在所示出的实施例中,流体喷射系统34包含排气喷射ECR系统112和蒸汽喷射EOR系统114。虽然流体喷射系统34可从各种源接收流体,但是所示出的实施例可从基于涡轮机的服务系统14接收排气42和蒸汽62。由基于涡轮机的服务系统14产生的排气42和/或蒸汽62也可被传送到碳氢化合物生产系统12以用于其它油/气系统116。
排气42和/或蒸汽62的数量、质量和流量可通过控制系统100来控制。控制系统100可完全专用于基于涡轮机的服务系统14,或控制系统100也可以可选提供用于控制碳氢化合物生产系统12和/或其它系统84的控制装置(或促进控制的至少某些数据)。在所示出的实施例中,控制系统100包含控制器118,其具有处理器120、存储器122、蒸汽涡轮机控制装置124、SEGR气体轮机系统控制装置126和机器控制装置128。处理器120可包含单一处理器或两个或更多个冗余处理器,诸如用于控制基于涡轮机的服务系统14的三重冗余处理器。存储器122可包含易失性和/或非易失性存储器。例如,存储器122可包含一个或更多个硬盘驱动器、闪存、只读存储器、随机存取存储器或它们的任何组合。控制装置124、126和128可包含软件和/或硬件控制装置。例如,控制装置124、126和128可包含存储在存储器122中并可由处理器120执行的各种指令或代码。控制装置124被配置成控制蒸汽涡轮机104的运行,SEGR燃气涡轮机系统控制装置126被配置成控制系统52,以及机器控制装置128被配置成控制机器106。因此,控制器118(例如,控制装置124、126和128)可被配置成协调基于涡轮机的服务系统14的各种子系统,以向碳氢化合物生产系统12提供合适的排气42的流。
在控制系统100的某些实施例中,在附图中示出或在本文中描述的每个元件(例如,系统、子系统和部件)包含(例如,直接在这类元件内、在这类元件上游或下游)一个或更多个工业控制特征件,诸如传感器和控制装置,该工业控制特征件在工业控制网络上连同控制器118一起是彼此通信联接的。例如,与每个元件相关联的控制装置可包含专用装置控制器(例如,包含处理器、存储器和控制指令)、一个或更多个致动器、阀、开关和工业控制设备,其基于传感器反馈130、来自控制器118的控制信号、来自用户的控制信号或它们的任何组合进行控制。因此,本文描述的任何控制功能可用控制指令实现,该控制指令由控制器118、与每个元件关联的专用装置控制器或它们的组合存储和/或执行。
为了促进此类控制功能,控制系统100包含在整个系统10中分布的一个或更多个传感器,以获得用于执行各种控制装置,例如控制装置124、126和128的传感器反馈130。例如,传感器反馈130可从传感器获得,该传感器分布在整个SEGR燃气涡轮机系统52、机器106、EG处理系统54、蒸汽涡轮机104、碳氢化合物生产系统12中,或分布在整个基于涡轮机的服务系统14或碳氢化合物生产系统12的任何其它部件中。例如,传感器反馈130可包含温度反馈、压力反馈、流率反馈、火焰温度反馈、燃烧动力学反馈、吸入氧化剂成分反馈、吸入燃料成分反馈、排气成分反馈、机械功率72的输出水平、电力74的输出水平、排气42、60的输出量、水64的输出量或质量或它们的任何组合。例如,传感器反馈130可包含排气42、60的组成,以促进在SEGR燃气涡轮机系统52中的化学计量燃烧。例如,传感器反馈130可包含来自沿氧化剂68的氧化剂供应路径的一个或更多个吸入氧化剂传感器、沿燃料70的燃料供应路径的一个或更多个吸入燃料传感器和沿排气再循环路径110和/或在SEGR燃气涡轮机系统52内布置的一个或更多个排气排放传感器的反馈。吸入氧化剂传感器、吸入燃料传感器和排气排放传感器可包含温度传感器、压力传感器、流率传感器和组成传感器。排放传感器可包含用于氮氧化物的传感器(例如,NOx传感器)、用于碳氧化物的传感器(例如,CO传感器和CO2传感器)、用于硫氧化物的传感器(例如,SOx传感器)、用于氢的传感器(例如,H2传感器)、用于氧的传感器(例如,O2传感器)、用于未燃烧碳氢化合物的传感器(例如,HC传感器)、或用于未完全燃烧的其它产物的传感器,或它们的任何组合。
通过使用这种反馈130,控制系统100可调节(例如,增加、减少或保持)排气66、氧化剂68和/或燃料70至SEGR燃气涡轮机系统52(除了其它运行参数以外)的进气流量,以将当量比保持在合适范围内,例如在约0.95到约1.05之间、在约0.95到约1.0之间、在约1.0到约1.05之间或大致在1.0。例如,控制系统100可分析反馈130以监测排气排放(例如,氮氧化物、诸如CO和CO2的碳氧化物、硫氧化物、氢、氧、未燃烧碳氢化合物和未完全燃烧的其它产物的浓度水平)和/或确定当量比,并接着控制一个或更多个部件以调节排气排放(例如,排气42的浓度水平)和/或当量比。受控部件可包含参照附图示出和描述的任何部件,其包含但不限于,沿氧化剂68、燃料70和排气66的供应路径的阀;氧化剂压缩机、燃料泵或在EG处理系统54中的任何部件;SEGR燃气涡轮机系统52的任何部件;或它们的任何组合。受控部件可调节(例如,增加、减少或保持)在SEGR燃气涡轮机系统52内燃烧的氧化剂68、燃料70和排气66的流率、温度、压力或百分比(例如,当量比)。受控部件也可包含一个或更多个气体处理系统,诸如催化剂单元(例如,氧化催化剂单元)、催化剂单元供应装置(例如,氧化燃料、热量、电力等)、气体净化和/或分离单元(例如,溶剂型分离器、吸收器、闪蒸罐等)以及过滤单元。气体处理系统可帮助减少沿排气再循环路径110、通风口路径(例如,排放到大气中)或到EG供应系统78的抽取路径的各种排气排放。
在某些实施例中,控制系统100可分析反馈130并控制一个或更多个部件以保持或减少排放水平(例如,排气42、60、95的浓度水平)到目标范围,诸如小于每百万份体积约10、20、30、40、50、100、200、300、400、500、1000、2000、3000、4000、5000或10000份(ppmv)。对于排气排放中的每种,例如氮氧化物、一氧化碳、硫氧化物、氢、氧、未燃烧碳氢化合物和未完全燃烧的其它产物的浓度水平,这些目标范围可为相同或不同的。例如,根据当量比,控制系统100可将氧化剂(例如,氧)的排气排放(例如,浓度水平)选择性控制在小于约10、20、30、40、50、60、70、80、90、100、250、500、750或1000ppmv的目标范围内;将一氧化碳(CO)选择性控制在小于约20、50、100、200、500、1000、2500或5000ppmv的目标范围内;以及将氮氧化物(NOX)选择性控制在小于约50、100、200、300、400或500ppmv的目标范围内。在以大致化学计量当量比运行的某些实施例中,控制系统100可将氧化剂(例如,氧)的排气排放(例如,浓度水平)选择性控制在小于约10、20、30、40、50、60、70、80、90或100ppmv的目标范围内;以及将一氧化碳(CO)选择性控制在小于约500、1000、2000、3000、4000或5000ppmv的目标范围内。在以贫燃料当量比(例如,在大约0.95到1.0之间)运行的某些实施例中,控制系统100可将氧化剂(例如,氧)的排气排放(例如,浓度水平)选择性控制在小于约500、600、700、800、900、1000、1100、1200、1300、1400或1500ppmv的目标范围内;将一氧化碳(CO)选择性控制在小于约10、20、30、40、50、60、70、80、90、100、150或200ppmv的目标范围内;以及将氮氧化物(例如,NOx)选择性控制在小于约50、100、150、200、250、300、350或400ppmv的目标范围内。前述目标范围仅仅是示例,并不旨在限制本公开实施例的范围。
控制系统100还可被联接到本地接口132和远程接口134。例如,本地接口132可包含现场设置在基于涡轮机的服务系统14和/或碳氢化合物生产系统12处的计算机工作站。相反,远程接口134可包含不在基于涡轮机的服务系统14和碳氢化合物生产系统12现场设置的计算机工作站,诸如通过互联网连接的计算机工作站。这些接口132和134诸如通过传感器反馈130的一个或更多个图形显示、运行参数等等促进基于涡轮机的服务系统14的监测和控制。
再者,如上所指出的,控制器118包含各种控制装置124、126和128,以促进控制基于涡轮机的服务系统14。蒸汽涡轮机控制装置124可接收传感器反馈130并输出控制命令以促使蒸汽涡轮机104运行。例如,蒸汽涡轮机控制装置124可从HRSG 56、机器106、沿蒸汽62路径的温度和压力传感器、沿水108路径的温度和压力传感器以及指示机械功率72和电力74的各个传感器接收传感器反馈130。同样,SEGR燃气涡轮机系统控制装置126可从沿SEGR燃气涡轮机系统52、机器106、EG处理系统54或它们的任何组合设置的一个或更多个传感器接收传感器反馈130。例如,传感器反馈130可从设置在SEGR燃气涡轮机系统52内部或外部的温度传感器、压力传感器、间隙传感器、振动传感器、火焰传感器、燃料组成传感器、排气组成传感器或它们的任何组合获得。最终,机器控制装置128可以从与机械功率72和电力74关联的各个传感器以及布置在机器106内的传感器接收传感器反馈130。这些控制装置124、126和128中的每个控制装置使用传感器反馈130改善基于涡轮机的服务系统14的运行。
在所示出的实施例中,SEGR燃气涡轮机系统控制装置126可执行指令以控制在EG处理系统54、EG供应系统78、碳氢化合物生产系统12和/或其它系统84中的排气42、60、95的数量和质量。例如,SEGR燃气涡轮机系统控制装置126可将排气60中的氧化剂(例如,氧)和/或未燃烧燃料的水平保持在低于适合于与排气喷射EOR系统112一起使用的阈值。在某些实施例中,阈值水平可为小于排气42、60中的氧化剂(例如,氧)和/或未燃烧燃料的1、2、3、4或5体积百分比;或氧化剂(例如,氧)和/或未燃烧燃料(和其它排气排放)的阈值水平可小于排气42、60中的约每百万份体积的10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000份(ppmv)。通过进一步示例,为了实现这些低水平的氧化剂(例如,氧)和/或未燃烧燃料,SEGR燃气涡轮机系统控制装置126可将在SEGR燃气涡轮机系统52中燃烧的当量比保持在约0.95和约1.05之间。SEGR燃气涡轮机系统控制装置126还可控制EG抽取系统80和EG处理系统82,以将排气42、60、95的温度、压力、流率和气体组成保持在适合用于排气喷射EOR系统112、管道86、储罐88和固碳系统90的范围内。如上所述,EG处理系统82可被控制将排气42净化和/或分离为一种或更多种气体流95,诸如富CO2贫N2流96,中间浓度CO2、N2流97,以及贫CO2富N2流98。除了用于排气42、60和95的控制装置以外,控制装置124、126和128可执行一个或更多个指令以将机械功率72保持在合适动力范围内,或将电力74保持在合适频率和电力范围内。
图3为系统10的实施例的示意图,其进一步示出与碳氢化合物生产系统12和/或其它系统84一起使用的SEGR燃气涡轮机系统52的细节。在所示出的实施例中,SEGR燃气涡轮机系统52包含联接到EG处理系统54的燃气涡轮发动机150。所示出的燃气涡轮发动机150包括压缩机部152、燃烧室部154以及膨胀器部或涡轮机部156。压缩机部152包含一个或更多个排气压缩机或压缩机级158,诸如以串联布置设置的1到20级旋转压缩机叶片。同样,燃烧室部154包含一个或更多个燃烧室160,诸如围绕SEGR燃气涡轮机系统52的旋转轴线162周向分布的1到20个燃烧室160。而且,每个燃烧室160可包含一个或更多个燃料喷嘴164,其被配置成喷射排气66、氧化剂68和/或燃料70。例如,每个燃烧室160的盖端部166可容纳1、2、3、4、5、6个或更多个燃料喷嘴164,其可将排气66、氧化剂68和/或燃料70的流或混合物喷射到燃烧室160的燃烧部分168(例如,燃烧腔室)中。
燃料喷嘴164可包含预混合燃料喷嘴164(例如,其被配置成预混合氧化剂68和燃料70以用于生成氧化剂/燃料预混火焰)和/或扩散燃料喷嘴164(例如,其被配置成喷射氧化剂68和燃料70的单独的流以用于生成氧化剂/燃料扩散火焰)的任何组合。预混合燃料喷嘴164的实施例可包含旋流叶片、混合腔室、或其它特征件,以在喷射到燃烧腔室168中和在燃烧腔室168中燃烧之前,使该氧化剂68和燃料70在喷嘴164内内部混合。预混合燃料喷嘴164还可接收至少一些部分混合的氧化剂68和燃料70。在某些实施例中,每个扩散燃料喷嘴164可隔离氧化剂68与燃料70的流直到喷射点,同时还隔离一种或更多种稀释剂(例如,排气66、蒸汽、氮或另一种惰性气体)的流直到喷射点。在另一些实施例中,每个扩散燃料喷嘴164可隔离氧化剂68与燃料70的流直到喷射点,同时在喷射点之前,部分地混合一种或更多种稀释剂(例如,排气66、蒸汽、氮或另一种惰性气体)与氧化剂68和/或燃料70。此外,一种或更多种稀释剂(例如,排气66、蒸汽、氮或另一种惰性气体)可被喷射到在燃烧区处或其下游的燃烧室中(例如,喷射到燃烧的热产物中),从而帮助减小燃烧的热产物的温度并减少NOx(例如,NO和NO2)的排放。不管燃料喷嘴164的类型,SEGR燃气涡轮机系统52可被控制以提供氧化剂68和燃料70的大致化学计量燃烧。
在使用扩散燃料喷嘴164的扩散燃烧实施例中,燃料70和氧化剂68通常不在扩散火焰的上游混合,而是燃料70和氧化剂68在火焰表面处直接混合和反应,和/或火焰表面存在于燃料70与氧化剂68之间的混合的位置处。具体地,燃料70和氧化剂68单独接近火焰表面(或扩散边界/界面),并接着沿火焰表面(或扩散边界/界面)扩散(例如,经由分子和粘性扩散)以生成扩散火焰。值的注意的是,燃料70和氧化剂68沿该火焰表面(或扩散边界/界面)可以是大致化学计量比的,这可沿该火焰表面产生更大的火焰温度(例如,峰值火焰温度)。与贫燃料或富燃料的燃料/氧化剂比相比,该化学计量燃料/氧化剂比通常产生更大的火焰温度(例如,峰值火焰温度)。因此,扩散火焰可基本上比预混火焰更加稳定,因为燃料70和氧化剂68的扩散帮助保持沿火焰表面的化学计量比(和更大温度)。虽然更大的火焰温度也能够导致更大的排气排放,诸如NOx排放,但是所公开的实施例使用一种或更多种稀释剂帮助控制温度和排放,同时还避免燃料70和氧化剂68的任何预混合。例如,所公开的实施例可引入一种或更多种稀释剂与燃料70和氧化剂68分隔开(例如,在燃烧点之后和/或扩散火焰的下游),从而帮助降低温度和减少由扩散火焰产生的排放(例如,NOx排放)。
如图所示,在运行时,压缩机部152接收并压缩来自EG处理系统54的排气66,并将压缩后的排气170输出到燃烧室部154中的每个燃烧室160。在燃料60、氧化剂68和排气170在每个燃烧室160内燃烧时,附加排气或燃烧产物172(即,燃烧气体)被传送到涡轮机部156。类似于压缩机部152,涡轮机部156包含一个或更多个涡轮机或涡轮机级174,其可包含一系列转动涡轮机叶片。这些涡轮机叶片接着被在燃烧室部154中所生成的燃烧产物172驱动,从而驱动联接到机器106的轴176的转动。再者,机器106可包含联接到SEGR燃气涡轮机系统52的任一端的各种设备,诸如联接到涡轮机部156的机器106、178和/或联接到压缩机部152的机器106、180。在某些实施例中,机器106、178、180可包含一个或更多个发电机、用于氧化剂68的氧化剂压缩机、用于燃料70的燃料泵、齿轮箱或联接到SEGR燃气涡轮机系统52的附加驱动件(例如,蒸汽涡轮机104、电动马达等)。非限制性示例在下面参照表格1进一步详细论述。如图所示,涡轮机部156输出排气60以沿排气再循环路径110从涡轮机部156的排气出口182再循环到排气入口184进入压缩机部152。如上面所详细论述的,沿着排气再循环路径110,排气60经过EG处理系统54(例如,HRSG 56和/或EGR系统58)。
再者,在燃烧室部154中的每个燃烧室160接收、混合并化学计量燃烧压缩的排气170、氧化剂68和燃料70,以产生附加排气或燃烧产物172以驱动涡轮机部156。在某些实施例中,氧化剂68被氧化剂压缩系统186(诸如,具有一个或更多个氧化剂压缩机(MOC)的主氧化剂压缩(MOC)系统(例如,主空气压缩(MAC)系统))压缩。氧化剂压缩系统186包含联接到驱动件190的氧化剂压缩机188。例如,驱动件190可包含电动马达、燃烧发动机或它们的任何组合。在某些实施例中,驱动件190可为涡轮发动机,诸如燃气涡轮发动机150。因此,氧化剂压缩系统186可为机器106的一体部分。换句话说,压缩机188可由被燃气涡轮发动机150的轴176供应的机械功率72直接或间接驱动。在此实施例中,驱动件190可被排除,因为压缩机188依赖涡轮发动机150的功率输出。不过,在采用不止一个氧化剂压缩机的某些实施例中,第一氧化剂压缩机(例如,低压(LP)氧化剂压缩机)可被驱动件190驱动,而轴176驱动第二氧化剂压缩机(例如,高压(HP)氧化剂压缩机),或反之亦然。例如,在另一实施例中,HPMOC被驱动件190驱动,以及LP氧化剂压缩机被轴176驱动。在所示出的实施例中,氧化剂压缩系统186与机器106分隔开。在这些实施例中的每个实施例中,压缩系统186压缩氧化剂68并将该氧化剂供应给燃料喷嘴164和燃烧室160。因此,机器106、178、180中的一些或全部可被配置成增加压缩系统186(例如,压缩机188和/或附加压缩机)的运行效率。
由元件编号106A、106B、106C、106D、106E和106F所指示的机器106的各个部件可在一个或更多个串联布置、并联布置或串联与并联布置的任何组合中沿轴176的线和/或平行于轴176的线设置。例如,机器106、178、180(例如,106A到106F)可包含下列设备以任何次序的任何串联和/或并联布置,该设备包括:一个或更多个齿轮箱(例如,平行轴、行星齿轮箱)、一个或更多个压缩机(例如,氧化剂压缩机、增压压缩机,诸如EG增压压缩机)、一个或更多个发电单元(例如,发电机)、一个或更多个驱动件(例如,蒸汽涡轮发动机、电动马达)、热交换单元(例如,直接或间接热交换器)、离合器或它们的任何组合。压缩机可包含轴向压缩机、径向或离心压缩机或它们的任何组合,每种压缩机具有一个或更多个压缩级。关于热交换器,直接热交换器可包含喷淋(spray)冷却器(例如,喷淋中间冷却器),其将液体喷淋喷射到气体流中(例如,氧化剂流)以用于直接冷却气体流。间接热交换器可包含将第一流和第二流分隔开的至少一个壁(例如,管壳式热交换器),诸如与冷却剂流(例如,水、空气、致冷剂或任何其它液态或气态冷却剂)分隔开的流体流(例如,氧化剂流),其中,冷却剂流与流体流没有任何直接接触地传递流体流的热。间接热交换器的示例包含中间冷却器、热交换器和热回收单元,诸如热回收蒸汽发生器。热交换器也可包含加热器。如下面进一步详细论述的,这些机器部件中的每个可被用在如在表格1中列出的非限制性示例所指示的各种组合中。
通常,机器106、178、180可被配置成通过例如调节在系统186中的一个或更多个氧化剂压缩机的运行速度、通过冷却和/或抽取过剩电力促进氧化剂68的压缩来增加压缩系统186的效率。本公开的实施例旨在包含在机器106、178、180中以串联和并联布置的前述部件的任何和全部排列,其中,所述部件中的一个、不止一个、全部部件或没有任何部件从轴176获得动力。如下面所示,表格1示出靠近压缩机和涡轮机部152、156设置和/或联接到该压缩机和该涡轮机部的机器106、178、180的布置的一些非限制性示例。
表格1
如上面表格1所示,冷却单元被表示为CLR,离合器被表示为CLU,驱动件被表示为DRV,齿轮箱被表示为GBX,发电机被表示为GEN,加热单元被表示为HTR,主氧化剂压缩机单元被表示为MOC,其中,低压和高压变量被分别表示为LP MOC和HP MOC,以及蒸汽发生器单元被表示为STGN。虽然表格1示出机器106、178、180依次朝着压缩机部152或涡轮机部156,但是表格1也旨在覆盖机器106、178、180的相反次序。在表格1中,包含两个或更多个部件的任何单元旨在覆盖所述部件的并联布置。表格1并不旨在排除机器106、178、180的任何未示出的排列。机器106、178、180的这些部件可使能发送到燃气涡轮发动机150的氧化剂68的温度、压力和流率的反馈控制。如下面所进一步详细论述的,氧化剂68和燃料70可被供应给处于被具体选择以促进压缩排气170隔离和抽取而氧化剂68或燃料70未将排气170的质量降低的位置处的燃气涡轮机150。
如图3所示,EG供应系统78被设置在燃气涡轮发动机150与目标系统(例如,碳氢化合物生产系统12和其它系统84)之间。具体地,EG供应系统78(例如EG抽取系统(EGES)80)可被联接到在沿压缩机部152、燃烧室部154和/或涡轮机部156的一个或更多个抽取点76处的燃气涡轮发动机150。例如,抽取点76可被定位在毗邻的压缩机级之间,诸如在压缩机级之间的2、3、4、5、6、7、8、9或10个级间抽取点76。这些级间抽取点76中的每个提供被抽取排气42的不同温度和压力。同样,抽取点76可被定位在毗邻的涡轮机级之间,诸如在涡轮机级之间的2、3、4、5、6、7、8、9或10个级间抽取点76。这些级间抽取点76中的每个提供被抽取排气42的不同温度和压力。通过进一步示例,抽取点76可被定位在整个燃烧室部154的多个位置,其可提供不同温度、压力、流率和气体组成。这些抽取点76中的每个可包含EG抽取导管、一个或更多个阀、传感器以及控制装置,其可被用于选择性控制被抽取排气42到EG供应系统78的流。
通过EG供应系统78分配的被抽取排气42具有适合于目标系统(例如,碳氢化合物生产系统12和其它系统84)的受控组分。例如,在这些抽取点76中的每个处,排气170可与氧化剂68和燃料70的喷射点(或流)基本隔离。换句话说,EG供应系统78可被具体设计成从燃气涡轮发动机150抽取排气170而没有任何添加的氧化剂68或燃料70。而且,鉴于在每个燃烧室160的化学计量燃烧,被抽取排气42可以是基本上不含氧和燃料。EG供应系统78可将被抽取排气42直接或间接传送到碳氢化合物生产系统12和/或其它系统84以用于各种处理,诸如提高原油采收率、固碳、存储或运输到非现场位置。不过,在某些实施例中,EG供应系统78包含在与目标系统一起使用之前,用于进一步处理排气42的EG处理系统(EGTS)82。例如,EG处理系统82可将排气42净化和/或分离为一种或更多种流95,例如富CO2贫N2流96,中间浓度CO2、N2流97,以及贫CO2富N2流98。这些处理后的排气流95可被单独使用,或与碳氢化合物生产系统12和其它系统84(例如,管道86、储罐88以及固碳系统90)的任何组合一起使用。
类似于在EG供应系统78中执行的排气处理,EG处理系统54可包含多个排气(EG)处理部件192,例如通过元件编号194、196、198、200、202、204、206、208和210所指示的。这些EG处理部件192(例如,194到210)可以以一个或更多个串联布置、并联布置或串联和平行布置的任何组合沿排气再循环路径110设置。例如,EG处理部件192(例如,194到210)可包含下列设备以任何次序的任何串联和/或平行布置,所述设备包括:一个或更多个热交换器(例如,热回收单元,诸如热回收蒸汽发生器、冷凝器、冷却器或加热器)、催化剂系统(例如,氧化催化剂系统)、微粒和/或水去除系统(例如,惯性分离器、聚结过滤器、不透水过滤器以及其它过滤器)、化学品喷射系统、溶剂型处理系统(例如,吸收剂、闪蒸罐等)、碳收集系统、气体分离系统、气体净化系统和/或溶剂型处理系统,或它们的任何组合。在某些实施例中,催化剂系统可包含氧化催化剂、一氧化碳还原催化剂、氮氧化物还原催化剂、氧化铝、氧化锆、硅氧化物、钛氧化物、氧化铂、氧化钯、氧化钴或混合金属氧化物,或它们的组合。所公开实施例旨在包含在串联和并联布置中的前述部件192的任何和全部排列。如下面所述,表格2示出沿排气再循环路径110的部件192的布置的一些非限制性示例。
表格2
如上面表格2所示,催化剂单元被表示为CU,氧化催化剂单元被表示为OCU,增压鼓风机被表示为BB,热交换器被表示为HX,热回收单元被表示为HRU,热回收蒸汽发生器被表示为HRSG,冷凝器被表示为COND,蒸汽涡轮机被表示为ST,微粒去除单元被表示为PRU,水分去除单元被表示为MRU,过滤器被表示为FIL,凝聚过滤器被表示为CFIL,不透水过滤器被表示为WFIL,惯性分离器被表示为INER,以及稀释剂供应系统(例如,蒸汽、氮或另一惰性气体)被表示为DIL。虽然表格2示出按顺序从涡轮机部156的排气出口182朝压缩机部152的排气入口184的部件192,但是表格2也旨在覆盖所示出部件192的相反顺序。在表格2中,包含两个或更多个部件的任何单元旨在覆盖带有所述部件、所述部件并联布置或它们的任何组合的集成单元。而且,在表格2的背景下,HRU、HRSG和COND为HE的示例;HRSG为HRU的示例;COND、WFIL和CFIL为WRU的示例;INER、FIL、WFIL和CFIL为PRU的示例;以及WFIL和CFIL为FIL的示例。再者,表格2并不旨在排除部件192的任何未示出的排列。在某些实施例中,所示出的部件192(例如,194到210)可以被部分或完全集成在HRSG 56、EGR系统58或它们的任何组合内。这些EG处理部件192可使能温度、压力、流率和气体成分的反馈控制,同时也从排气60去除水分和微粒。而且,被处理排气60可在一个或更多个抽取点76处被抽取以用于EG供应系统78和/或被再循环到压缩机部152的排气入口184。
在被处理时,再循环排气66经过压缩机部152,SEGR燃气涡轮机系统52可沿一个或更多个管道212(例如,放气导管或旁通导管)排出被压缩排气的一部分。每个管道212可将排气传送到一个或更多个热交换器214(例如,冷却单元)中,从而冷却再循环回到SEGR燃气涡轮机系统52中的排气。例如,在经过热交换器214后,被冷却排气的一部分可被传送到沿管道212的涡轮机部156,以用于冷却和/或密封轮机套管、涡轮机外罩、轴承和其它部件。在此实施例中,SEGR燃气涡轮机系统52不传送任何氧化剂68(或其它潜在污染物)通过涡轮机部156以用于冷却和/或密封目的,并因此,被冷却排气的任何泄漏将不污染流过涡轮机部156的涡轮机级并驱动该涡轮机级的热燃烧产物(例如,工作排气)。通过进一步示例,在经过热交换器214之后,被冷却排气的一部分可沿管道216(例如,返回导管)被传送到压缩机部152的上游压缩机级,从而提高通过压缩机部152压缩的效率。在此实施例中,热交换器214可被配置为压缩机部152的级间冷却单元。以此方式,被冷却排气帮助增加SEGR燃气涡轮机系统52的运行效率,同时帮助保持排气的纯度(例如,基本不含氧化剂和燃料)。
图4为在图1至图3中示出的系统10的操作过程220的实施例的流程图。在某些实施例中,过程220可为计算机实施的过程,该过程存取存储在存储器122上的一个或更多个指令,并执行在图2中示出的控制器118的处理器120上的指令。例如,在过程220中的每个步骤可包含参照图2所述的控制系统100的控制器118可执行的指令。
过程220可通过初始化图1至图3的SEGR燃气涡轮机系统52的启动模式开始,如块222所指示的。例如,该启动模式可包括SEGR燃气涡轮机系统52的逐步倾斜上升,以保持在可接受阈值内的热梯度、振动和间隙(例如,在旋转与静止部件之间)。例如,在启动模式222期间,过程220可开始向燃烧室部154的燃烧室160和燃料喷嘴164供应压缩后的氧化剂68,如块224所指示的。在某些实施例中,压缩后的氧化剂可包含压缩空气、氧、富氧空气、氧减少空气、氧氮混合物或它们的任何组合。例如,氧化剂68可被在图3中示出的氧化剂压缩系统186压缩。在启动模式222期间,过程220也可开始向燃烧室160和燃料喷嘴164供应燃料,如块226所指示的。在启动模式222期间,过程220也可开始向燃烧室160和燃料喷嘴164供应(可用)排气,如块228所指示的。例如,燃料喷嘴164可产生一种或更多种扩散火焰、预混合火焰或扩散火焰与预混合火焰的组合。在启动模式222期间,通过燃气涡轮发动机156生成的排气60在数量和/或质量上可能是不足或不稳定的。因此,在启动模式期间,过程220可从一个或更多个存储单元(例如,储罐88)、管道86、其它SEGR燃气涡轮机系统52或其它排气源供应排气66。
接着,过程220可在燃烧室160中燃烧压缩后的氧化剂、燃料和排气的混合物以产生热燃烧气体172,如块230所指示的通过一个或更多个扩散火焰、预混合火焰或扩散火焰和预混合火焰的组合。具体地,过程220可通过图2的控制系统100进行控制,以促进在燃烧室部154的燃烧室160中的混合物的化学计量燃烧(例如,化学计量扩散燃烧、预混合燃烧或两者)。不过,在启动模式222期间,保持混合物的化学计量燃烧可能是特别困难的(并因此,热燃烧气体172中可能存在低水平的氧化剂和未燃烧燃料)。因此,在启动模式222中,热燃烧气体172可能比在稳定状态模式期间具有更大量的残留氧化剂68和/或燃料70,如在下面所进一步详细论述的。为此,过程220可在启动模式期间,执行一个或更多个控制指令以减少或消除在热燃烧气体172中的残留氧化剂68和/或燃料70。
接着,过程220用热燃烧气体172驱动涡轮机部156,如块232所指示的。例如,热燃烧气体172可驱动被设置在涡轮机部156内的一个或更多个涡轮机级174。在涡轮机部156的下游,过程220可处理来自最后涡轮机级174的排气60,如块234所指示的。例如,排气处理234可包含对任何残留氧化剂68和/或燃料70的过滤、催化反应、利用HRSG 56的化学处理、热回收等等。过程220也可将排气60的至少一些再循环回到SEGR燃气涡轮机系统52的压缩机部152,如块236所指示的。例如,排气再循环236可包括经过具有EG处理系统54的排气再循环路径110的通道,如图1至图3所示。
再循环排气66可继而在压缩机部152中被压缩,如块238所指示的。例如,SEGR燃气涡轮机系统52可在压缩机部152的一个或更多个压缩机级158中相继压缩再循环排气66。压缩后的排气170随后可被供应给燃烧室160和燃料喷嘴164,如块228所指示的。接着可重复步骤230、232、234、236和238,直到过程220最终转变到稳态模式,如块240所指示的。在转变240之后,过程220可继续执行步骤224到238,但是也可开始经由EG供应系统78抽取排气42,如块242所指示的。例如,排气42可从沿压缩机部152、燃烧室部154和涡轮机部156的一个或更多个抽取点76抽取,如图3所示。过程220可继而从EG供应系统78向碳氢化合物生产系统12供应被抽取排气42,如块244所指示的。碳氢化合物生产系统12接着可将排气42喷射到地球32中以用于提高原油采收率,如块246所指示的。例如,被抽取排气42可被如图1至图3所示的EOR系统18的排气喷射EOR系统112使用。
在SEGR燃气涡轮机系统52的一些实施例中,用于一个或更多个燃烧室160的燃料与氧化剂的比(FOR)独立于用于一个或更多个燃烧室160的排气与氧化剂的比(EGOR)的控制进行控制。图5示出SEGR燃气涡轮机系统52的实施例,其中,为清楚起见示出一个燃烧室160,然而,SEGR燃气涡轮机系统52可包含多个(例如,2、3、4、8、12、16或更多个)燃烧室160。燃烧室160经由氧化剂控制系统262在燃烧室160的盖端部166处接收氧化剂流260。如下面所论述的,燃料控制系统264控制至燃烧室160的一个或更多个燃料喷嘴164的燃料流266。应明白,氧化剂控制系统262可包含工业控制器,其具有处理器、存储器和存储在存储器中并可由处理器可执行的指令,以经由阀和/或致动器执行控制功能以控制至每个燃烧室160的一个或更多个燃料喷嘴164的氧化剂流260。同样,燃料控制系统264可包含工业控制器,其具有处理器、存储器和存储在存储器中并可由处理器可执行的指令,以经由如下面所论述的阀和/或致动器执行控制功能以控制至每个燃烧室160的一个或更多个燃料喷嘴164的燃料流266。通过控制氧化剂流260和/或燃料流266,控制器118可控制燃烧室160的FOR。在稳态运行期间,控制器118可控制FOR近似为化学计量燃料与氧化剂的比(FORST),从而将当量比控制为约1.0、在约0.90至1.10之间或在约0.95至1.05之间。
控制器118可经由控制线路268被联接到氧化剂控制系统262和燃料控制系统264,以及控制器118可经由信号线路273被联接到氧化剂感测系统270和/或燃料感测系统272。氧化剂感测系统270可包含工业控制器,其具有处理器、存储器和存储在该存储器中并可由该处理器可执行的指令,以经由一个或更多个传感器或测量装置执行感测功能来监测氧化剂流260。同样,燃料感测系统272可包含工业控制器,其具有处理器、存储器和存储在该存储器中并可由该处理器可执行的指令,以经由一个或更多个传感器或测量装置执行感测功能来监测燃料流266。氧化剂感测系统270和燃料感测系统272中的每个可包含一个或更多个传感器或测量装置,用于测量相应流的组成、流率、温度和/或压力。例如,氧化剂感测系统270的一个或更多个传感器可包含但不限于基于氧化锆的、基于电化学的、基于红外的、基于超声波的和基于激光的氧传感器。氧化剂感测系统270和/或燃料感测系统272的流率传感器或测量装置可单独包含一个或更多个任何合适类型的流分析装置,该流分析装置包含但不限于热式质量流量计、科里奥利质量流量计、质量流量控制器、旋转活塞流量计、齿轮流量计、文丘里流量计、孔板流量计、道尔管流量计、皮托管流量计、多孔压力探头流量计、锥式流量计、光流量计、电磁流量计或超声波流量计。氧化剂感测系统270和/或燃料感测系统272的温度传感器或测量装置可单独包含一个或更多个任何合适类型的温度分析装置,该温度分析装置包含但不限于热电偶、热敏电阻、电阻式温度检测器或它们的任何组合。一个或更多个燃烧产物传感器274可感测从涡轮机部156传送到排气处理系统54的排气60的组成、流率、温度和/或压力。另外或另选地,一个或更多个燃烧产物传感器274可感测从一个或更多个燃烧室160传送到涡轮机部156的燃烧气体172的组成、流率、温度和/或压力。一个或更多个燃烧产物传感器274可包含但不限于λ传感器。例如,燃烧产物传感器274可包含但不限于基于氧化锆的、基于电化学的、基于红外的、基于超声波的和基于激光的氧传感器。
控制器118可至少部分基于来自氧化剂感测系统270、燃料感测系统272、燃烧产物传感器274或它们的任何组合的传感器反馈来控制氧化剂流260和燃料流266。在一些实施例中,基于燃料70和氧化剂68的组成、燃料和/或氧化剂的当前流率和用于预期运行负载和/或运行速度的预期FOR,控制器118利用前馈控制。另外或另选地,基于由燃烧产物传感器274所确定的燃烧气体172的组成和/或由传感器278确定的排气60的再循环流276的组成,控制器118利用反馈控制。例如,本文所述的公开实施例可结合在2012年12月28日提交的题为“GAS TURBINE COMBUSTOR CONTROL SYSTEM(燃气涡轮机燃烧室控制系统)”的美国申请No.61/747,194中阐述的任何和全部实施例使用,该美国申请的全部内容通过引用并入本文。
氧化剂流260被供应给燃烧室160的盖端部166,以及燃料流266在盖端部166处被供应给燃烧室160的一个或更多个燃料喷嘴164。一个或更多个燃料喷嘴164可为预混合燃料喷嘴、扩散燃料喷嘴或它们的任何组合。再循环流276或排气60可在盖端部166处被供应给再循环入口277或燃烧室160的燃烧室部分168。再循环流276可包含来自燃烧室部152的压缩排气170。在一些实施例中,再循环流276在盖端部166中与氧化剂流260和燃料流266混合,从而稀释混合物中的氧化剂浓度。该再循环流276可增加在燃烧室160内的再循环流276内的残留氧化剂和/或残留燃料的燃烧。另外或另选地,再循环流276在流套280内在燃烧室160附近流动以冷却燃烧室内衬282。此外,再循环流276可增加可被抽取的在再循环流276内的二氧化碳的量或比,诸如以用于固碳、制冷系统或其它目标系统。在流套280内的再循环流276可如虚箭头所示进入燃烧室160,经过稀释孔以与燃烧室部168内的燃烧产物172混合并冷却该燃烧产物。在一些实施例中,用再循环流276冷却燃烧产物172减少NOX排放。再循环流276可流向盖端部166以与氧化剂68和燃料70混合,如上所述。
来自燃料流266和氧化剂流260以及再循环流276的一部分的燃烧的燃烧产物172被引导到SEGR燃气涡轮机52的涡轮机部156,该涡轮机部可经由轴176驱动机器106和/或压缩机部152。离开涡轮机部156的排气60流向排气处理系统54,该排气处理系统将排气60再循环到压缩机部152。如上所述,排气处理系统54可诸如经由HRSG 56从排气60抽取热量。排气处理系统54将冷却后的排气60引导到压缩机部152以用于压缩和再循环到一个或更多个燃烧室160。在一些实施例中,控制器118被联接到一组或更多组入口导向叶片284,以控制从压缩机部152到一个或更多个燃烧室160的再循环流276的压力和/或流率。
如本文所论述,供应给一个或更多个燃烧室160的再循环流276包含经由一个或更多个抽取端口287被抽取到抽取歧管286的第一部分288,以及在一个或更多个燃烧室160中与氧化剂68和燃料70混合的第二部分。与氧化剂68和燃料70混合的第二部分作为燃烧气体172流向涡轮机部156。从抽取歧管286,再循环流276的第一部分288可被划分为第三部分289和旁通流292。抽取歧管286被联接到一个或更多个燃烧室160。抽取歧管286可流体联接到一个或更多个排气供应系统78,该排气供应系统78接收再循环流276的第三部分289。如上面关于图1至图4所述,一个或更多个排气供应系统78可在提高原油采收率系统18中利用第三部分289(例如,排气42)和/或可向管道86、储罐88或向固碳系统90供应第三部分289。作为第三部分289供应给一个或更多个排气供应系统78的再循环流276的量可至少部分基于EOR系统18或其它系统84的排气需求而改变。例如,第三部分289的流率可为固定或可变流率。在一些实施例中,在与氧化剂流260和/或燃料流266混合之前,第一部分288从在燃烧室160附近的流套280抽取。再循环流276可相对于燃烧气体172流在流套280内上游流动。再循环流276的第一部分280可具有小于约每百万份体积的10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000份(ppmv)的氧化剂(例如,氧)、未燃烧燃料或碳氢化合物(例如,HC)、氮氧化物(例如,NOx)、一氧化碳(CO)、硫氧化物(例如,SOx)、氢和其它未完全燃烧产物。例如,第一部分288可具有小于约10、20、30、40、50、75或100ppmv的氧化剂浓度。在一些实施例中,第一部分288可包含燃烧气体流172的部分。
通过调节供应给燃烧室160的再循环流276和/或通过调节从燃烧室160抽取的再循环流276的第一部分288,控制器118可控制用于燃烧室160的EGOR。通过调节(例如,打开、闭合)入口导向叶片284和/或调节(例如,增加、减少)被再循环到压缩机部152的来自排气处理系统54的排气60的量,控制器118可调节供应给燃烧室160的再循环流276。打开入口导向叶片284可增加在再循环流276内的氧化剂68,从而减小EGOR,以及闭合入口导向叶片284可减少在再循环流276内的氧化剂68,从而增加EGOR。增加来自排气处理系统54的排气60的量(例如,经由打开阀)可增加在再循环流276内的排气60,从而增加EGOR,以及减少来自排气处理系统54的排气60的量(例如,经由闭合阀)可减少在再循环流276内的排气60,从而减小EGOR。在一些实施例中,通过控制从燃烧室160抽取的第一部分288,控制器118可控制EGOR,从而控制与氧化剂流260和/或燃料流266混合的在燃烧室160中的再循环流276的其余部分。通过调节涡轮机旁通阀290,控制器118可调节(例如,增加、减少)从燃烧室160抽取的再循环流276的第一部分288。涡轮机旁通阀290被流体联接在抽取歧管286和在涡轮机部256下游的排气流60之间。控制器118控制涡轮机旁通阀290以调节(例如,增加、减少)绕过涡轮机部156并接合排气流60的第一部分288的旁通流292。在第三部分289的流率基本上被保持的情况下,闭合涡轮机旁通阀290以减少旁通流292可增加在一个或更多个燃烧室160中的EGOR,因为在与氧化剂68混合之前,更少的再循环流276被抽取。同样,打开涡轮机旁通阀290以增加旁通流292同时保持第三部分289的流率可减小在一个或更多个燃烧室160中的EGOR,因为更多的再循环流276从一个或更多个燃烧室160被抽取。应明白,对第三部分289的流率的调节可具有比用于涡轮机旁通阀290的响应时间(例如,少于5、4、3、2或1秒)更长的响应时间。控制器118可经由抽取歧管286、排气供应系统78或在抽取歧管286和排气供应系统78之间的控制阀(例如,球阀、蝶形阀)控制第三部分289的流率。
由控制器118控制的一个或更多个涡轮机旁通阀290可被布置以控制(例如,增加、减少)围绕涡轮机部156的一个或更多个旁通流292。在一些实施例中,一个抽取歧管286可从一个或更多个燃烧室160的每个燃烧室接收再循环流276的第一部分288,以及对应的涡轮机旁通阀290可被流体联接到一个抽取歧管286。在另一些实施例中,多个抽取歧管286可从一个或更多个燃烧室160接收再循环流276的第一部分288。例如,第一抽取歧管286可向提高原油采收率系统18供应其第三部分289,以及第二抽取歧管286可向固碳系统90供应其相应第三部分289。多个抽取歧管286中的一个或更多个可被联接到涡轮机旁通阀290,以及每个涡轮机旁通阀290可控制接合来自涡轮机部156的排气流60的相应旁通流292。
旁通流292可作为再循环流276与来自涡轮机部156的排气60的至少一些被再循环。在一些实施例中,旁通流292可与在排气处理系统54的下游的排气60合并。旁通流292可处于和排气60不同的压力和/或温度。例如,旁通流292可处于比排气60更高的压力,因为涡轮机部256不膨胀旁通流292。旁通流292可处于比排气60更低的温度,因为排气60可包含在燃烧室160内反应的比旁通流292的燃烧产物更近的燃烧产物。因此,旁通流292的再循环可减少由压缩机部152执行的工作,以将再循环流276引导到一个或更多个燃烧室160。在一些实施例中,涡轮机旁通阀290允许控制器118控制(例如,增加、减少)EGOR,同时利用SEGR燃气涡轮机系统52内的旁通流292以用于以后的再循环和/或抽取。
控制器118可控制入口导向叶片284和/或涡轮机旁通阀290以将EGOR控制(例如,增加、减少)到预期值并保持在运行余量内的燃烧室稳定性。对入口导向叶片284的调节可能是相对缓慢的(例如,在3秒和5秒之间),相比对涡轮机旁通阀290的调节,这可能不太适合响应EGOR的快速变化。旁通流292可被控制器118经由涡轮机旁通阀290更快速地调节。实际上,对旁通流292的调节可比对入口导向叶片284的调节更快速地解决EGOR的各种变化。在一些实施例中,旁通流传感器293可测量通过涡轮机旁通阀290的旁通流292的温度、压力、流率和/或组成。
在一些实施例中,控制器118可诸如经由涡轮机旁通阀290一起调节(例如,增加、减少)用于一个或更多个燃烧室160的整体(bulk)EGOR,而控制器118可单独调节(例如,增加、减少)一个或更多个燃烧室160的FOR(例如,罐对罐调节)。控制器118可至少部分基于由燃烧产物传感器274测量的燃烧气体172的组成、氧化剂流260的流率、燃料流266的流率、再循环流276的第一部分288的流率、旁通流292的流率或第三部分289的流率或它们的任何组合来控制(例如,增加、减少)EGOR,如上面所论述。在一些实施例中,抽取流传感器294可测量从一个或更多个燃烧室160抽取的第一部分288的温度、压力、流率和/或组成。
图6示出用于SEGR燃气涡轮机系统52的实施例的燃烧室可操作性限制302的曲线图300。燃烧室可操作性限制302为具有某些燃烧可持续性特性的对应于当量比304和SEGR燃气涡轮机系统52的燃烧室可操作性值306的曲线。燃烧室可操作性值306可至少部分基于至燃烧室160中的不含燃料的流(例如,排气66、氧化剂68)的特性。可影响燃烧室可操作性值306的特性可包含但不限于温度、压力或氧化剂浓度或它们的任何组合。燃烧室可操作性值与用于一个或更多个燃烧室160中的每个燃烧室的EGOR成比例。绘制在曲线图300上的操作点308对应于在运行燃烧室160期间的当量比304和燃烧室可操作性306。应明白,低于燃烧室可操作性限制302的操作点308对应于具有再循环流276的燃料流266和氧化剂流260的可持续燃烧。在超出燃烧室可操作性限制302的操作点处的燃烧(如交叉阴影区域310所示)可能具有增加的燃料流266和氧化剂流260的火焰井喷、火焰闪回、自动点火或谐波振动感应或它们的任何组合的可能性和/或发生率。在一些实施例中,在区域310中的操作点308可对应于在燃烧室160中的小于持续燃烧的预期水平的阈值浓度的氧化剂浓度。由于燃气涡轮机系统的部件配置和几何形状、燃气涡轮机系统的负载、环境状况等等的差异,燃烧室可操作性限制302和区域310可在燃气涡轮机系统之间改变。在一些实施例中,燃烧室可操作性限制302被确定以用于每个SEGR燃气涡轮机系统52和/或用于每个燃烧室160。此外,燃烧室可操作性限制302可至少部分基于通过使用和操作燃气涡轮机系统所确定的可持续性阈值。即,SEGR燃气涡轮机系统52的运算子(operator)可至少部分基于不同加权系数,诸如基本负载、排放、燃烧稳定性等等来确定燃烧室可操作性限制302。例如,排放和火焰稳定性取值相对高的第一燃气涡轮机系统(例如,用于驱动基本恒定的负载和/或用于保持低于预期水平的排放)可具有第一燃烧室可操作性限制302。排放和火焰稳定性取值相对小的第二燃气涡轮机系统(例如,用于驱动周期性负载)可具有第二燃烧室可操作性限制312。
操作曲线314示出SEGR燃气涡轮机系统52从启动点到稳态操作点的多个操作点308的示例。应明白,本文所述的SEGR燃气涡轮机系统52并不受限于操作曲线314。在一些实施例中,SEGR燃气涡轮机系统52的每个燃烧室160可具有单独的操作曲线314,以及每个燃烧室160可具有单独的燃烧室可操作性限制302。因此,控制器118可调节用于每个燃烧室160的EGOR和/或FOR以在任何时间将操作点308保持在低于相应的燃烧室可操作性限制302。在启动序列的启动点316处,当量比304可为贫的(例如,约0.5),使得实际的氧化剂流大于化学计量氧化剂流。应明白,在启动序列期间,联接至燃气涡轮机系统52的外部驱动器(例如,电动马达、往复运动发动机)可以低速度(例如,小于20%负载速度)驱动燃气涡轮机系统52的压缩机部152和涡轮机部156。在启动点316处,燃气涡轮机系统的部件相对于峰值运行温度可为冷的(例如,约在环境温度,在约0℃至约45℃之间)。引入到燃烧室160中的燃料和氧化剂在燃烧室160内彼此反应,从而加热燃气涡轮机系统的部件并生成排气66。在第一启动运行区318期间,在SEGR燃气涡轮机系统52的运行速度增加时,至燃烧室160的氧化剂流增加,从而减小当量比304。例如,燃烧室部152的增加速度可增加供应给燃烧室160的氧化剂,从而减小当量比。
在第二操作点320处,再循环到燃烧室160的排气的量会增加。例如,燃气涡轮机系统的部件会预热,和/或在燃烧室160内的燃料和氧化剂的燃烧的完整性会增加,从而减少在再循环排气中的氧化剂浓度。增加的排气(例如,二氧化碳)和/或减少的氧化剂浓度增加燃烧室的可操作性306。另外或另选地,控制器118可经由闭合涡轮机旁通阀290增加在燃烧室160中的排气以控制在排气中的燃烧产物(例如,排放、氧化剂、未燃烧燃料)。在一些实施例中,在第二启动运行区322中运行时,燃气涡轮机系统的运行速度可为全运行速度的约40%至60%之间。
在运行曲线314接近燃烧室可操作性限制302(例如,在第三操作点324处)时,控制器118增加FOR和/或减小EGOR以保持燃烧室稳定性。例如,控制器118可打开涡轮机旁通阀290以减小在燃烧室160中的EGOR,从而降低燃烧室可操作性306。另外或另选地,在燃气涡轮机系统的部件变暖时,控制器118增加至燃烧室160的燃料流。在第三运行区326中,控制器118增加燃气涡轮机系统的运行速度并增加至燃烧室160的燃料流以准备用于驱动负载或机器106的燃气涡轮机系统。第四运行区328示出控制器118控制燃气涡轮机系统上的负载的加载顺序,诸如在燃气涡轮机系统连接到电网时。第五运行区330示出在驱动联接的机器106时,在以基本稳态的燃烧当量比运行时的SEGR燃气涡轮机系统52的燃烧室可操作性306和当量比304。应明白,示出用于第五运行区330的当量比304为约1.02的富值,其在约0.90至1.10和在约0.95至1.05之间。在当量比304基本上保持在第五运行区330中时,控制器118可调节排气再循环和燃烧室可操作性306。如下面所论述的,控制器118可调节(例如,增加、减少)排气再循环,并从而调节燃烧室可操作性306,以控制在排气中的残留燃料、氧化剂和其它排放水平。应明白,在第五运行区330中的操作点可比在第二运行区322或第三运行区326中的操作点具有燃烧室可操作性限制302的更大余量。
如本文所论述的,控制器118可独立于控制FOR来控制EGOR以将操作点保持在低于燃烧室可操作性限制302。通过经由涡轮机旁通阀290和/或入口导向叶片284调节EGOR值,控制器118可调节燃烧室可操作性306。因为EGOR值与燃烧室可操作性306成比例,因此,通过控制EGOR,控制器118可沿曲线图300的垂直轴线调节操作点308。通过控制燃料流266和/或氧化剂流260来调节FOR,控制器118可调节当量比304。增加燃料流266和/或减少氧化剂流260致使燃烧室160内的流混合物变得更富,这对应于使操作点308移到右边。增加氧化剂流260和/或减少燃料流266致使燃烧室160内的流混合物变得更贫,这对应于使操作点308移到左边。
应明白,对氧化剂流的调节会影响FOR和EGOR。例如,单独增加氧化剂流260会减小当量比304并降低燃烧室可操作性306。因此,通过单独地控制燃料流和排气再循环流,控制器118可独立地控制FOR和EGOR。如上面所论述,通过控制涡轮机旁通阀290和/或入口导向叶片284,控制器118可控制EGOR和燃烧室可操作性306。而且,控制器118可经由至一个或更多个燃烧室160的燃料控制系统264来控制用于燃烧室160中的一个或更多个的FOR和当量比304。
图7示出联接到多个燃料喷嘴164的燃料控制系统264的实施例。在一些实施例中,SEGR燃气涡轮机系统52可具有一群或更多群(grouping)燃料喷嘴164,其中,每群喷嘴包含一组或更多组燃料喷嘴164。例如,该群燃料喷嘴可为布置在环带352内和/或以环状布置的燃烧室罐350,其中,每个燃烧室罐350的燃料喷嘴164供应与氧化剂流260混合并燃烧该氧化剂流的燃料流266。在一些实施例中,再循环流276可单独地供应给燃烧室罐350。每个燃烧室罐350可具有一个或更多个燃料喷嘴164的第一喷嘴组354和一个或更多个燃料喷嘴164的第二喷嘴组358。每个燃烧室罐350可包含不止两个喷嘴组。一个或更多个燃料喷嘴164可被布置成同心的一排,使得第一喷嘴组354为接近燃烧室罐350的轴线356布置的一组一个或更多个内燃料喷嘴164,以及第二喷嘴组358为接近燃烧室罐350的周边360布置的一组一个或更多个外燃料喷嘴164。第一喷嘴组354的替代实施例可包含一个或更多个外燃料喷嘴164或燃料喷嘴164的另一布置,诸如燃料喷嘴164在燃烧室罐350的区段或象限内。即,第一喷嘴组354和第二喷嘴组358可包含但不限于在下面论述的内布置和外布置。
控制器118控制燃料控制系统264,以向一个或更多个燃料喷嘴164中的每个燃料喷嘴供应燃料流。在一些实施例中,控制器118控制联接至燃料供应364的燃料切断阀362。应明白,在燃气涡轮机系统处于操作时,燃料切断阀362可被打开,以及在燃气涡轮机系统的关断期间,该燃料切断阀362可被闭合。至少部分基于SEGR燃气涡轮机系统52的速度,速度比控制阀366可向喷嘴歧管(例如,第一喷嘴组歧管378、第二喷嘴组歧管380)以及向一个或更多个燃料喷嘴164提供燃料流的相对总量控制。
在一些实施例中,第一燃料供应368向第一组354燃料喷嘴(例如,内燃料喷嘴)供应第一燃料流,以及第二燃料供应370向第二组358燃料喷嘴(例如,外燃料喷嘴)供应第二燃料流。第二燃料供应370可被联接到被控制器118控制的相应第二燃料切断阀372和速度比控制阀374。第一燃料流可具有与第二燃料流不同的加热值(例如,更高的加热值)。例如,在启动序列期间,第一燃料流可作为先导燃料来供应,以及在稳态运行期间,可减少第一燃料流,而可增加具有相对更低加热值的第二燃料流。
燃烧室罐350中的每个的第一组354燃料喷嘴(例如,内燃料喷嘴)可被联接到第一喷嘴组歧管378,以及燃烧室罐350中的每个的第二组358燃料喷嘴(例如,外燃料喷嘴)可被联接到第二喷嘴组歧管380。在一些实施例中,第一组354燃料喷嘴和第二组358燃料喷嘴利用共同的燃料供应(例如,第一燃料供应368)。控制器118可经由分布控制阀381控制在第一喷嘴组歧管378和第二喷嘴组歧管380之间的燃料流的分布(例如,流比)。例如,相比于被引导至第一喷嘴组歧管378的燃料流,控制器118可引导更多的燃料流至第二喷嘴组歧管380,因为第二组358燃料喷嘴(例如,外燃料喷嘴)比第一组354燃料喷嘴(例如,内燃料喷嘴)具有更多的燃料喷嘴164。
第一燃料管路384将每个燃烧室罐350的第一组354燃料喷嘴164联接到第一喷嘴组歧管378,以及第二燃料管路386将每个燃烧室罐350的第二组358燃料喷嘴164联接到第二喷嘴组歧管380。例如,第一燃料管路384向第一燃烧室罐388的内(例如,中心)燃料喷嘴164供应燃料,以及第二燃料管路386向第一燃烧室罐388的外(例如,周边)燃料喷嘴164供应燃料。为清楚说明起见,图7仅示出供应燃烧室罐390的内燃料喷嘴354的第一燃料管路384,以及仅示出供应燃烧室罐392的第二燃料管路386;然而,燃烧室罐350中的每个燃烧室罐的实施例可包含第一燃料管路384和第二燃料管路386,其被配置成向如图所示用于第一燃烧室罐388的每个燃料喷嘴164供应燃料。
通过控制(例如,递增打开或闭合)沿燃料管路布置的微调阀382,控制器118可控制(例如,增加、减少)沿燃料管路(例如,第一燃料管路384和/或第二燃料管路386)的燃料流。即,每个微调阀382可被流体联接在相应的喷嘴组歧管和该组燃料喷嘴之间。在一些实施例中,微调阀382可沿第一燃料管路384设置以控制(例如,增加、减少)至每个燃烧室罐350的第一组354燃料喷嘴的燃料流。另外或另选地,微调阀382可沿第二燃料管路386设置以控制(例如,增加、减少)至每个燃烧室罐350的第二组358燃料喷嘴的燃料流。因为,相比于第一燃料管路384,第二燃料管路386可向每个燃烧室罐350的更多数量的燃料喷嘴(例如,外燃料喷嘴)供应燃料,因此,沿第二燃料管路386的微调阀382的控制可允许燃烧室罐350的FOR的粗略或整体水平的控制。沿第一燃料管路384的微调阀382的控制(例如,递增打开或闭合)可允许燃烧室罐350的FOR的精密水平的控制。
控制器118可差别控制微调阀382以向不同燃烧室罐350的喷嘴组供应不同的燃料流。例如,控制器118可增加至第一燃烧室罐388的第一组354和/或第二组358燃料喷嘴164的燃料流,并减少至第二燃烧室罐394的第一组354和/或第二组358燃料喷嘴164的燃料流。控制器118可至少部分基于在SEGR燃气涡轮机系统52内的相应燃烧室罐350的位置、燃料组成、来自相应燃烧室罐350的燃烧气体的组成、燃烧室罐350的几何形状和或燃料管路或它们的任何组合来差别控制至一组燃料喷嘴的微调阀382。沿第一燃料管路384和/或第二燃料管路386的微调阀382的差别控制允许控制器118控制与每个燃烧室罐350中的氧化剂流混合的燃料流,从而控制用于每个燃烧室罐350的FOR。在一些实施例中,沿燃料管路(例如,第一燃料管路384、第二燃料管路386)的传感器396可向控制器118提供与通过相应燃料管路的燃料流相关的传感器反馈。例如,传感器396可测量沿相应燃料管路的燃料流的压力、温度、流率和/或组成。
图8A示出用于控制FOR的计算机实施方法420,以及图8B示出用于控制EGOR的计算机实施方法440,其中,FOR控制方法420独立于EGOR控制方法440。如上所述,氧化剂控制系统262和燃料控制系统264可均具有工业控制器,其具有处理器、存储器和存储在该存储器中并可由该处理器可执行的指令,以控制(例如,增加、减少)至每个燃烧室160的一个或更多个燃料喷嘴164的氧化剂流260和/或燃料流266。经由氧化剂控制系统262和/或燃料控制系统264的控制,控制器118可实现方法420和440。在FOR控制方法420中,控制器118至少部分基于若干输入,诸如至相应燃烧室160的一个或更多个燃料喷嘴164的燃料流率、燃料组成、至相应燃烧室的一个或更多个燃料喷嘴的氧化剂流率和相应燃烧室160和/或SEGR燃气涡轮机系统52的预期当量比来确定(块422)目标燃料流率。控制器118测量(块424)燃料流率并测量(块426)燃料组成以确定燃料流的当前流率和组成。在一些实施例中,燃料流率可至少部分基于来自流感测系统272中的一个或更多个流量计、来自燃料控制系统264的传感器396、来自微调阀382的位置或来自分布控制阀381的位置或它们的任何组合的反馈。控制器118可经由氧化剂感测系统270测量(块428)氧化剂流以确定氧化剂流率。控制器118接收(块430)经由操作员界面的预期的当量比或被配置成操作SEGR燃气涡轮机系统52的一组指令(例如,代码、软件)。在一些实施例中,预期当量比可至少部分基于燃气涡轮机系统的工况。例如,在启动序列或无负载状况期间,燃气涡轮机系统的预期当量比可小于在以稳态状况运行以驱动负载时的燃气涡轮机系统的预期当量比。
控制器118至少部分基于相应燃烧室的当前测得的燃料流率、燃料组成、氧化剂流率和预期当量比来确定(块422)一个或更多个燃烧室的每个燃烧室的目标燃料流率。控制器118将至燃烧室的一个或更多个燃料喷嘴的燃料流调节(块432)至目标燃料流率以调节FOR,使得该燃烧室的当前当量比约等于该燃烧室的预期当量比(例如,在约0.90至1.10之间,在约0.95至1.05之间)。即,控制器118可调节燃烧室的一个或更多个燃料喷嘴的FOR,使得当前当量比在预期当量比的约1、2、3、4、5、6、7、8、9或10百分比偏差内。控制器118可经由分布控制阀381和/或微调阀382的控制来控制燃料流率至目标燃料流率。在一些实施例中,控制器118至少部分基于多个燃烧室的整体燃料流率、整体燃料组成、整体氧化剂流率和整体预期当量比来确定(块422)多个燃烧室的目标燃料流率。控制器118将至多个燃烧室的燃料喷嘴的燃料流调节(块432)至目标燃料流率以调节FOR,使得该多个燃烧室的当前整体当量比约等于该多个燃烧室的整体预期当量比(例如,在约0.90至1.10之间,在约0.95至1.05之间)。即,控制器118可调节多个燃烧室的燃料喷嘴的FOR,使得当前整体当量比在多个燃烧室的整体预期当量比的约1、2、3、4、5、6、7、8、9或10百分比偏差内。
图8B示出独立于FOR控制方法420的用于控制EGOR的计算机实施方法440。控制器118至少部分基于若干输入,诸如至相应燃烧室160的一个或更多个燃料喷嘴164的氧化剂流率、被抽取第一部分288的流率和用于相应燃烧室160和/或SEGR燃气涡轮机系统52的预期EGOR来确定(块442)来自抽取歧管的目标旁通流率。控制器118可经由氧化剂感测系统270测量(块428)氧化剂流以确定氧化剂流率。控制器118确定(块444)第一部分288的抽取流率。例如,控制器118可至少部分基于旁通流传感器293、抽取流传感器294或排气供应系统78或它们的任何组合来确定抽取流率。控制器118接收(块446)经由操作员界面的预期的EGOR或被配置成操作SEGR燃气涡轮机系统52的一组指令(例如,代码、软件)。在一些实施例中,预期EGOR至少部分基于当量比,使得操作点(例如,燃烧室可操作性和当量比之间的关系)低于燃烧室可操作性限制,如上面关于图6所论述的。在确定目标旁通流率后,控制器118经由涡轮机旁通阀290和/或入口导向叶片284的控制,将旁通流率控制为已确定的目标旁通流率,从而允许控制器118调节(块448)用于一个或更多个燃烧室的EGOR。
预期当量比和预期EGOR可被确定,使得操作点低于燃烧室可操作性限制。预期FOR可至少部分基于当前EGOR,以及预期EGOR可至少部分基于当前FOR。然而,在FOR和EGOR的预期值可至少部分基于彼此时,用于经由调节燃料流率来调节FOR和用于经由调节涡轮机旁通流来调节EGOR的控制装置通常是彼此独立的。例如,调节至燃烧室罐的第一喷嘴组和/或第二喷嘴组的喷嘴流以控制FOR并不影响燃烧室罐的EGOR。同样,调节旁通流以控制用于一个或更多个燃烧室的EGOR并不影响FOR。氧化剂流可至少部分基于燃气涡轮机系统的加载来控制,以及控制器相应调节FOR和EGOR以将一个或更多个燃烧室的操作点保持在低于燃烧室可操作性限制。
本书面描述使用示例来公开本发明,包含最佳模式,并且也使得本领域技术人员能够实践本发明,包含制作和使用任何装置或系统并执行任何结合的方法。本发明的可取得专利的范围由权利要求限定,并且可包含本领域技术人员可以想到的其它示例。如果其它示例具有并无不同于本权利要求文字语言的结构要素,或如果它们包括与权利要求文字语言非实质不同的等同结构要素,则这样的示例旨在权利要求的范围内。
附加实施例
本实施例提供利用排气再循环控制燃气涡轮发动机燃烧和排放的系统和方法。应注意,上述的任何一个特征或其组合可被用于任何合适的组合中。实际上,目前假设这类组合的所有排列。借助于示例,提供以下条款作为本发明的进一步描述:
实施例1.一种系统,其包括:燃料控制系统,该燃料控制系统被配置成控制至一个或更多个燃烧室的燃料流;氧化剂控制系统,该氧化剂控制系统被配置成控制至一个或更多个燃烧室的每个燃烧室的氧化剂流,其中,氧化剂流被配置成在一个或更多个燃烧室内至少部分与燃料流反应以形成排气流;排气系统,该排气系统被配置成将排气流的再循环流引导至一个或更多个燃烧室的每个燃烧室;以及联接到燃料控制系统、氧化剂控制系统和排气系统的控制器,其中,该控制器被配置成独立地控制燃料与氧化剂的比(FOR)和排气与氧化剂的比(EGOR),该FOR包括燃料流除以氧化剂流,以及该EGOR包括再循环流除以氧化剂流。
实施例2.根据实施例1所述的系统,其中,一个或更多个燃烧室的每个燃烧室包括多个燃料喷嘴,且燃料控制系统包括联接到多个燃料喷嘴的第一组燃料喷嘴的第一燃料微调阀,其中,燃料控制系统被配置成经由第一燃料微调阀调节至第一组燃料喷嘴的第一燃料流来控制FOR。
实施例3.根据实施例2所述的系统,其中,燃料控制系统包括联接到多个燃料喷嘴的第二组燃料喷嘴的第二燃料微调阀,其中,燃料控制系统被配置成经由第二燃料微调阀调节至第二组燃料喷嘴的第二燃料流来控制FOR。
实施例4.根据实施例3所述的系统,包括联接至第一燃料微调阀的第一燃料供应,以及联接至第二燃料微调阀的第二燃料供应。
实施例5.根据实施例2、3或4所述的系统,其中,第一组燃料喷嘴包括一个或更多个内燃料喷嘴,以及第二组燃料喷嘴包括围绕一个或更多个内燃料喷嘴设置的多个外燃料喷嘴。
实施例6.根据前述实施例中的任一项所述的系统,其中,控制器被配置成至少部分基于在燃气涡轮发动机内的一个或更多个燃烧室的布置来差别控制至一个或更多个燃烧室的每个燃烧室的FOR。
实施例7.根据前述实施例中的任一项所述的系统,包括:涡轮机,该涡轮机被配置成从一个或更多个燃烧室接收排气流;以及排气抽取系统,该排气抽取系统被配置成从一个或更多个燃烧室抽取再循环流的第一部分,其中,该排气抽取系统包括涡轮机旁通阀,该涡轮机旁通阀被配置成调节该第一部分的旁通流以绕过该涡轮机并接合再循环流,其中,该涡轮机旁通阀被联接到控制器,该控制器被配置成至少部分基于涡轮机旁通阀的控制来控制EGOR,以及该再循环流包括旁通流和通过该涡轮机的排气流的第二部分。
实施例8.根据实施例7所述的系统,其中,排气抽取系统被配置成将来自一个或更多个燃烧室的再循环流的第三部分引导到排气供应系统以用于传送到碳氢化合物生产系统、管道、储罐或固碳系统或它们的任何组合。
实施例9.根据前述实施例中的任一项所述的系统,其中,再循环流包括小于约每百万份体积的100份的氧。
实施例10.根据前述实施例中的任一项所述的系统,其中,控制器被配置成至少部分基于在该系统上的负载来控制至一个或更多个燃烧室的氧化剂流。
实施例11.根据前述实施例中的任一项所述的系统,其中,控制器被配置成至少部分基于一个或更多个燃烧室的预期当量比来控制至一个或更多个燃烧室的燃料流。
实施例12.根据前述实施例中的任一项所述的系统,其中,控制器被配置成至少部分基于在FOR、EGOR和对应于该FOR和EGOR的燃烧室可操作性限制之间的关系来控制再循环流。
实施例13.根据前述实施例中的任一项所述的系统,包括具有一个或更多个燃烧室的燃气涡轮发动机、由来自一个或更多个燃烧室的排气流驱动的涡轮机和由该涡轮机驱动的排气压缩机,其中,该排气压缩机被配置成压缩排气流并将该排气流传送至一个或更多个燃烧室,以及燃气涡轮发动机为化学计量排气再循环(SEGR)燃气涡轮发动机。
实施例14.一种包括燃烧室的系统,其中,该燃烧室包含氧化剂入口,该氧化剂入口被配置成接收氧化剂流;多个燃料喷嘴,其中,多个燃料喷嘴的每个燃料喷嘴被配置成接收燃料流;第一燃料微调阀,其被配置成控制至多个燃料喷嘴的至少一个燃料喷嘴的燃料流,其中,第一燃料微调阀至少部分基于燃料与氧化剂的比(FOR)来控制;被配置成从再循环系统接收再循环流的再循环入口,其中,至少氧化剂流和燃料流被配置成在燃烧室内燃烧并形成排气流;以及被配置成抽取至抽取歧管的再循环流的第一部分的一个或更多个抽取端口。该系统也包含涡轮机,该涡轮机被配置成接收排气流和来自燃烧室和该排气流的再循环流的第二部分以驱动负载,并将排气流的第二部分引导到再循环系统;以及涡轮机旁通阀,该涡轮机旁通阀被配置成将来自再循环流的第一部分的旁通流抽取到抽取歧管,其中,涡轮机旁通阀被配置成至少部分基于排气与氧化剂的比(EGOR)将旁通流引导到再循环系统,其中,再循环流包括排气流的第二部分和旁通流,以及涡轮机旁通阀独立于第一燃料微调阀进行控制。
实施例15.根据实施例14所述的系统,其中,多个燃料喷嘴包括第一组一个或更多个内燃料喷嘴和围绕多个燃料喷嘴的一个或更多个内燃料喷嘴设置的第二组一个或更多个外燃料喷嘴,第一燃料微调阀被配置成控制至一个或更多个内燃料喷嘴的燃料流,以及燃烧室包括第二燃料微调阀,第二燃料微调阀被配置成控制至多个燃料喷嘴的第二组一个或更多个外燃料喷嘴的燃料流。
实施例16.根据实施例15所述的系统,其中,第一燃料微调阀被流体联接至第一燃料供应,以及第二燃料微调阀被流体联接至不同于第一燃料供应的第二燃料供应。
实施例17.根据实施例14、15或16所述的系统,包括联接在燃烧室和涡轮机旁通阀之间的抽取歧管,其中,该抽取歧管被配置成将再循环流的第一部分的第三部分引导到碳氢化合物生产系统、管道、储罐或固碳系统或它们的任何组合。
实施例18.根据实施例14、15、16或17所述的系统,包括再循环系统,其中,该再循环系统包括具有多个入口导向叶片的排气压缩机,以及该入口导向叶片至少部分基于EGOR来控制。
实施例19.一种操作排气再循环(EGR)燃气涡轮发动机的方法,包括:至少部分基于所需的当量比和在EGR燃气涡轮发动机上的负载控制至燃烧室的燃料与氧化剂的比(FOR);在燃烧室中燃烧燃料和氧化剂以形成排气;将排气的再循环部分再循环到燃烧室;并至少部分基于对应于FOR的可操作性限制控制排气与氧化剂的比(EGOR)。
实施例20.根据实施例19所述的方法,其中,控制FOR包括调节至多个燃料喷嘴的一个或更多个燃料喷嘴的燃料流。
实施例21.根据实施例20所述的方法,其中,控制FOR包括,相对于多个燃料喷嘴的多个外燃料喷嘴,差别调节至多个燃料喷嘴的一个或更多个内燃料喷嘴的燃料流,其中,外燃料喷嘴围绕内燃料喷嘴设置。
实施例22.根据实施例19、20或21所述的方法,包括:从燃烧室抽取排气的再循环部分的第一部分,其中,控制EGOR包括调节旁通阀以控制绕过EGR燃气涡轮发动机的涡轮机的第一部分的旁通部分;并将来自燃烧室的排气的再循环部分的第二部分传送到EGR燃气涡轮发动机的涡轮机,其中,再循环部分包括旁通部分和第二部分。
实施例23.根据实施例19、20、21或22所述的方法,包括:通过调节至EGR燃气涡轮发动机的排气压缩机的一个或更多个入口导向叶片,控制EGOR,其中,排气压缩机被配置成将排气的再循环部分引导到燃烧室。
实施例24.根据实施例19、20、21、22或23所述的方法,包括:在EGR燃气涡轮发动机的启动序列期间,独立地控制FOR或EGOR以使其小于可操作性限制。
实施例25.根据实施例19、20、21、22、23或24所述的方法,包括在稳态运行期间,将FOR比控制为在约0.95至1.05之间的对应当量比。

Claims (25)

1.一种燃气涡轮机系统,包括:
燃料控制系统,其被配置成控制至一个或更多个燃烧室的燃料流;
氧化剂控制系统,其被配置成控制至所述一个或更多个燃烧室的每个燃烧室的氧化剂流,其中,所述氧化剂流被配置成与所述一个或更多个燃烧室内的所述燃料流至少部分反应以形成排气流;
排气系统,其被配置成将所述排气流的再循环流引导到所述一个或更多个燃烧室的每个燃烧室,其中,与被引导到所述一个或更多个燃烧室中的每个燃烧室的所述氧化剂流分开,所述再循环流被引导到所述一个或更多个燃烧室中的每个燃烧室,以及所述再循环流的第二部分被配置成在所述一个或更多个燃烧室中的每个燃烧室中与所述燃料流和所述氧化剂流混合;以及
联接至所述燃料控制系统、所述氧化剂控制系统和所述排气系统的控制器,其中,所述控制器被配置成独立控制燃料与氧化剂的比即FOR和排气与氧化剂的比即EGOR,所述FOR包括所述燃料流除以所述氧化剂流,以及所述EGOR包括所述再循环流的所述第二部分除以所述氧化剂流。
2.根据权利要求1所述的燃气涡轮机系统,其中,所述一个或更多个燃烧室的每个燃烧室包括多个燃料喷嘴,以及所述燃料控制系统包括联接到所述多个燃料喷嘴的第一组燃料喷嘴的第一燃料微调阀,其中,所述燃料控制系统被配置成经由所述第一燃料微调阀调节至所述第一组燃料喷嘴的第一燃料流来控制所述FOR。
3.根据权利要求2所述的燃气涡轮机系统,其中,所述燃料控制系统包括联接到所述多个燃料喷嘴的第二组燃料喷嘴的第二燃料微调阀,其中,所述燃料控制系统被配置成经由所述第二燃料微调阀调节至所述第二组燃料喷嘴的第二燃料流来控制所述FOR。
4.根据权利要求3所述的燃气涡轮机系统,包括联接至所述第一燃料微调阀的第一燃料供应,以及联接至所述第二燃料微调阀的第二燃料供应。
5.根据权利要求2所述的燃气涡轮机系统,其中,所述第一组燃料喷嘴包括一个或更多个内燃料喷嘴,以及第二组燃料喷嘴包括围绕所述一个或更多个内燃料喷嘴设置的多个外燃料喷嘴。
6.根据权利要求1所述的燃气涡轮机系统,其中,所述控制器被配置成至少部分基于在燃气涡轮发动机内的所述一个或更多个燃烧室的布置来差别控制至所述一个或更多个燃烧室的每个燃烧室的所述FOR。
7.根据权利要求1所述的燃气涡轮机系统,包括:
涡轮机,其被配置成从所述一个或更多个燃烧室接收所述排气流;以及
排气抽取系统,所述排气抽取系统被配置成从所述一个或更多个燃烧室抽取所述再循环流的第一部分,其中,所述排气抽取系统包括涡轮机旁通阀,所述涡轮机旁通阀被配置成调节所述第一部分的旁通流以绕过所述涡轮机并接合所述再循环流的所述第二部分,其中,所述涡轮机旁通阀被联接到所述控制器,所述控制器被配置成至少部分基于所述涡轮机旁通阀的控制来控制所述EGOR,以及被引导到所述一个或更多个燃烧室的每个燃烧室的所述再循环流包括所述旁通流和通过所述涡轮机的所述再循环流的所述第二部分。
8.根据权利要求7所述的燃气涡轮机系统,其中,所述排气抽取系统被配置成将来自所述一个或更多个燃烧室的所述再循环流的第三部分引导到排气供应系统以用于传送到碳氢化合物生产系统、管道、储罐或固碳系统或它们的任何组合。
9.根据权利要求1所述的燃气涡轮机系统,其中,所述再循环流包括小于每百万份体积的100份的氧。
10.根据权利要求1所述的燃气涡轮机系统,其中,所述控制器被配置成至少部分基于在所述系统上的负载来控制至所述一个或更多个燃烧室的所述氧化剂流。
11.根据权利要求1所述的燃气涡轮机系统,其中,所述控制器被配置成至少部分基于所述一个或更多个燃烧室的预期当量比来控制至所述一个或更多个燃烧室的所述燃料流。
12.根据权利要求1所述的燃气涡轮机系统,其中,所述控制器被配置成至少部分基于在所述FOR、所述EGOR和对应于所述FOR和所述EGOR的燃烧室可操作性限制之间的关系来控制所述再循环流。
13.根据权利要求1所述的燃气涡轮机系统,包括具有所述一个或更多个燃烧室的燃气涡轮发动机、由来自所述一个或更多个燃烧室的所述排气流驱动的涡轮机和由所述涡轮机驱动的排气压缩机,其中,所述排气压缩机被配置成压缩所述排气流并将所述排气流传送至所述一个或更多个燃烧室,以及所述燃气涡轮发动机为化学计量排气再循环燃气涡轮发动机即SEGR燃气涡轮发动机。
14.一种燃气涡轮机系统,包括:
燃烧室,包括:
被配置成接收氧化剂流的氧化剂入口;
多个燃料喷嘴,其中,所述多个燃料喷嘴的每个燃料喷嘴被配置成接收燃料流;
第一燃料微调阀,其被配置成控制至所述多个燃料喷嘴的至少一个燃料喷嘴的所述燃料流,其中,所述第一燃料微调阀至少部分基于燃料与氧化剂的比即FOR来控制;
再循环入口,所述再循环入口被配置成从再循环系统接收再循环流,其中,至少所述氧化剂流和所述燃料流被配置成在所述燃烧室内燃烧并形成排气流,以及
被配置成将所述再循环流的第一部分抽取到抽取歧管的一个或更多个抽取端口;
涡轮机,所述涡轮机被配置成从所述燃烧室接收所述排气流和所述再循环流的第二部分以驱动负载,并将所述再循环流的所述第二部分和所述排气流引导到所述再循环系统;以及
涡轮机旁通阀,所述涡轮机旁通阀被配置成将来自所述再循环流的所述第一部分的旁通流抽取到所述抽取歧管,其中,所述涡轮机旁通阀被配置成至少部分基于排气与氧化剂的比即EGOR将所述旁通流引导到所述再循环系统,其中,被所述再循环系统接收的所述再循环流包括所述再循环流的所述第二部分、所述排气流和所述旁通流,以及所述涡轮机旁通阀独立于所述第一燃料微调阀来控制。
15.根据权利要求14所述的燃气涡轮机系统,其中,所述多个燃料喷嘴包括第一组一个或更多个内燃料喷嘴和围绕所述多个燃料喷嘴的所述一个或更多个内燃料喷嘴设置的第二组一个或更多个外燃料喷嘴,所述第一燃料微调阀被配置成控制至一个或更多个内燃料喷嘴的所述燃料流,以及所述燃烧室包括第二燃料微调阀,所述第二燃料微调阀被配置成控制至所述多个燃料喷嘴的所述第二组一个或更多个外燃料喷嘴的所述燃料流。
16.根据权利要求15所述的燃气涡轮机系统,其中,所述第一燃料微调阀被流体联接至第一燃料供应,以及所述第二燃料微调阀被流体联接至不同于所述第一燃料供应的第二燃料供应。
17.根据权利要求14所述的燃气涡轮机系统,包括联接在所述燃烧室和所述涡轮机旁通阀之间的所述抽取歧管,其中,所述抽取歧管被配置成将所述再循环流的所述第一部分的第三部分引导到碳氢化合物生产系统、管道、储罐或固碳系统或它们的任何组合。
18.根据权利要求14所述的燃气涡轮机系统,包括所述再循环系统,其中,所述再循环系统包括具有多个入口导向叶片的排气压缩机,以及所述入口导向叶片至少部分基于所述EGOR来控制。
19.一种操作排气再循环燃气涡轮发动机即EGR燃气涡轮发动机的方法,包括:
至少部分基于预期当量比和在所述EGR燃气涡轮发动机上的负载来控制至燃烧室的燃料与氧化剂的比即FOR;
在所述燃烧室中燃烧燃料和氧化剂以形成排气;
将所述排气的再循环部分再循环到所述燃烧室;
至少部分基于对应于所述FOR的可操作性限制来控制排气与氧化剂的比即EGOR;
从所述燃烧室抽取所述排气的所述再循环部分的第一部分,其中,控制所述EGOR包括调节旁通阀以控制绕过所述EGR燃气涡轮发动机的涡轮机的所述第一部分的旁通部分;并且
将来自所述燃烧室的所述排气的所述再循环部分的第二部分传送到所述EGR燃气涡轮发动机的所述涡轮机,其中,所述再循环部分包括所述旁通部分和所述第二部分。
20.根据权利要求19所述的方法,其中,控制所述FOR包括调节至多个燃料喷嘴的一个或更多个燃料喷嘴的燃料流。
21.根据权利要求20所述的方法,其中,控制所述FOR包括,相对于所述多个燃料喷嘴的多个外燃料喷嘴,差别调节至所述多个燃料喷嘴的一个或更多个内燃料喷嘴的燃料流,其中,所述外燃料喷嘴围绕所述内燃料喷嘴设置。
22.根据权利要求19所述的方法,其中,所述排气的所述再循环部分与所述氧化剂分开被再循环到所述燃烧室。
23.根据权利要求19所述的方法,包括:通过调节至所述EGR燃气涡轮发动机的排气压缩机的一个或更多个入口导向叶片,控制所述EGOR,其中,所述排气压缩机被配置成将所述排气的所述再循环部分引导到所述燃烧室。
24.根据权利要求19所述的方法,包括:在所述EGR燃气涡轮发动机的启动序列期间,独立控制所述FOR或所述EGOR以使其小于可操作性限制。
25.根据权利要求19所述的方法,包括在稳态运行期间,将所述FOR控制为在0.95至1.05之间的对应当量比。
CN201580014401.5A 2014-01-21 2015-01-21 用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统和方法 Expired - Fee Related CN106414952B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461929868P 2014-01-21 2014-01-21
US61/929,868 2014-01-21
US14/599,739 US9915200B2 (en) 2014-01-21 2015-01-19 System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US14/599,739 2015-01-19
PCT/US2015/012300 WO2015112633A1 (en) 2014-01-21 2015-01-21 System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation

Publications (2)

Publication Number Publication Date
CN106414952A CN106414952A (zh) 2017-02-15
CN106414952B true CN106414952B (zh) 2018-07-13

Family

ID=53544370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580014401.5A Expired - Fee Related CN106414952B (zh) 2014-01-21 2015-01-21 用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统和方法

Country Status (7)

Country Link
US (1) US9915200B2 (zh)
EP (1) EP3097288B1 (zh)
JP (1) JP6549134B2 (zh)
CN (1) CN106414952B (zh)
AU (1) AU2015209443B2 (zh)
CA (1) CA2937493A1 (zh)
WO (1) WO2015112633A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9677476B2 (en) * 2014-02-26 2017-06-13 General Electric Company Model-based feed forward approach to coordinated air-fuel control on a gas turbine
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US9708950B2 (en) * 2015-02-26 2017-07-18 Cummins Power Generation Ip, Inc. Genset engine using electrical sensing to control components for optimized performance
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CH710999A2 (de) * 2015-04-27 2016-10-31 Von Düring Man Ag Verfahren zur Nutzung der inneren Energie eines Aquiferfluids in einer Geothermieanlage.
US10118129B2 (en) * 2017-03-31 2018-11-06 Mitsubishi Heavy Industries, Ltd. Natural-gas purification apparatus
EP3814684A4 (en) * 2018-06-28 2022-04-20 ClearSign Technologies Corporation BURNER WITH AN ELECTRICAL PERMITTIVITY OR ELECTRICAL CAPACITY FLAME SENSOR
US11913380B2 (en) * 2020-01-07 2024-02-27 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Gas source system for supplying combustion gas to a turbine engine by fracturing manifold equipment
US11800692B2 (en) 2020-03-19 2023-10-24 Nooter/Eriksen, Inc. System and method for data center cooling with carbon dioxide
US11668219B2 (en) 2020-09-28 2023-06-06 Nooter/Eriksen, Inc. System and method for treating process exhaust gas
KR102434052B1 (ko) * 2020-10-23 2022-08-22 한국에너지기술연구원 물 흡수 공정을 통한 바이오가스의 고질화 공정 개발 및 이를 통한 고순도 메탄 정제 방법
GB202104283D0 (en) * 2021-03-26 2021-05-12 Rolls Royce Plc Burner head
WO2023082481A1 (zh) 2021-11-09 2023-05-19 烟台杰瑞石油装备技术有限公司 燃气供给系统和方法、装载有涡轮发动机的装备和压裂系统
US11905817B2 (en) 2021-12-16 2024-02-20 Saudi Arabian Oil Company Method and system for managing carbon dioxide supplies using machine learning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969892A (en) * 1971-11-26 1976-07-20 General Motors Corporation Combustion system
CN101397937A (zh) * 2007-09-28 2009-04-01 通用电气公司 低排放涡轮系统和方法
EP2503106A1 (de) * 2011-03-22 2012-09-26 Alstom Technology Ltd Gasturbinenkraftwerk mit Abgasrezirkulation und sauerstoffarmen Kühlgas
CN102767431A (zh) * 2011-04-28 2012-11-07 阿尔斯通技术有限公司 用于运行带有废气再循环的燃气轮机发电装置的方法
CN103032169A (zh) * 2011-10-07 2013-04-10 通用电气公司 功率装置

Family Cites Families (669)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488911A (en) 1946-11-09 1949-11-22 Surface Combustion Corp Combustion apparatus for use with turbines
GB776269A (en) 1952-11-08 1957-06-05 Licentia Gmbh A gas turbine plant
US2884758A (en) 1956-09-10 1959-05-05 Bbc Brown Boveri & Cie Regulating device for burner operating with simultaneous combustion of gaseous and liquid fuel
US3631672A (en) 1969-08-04 1972-01-04 Gen Electric Eductor cooled gas turbine casing
US3643430A (en) 1970-03-04 1972-02-22 United Aircraft Corp Smoke reduction combustion chamber
US3705492A (en) 1971-01-11 1972-12-12 Gen Motors Corp Regenerative gas turbine system
US3841382A (en) 1973-03-16 1974-10-15 Maloney Crawford Tank Glycol regenerator using controller gas stripping under vacuum
US3949548A (en) 1974-06-13 1976-04-13 Lockwood Jr Hanford N Gas turbine regeneration system
GB1490145A (en) 1974-09-11 1977-10-26 Mtu Muenchen Gmbh Gas turbine engine
US4043395A (en) 1975-03-13 1977-08-23 Continental Oil Company Method for removing methane from coal
US4018046A (en) 1975-07-17 1977-04-19 Avco Corporation Infrared radiation suppressor for gas turbine engine
NL7612453A (nl) 1975-11-24 1977-05-26 Gen Electric Geintegreerde lichtgasproduktieinstallatie en werkwijze voor de opwekking van elektrische energie.
US4077206A (en) 1976-04-16 1978-03-07 The Boeing Company Gas turbine mixer apparatus for suppressing engine core noise and engine fan noise
US4204401A (en) 1976-07-19 1980-05-27 The Hydragon Corporation Turbine engine with exhaust gas recirculation
US4380895A (en) 1976-09-09 1983-04-26 Rolls-Royce Limited Combustion chamber for a gas turbine engine having a variable rate diffuser upstream of air inlet means
US4066214A (en) 1976-10-14 1978-01-03 The Boeing Company Gas turbine exhaust nozzle for controlled temperature flow across adjoining airfoils
US4117671A (en) 1976-12-30 1978-10-03 The Boeing Company Noise suppressing exhaust mixer assembly for ducted-fan, turbojet engine
US4165609A (en) 1977-03-02 1979-08-28 The Boeing Company Gas turbine mixer apparatus
US4092095A (en) 1977-03-18 1978-05-30 Combustion Unlimited Incorporated Combustor for waste gases
US4112676A (en) 1977-04-05 1978-09-12 Westinghouse Electric Corp. Hybrid combustor with staged injection of pre-mixed fuel
US4271664A (en) 1977-07-21 1981-06-09 Hydragon Corporation Turbine engine with exhaust gas recirculation
RO73353A2 (ro) 1977-08-12 1981-09-24 Institutul De Cercetari Si Proiectari Pentru Petrol Si Gaze,Ro Procedeu de desulfurare a fluidelor din zacamintele de hidrocarburi extrase prin sonde
US4101294A (en) 1977-08-15 1978-07-18 General Electric Company Production of hot, saturated fuel gas
US4160640A (en) 1977-08-30 1979-07-10 Maev Vladimir A Method of fuel burning in combustion chambers and annular combustion chamber for carrying same into effect
US4222240A (en) 1978-02-06 1980-09-16 Castellano Thomas P Turbocharged engine
US4236378A (en) 1978-03-01 1980-12-02 General Electric Company Sectoral combustor for burning low-BTU fuel gas
DE2808690C2 (de) 1978-03-01 1983-11-17 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Einrichtung zur Erzeugung von Heißdampf für die Gewinnung von Erdöl
US4498288A (en) 1978-10-13 1985-02-12 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
US4253301A (en) 1978-10-13 1981-03-03 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
US4345426A (en) 1980-03-27 1982-08-24 Egnell Rolf A Device for burning fuel with air
GB2080934B (en) 1980-07-21 1984-02-15 Hitachi Ltd Low btu gas burner
US4352269A (en) 1980-07-25 1982-10-05 Mechanical Technology Incorporated Stirling engine combustor
GB2082259B (en) 1980-08-15 1984-03-07 Rolls Royce Exhaust flow mixers and nozzles
US4442665A (en) 1980-10-17 1984-04-17 General Electric Company Coal gasification power generation plant
US4479484A (en) 1980-12-22 1984-10-30 Arkansas Patents, Inc. Pulsing combustion
US4488865A (en) 1980-12-22 1984-12-18 Arkansas Patents, Inc. Pulsing combustion
US4480985A (en) 1980-12-22 1984-11-06 Arkansas Patents, Inc. Pulsing combustion
US4637792A (en) 1980-12-22 1987-01-20 Arkansas Patents, Inc. Pulsing combustion
US4344486A (en) 1981-02-27 1982-08-17 Standard Oil Company (Indiana) Method for enhanced oil recovery
US4399652A (en) 1981-03-30 1983-08-23 Curtiss-Wright Corporation Low BTU gas combustor
US4414334A (en) 1981-08-07 1983-11-08 Phillips Petroleum Company Oxygen scavenging with enzymes
US4434613A (en) 1981-09-02 1984-03-06 General Electric Company Closed cycle gas turbine for gaseous production
US4445842A (en) 1981-11-05 1984-05-01 Thermal Systems Engineering, Inc. Recuperative burner with exhaust gas recirculation means
GB2117053B (en) 1982-02-18 1985-06-05 Boc Group Plc Gas turbines and engines
US4498289A (en) 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
US4548034A (en) 1983-05-05 1985-10-22 Rolls-Royce Limited Bypass gas turbine aeroengines and exhaust mixers therefor
US4528811A (en) 1983-06-03 1985-07-16 General Electric Co. Closed-cycle gas turbine chemical processor
GB2149456B (en) 1983-11-08 1987-07-29 Rolls Royce Exhaust mixing in turbofan aeroengines
US4561245A (en) 1983-11-14 1985-12-31 Atlantic Richfield Company Turbine anti-icing system
US4602614A (en) 1983-11-30 1986-07-29 United Stirling, Inc. Hybrid solar/combustion powered receiver
SE439057B (sv) 1984-06-05 1985-05-28 United Stirling Ab & Co Anordning for forbrenning av ett brensle med syrgas och inblandning av en del av de vid forbrenningen bildade avgaserna
EP0169431B1 (en) 1984-07-10 1990-04-11 Hitachi, Ltd. Gas turbine combustor
US4606721A (en) 1984-11-07 1986-08-19 Tifa Limited Combustion chamber noise suppressor
US4653278A (en) 1985-08-23 1987-03-31 General Electric Company Gas turbine engine carburetor
US4651712A (en) 1985-10-11 1987-03-24 Arkansas Patents, Inc. Pulsing combustion
NO163612C (no) 1986-01-23 1990-06-27 Norsk Energi Fremgangsmaate og anlegg for fremstilling av nitrogen for anvendelse under hoeyt trykk.
US4858428A (en) 1986-04-24 1989-08-22 Paul Marius A Advanced integrated propulsion system with total optimized cycle for gas turbines
US4753666A (en) 1986-07-24 1988-06-28 Chevron Research Company Distillative processing of CO2 and hydrocarbons for enhanced oil recovery
US4684465A (en) 1986-10-10 1987-08-04 Combustion Engineering, Inc. Supercritical fluid chromatograph with pneumatically controlled pump
US4681678A (en) 1986-10-10 1987-07-21 Combustion Engineering, Inc. Sample dilution system for supercritical fluid chromatography
US4817387A (en) 1986-10-27 1989-04-04 Hamilton C. Forman, Trustee Turbocharger/supercharger control device
US4762543A (en) 1987-03-19 1988-08-09 Amoco Corporation Carbon dioxide recovery
US5084438A (en) 1988-03-23 1992-01-28 Nec Corporation Electronic device substrate using silicon semiconductor substrate
US4883122A (en) 1988-09-27 1989-11-28 Amoco Corporation Method of coalbed methane production
JP2713627B2 (ja) 1989-03-20 1998-02-16 株式会社日立製作所 ガスタービン燃焼器、これを備えているガスタービン設備、及びこの燃焼方法
US4946597A (en) 1989-03-24 1990-08-07 Esso Resources Canada Limited Low temperature bitumen recovery process
US4976100A (en) 1989-06-01 1990-12-11 Westinghouse Electric Corp. System and method for heat recovery in a combined cycle power plant
US5044932A (en) 1989-10-19 1991-09-03 It-Mcgill Pollution Control Systems, Inc. Nitrogen oxide control using internally recirculated flue gas
US5135387A (en) 1989-10-19 1992-08-04 It-Mcgill Environmental Systems, Inc. Nitrogen oxide control using internally recirculated flue gas
SE467646B (sv) 1989-11-20 1992-08-24 Abb Carbon Ab Saett vid roekgasrening i pfbc-anlaeggning
US5123248A (en) 1990-03-28 1992-06-23 General Electric Company Low emissions combustor
JP2954972B2 (ja) 1990-04-18 1999-09-27 三菱重工業株式会社 ガス化ガス燃焼ガスタービン発電プラント
US5271905A (en) 1990-04-27 1993-12-21 Mobil Oil Corporation Apparatus for multi-stage fast fluidized bed regeneration of catalyst
JPH0450433A (ja) 1990-06-20 1992-02-19 Toyota Motor Corp 直列2段過給内燃機関の排気ガス再循環装置
US5141049A (en) 1990-08-09 1992-08-25 The Badger Company, Inc. Treatment of heat exchangers to reduce corrosion and by-product reactions
US5154596A (en) 1990-09-07 1992-10-13 John Zink Company, A Division Of Koch Engineering Company, Inc. Methods and apparatus for burning fuel with low NOx formation
US5098282A (en) 1990-09-07 1992-03-24 John Zink Company Methods and apparatus for burning fuel with low NOx formation
US5197289A (en) 1990-11-26 1993-03-30 General Electric Company Double dome combustor
US5085274A (en) 1991-02-11 1992-02-04 Amoco Corporation Recovery of methane from solid carbonaceous subterranean of formations
DE4110507C2 (de) 1991-03-30 1994-04-07 Mtu Muenchen Gmbh Brenner für Gasturbinentriebwerke mit mindestens einer für die Zufuhr von Verbrennungsluft lastabhängig regulierbaren Dralleinrichtung
US5073105A (en) 1991-05-01 1991-12-17 Callidus Technologies Inc. Low NOx burner assemblies
US5147111A (en) 1991-08-02 1992-09-15 Atlantic Richfield Company Cavity induced stimulation method of coal degasification wells
US5255506A (en) 1991-11-25 1993-10-26 General Motors Corporation Solid fuel combustion system for gas turbine engine
US5183232A (en) 1992-01-31 1993-02-02 Gale John A Interlocking strain relief shelf bracket
US5238395A (en) 1992-03-27 1993-08-24 John Zink Company Low nox gas burner apparatus and methods
US5195884A (en) 1992-03-27 1993-03-23 John Zink Company, A Division Of Koch Engineering Company, Inc. Low NOx formation burner apparatus and methods
US5634329A (en) 1992-04-30 1997-06-03 Abb Carbon Ab Method of maintaining a nominal working temperature of flue gases in a PFBC power plant
US5332036A (en) 1992-05-15 1994-07-26 The Boc Group, Inc. Method of recovery of natural gases from underground coal formations
US5295350A (en) 1992-06-26 1994-03-22 Texaco Inc. Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
US5355668A (en) 1993-01-29 1994-10-18 General Electric Company Catalyst-bearing component of gas turbine engine
US5628184A (en) 1993-02-03 1997-05-13 Santos; Rolando R. Apparatus for reducing the production of NOx in a gas turbine
US5361586A (en) 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
US5388395A (en) 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
US5444971A (en) 1993-04-28 1995-08-29 Holenberger; Charles R. Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers
US5359847B1 (en) 1993-06-01 1996-04-09 Westinghouse Electric Corp Dual fuel ultra-flow nox combustor
US5628182A (en) 1993-07-07 1997-05-13 Mowill; R. Jan Star combustor with dilution ports in can portions
US5638674A (en) 1993-07-07 1997-06-17 Mowill; R. Jan Convectively cooled, single stage, fully premixed controllable fuel/air combustor with tangential admission
US5572862A (en) 1993-07-07 1996-11-12 Mowill Rolf Jan Convectively cooled, single stage, fully premixed fuel/air combustor for gas turbine engine modules
PL171012B1 (pl) 1993-07-08 1997-02-28 Waclaw Borszynski Uklad do mokrego oczyszczania spalin z procesów spalania, korzystnie wegla, koksu,oleju opalowego PL
US5794431A (en) 1993-07-14 1998-08-18 Hitachi, Ltd. Exhaust recirculation type combined plant
US5535584A (en) 1993-10-19 1996-07-16 California Energy Commission Performance enhanced gas turbine powerplants
US5345756A (en) 1993-10-20 1994-09-13 Texaco Inc. Partial oxidation process with production of power
US5394688A (en) 1993-10-27 1995-03-07 Westinghouse Electric Corporation Gas turbine combustor swirl vane arrangement
KR100370910B1 (ko) 1993-12-10 2003-03-31 트랙테블 엘엔지 노쓰 아메리카 엘엘씨 Lng조합싸이클플랜트시스템및조합싸이클플랜트의용량및효율을향상하기위한방법
US5542840A (en) 1994-01-26 1996-08-06 Zeeco Inc. Burner for combusting gas and/or liquid fuel with low NOx production
US5458481A (en) 1994-01-26 1995-10-17 Zeeco, Inc. Burner for combusting gas with low NOx production
NO180520C (no) 1994-02-15 1997-05-07 Kvaerner Asa Fremgangsmåte til fjerning av karbondioksid fra forbrenningsgasser
JP2950720B2 (ja) 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法
US5439054A (en) 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
DE4411624A1 (de) 1994-04-02 1995-10-05 Abb Management Ag Brennkammer mit Vormischbrennern
US5581998A (en) 1994-06-22 1996-12-10 Craig; Joe D. Biomass fuel turbine combuster
US5402847A (en) 1994-07-22 1995-04-04 Conoco Inc. Coal bed methane recovery
EP0828929B1 (en) 1994-08-25 2004-09-22 Clean Energy Systems, Inc. Reduced pollution power generation system and gas generator therefore
US5640840A (en) 1994-12-12 1997-06-24 Westinghouse Electric Corporation Recuperative steam cooled gas turbine method and apparatus
US5836164A (en) 1995-01-30 1998-11-17 Hitachi, Ltd. Gas turbine combustor
US5657631A (en) 1995-03-13 1997-08-19 B.B.A. Research & Development, Inc. Injector for turbine engines
WO1996030637A1 (en) 1995-03-24 1996-10-03 Ultimate Power Engineering Group, Inc. High vanadium content fuel combustor and system
US5685158A (en) 1995-03-31 1997-11-11 General Electric Company Compressor rotor cooling system for a gas turbine
CN1112505C (zh) 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机
JPH09119641A (ja) 1995-06-05 1997-05-06 Allison Engine Co Inc ガスタービンエンジン用低窒素酸化物希薄予混合モジュール
US5680764A (en) 1995-06-07 1997-10-28 Clean Energy Systems, Inc. Clean air engines transportation and other power applications
US6170264B1 (en) 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
AU5808396A (en) 1995-06-12 1997-01-09 Gachnang, Hans Rudolf Fuel gas admixing process and device
US5722230A (en) 1995-08-08 1998-03-03 General Electric Co. Center burner in a multi-burner combustor
US5724805A (en) 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US5725054A (en) 1995-08-22 1998-03-10 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Enhancement of residual oil recovery using a mixture of nitrogen or methane diluted with carbon dioxide in a single-well injection process
US5638675A (en) 1995-09-08 1997-06-17 United Technologies Corporation Double lobed mixer with major and minor lobes
GB9520002D0 (en) 1995-09-30 1995-12-06 Rolls Royce Plc Turbine engine control system
DE19539774A1 (de) 1995-10-26 1997-04-30 Asea Brown Boveri Zwischengekühlter Verdichter
WO1997024509A1 (en) 1995-12-27 1997-07-10 Shell Internationale Research Maatschappij B.V. Flameless combustor
DE19549143A1 (de) 1995-12-29 1997-07-03 Abb Research Ltd Gasturbinenringbrennkammer
US6201029B1 (en) 1996-02-13 2001-03-13 Marathon Oil Company Staged combustion of a low heating value fuel gas for driving a gas turbine
US5669958A (en) 1996-02-29 1997-09-23 Membrane Technology And Research, Inc. Methane/nitrogen separation process
GB2311596B (en) 1996-03-29 2000-07-12 Europ Gas Turbines Ltd Combustor for gas - or liquid - fuelled turbine
DE19618868C2 (de) 1996-05-10 1998-07-02 Daimler Benz Ag Brennkraftmaschine mit einem Abgasrückführsystem
US5930990A (en) 1996-05-14 1999-08-03 The Dow Chemical Company Method and apparatus for achieving power augmentation in gas turbines via wet compression
US5901547A (en) 1996-06-03 1999-05-11 Air Products And Chemicals, Inc. Operation method for integrated gasification combined cycle power generation system
US5950417A (en) 1996-07-19 1999-09-14 Foster Wheeler Energy International Inc. Topping combustor for low oxygen vitiated air streams
JPH10259736A (ja) 1997-03-19 1998-09-29 Mitsubishi Heavy Ind Ltd 低NOx燃焼器
US5850732A (en) 1997-05-13 1998-12-22 Capstone Turbine Corporation Low emissions combustion system for a gas turbine engine
US5937634A (en) 1997-05-30 1999-08-17 Solar Turbines Inc Emission control for a gas turbine engine
US6062026A (en) 1997-05-30 2000-05-16 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
NO308400B1 (no) 1997-06-06 2000-09-11 Norsk Hydro As Kraftgenereringsprosess omfattende en forbrenningsprosess
NO308399B1 (no) 1997-06-06 2000-09-11 Norsk Hydro As Prosess for generering av kraft og/eller varme
US6256976B1 (en) 1997-06-27 2001-07-10 Hitachi, Ltd. Exhaust gas recirculation type combined plant
US5771868A (en) 1997-07-03 1998-06-30 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
US5771867A (en) 1997-07-03 1998-06-30 Caterpillar Inc. Control system for exhaust gas recovery system in an internal combustion engine
SE9702830D0 (sv) 1997-07-31 1997-07-31 Nonox Eng Ab Environment friendly high efficiency power generation method based on gaseous fuels and a combined cycle with a nitrogen free gas turbine and a conventional steam turbine
US6079974A (en) 1997-10-14 2000-06-27 Beloit Technologies, Inc. Combustion chamber to accommodate a split-stream of recycled gases
US6360528B1 (en) 1997-10-31 2002-03-26 General Electric Company Chevron exhaust nozzle for a gas turbine engine
US6000222A (en) 1997-12-18 1999-12-14 Allied Signal Inc. Turbocharger with integral turbine exhaust gas recirculation control valve and exhaust gas bypass valve
DE59811106D1 (de) 1998-02-25 2004-05-06 Alstom Technology Ltd Baden Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage mit einem CO2-Prozess
US6082113A (en) 1998-05-22 2000-07-04 Pratt & Whitney Canada Corp. Gas turbine fuel injector
US6082093A (en) 1998-05-27 2000-07-04 Solar Turbines Inc. Combustion air control system for a gas turbine engine
NO982504D0 (no) 1998-06-02 1998-06-02 Aker Eng As Fjerning av CO2 i r°kgass
US6244338B1 (en) 1998-06-23 2001-06-12 The University Of Wyoming Research Corp., System for improving coalbed gas production
US7717173B2 (en) 1998-07-06 2010-05-18 Ecycling, LLC Methods of improving oil or gas production with recycled, increased sodium water
US6089855A (en) 1998-07-10 2000-07-18 Thermo Power Corporation Low NOx multistage combustor
US6125627A (en) 1998-08-11 2000-10-03 Allison Advanced Development Company Method and apparatus for spraying fuel within a gas turbine engine
US6148602A (en) 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
GB9818160D0 (en) 1998-08-21 1998-10-14 Rolls Royce Plc A combustion chamber
US6314721B1 (en) 1998-09-04 2001-11-13 United Technologies Corporation Tabbed nozzle for jet noise suppression
NO319681B1 (no) 1998-09-16 2005-09-05 Statoil Asa Fremgangsmate for fremstilling av en H2-rik gass og en CO2-rik gass ved hoyt trykk
NO317870B1 (no) 1998-09-16 2004-12-27 Statoil Asa Fremgangsmate for a fremstille en H<N>2</N>-rik gass og en CO<N>2</N>-rik gass ved hoyt trykk
EP0994243B1 (en) 1998-10-14 2005-01-26 Nissan Motor Co., Ltd. Exhaust gas purifying device
NO984956D0 (no) 1998-10-23 1998-10-23 Nyfotek As Brenner
US5968349A (en) 1998-11-16 1999-10-19 Bhp Minerals International Inc. Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands
US6230103B1 (en) 1998-11-18 2001-05-08 Power Tech Associates, Inc. Method of determining concentration of exhaust components in a gas turbine engine
NO308401B1 (no) 1998-12-04 2000-09-11 Norsk Hydro As FremgangsmÕte for gjenvinning av CO2 som genereres i en forbrenningsprosess samt anvendelse derav
US6216549B1 (en) 1998-12-11 2001-04-17 The United States Of America As Represented By The Secretary Of The Interior Collapsible bag sediment/water quality flow-weighted sampler
DE19857234C2 (de) 1998-12-11 2000-09-28 Daimler Chrysler Ag Vorrichtung zur Abgasrückführung
DE60019264T2 (de) 1999-01-04 2006-02-16 Allison Advanced Development Co., Indianapolis Abgasmischvorrichtung und gerät mit einer solchen vorrichtung
US6183241B1 (en) 1999-02-10 2001-02-06 Midwest Research Institute Uniform-burning matrix burner
NO990812L (no) 1999-02-19 2000-08-21 Norsk Hydro As Metode for Õ fjerne og gjenvinne CO2 fra eksosgass
US6276171B1 (en) 1999-04-05 2001-08-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid, process for the operation thereof
US6202442B1 (en) 1999-04-05 2001-03-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'expoitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid and process for the operation thereof
GB9911867D0 (en) 1999-05-22 1999-07-21 Rolls Royce Plc A combustion chamber assembly and a method of operating a combustion chamber assembly
US6305929B1 (en) 1999-05-24 2001-10-23 Suk Ho Chung Laser-induced ignition system using a cavity
US6283087B1 (en) 1999-06-01 2001-09-04 Kjell Isaksen Enhanced method of closed vessel combustion
US6256994B1 (en) 1999-06-04 2001-07-10 Air Products And Chemicals, Inc. Operation of an air separation process with a combustion engine for the production of atmospheric gas products and electric power
US6263659B1 (en) 1999-06-04 2001-07-24 Air Products And Chemicals, Inc. Air separation process integrated with gas turbine combustion engine driver
US6345493B1 (en) 1999-06-04 2002-02-12 Air Products And Chemicals, Inc. Air separation process and system with gas turbine drivers
US7065953B1 (en) 1999-06-10 2006-06-27 Enhanced Turbine Output Holding Supercharging system for gas turbines
US6324867B1 (en) 1999-06-15 2001-12-04 Exxonmobil Oil Corporation Process and system for liquefying natural gas
SE9902491L (sv) 1999-06-30 2000-12-31 Saab Automobile Förbränningsmotor med avgasåtermatning
US6202574B1 (en) 1999-07-09 2001-03-20 Abb Alstom Power Inc. Combustion method and apparatus for producing a carbon dioxide end product
US6367258B1 (en) 1999-07-22 2002-04-09 Bechtel Corporation Method and apparatus for vaporizing liquid natural gas in a combined cycle power plant
US6301888B1 (en) 1999-07-22 2001-10-16 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Low emission, diesel-cycle engine
US6248794B1 (en) 1999-08-05 2001-06-19 Atlantic Richfield Company Integrated process for converting hydrocarbon gas to liquids
WO2001011215A1 (en) 1999-08-09 2001-02-15 Technion Research And Development Foundation Ltd. Novel design of adiabatic combustors
US6101983A (en) 1999-08-11 2000-08-15 General Electric Co. Modified gas turbine system with advanced pressurized fluidized bed combustor cycle
WO2001013042A1 (fr) 1999-08-16 2001-02-22 Nippon Furnace Kogyo Kaisha, Ltd. Appareil et procede d'alimentation en carburant
US7015271B2 (en) 1999-08-19 2006-03-21 Ppg Industries Ohio, Inc. Hydrophobic particulate inorganic oxides and polymeric compositions containing same
WO2001018371A1 (en) 1999-09-07 2001-03-15 Geza Vermes Ambient pressure gas turbine system
DE19944922A1 (de) 1999-09-20 2001-03-22 Asea Brown Boveri Steuerung von Primärmassnahmen zur Reduktion der thermischen Stickoxidbildung in Gasturbinen
DE19949739C1 (de) 1999-10-15 2001-08-23 Karlsruhe Forschzent Massesensitiver Sensor
US6383461B1 (en) 1999-10-26 2002-05-07 John Zink Company, Llc Fuel dilution methods and apparatus for NOx reduction
US20010004838A1 (en) 1999-10-29 2001-06-28 Wong Kenneth Kai Integrated heat exchanger system for producing carbon dioxide
US6298652B1 (en) 1999-12-13 2001-10-09 Exxon Mobil Chemical Patents Inc. Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines
US6266954B1 (en) 1999-12-15 2001-07-31 General Electric Co. Double wall bearing cone
US6484503B1 (en) 2000-01-12 2002-11-26 Arie Raz Compression and condensation of turbine exhaust steam
DE10001110A1 (de) 2000-01-13 2001-08-16 Alstom Power Schweiz Ag Baden Verfahren zur Rückgewinnung von Wasser aus dem Rauchgas eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
DE10001997A1 (de) 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
US6247315B1 (en) 2000-03-08 2001-06-19 American Air Liquids, Inc. Oxidant control in co-generation installations
US6247316B1 (en) 2000-03-22 2001-06-19 Clean Energy Systems, Inc. Clean air engines for transportation and other power applications
US6405536B1 (en) 2000-03-27 2002-06-18 Wu-Chi Ho Gas turbine combustor burning LBTU fuel gas
US6508209B1 (en) 2000-04-03 2003-01-21 R. Kirk Collier, Jr. Reformed natural gas for powering an internal combustion engine
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
FR2808223B1 (fr) 2000-04-27 2002-11-22 Inst Francais Du Petrole Procede de purification d'un effluent contenant du gaz carbonique et des hydrocarbures par combustion
SE523342C2 (sv) 2000-05-02 2004-04-13 Volvo Teknisk Utveckling Ab Anordning och förfarande för reduktion av en gaskomponent i en avgasström från en förbränningsmotor
CA2409700C (en) 2000-05-12 2010-02-09 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
US6429020B1 (en) 2000-06-02 2002-08-06 The United States Of America As Represented By The United States Department Of Energy Flashback detection sensor for lean premix fuel nozzles
JP3864671B2 (ja) 2000-06-12 2007-01-10 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
US6374594B1 (en) 2000-07-12 2002-04-23 Power Systems Mfg., Llc Silo/can-annular low emissions combustor
US6282901B1 (en) 2000-07-19 2001-09-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated air separation process
US6502383B1 (en) 2000-08-31 2003-01-07 General Electric Company Stub airfoil exhaust nozzle
US6301889B1 (en) 2000-09-21 2001-10-16 Caterpillar Inc. Turbocharger with exhaust gas recirculation
DE10049040A1 (de) 2000-10-04 2002-06-13 Alstom Switzerland Ltd Verfahren zur Regeneration einer Katalysatoranlage und Vorrichtung zur Durchführung des Verfahrens
DE10049912A1 (de) 2000-10-10 2002-04-11 Daimler Chrysler Ag Brennkraftmaschine mit Abgasturbolader und Compound-Nutzturbine
DE10050248A1 (de) 2000-10-11 2002-04-18 Alstom Switzerland Ltd Brenner
GB0025552D0 (en) 2000-10-18 2000-11-29 Air Prod & Chem Process and apparatus for the generation of power
US7097925B2 (en) 2000-10-30 2006-08-29 Questair Technologies Inc. High temperature fuel cell power plant
US6412278B1 (en) 2000-11-10 2002-07-02 Borgwarner, Inc. Hydraulically powered exhaust gas recirculation system
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
DE10064270A1 (de) 2000-12-22 2002-07-11 Alstom Switzerland Ltd Verfahren zum Betrieb einer Gasturbinenanlage sowie eine diesbezügliche Gasturbinenanlage
US6698412B2 (en) 2001-01-08 2004-03-02 Catalytica Energy Systems, Inc. Catalyst placement in combustion cylinder for reduction on NOx and particulate soot
US6467270B2 (en) 2001-01-31 2002-10-22 Cummins Inc. Exhaust gas recirculation air handling system for an internal combustion engine
US6715916B2 (en) 2001-02-08 2004-04-06 General Electric Company System and method for determining gas turbine firing and combustion reference temperatures having correction for water content in fuel
US6606861B2 (en) 2001-02-26 2003-08-19 United Technologies Corporation Low emissions combustor for a gas turbine engine
US7578132B2 (en) 2001-03-03 2009-08-25 Rolls-Royce Plc Gas turbine engine exhaust nozzle
US6821501B2 (en) 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US6412302B1 (en) 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
US6499990B1 (en) 2001-03-07 2002-12-31 Zeeco, Inc. Low NOx burner apparatus and method
GB2373299B (en) 2001-03-12 2004-10-27 Alstom Power Nv Re-fired gas turbine engine
WO2002075112A1 (fr) 2001-03-15 2002-09-26 Alexei Leonidovich Zapadinski Procede de mise en valeur de reserves d'hydrocarbures (et variantes) et complexe destine a sa mise en oeuvre (et variantes)
US6732531B2 (en) 2001-03-16 2004-05-11 Capstone Turbine Corporation Combustion system for a gas turbine engine with variable airflow pressure actuated premix injector
US6745573B2 (en) 2001-03-23 2004-06-08 American Air Liquide, Inc. Integrated air separation and power generation process
US6615576B2 (en) 2001-03-29 2003-09-09 Honeywell International Inc. Tortuous path quiet exhaust eductor system
US6487863B1 (en) 2001-03-30 2002-12-03 Siemens Westinghouse Power Corporation Method and apparatus for cooling high temperature components in a gas turbine
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
JP3972599B2 (ja) 2001-04-27 2007-09-05 日産自動車株式会社 ディーゼルエンジンの制御装置
US6868677B2 (en) 2001-05-24 2005-03-22 Clean Energy Systems, Inc. Combined fuel cell and fuel combustion power generation systems
WO2002097252A1 (en) 2001-05-30 2002-12-05 Conoco Inc. Lng regasification process and system
EP1262714A1 (de) 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Brenner mit Abgasrückführung
US6484507B1 (en) 2001-06-05 2002-11-26 Louis A. Pradt Method and apparatus for controlling liquid droplet size and quantity in a stream of gas
US6622645B2 (en) 2001-06-15 2003-09-23 Honeywell International Inc. Combustion optimization with inferential sensor
DE10131798A1 (de) 2001-06-30 2003-01-16 Daimler Chrysler Ag Kraftfahrzeug mit Aktivkohlefilter und Verfahren zur Regeneration eines Aktivkohlefilters
US6813889B2 (en) 2001-08-29 2004-11-09 Hitachi, Ltd. Gas turbine combustor and operating method thereof
US6923915B2 (en) 2001-08-30 2005-08-02 Tda Research, Inc. Process for the removal of impurities from combustion fullerenes
WO2003018958A1 (en) 2001-08-31 2003-03-06 Statoil Asa Method and plant for enhanced oil recovery and simultaneous synthesis of hydrocarbons from natural gas
US20030221409A1 (en) 2002-05-29 2003-12-04 Mcgowan Thomas F. Pollution reduction fuel efficient combustion turbine
JP2003090250A (ja) 2001-09-18 2003-03-28 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
WO2003027461A1 (de) 2001-09-24 2003-04-03 Alstom Technology Ltd Gasturbinenanlage für ein arbeitsmedium in form eines kohlendioxid/wasser-gemisches
DE50207526D1 (de) 2001-10-01 2006-08-24 Alstom Technology Ltd Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
DE10152803A1 (de) 2001-10-25 2003-05-15 Daimler Chrysler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung
DE10297365B4 (de) 2001-10-26 2017-06-22 General Electric Technology Gmbh Gasturbine
WO2003040531A1 (fr) 2001-11-09 2003-05-15 Kawasaki Jukogyo Kabushiki Kaisha Systeme de turbine a gaz comprenant un systeme ferme entre le gaz combustible et le gaz de combustion au moyen d'une couche de charbon souterraine
US6790030B2 (en) 2001-11-20 2004-09-14 The Regents Of The University Of California Multi-stage combustion using nitrogen-enriched air
US6505567B1 (en) 2001-11-26 2003-01-14 Alstom (Switzerland) Ltd Oxygen fired circulating fluidized bed steam generator
EP1521719A4 (en) 2001-12-03 2008-01-23 Clean Energy Systems Inc CARBON AND SYNGAS FUEL ENERGY GENERATION SYSTEMS WITHOUT ATMOSPHERIC EMISSIONS
GB2382847A (en) 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
US20030134241A1 (en) 2002-01-14 2003-07-17 Ovidiu Marin Process and apparatus of combustion for reduction of nitrogen oxide emissions
US6743829B2 (en) 2002-01-18 2004-06-01 Bp Corporation North America Inc. Integrated processing of natural gas into liquid products
US6722436B2 (en) 2002-01-25 2004-04-20 Precision Drilling Technology Services Group Inc. Apparatus and method for operating an internal combustion engine to reduce free oxygen contained within engine exhaust gas
US6752620B2 (en) 2002-01-31 2004-06-22 Air Products And Chemicals, Inc. Large scale vortex devices for improved burner operation
US6725665B2 (en) 2002-02-04 2004-04-27 Alstom Technology Ltd Method of operation of gas turbine having multiple burners
US6745624B2 (en) 2002-02-05 2004-06-08 Ford Global Technologies, Llc Method and system for calibrating a tire pressure sensing system for an automotive vehicle
US7284362B2 (en) 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US6823852B2 (en) 2002-02-19 2004-11-30 Collier Technologies, Llc Low-emission internal combustion engine
US7313916B2 (en) 2002-03-22 2008-01-01 Philip Morris Usa Inc. Method and apparatus for generating power by combustion of vaporized fuel
US6532745B1 (en) 2002-04-10 2003-03-18 David L. Neary Partially-open gas turbine cycle providing high thermal efficiencies and ultra-low emissions
DE60313392T2 (de) 2002-05-16 2007-08-09 Rolls-Royce Plc Gasturbine
US6644041B1 (en) 2002-06-03 2003-11-11 Volker Eyermann System in process for the vaporization of liquefied natural gas
US7491250B2 (en) 2002-06-25 2009-02-17 Exxonmobil Research And Engineering Company Pressure swing reforming
GB2390150A (en) 2002-06-26 2003-12-31 Alstom Reheat combustion system for a gas turbine including an accoustic screen
US6702570B2 (en) 2002-06-28 2004-03-09 Praxair Technology Inc. Firing method for a heat consuming device utilizing oxy-fuel combustion
US6748004B2 (en) 2002-07-25 2004-06-08 Air Liquide America, L.P. Methods and apparatus for improved energy efficient control of an electric arc furnace fume extraction system
US6772583B2 (en) 2002-09-11 2004-08-10 Siemens Westinghouse Power Corporation Can combustor for a gas turbine engine
US6826913B2 (en) 2002-10-31 2004-12-07 Honeywell International Inc. Airflow modulation technique for low emissions combustors
US7143606B2 (en) 2002-11-01 2006-12-05 L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude Combined air separation natural gas liquefaction plant
CA2505354C (en) 2002-11-08 2012-04-03 Alstom Technology Ltd. Gas turbine power plant and method of operating the same
US6945029B2 (en) 2002-11-15 2005-09-20 Clean Energy Systems, Inc. Low pollution power generation system with ion transfer membrane air separation
WO2004046514A1 (en) 2002-11-15 2004-06-03 Catalytica Energy Systems, Inc. Devices and methods for reduction of nox emissions from lean burn engines
GB0226983D0 (en) 2002-11-19 2002-12-24 Boc Group Plc Nitrogen rejection method and apparatus
DE10257704A1 (de) 2002-12-11 2004-07-15 Alstom Technology Ltd Verfahren zur Verbrennung eines Brennstoffs
NO20026021D0 (no) 2002-12-13 2002-12-13 Statoil Asa I & K Ir Pat Fremgangsmåte for ökt oljeutvinning
WO2004055322A1 (en) 2002-12-13 2004-07-01 Statoil Asa A method for oil recovery from an oil field
US6731501B1 (en) 2003-01-03 2004-05-04 Jian-Roung Cheng Heat dissipating device for dissipating heat generated by a disk drive module inside a computer housing
US6851413B1 (en) 2003-01-10 2005-02-08 Ronnell Company, Inc. Method and apparatus to increase combustion efficiency and to reduce exhaust gas pollutants from combustion of a fuel
US6929423B2 (en) 2003-01-16 2005-08-16 Paul A. Kittle Gas recovery from landfills using aqueous foam
BRPI0406806A (pt) 2003-01-17 2005-12-27 Catalytica Energy Sys Inc Sistema e método de controle dinâmico para multicombustor catalìtico para motor de turbina a gás
WO2004064990A2 (en) 2003-01-22 2004-08-05 Vast Power Systems Inc. Reactor
US9254729B2 (en) 2003-01-22 2016-02-09 Vast Power Portfolio, Llc Partial load combustion cycles
US8631657B2 (en) 2003-01-22 2014-01-21 Vast Power Portfolio, Llc Thermodynamic cycles with thermal diluent
US6820428B2 (en) 2003-01-30 2004-11-23 Wylie Inventions Company, Inc. Supercritical combined cycle for generating electric power
GB2398863B (en) 2003-01-31 2007-10-17 Alstom Combustion Chamber
US6675579B1 (en) 2003-02-06 2004-01-13 Ford Global Technologies, Llc HCCI engine intake/exhaust systems for fast inlet temperature and pressure control with intake pressure boosting
US7618606B2 (en) 2003-02-06 2009-11-17 The Ohio State University Separation of carbon dioxide (CO2) from gas mixtures
US7490472B2 (en) 2003-02-11 2009-02-17 Statoil Asa Efficient combined cycle power plant with CO2 capture and a combustor arrangement with separate flows
US7914764B2 (en) 2003-02-28 2011-03-29 Exxonmobil Research And Engineering Company Hydrogen manufacture using pressure swing reforming
US7053128B2 (en) 2003-02-28 2006-05-30 Exxonmobil Research And Engineering Company Hydrocarbon synthesis process using pressure swing reforming
US7045553B2 (en) 2003-02-28 2006-05-16 Exxonmobil Research And Engineering Company Hydrocarbon synthesis process using pressure swing reforming
US20040170559A1 (en) 2003-02-28 2004-09-02 Frank Hershkowitz Hydrogen manufacture using pressure swing reforming
US7217303B2 (en) 2003-02-28 2007-05-15 Exxonmobil Research And Engineering Company Pressure swing reforming for fuel cell systems
US7637093B2 (en) 2003-03-18 2009-12-29 Fluor Technologies Corporation Humid air turbine cycle with carbon dioxide recovery
US7401577B2 (en) 2003-03-19 2008-07-22 American Air Liquide, Inc. Real time optimization and control of oxygen enhanced boilers
US7074033B2 (en) 2003-03-22 2006-07-11 David Lloyd Neary Partially-open fired heater cycle providing high thermal efficiencies and ultra-low emissions
US7168265B2 (en) 2003-03-27 2007-01-30 Bp Corporation North America Inc. Integrated processing of natural gas into liquid products
US7513099B2 (en) 2003-03-28 2009-04-07 Siemens Aktiengesellschaft Temperature measuring device and regulation of the temperature of hot gas of a gas turbine
JP4355661B2 (ja) 2003-04-29 2009-11-04 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス 流動床燃焼器内での二酸化炭素と二酸化硫黄の現場捕獲
CA2460292C (en) 2003-05-08 2011-08-23 Sulzer Chemtech Ag A static mixer
US7503948B2 (en) 2003-05-23 2009-03-17 Exxonmobil Research And Engineering Company Solid oxide fuel cell systems having temperature swing reforming
DE10325111A1 (de) 2003-06-02 2005-01-05 Alstom Technology Ltd Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassende Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
US7056482B2 (en) 2003-06-12 2006-06-06 Cansolv Technologies Inc. Method for recovery of CO2 from gas streams
US7043898B2 (en) 2003-06-23 2006-05-16 Pratt & Whitney Canada Corp. Combined exhaust duct and mixer for a gas turbine engine
DE10334590B4 (de) 2003-07-28 2006-10-26 Uhde Gmbh Verfahren zur Gewinnung von Wasserstoff aus einem methanhaltigen Gas, insbesondere Erdgas und Anlage zur Durchführung des Verfahrens
US7007487B2 (en) 2003-07-31 2006-03-07 Mes International, Inc. Recuperated gas turbine engine system and method employing catalytic combustion
GB0323255D0 (en) 2003-10-04 2003-11-05 Rolls Royce Plc Method and system for controlling fuel supply in a combustion turbine engine
DE10350044A1 (de) 2003-10-27 2005-05-25 Basf Ag Verfahren zur Herstellung von 1-Buten
US6904815B2 (en) 2003-10-28 2005-06-14 General Electric Company Configurable multi-point sampling method and system for representative gas composition measurements in a stratified gas flow stream
NO321817B1 (no) 2003-11-06 2006-07-10 Sargas As Renseanlegg for varmekraftverk
US6988549B1 (en) 2003-11-14 2006-01-24 John A Babcock SAGD-plus
US7032388B2 (en) 2003-11-17 2006-04-25 General Electric Company Method and system for incorporating an emission sensor into a gas turbine controller
US6939130B2 (en) 2003-12-05 2005-09-06 Gas Technology Institute High-heat transfer low-NOx combustion system
US7299619B2 (en) 2003-12-13 2007-11-27 Siemens Power Generation, Inc. Vaporization of liquefied natural gas for increased efficiency in power cycles
US7183328B2 (en) 2003-12-17 2007-02-27 Exxonmobil Chemical Patents Inc. Methanol manufacture using pressure swing reforming
US7124589B2 (en) 2003-12-22 2006-10-24 David Neary Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions
DE10360951A1 (de) 2003-12-23 2005-07-28 Alstom Technology Ltd Wärmekraftanlage mit sequentieller Verbrennung und reduziertem CO2-Ausstoß sowie Verfahren zum Betreiben einer derartigen Anlage
US20050144961A1 (en) 2003-12-24 2005-07-07 General Electric Company System and method for cogeneration of hydrogen and electricity
DE10361824A1 (de) 2003-12-30 2005-07-28 Basf Ag Verfahren zur Herstellung von Butadien
DE10361823A1 (de) 2003-12-30 2005-08-11 Basf Ag Verfahren zur Herstellung von Butadien und 1-Buten
US7096669B2 (en) 2004-01-13 2006-08-29 Compressor Controls Corp. Method and apparatus for the prevention of critical process variable excursions in one or more turbomachines
EP3069780B1 (en) 2004-01-20 2018-04-11 Fluor Technologies Corporation Methods for acid gas enrichment
US7305817B2 (en) 2004-02-09 2007-12-11 General Electric Company Sinuous chevron exhaust nozzle
JP2005226847A (ja) 2004-02-10 2005-08-25 Ebara Corp 燃焼装置及び燃焼方法
US7468173B2 (en) 2004-02-25 2008-12-23 Sunstone Corporation Method for producing nitrogen to use in under balanced drilling, secondary recovery production operations and pipeline maintenance
DE102004009794A1 (de) 2004-02-28 2005-09-22 Daimlerchrysler Ag Brennkraftmaschine mit zwei Abgasturboladern
US8951951B2 (en) 2004-03-02 2015-02-10 Troxler Electronic Laboratories, Inc. Solvent compositions for removing petroleum residue from a substrate and methods of use thereof
US6971242B2 (en) 2004-03-02 2005-12-06 Caterpillar Inc. Burner for a gas turbine engine
US7752848B2 (en) 2004-03-29 2010-07-13 General Electric Company System and method for co-production of hydrogen and electrical energy
CA2561255A1 (en) 2004-03-30 2005-10-13 Alstom Technology Ltd. Device and method for flame stabilization in a burner
WO2005095863A1 (de) 2004-03-31 2005-10-13 Alstom Technology Ltd Brenner
WO2005100754A2 (en) 2004-04-16 2005-10-27 Clean Energy Systems, Inc. Zero emissions closed rankine cycle power system
US7302801B2 (en) 2004-04-19 2007-12-04 Hamilton Sundstrand Corporation Lean-staged pyrospin combustor
US7185497B2 (en) 2004-05-04 2007-03-06 Honeywell International, Inc. Rich quick mix combustion system
WO2005108865A1 (en) 2004-05-06 2005-11-17 New Power Concepts Llc Gaseous fuel burner
ITBO20040296A1 (it) 2004-05-11 2004-08-11 Itea Spa Combustori ad alta efficienza e impatto ambientale ridotto, e procedimenti per la produzione di energia elettrica da esso derivabili
WO2005123237A2 (en) 2004-05-14 2005-12-29 Eco/Technologies, Llc Method and system for sequestering carbon emissions from a combustor/boiler
WO2005119029A1 (en) 2004-05-19 2005-12-15 Fluor Technologies Corporation Triple cycle power plant
US7065972B2 (en) 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US7010921B2 (en) 2004-06-01 2006-03-14 General Electric Company Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US6993916B2 (en) 2004-06-08 2006-02-07 General Electric Company Burner tube and method for mixing air and gas in a gas turbine engine
US7197880B2 (en) 2004-06-10 2007-04-03 United States Department Of Energy Lean blowoff detection sensor
US7788897B2 (en) 2004-06-11 2010-09-07 Vast Power Portfolio, Llc Low emissions combustion apparatus and method
WO2006046976A2 (en) 2004-06-14 2006-05-04 University Of Florida Research Foundation, Inc. Turbine system with exhaust gas recirculation and absorption refrigeration system
JP5202945B2 (ja) 2004-07-14 2013-06-05 フルオー・テクノロジーズ・コーポレイシヨン Lng再ガス化と統合された発電のための構造及び方法
DE102004039164A1 (de) 2004-08-11 2006-03-02 Alstom Technology Ltd Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
US7498009B2 (en) 2004-08-16 2009-03-03 Dana Uv, Inc. Controlled spectrum ultraviolet radiation pollution control process
DE102004039927A1 (de) 2004-08-18 2006-02-23 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführeinrichtung
DE102004040893A1 (de) 2004-08-24 2006-03-02 Bayerische Motoren Werke Ag Abgasturbolader
US7137623B2 (en) 2004-09-17 2006-11-21 Spx Cooling Technologies, Inc. Heating tower apparatus and method with isolation of outlet and inlet air
ES2478626T3 (es) 2004-09-29 2014-07-22 Taiheiyo Cement Corporation Sistema y procedimiento para tratar polvo en gas extraído de gas de combustión de un horno de cemento
ES2460960T3 (es) 2004-09-29 2014-05-16 Taiheiyo Cement Corporation Sistema de tratamiento de polvo de gas de extracción de gas de combustión del horno de cemento y procedimiento de tratamiento
JP4626251B2 (ja) 2004-10-06 2011-02-02 株式会社日立製作所 燃焼器及び燃焼器の燃焼方法
US7381393B2 (en) 2004-10-07 2008-06-03 The Regents Of The University Of California Process for sulfur removal suitable for treating high-pressure gas streams
US7434384B2 (en) 2004-10-25 2008-10-14 United Technologies Corporation Fluid mixer with an integral fluid capture ducts forming auxiliary secondary chutes at the discharge end of said ducts
US7762084B2 (en) 2004-11-12 2010-07-27 Rolls-Royce Canada, Ltd. System and method for controlling the working line position in a gas turbine engine compressor
US7357857B2 (en) 2004-11-29 2008-04-15 Baker Hughes Incorporated Process for extracting bitumen
US7389635B2 (en) 2004-12-01 2008-06-24 Honeywell International Inc. Twisted mixer with open center body
US7506501B2 (en) 2004-12-01 2009-03-24 Honeywell International Inc. Compact mixer with trimmable open centerbody
EP1666823A1 (de) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
JP2006183599A (ja) 2004-12-28 2006-07-13 Nissan Motor Co Ltd 内燃機関の排気浄化装置
EP1681090B1 (de) 2005-01-17 2007-05-30 Balcke-Dürr GmbH Vorrichtung und Verfahren zum Mischen eines Fluidstroms in einem Strömungskanal
US20060183009A1 (en) 2005-02-11 2006-08-17 Berlowitz Paul J Fuel cell fuel processor with hydrogen buffering
CN1847766A (zh) 2005-02-11 2006-10-18 林德股份公司 通过与冷却液体直接热交换而冷却气体的方法和装置
US7875402B2 (en) 2005-02-23 2011-01-25 Exxonmobil Research And Engineering Company Proton conducting solid oxide fuel cell systems having temperature swing reforming
US7137256B1 (en) 2005-02-28 2006-11-21 Peter Stuttaford Method of operating a combustion system for increased turndown capability
CA2538464A1 (en) 2005-03-02 2006-09-02 Champion Technologies Inc. Zone settling aid and method for producing dry diluted bitumen with reduced losses of asphaltenes
US7194869B2 (en) 2005-03-08 2007-03-27 Siemens Power Generation, Inc. Turbine exhaust water recovery system
US20090117024A1 (en) 2005-03-14 2009-05-07 Geoffrey Gerald Weedon Process for the Production of Hydrogen with Co-Production and Capture of Carbon Dioxide
US7681394B2 (en) 2005-03-25 2010-03-23 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Control methods for low emission internal combustion system
JP4763039B2 (ja) 2005-03-30 2011-08-31 フルオー・テクノロジーズ・コーポレイシヨン Lng再ガス化の精製および発電との統合
CN100564858C (zh) 2005-03-30 2009-12-02 弗劳尔科技公司 用于液化天然气再气化和动力设备的热集成的构造和方法
DE102005015151A1 (de) 2005-03-31 2006-10-26 Alstom Technology Ltd. Gasturbinenanlage
US7906304B2 (en) 2005-04-05 2011-03-15 Geosynfuels, Llc Method and bioreactor for producing synfuel from carbonaceous material
JP2008534862A (ja) 2005-04-05 2008-08-28 サーガス・エーエス 低co2火力発電プラント
DE102005017905A1 (de) 2005-04-18 2006-10-19 Behr Gmbh & Co. Kg Vorrichtung zur gekühlten Rückführung von Abgas einer Brennkraftmaschine eines Kraftfahrzeuges
US8262343B2 (en) 2005-05-02 2012-09-11 Vast Power Portfolio, Llc Wet compression apparatus and method
US7827782B2 (en) 2005-05-19 2010-11-09 Ford Global Technologies, Llc Method for remediating emissions
US7874350B2 (en) 2005-05-23 2011-01-25 Precision Combustion, Inc. Reducing the energy requirements for the production of heavy oil
US7789159B1 (en) 2005-05-27 2010-09-07 Bader Mansour S Methods to de-sulfate saline streams
US7980312B1 (en) 2005-06-20 2011-07-19 Hill Gilman A Integrated in situ retorting and refining of oil shale
US7914749B2 (en) 2005-06-27 2011-03-29 Solid Gas Technologies Clathrate hydrate modular storage, applications and utilization processes
US7481048B2 (en) 2005-06-30 2009-01-27 Caterpillar Inc. Regeneration assembly
US7966822B2 (en) 2005-06-30 2011-06-28 General Electric Company Reverse-flow gas turbine combustion system
US7752850B2 (en) 2005-07-01 2010-07-13 Siemens Energy, Inc. Controlled pilot oxidizer for a gas turbine combustor
US7670135B1 (en) 2005-07-13 2010-03-02 Zeeco, Inc. Burner and method for induction of flue gas
US20070044479A1 (en) 2005-08-10 2007-03-01 Harry Brandt Hydrogen production from an oxyfuel combustor
US7976803B2 (en) 2005-08-16 2011-07-12 Co2Crc Technologies Pty Ltd. Plant and process for removing carbon dioxide from gas streams
EP1757778B1 (de) 2005-08-23 2015-12-23 Balcke-Dürr GmbH Abgasführung einer Gasturbine sowie Verfahren zum Vermischen des Abgases der Gasturbine
US7225623B2 (en) 2005-08-23 2007-06-05 General Electric Company Trapped vortex cavity afterburner
US7562519B1 (en) 2005-09-03 2009-07-21 Florida Turbine Technologies, Inc. Gas turbine engine with an air cooled bearing
US7410525B1 (en) 2005-09-12 2008-08-12 Uop Llc Mixed matrix membranes incorporating microporous polymers as fillers
DE102005048911A1 (de) 2005-10-10 2007-04-12 Behr Gmbh & Co. Kg Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine
US7690204B2 (en) 2005-10-12 2010-04-06 Praxair Technology, Inc. Method of maintaining a fuel Wobbe index in an IGCC installation
US7513100B2 (en) 2005-10-24 2009-04-07 General Electric Company Systems for low emission gas turbine energy generation
US7493769B2 (en) 2005-10-25 2009-02-24 General Electric Company Assembly and method for cooling rear bearing and exhaust frame of gas turbine
US7827794B1 (en) 2005-11-04 2010-11-09 Clean Energy Systems, Inc. Ultra low emissions fast starting power plant
DE602006019631D1 (de) 2005-11-07 2011-02-24 Specialist Process Technologies Ltd Funktionelle flüssigkeit und herstellungsverfahren dafür
US7765810B2 (en) 2005-11-15 2010-08-03 Precision Combustion, Inc. Method for obtaining ultra-low NOx emissions from gas turbines operating at high turbine inlet temperatures
EA013360B1 (ru) 2005-11-18 2010-04-30 Эксонмобил Апстрим Рисерч Компани Способ добычи углеводородов из подземных пластов (варианты)
US20070144747A1 (en) 2005-12-02 2007-06-28 Hce, Llc Coal bed pretreatment for enhanced carbon dioxide sequestration
US7726114B2 (en) 2005-12-07 2010-06-01 General Electric Company Integrated combustor-heat exchanger and systems for power generation using the same
WO2007068682A1 (en) 2005-12-12 2007-06-21 Shell Internationale Research Maatschappij B.V. Enhanced oil recovery process and a process for the sequestration of carbon dioxide
US7634915B2 (en) 2005-12-13 2009-12-22 General Electric Company Systems and methods for power generation and hydrogen production with carbon dioxide isolation
CN101331081A (zh) 2005-12-16 2008-12-24 国际壳牌研究有限公司 冷却热烟气流的方法
US7846401B2 (en) 2005-12-23 2010-12-07 Exxonmobil Research And Engineering Company Controlled combustion for regenerative reactors
US8038773B2 (en) 2005-12-28 2011-10-18 Jupiter Oxygen Corporation Integrated capture of fossil fuel gas pollutants including CO2 with energy recovery
US7909898B2 (en) 2006-02-01 2011-03-22 Air Products And Chemicals, Inc. Method of treating a gaseous mixture comprising hydrogen and carbon dioxide
EP1821035A1 (en) 2006-02-15 2007-08-22 Siemens Aktiengesellschaft Gas turbine burner and method of mixing fuel and air in a swirling area of a gas turbine burner
DE102006024778B3 (de) 2006-03-02 2007-07-19 J. Eberspächer GmbH & Co. KG Statischer Mischer und Abgasbehandlungseinrichtung
EP2040848A1 (en) 2006-03-07 2009-04-01 Marathon Oil Sands (U.S.A.) Inc. Processing asphaltene-containing tailings
US7650744B2 (en) 2006-03-24 2010-01-26 General Electric Company Systems and methods of reducing NOx emissions in gas turbine systems and internal combustion engines
JP4418442B2 (ja) 2006-03-30 2010-02-17 三菱重工業株式会社 ガスタービンの燃焼器及び燃焼制御方法
US7591866B2 (en) 2006-03-31 2009-09-22 Ranendra Bose Methane gas recovery and usage system for coalmines, municipal land fills and oil refinery distillation tower vent stacks
US7654320B2 (en) 2006-04-07 2010-02-02 Occidental Energy Ventures Corp. System and method for processing a mixture of hydrocarbon and CO2 gas produced from a hydrocarbon reservoir
US7644573B2 (en) 2006-04-18 2010-01-12 General Electric Company Gas turbine inlet conditioning system and method
US20070249738A1 (en) 2006-04-25 2007-10-25 Haynes Joel M Premixed partial oxidation syngas generator
US20070245736A1 (en) 2006-04-25 2007-10-25 Eastman Chemical Company Process for superheated steam
DE102006019780A1 (de) 2006-04-28 2007-11-08 Daimlerchrysler Ag Abgasturbolader in einer Brennkraftmaschine
US7886522B2 (en) 2006-06-05 2011-02-15 Kammel Refaat Diesel gas turbine system and related methods
JP4162016B2 (ja) 2006-06-08 2008-10-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE112007001504T5 (de) 2006-06-23 2009-05-07 BHP Billiton Innovation Pty. Ltd., Melbourne Stromerzeugung
US7691788B2 (en) 2006-06-26 2010-04-06 Schlumberger Technology Corporation Compositions and methods of using same in producing heavy oil and bitumen
US20080006561A1 (en) 2006-07-05 2008-01-10 Moran Lyle E Dearomatized asphalt
MX2008016422A (es) 2006-07-07 2009-01-19 Shell Int Research Proceso para producir disulfuro de carbono y uso de una corriente liquida de disulfuro de carbono para la recuperacion mejorada de combustible.
KR100735841B1 (ko) 2006-07-31 2007-07-06 한국과학기술원 천연가스 하이드레이트로부터 메탄가스를 회수하는 방법
WO2008024449A2 (en) 2006-08-23 2008-02-28 Praxair Technology, Inc. Gasification and steam methane reforming integrated polygeneration method and system
US20080047280A1 (en) 2006-08-24 2008-02-28 Bhp Billiton Limited Heat recovery system
JP4265634B2 (ja) 2006-09-15 2009-05-20 トヨタ自動車株式会社 電動パーキングブレーキシステム
EP2064150A1 (en) 2006-09-18 2009-06-03 Shell Internationale Research Maatschappij B.V. A process for the manufacture of carbon disulphide
US7520134B2 (en) 2006-09-29 2009-04-21 General Electric Company Methods and apparatus for injecting fluids into a turbine engine
JP2008095541A (ja) 2006-10-06 2008-04-24 Toufuji Denki Kk ターボチャージャ
US7942008B2 (en) 2006-10-09 2011-05-17 General Electric Company Method and system for reducing power plant emissions
US7763163B2 (en) 2006-10-20 2010-07-27 Saudi Arabian Oil Company Process for removal of nitrogen and poly-nuclear aromatics from hydrocracker feedstocks
US7566394B2 (en) 2006-10-20 2009-07-28 Saudi Arabian Oil Company Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent
GB0620883D0 (en) 2006-10-20 2006-11-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine
US7721543B2 (en) 2006-10-23 2010-05-25 Southwest Research Institute System and method for cooling a combustion gas charge
US7492054B2 (en) 2006-10-24 2009-02-17 Catlin Christopher S River and tidal power harvester
US7739864B2 (en) 2006-11-07 2010-06-22 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US7827778B2 (en) 2006-11-07 2010-11-09 General Electric Company Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions
US7895822B2 (en) 2006-11-07 2011-03-01 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US7947115B2 (en) 2006-11-16 2011-05-24 Siemens Energy, Inc. System and method for generation of high pressure air in an integrated gasification combined cycle system
US20080118310A1 (en) 2006-11-20 2008-05-22 Graham Robert G All-ceramic heat exchangers, systems in which they are used and processes for the use of such systems
US7921633B2 (en) 2006-11-21 2011-04-12 Siemens Energy, Inc. System and method employing direct gasification for power generation
US20080127632A1 (en) 2006-11-30 2008-06-05 General Electric Company Carbon dioxide capture systems and methods
US7789658B2 (en) 2006-12-14 2010-09-07 Uop Llc Fired heater
US7856829B2 (en) 2006-12-15 2010-12-28 Praxair Technology, Inc. Electrical power generation method
US7815873B2 (en) 2006-12-15 2010-10-19 Exxonmobil Research And Engineering Company Controlled combustion for regenerative reactors with mixer/flow distributor
EP1944268A1 (en) 2006-12-18 2008-07-16 BP Alternative Energy Holdings Limited Process
US7802434B2 (en) 2006-12-18 2010-09-28 General Electric Company Systems and processes for reducing NOx emissions
US20080155984A1 (en) 2007-01-03 2008-07-03 Ke Liu Reforming system for combined cycle plant with partial CO2 capture
US7943097B2 (en) 2007-01-09 2011-05-17 Catalytic Solutions, Inc. Reactor system for reducing NOx emissions from boilers
US7819951B2 (en) 2007-01-23 2010-10-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
FR2911667B1 (fr) 2007-01-23 2009-10-02 Snecma Sa Systeme d'injection de carburant a double injecteur.
EP2107930B1 (en) 2007-01-25 2012-04-18 Shell Internationale Research Maatschappij B.V. Process for reducing carbon dioxide emission in a power plant
EP1950494A1 (de) 2007-01-29 2008-07-30 Siemens Aktiengesellschaft Brennkammer für eine Gasturbine
US20080178611A1 (en) 2007-01-30 2008-07-31 Foster Wheeler Usa Corporation Ecological Liquefied Natural Gas (LNG) Vaporizer System
US7841186B2 (en) 2007-01-31 2010-11-30 Power Systems Mfg., Llc Inlet bleed heat and power augmentation for a gas turbine engine
NZ579549A (en) 2007-02-12 2011-01-28 Sasol Tech Pty Ltd Co-production of power and hydrocarbons
EP1959143B1 (en) 2007-02-13 2010-10-20 Yamada Manufacturing Co., Ltd. Oil pump pressure control device
US8356485B2 (en) 2007-02-27 2013-01-22 Siemens Energy, Inc. System and method for oxygen separation in an integrated gasification combined cycle system
US20080250795A1 (en) 2007-04-16 2008-10-16 Conocophillips Company Air Vaporizer and Its Use in Base-Load LNG Regasification Plant
US20080251234A1 (en) 2007-04-16 2008-10-16 Wilson Turbopower, Inc. Regenerator wheel apparatus
CA2587166C (en) 2007-05-03 2008-10-07 Imperial Oil Resources Limited An improved process for recovering solvent from asphaltene containing tailings resulting from a separation process
US8038746B2 (en) 2007-05-04 2011-10-18 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
US7654330B2 (en) 2007-05-19 2010-02-02 Pioneer Energy, Inc. Apparatus, methods, and systems for extracting petroleum using a portable coal reformer
US7918906B2 (en) 2007-05-20 2011-04-05 Pioneer Energy Inc. Compact natural gas steam reformer with linear countercurrent heat exchanger
US8616294B2 (en) 2007-05-20 2013-12-31 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
FR2916363A1 (fr) 2007-05-23 2008-11-28 Air Liquide Procede de purification d'un gaz par cpsa a deux paliers de regeneration et unite de purification permettant la mise en oeuvre de ce procede
CA2686830C (en) 2007-05-25 2015-09-08 Exxonmobil Upstream Research Company A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US7874140B2 (en) 2007-06-08 2011-01-25 Foster Wheeler North America Corp. Method of and power plant for generating power by oxyfuel combustion
US8850789B2 (en) 2007-06-13 2014-10-07 General Electric Company Systems and methods for power generation with exhaust gas recirculation
JP5366941B2 (ja) 2007-06-19 2013-12-11 アルストム テクノロジー リミテッド 排ガス再循環型ガスタービン設備
US20090000762A1 (en) 2007-06-29 2009-01-01 Wilson Turbopower, Inc. Brush-seal and matrix for regenerative heat exchanger, and method of adjusting same
US7708804B2 (en) 2007-07-11 2010-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of a gaseous mixture
US8061120B2 (en) 2007-07-30 2011-11-22 Herng Shinn Hwang Catalytic EGR oxidizer for IC engines and gas turbines
US20090038247A1 (en) 2007-08-09 2009-02-12 Tapco International Corporation Exterior trim pieces with weather stripping and colored protective layer
US7845406B2 (en) 2007-08-30 2010-12-07 George Nitschke Enhanced oil recovery system for use with a geopressured-geothermal conversion system
CN101820975A (zh) 2007-08-30 2010-09-01 国际壳牌研究有限公司 用于从酸性气体物流中脱除硫化氢和二氧化碳的方法
US8127558B2 (en) 2007-08-31 2012-03-06 Siemens Energy, Inc. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air
US20090056342A1 (en) 2007-09-04 2009-03-05 General Electric Company Methods and Systems for Gas Turbine Part-Load Operating Conditions
WO2009077866A2 (en) 2007-10-22 2009-06-25 Osum Oil Sands Corp. Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil
US7861511B2 (en) 2007-10-30 2011-01-04 General Electric Company System for recirculating the exhaust of a turbomachine
US8220268B2 (en) 2007-11-28 2012-07-17 Caterpillar Inc. Turbine engine having fuel-cooled air intercooling
US20110226010A1 (en) 2007-11-28 2011-09-22 Brigham Young University Carbon dioxide capture from flue gas
EP2067941A3 (de) 2007-12-06 2013-06-26 Alstom Technology Ltd Kombikraftwerk mit Abgasrückführung und CO2-Abscheidung sowie Verfahren zum Betrieb eines solchen Kombikraftwerks
US8133298B2 (en) 2007-12-06 2012-03-13 Air Products And Chemicals, Inc. Blast furnace iron production with integrated power generation
US7536252B1 (en) 2007-12-10 2009-05-19 General Electric Company Method and system for controlling a flowrate of a recirculated exhaust gas
US8046986B2 (en) 2007-12-10 2011-11-01 General Electric Company Method and system for controlling an exhaust gas recirculation system
US20090157230A1 (en) 2007-12-14 2009-06-18 General Electric Company Method for controlling a flowrate of a recirculated exhaust gas
JP5118496B2 (ja) 2008-01-10 2013-01-16 三菱重工業株式会社 ガスタービンの排気部の構造およびガスタービン
GB0800940D0 (en) 2008-01-18 2008-02-27 Milled Carbon Ltd Recycling carbon fibre
US7695703B2 (en) 2008-02-01 2010-04-13 Siemens Energy, Inc. High temperature catalyst and process for selective catalytic reduction of NOx in exhaust gases of fossil fuel combustion
US20090193809A1 (en) 2008-02-04 2009-08-06 Mark Stewart Schroder Method and system to facilitate combined cycle working fluid modification and combustion thereof
WO2009098597A2 (en) 2008-02-06 2009-08-13 Osum Oil Sands Corp. Method of controlling a recovery and upgrading operation in a reservor
CA2715973C (en) 2008-02-12 2014-02-11 Foret Plasma Labs, Llc System, method and apparatus for lean combustion with plasma from an electrical arc
EP2093403B1 (en) 2008-02-19 2016-09-28 C.R.F. Società Consortile per Azioni EGR control system
US8051638B2 (en) 2008-02-19 2011-11-08 General Electric Company Systems and methods for exhaust gas recirculation (EGR) for turbine engines
US20090223227A1 (en) 2008-03-05 2009-09-10 General Electric Company Combustion cap with crown mixing holes
US8448418B2 (en) 2008-03-11 2013-05-28 General Electric Company Method for controlling a flowrate of a recirculated exhaust gas
US7926292B2 (en) 2008-03-19 2011-04-19 Gas Technology Institute Partial oxidation gas turbine cooling
US8001789B2 (en) 2008-03-26 2011-08-23 Alstom Technologies Ltd., Llc Utilizing inlet bleed heat to improve mixing and engine turndown
US7985399B2 (en) 2008-03-27 2011-07-26 Praxair Technology, Inc. Hydrogen production method and facility
US9027321B2 (en) 2008-03-28 2015-05-12 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
MY156350A (en) 2008-03-28 2016-02-15 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
CA2718803C (en) 2008-03-28 2016-07-12 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
EP2107305A1 (en) 2008-04-01 2009-10-07 Siemens Aktiengesellschaft Gas turbine system and method
US8459017B2 (en) 2008-04-09 2013-06-11 Woodward, Inc. Low pressure drop mixer for radial mixing of internal combustion engine exhaust flows, combustor incorporating same, and methods of mixing
US8272777B2 (en) 2008-04-21 2012-09-25 Heinrich Gillet Gmbh (Tenneco) Method for mixing an exhaust gas flow
FR2930594B1 (fr) 2008-04-29 2013-04-26 Faurecia Sys Echappement Element d'echappement comportant un moyen statique pour melanger un additif a des gaz d'echappement
US8240153B2 (en) 2008-05-14 2012-08-14 General Electric Company Method and system for controlling a set point for extracting air from a compressor to provide turbine cooling air in a gas turbine
US8397482B2 (en) 2008-05-15 2013-03-19 General Electric Company Dry 3-way catalytic reduction of gas turbine NOx
US8209192B2 (en) 2008-05-20 2012-06-26 Osum Oil Sands Corp. Method of managing carbon reduction for hydrocarbon producers
US20090301054A1 (en) 2008-06-04 2009-12-10 Simpson Stanley F Turbine system having exhaust gas recirculation and reheat
US20100003123A1 (en) 2008-07-01 2010-01-07 Smith Craig F Inlet air heating system for a gas turbine engine
US7955403B2 (en) 2008-07-16 2011-06-07 Kellogg Brown & Root Llc Systems and methods for producing substitute natural gas
US20100018218A1 (en) 2008-07-25 2010-01-28 Riley Horace E Power plant with emissions recovery
US8110012B2 (en) 2008-07-31 2012-02-07 Alstom Technology Ltd System for hot solids combustion and gasification
US7753972B2 (en) 2008-08-17 2010-07-13 Pioneer Energy, Inc Portable apparatus for extracting low carbon petroleum and for generating low carbon electricity
US7674443B1 (en) 2008-08-18 2010-03-09 Irvin Davis Zero emission gasification, power generation, carbon oxides management and metallurgical reduction processes, apparatus, systems, and integration thereof
WO2010020655A1 (en) 2008-08-21 2010-02-25 Shell Internationale Research Maatschappij B.V. Improved process for production of elemental iron
EP2342434B1 (en) 2008-09-19 2012-08-15 Renault Trucks Mixing device in an exhaust gas pipe
US7931888B2 (en) 2008-09-22 2011-04-26 Praxair Technology, Inc. Hydrogen production method
US8316784B2 (en) 2008-09-26 2012-11-27 Air Products And Chemicals, Inc. Oxy/fuel combustion system with minimized flue gas recirculation
CN102177326B (zh) 2008-10-14 2014-05-07 埃克森美孚上游研究公司 控制燃烧产物的方法与装置
US8454350B2 (en) 2008-10-29 2013-06-04 General Electric Company Diluent shroud for combustor
MX2011005355A (es) 2008-11-24 2011-09-01 Ares Turbine As Turbina de gas con combustion externa, aplicando un intercambiador de calor de regeneracion de rotacion.
EP2192347B1 (en) 2008-11-26 2014-01-01 Siemens Aktiengesellschaft Tubular swirling chamber
CA2646171A1 (en) 2008-12-10 2010-06-10 Her Majesty The Queen In Right Of Canada, As Represented By The Minist Of Natural Resources Canada High pressure direct contact oxy-fired steam generator
CA2974504C (en) 2008-12-12 2021-04-06 Maoz Betser-Zilevitch Steam generation process and system for enhanced oil recovery
US20100170253A1 (en) 2009-01-07 2010-07-08 General Electric Company Method and apparatus for fuel injection in a turbine engine
US20100180565A1 (en) 2009-01-16 2010-07-22 General Electric Company Methods for increasing carbon dioxide content in gas turbine exhaust and systems for achieving the same
JP4746111B2 (ja) 2009-02-27 2011-08-10 三菱重工業株式会社 Co2回収装置及びその方法
US20100326084A1 (en) 2009-03-04 2010-12-30 Anderson Roger E Methods of oxy-combustion power generation using low heating value fuel
US8127936B2 (en) 2009-03-27 2012-03-06 Uop Llc High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US8127937B2 (en) 2009-03-27 2012-03-06 Uop Llc High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US20100300102A1 (en) 2009-05-28 2010-12-02 General Electric Company Method and apparatus for air and fuel injection in a turbine
JP5173941B2 (ja) 2009-06-04 2013-04-03 三菱重工業株式会社 Co2回収装置
SG176670A1 (en) 2009-06-05 2012-01-30 Exxonmobil Upstream Res Co Combustor systems and methods for using same
JP5383338B2 (ja) 2009-06-17 2014-01-08 三菱重工業株式会社 Co2回収装置及びco2回収方法
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
EP2284359A1 (en) 2009-07-08 2011-02-16 Bergen Teknologioverføring AS Method of enhanced oil recovery from geological reservoirs
US8348551B2 (en) 2009-07-29 2013-01-08 Terratherm, Inc. Method and system for treating contaminated materials
US8479489B2 (en) 2009-08-27 2013-07-09 General Electric Company Turbine exhaust recirculation
SG178160A1 (en) 2009-09-01 2012-03-29 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US10001272B2 (en) 2009-09-03 2018-06-19 General Electric Technology Gmbh Apparatus and method for close coupling of heat recovery steam generators with gas turbines
US7937948B2 (en) 2009-09-23 2011-05-10 Pioneer Energy, Inc. Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
EP2301650B1 (en) 2009-09-24 2016-11-02 Haldor Topsøe A/S Process and catalyst system for scr of nox
US8381525B2 (en) 2009-09-30 2013-02-26 General Electric Company System and method using low emissions gas turbine cycle with partial air separation
US20110088379A1 (en) 2009-10-15 2011-04-21 General Electric Company Exhaust gas diffuser
US8337139B2 (en) 2009-11-10 2012-12-25 General Electric Company Method and system for reducing the impact on the performance of a turbomachine operating an extraction system
US20110126512A1 (en) 2009-11-30 2011-06-02 Honeywell International Inc. Turbofan gas turbine engine aerodynamic mixer
US20110138766A1 (en) 2009-12-15 2011-06-16 General Electric Company System and method of improving emission performance of a gas turbine
US8337613B2 (en) 2010-01-11 2012-12-25 Bert Zauderer Slagging coal combustor for cementitious slag production, metal oxide reduction, shale gas and oil recovery, enviromental remediation, emission control and CO2 sequestration
DE102010009043B4 (de) 2010-02-23 2013-11-07 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Statischer Mischer für eine Abgasanlage einer Brennkraftmaschine
US8438852B2 (en) 2010-04-06 2013-05-14 General Electric Company Annular ring-manifold quaternary fuel distributor
US8635875B2 (en) 2010-04-29 2014-01-28 Pratt & Whitney Canada Corp. Gas turbine engine exhaust mixer including circumferentially spaced-apart radial rows of tabs extending downstream on the radial walls, crests and troughs
US8372251B2 (en) 2010-05-21 2013-02-12 General Electric Company System for protecting gasifier surfaces from corrosion
SG186157A1 (en) 2010-07-02 2013-01-30 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
PL2588727T3 (pl) 2010-07-02 2019-05-31 Exxonmobil Upstream Res Co Spalanie stechiometryczne z recyrkulacją gazów spalinowych i chłodnicą bezpośredniego kontaktu
MX340083B (es) 2010-07-02 2016-06-24 Exxonmobil Upstream Res Company * Sistemas y metodos de generacion de potencia de triple ciclo de baja emision.
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
CA2801488C (en) 2010-07-02 2018-11-06 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
AU2011271636B2 (en) 2010-07-02 2016-03-17 Exxonmobil Upstream Research Company Low emission power generation systems and methods
US8268044B2 (en) 2010-07-13 2012-09-18 Air Products And Chemicals, Inc. Separation of a sour syngas stream
US8226912B2 (en) 2010-07-13 2012-07-24 Air Products And Chemicals, Inc. Method of treating a gaseous mixture comprising hydrogen, carbon dioxide and hydrogen sulphide
US8206669B2 (en) 2010-07-27 2012-06-26 Air Products And Chemicals, Inc. Method and apparatus for treating a sour gas
US9019108B2 (en) 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
US8627643B2 (en) 2010-08-05 2014-01-14 General Electric Company System and method for measuring temperature within a turbine system
US9097182B2 (en) 2010-08-05 2015-08-04 General Electric Company Thermal control system for fault detection and mitigation within a power generation system
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
CN103069130B (zh) 2010-08-06 2016-02-24 埃克森美孚上游研究公司 优化化学计量燃烧的系统和方法
US8220248B2 (en) 2010-09-13 2012-07-17 Membrane Technology And Research, Inc Power generation process with partial recycle of carbon dioxide
US8220247B2 (en) 2010-09-13 2012-07-17 Membrane Technology And Research, Inc. Power generation process with partial recycle of carbon dioxide
US8166766B2 (en) 2010-09-23 2012-05-01 General Electric Company System and method to generate electricity
US8991187B2 (en) 2010-10-11 2015-03-31 General Electric Company Combustor with a lean pre-nozzle fuel injection system
US8726628B2 (en) 2010-10-22 2014-05-20 General Electric Company Combined cycle power plant including a carbon dioxide collection system
US9074530B2 (en) 2011-01-13 2015-07-07 General Electric Company Stoichiometric exhaust gas recirculation and related combustion control
RU2560099C2 (ru) 2011-01-31 2015-08-20 Дженерал Электрик Компани Топливное сопло (варианты)
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563164B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
AU2012231390A1 (en) 2011-03-22 2013-10-03 Exxonmobil Upstream Research Company Systems and methods for carbon dioxide capture in low emission turbine systems
TW201303143A (zh) 2011-03-22 2013-01-16 Exxonmobil Upstream Res Co 低排放渦輪機系統中用於攫取二氧化碳及產生動力的系統與方法
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
US8101146B2 (en) 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
US8910485B2 (en) 2011-04-15 2014-12-16 General Electric Company Stoichiometric exhaust gas recirculation combustor with extraction port for cooling air
US8281596B1 (en) 2011-05-16 2012-10-09 General Electric Company Combustor assembly for a turbomachine
CA2742565C (en) 2011-06-10 2019-04-02 Imperial Oil Resources Limited Methods and systems for providing steam
US8334011B1 (en) * 2011-08-15 2012-12-18 General Electric Company Method for regenerating oxide coatings on gas turbine components by addition of oxygen into SEGR system
US8347600B2 (en) 2011-08-25 2013-01-08 General Electric Company Power plant and method of operation
US8245492B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and method of operation
US8453462B2 (en) 2011-08-25 2013-06-04 General Electric Company Method of operating a stoichiometric exhaust gas recirculation power plant
US8713947B2 (en) 2011-08-25 2014-05-06 General Electric Company Power plant with gas separation system
US8245493B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and control method
US8266883B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant start-up method and method of venting the power plant
US20120023954A1 (en) 2011-08-25 2012-02-02 General Electric Company Power plant and method of operation
US9127598B2 (en) 2011-08-25 2015-09-08 General Electric Company Control method for stoichiometric exhaust gas recirculation power plant
US8266913B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant and method of use
US8205455B2 (en) 2011-08-25 2012-06-26 General Electric Company Power plant and method of operation
US8453461B2 (en) 2011-08-25 2013-06-04 General Electric Company Power plant and method of operation
US20130086917A1 (en) 2011-10-06 2013-04-11 Ilya Aleksandrovich Slobodyanskiy Apparatus for head end direct air injection with enhanced mixing capabilities
US9297316B2 (en) 2011-11-23 2016-03-29 General Electric Company Method and apparatus for optimizing the operation of a turbine system under flexible loads
US9097424B2 (en) 2012-03-12 2015-08-04 General Electric Company System for supplying a fuel and working fluid mixture to a combustor
WO2013147632A1 (en) 2012-03-29 2013-10-03 General Electric Company Bi-directional end cover with extraction capability for gas turbine combustor
CN104246371B (zh) 2012-03-29 2016-06-15 埃克森美孚上游研究公司 涡轮机燃烧器组装件
US20130269356A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US8539749B1 (en) 2012-04-12 2013-09-24 General Electric Company Systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US20130269310A1 (en) 2012-04-12 2013-10-17 General Electric Company Systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US20150040574A1 (en) 2012-04-12 2015-02-12 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US20130269361A1 (en) * 2012-04-12 2013-10-17 General Electric Company Methods relating to reheat combustion turbine engines with exhaust gas recirculation
US20130269358A1 (en) 2012-04-12 2013-10-17 General Electric Company Methods, systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US20130269355A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling an extraction pressure and temperature of a stoichiometric egr system
EP2836692B1 (en) 2012-04-12 2020-02-19 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US20130269357A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a secondary flow system
US20130269360A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a powerplant during low-load operations
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
CN104736817B (zh) 2012-04-26 2017-10-24 通用电气公司 再循环用于燃气涡轮发动机中多个流动路径中的排气的系统和方法
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US20130327050A1 (en) * 2012-06-07 2013-12-12 General Electric Company Controlling flame stability of a gas turbine generator
US20140060073A1 (en) 2012-08-28 2014-03-06 General Electric Company Multiple point overboard extractor for gas turbine
US20140182298A1 (en) 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company Stoichiometric combustion control for gas turbine system with exhaust gas recirculation
US9599070B2 (en) * 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
WO2014071118A1 (en) 2012-11-02 2014-05-08 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US20140182305A1 (en) 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9574496B2 (en) * 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US20140182304A1 (en) 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company System and method for a turbine combustor
US9611756B2 (en) * 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9631815B2 (en) * 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) * 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US20150033751A1 (en) 2013-07-31 2015-02-05 General Electric Company System and method for a water injection system
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969892A (en) * 1971-11-26 1976-07-20 General Motors Corporation Combustion system
CN101397937A (zh) * 2007-09-28 2009-04-01 通用电气公司 低排放涡轮系统和方法
EP2503106A1 (de) * 2011-03-22 2012-09-26 Alstom Technology Ltd Gasturbinenkraftwerk mit Abgasrezirkulation und sauerstoffarmen Kühlgas
CN102767431A (zh) * 2011-04-28 2012-11-07 阿尔斯通技术有限公司 用于运行带有废气再循环的燃气轮机发电装置的方法
CN103032169A (zh) * 2011-10-07 2013-04-10 通用电气公司 功率装置

Also Published As

Publication number Publication date
EP3097288B1 (en) 2019-10-23
CN106414952A (zh) 2017-02-15
US20150204239A1 (en) 2015-07-23
AU2015209443B2 (en) 2019-01-17
EP3097288A1 (en) 2016-11-30
WO2015112633A1 (en) 2015-07-30
US9915200B2 (en) 2018-03-13
JP6549134B2 (ja) 2019-07-24
JP2017503967A (ja) 2017-02-02
AU2015209443A1 (en) 2016-08-18
CA2937493A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
CN106414952B (zh) 用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统和方法
CN107076033B (zh) 用于化学计量排气再循环燃气涡轮机系统的系统和方法
CN105579687B (zh) 控制排气再循环燃气涡轮系统中排气流量的系统和方法
CN105745419B (zh) 使用排气再循环控制燃气涡轮发动机中的燃烧和排放的系统和方法
CN107076024B (zh) 用于具有排气再循环的燃气涡轮机系统的燃烧控制的方法和系统
CN105593492B (zh) 用于燃料喷嘴的系统和方法
CN104956151B (zh) 燃气涡轮燃烧室控制系统
CN104937239B (zh) 化学计量的排气再循环燃气涡轮系统中氧化剂压缩的系统和方法
CN104769255B (zh) 用于化学计量排气再循环燃气涡轮机系统的系统和方法
CN105492728B (zh) 用于监测具有排气再循环的燃气涡轮机系统的系统和方法
CN105637206B (zh) 用于排放来自燃气涡轮发动机的燃烧气体的系统和方法
CN105074139B (zh) 燃气轮机系统及其操作方法
CN105121810B (zh) 燃气涡轮负荷控制系统
CN105189940B (zh) 用于保护具有排气再循环的气体涡轮发动机中的组件的系统和方法
CN107076023B (zh) 用于启动具有排气再循环的燃气涡轮机系统传动系的方法和系统
CN106062340B (zh) 用于燃气涡轮发动机的系统和方法
EP3265724B1 (en) Fuel staging in a gas turbine engine
CN107548433A (zh) 用于具有排气再循环的燃气涡轮发动机中高体积氧化剂流的系统和方法
US20190093517A1 (en) System and method for cooling discharge flow
JP2015536400A (ja) 排気ガス再循環を備えたガスタービンシステムのための量論的燃焼制御
TW201432137A (zh) 在化學計量廢氣再循環氣渦輪系統中用於氧化劑壓縮之系統與方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180713

Termination date: 20210121

CF01 Termination of patent right due to non-payment of annual fee