CN107076033B - 用于化学计量排气再循环燃气涡轮机系统的系统和方法 - Google Patents

用于化学计量排气再循环燃气涡轮机系统的系统和方法 Download PDF

Info

Publication number
CN107076033B
CN107076033B CN201480077431.6A CN201480077431A CN107076033B CN 107076033 B CN107076033 B CN 107076033B CN 201480077431 A CN201480077431 A CN 201480077431A CN 107076033 B CN107076033 B CN 107076033B
Authority
CN
China
Prior art keywords
gas turbine
oxidant
turbine system
burner
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480077431.6A
Other languages
English (en)
Other versions
CN107076033A (zh
Inventor
R·A·亨廷顿
K·D·明托
许斌
J·C·撒切尔
A·L·沃雷尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Publication of CN107076033A publication Critical patent/CN107076033A/zh
Application granted granted Critical
Publication of CN107076033B publication Critical patent/CN107076033B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/082Purpose of the control system to produce clean exhaust gases with as little NOx as possible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

非暂态计算机可读介质存储可由电子装置的处理器执行的指令。该指令包含确定在联接到EGR燃气涡轮机系统的电网中发生瞬态事件的指令,其中,该瞬态事件为欠频或欠压事件。该指令也包含响应于在EGR燃气涡轮机系统在非化学计量燃烧模式中运行时的瞬态事件,增加至该EGR燃气涡轮机系统的燃烧器的燃料的流率的指令。该指令进一步包含响应于在EGR燃气涡轮机系统在化学计量燃烧模式中运行时的瞬态事件,在增加至燃烧器的燃料的流率之前增加至该燃烧器的氧化剂的流率,或者减少电力的本地消耗以增加输出到附接电网的电力的一部分,或者这两者的指令。

Description

用于化学计量排气再循环燃气涡轮机系统的系统和方法
相关申请的交叉引用
本申请要求于2014年12月30日提交的题为“SYSTEM AND METHOD FOR ASTOICHIOMETRIC EXHAUST GAS RECIRCULATION GAS TURBINE SYSTEM(用于化学计量排气再循环燃气涡轮机系统的系统和方法)”的美国非临时专利申请No.14/585,950以及于2014年1月27日提交的题为“SYSTEM AND METHOD FOR A STOICHIOMETRIC EXHAUST GASRECIRCULATION GAS TURBINE SYSTEM(用于化学计量排气再循环燃气涡轮机系统的系统和方法)”的美国临时专利申请No.61/932,178的优先权和权益,所述专利申请的全部内容通过引用并入本文以用于所有目的。
技术领域
本文所公开的主题涉及燃气涡轮机系统,并且更具体地,涉及燃气涡轮机驱动的发电厂。
背景技术
燃气涡轮机发动机应用领域广泛,例如发电、飞行器以及各种机器。燃气涡轮机发动机通常在燃烧器部中利用氧化剂(例如,空气)燃烧燃料以生成热燃烧产物,该热燃烧产物接着驱动涡轮机部的一个或更多个涡轮机级。涡轮机部进而驱动压缩机部的一个或更多个压缩机级,从而将进气的氧化剂连同燃料一起压缩到燃烧器部中。再者,燃料与氧化剂在燃烧器部中混合,并接着燃烧以产生热燃烧产物。根据燃烧状况,这些燃烧产物可包含未燃烧燃料、残留氧化剂和各种排放物(例如,氮氧化物)。此外,燃气涡轮机发动机通常消耗大量的作为氧化剂的空气,并输出相当量的排气到大气中。换句话说,排气通常作为燃气涡轮机运行的副产物被浪费掉。
发明内容
范围与最初要求保护的本发明匹配的特定实施例在下面概述。这些实施例并不旨在限制要求保护的本发明的范围,而是这些实施例仅旨在提供本发明可能形式的简短概括。实际上,本发明可涵盖可与下面阐述的实施例类似或不同的各种形式。
在实施例中,方法包含:在排气再循环(EGR)燃气涡轮机系统的燃烧器中燃烧燃料和氧化剂,该排气再循环(EGR)燃气涡轮机系统产生电力并向电网提供电力的一部分。该方法包含:响应于与电网相关联的瞬态事件,控制EGR燃气涡轮机系统的一个或更多个参数以增加提供至电网的电力的部分。此外,控制包含下列项中的一项或更多项:(A)响应于在EGR燃气涡轮机系统在贫燃料燃烧模式中运行时的瞬态事件,增加至燃烧器的燃料的流率;(B)响应于该瞬态事件,增加在燃烧器中的氧化剂的浓度和/或流率,并响应于氧化剂的增加的浓度和/或流率,增加至燃烧器的燃料的流率以保持在该燃烧器中的大致化学计量当量比;或(C)响应于该瞬态事件减少电力的本地消耗以增加提供至电网的电力的部分。
在另一实施例中,系统包含排气再循环(EGR)燃气涡轮机系统,该排气再循环(EGR)燃气涡轮机系统具有被构造成接收燃料并利用氧化剂燃烧燃料的燃烧器和由来自燃烧器的燃烧产物驱动的涡轮机。该系统包含由涡轮机驱动的发电机,其中,该发电机被构造成生成电力并向电网输出电力的一部分。该系统包含具有闭环控制器和开环控制器的控制系统,该闭环控制器被构造成控制EGR燃气涡轮机系统的一个或更多个参数,该开环控制器被构造成响应于瞬态事件,临时控制该EGR燃气涡轮机系统的一个或更多个参数以增加输出至电网的电力的部分。此外,该开环控制器被构造成:响应于在EGR燃气涡轮机系统在非排放合规(compliant)模式中运行时的瞬态事件,提供控制信号以增加至燃烧器的燃料的流率;以及响应于在该EGR燃气涡轮机系统在排放合规模式中运行时的瞬态事件,提供控制信号以增加燃烧器中的氧化剂的浓度或减少电力的本地消耗,或这两者。
在另一实施例中,非暂态计算机可读介质存储可由电子装置的处理器执行的指令。该指令包含确定联接到EGR燃气涡轮机系统的电网中发生瞬态事件的指令,其中,该瞬态事件为欠频或欠压事件。该指令也包含响应于在EGR燃气涡轮机系统在非化学计量燃烧模式中运行时的瞬态事件,增加至该EGR燃气涡轮机系统的燃烧器的燃料的流率的指令。该指令进一步包含响应于在EGR燃气涡轮机系统在化学计量燃烧模式中运行时的瞬态事件,在增加至燃烧器的燃料的流率之前增加至该燃烧器的氧化剂的流率,或者减少电力的本地消耗以增加输出到附接电网的电力的一部分,或这两者的指令。
附图说明
当参照附图阅读下列具体实施方式时,本发明的这些和其它特征、方面和优点将变得更加容易理解,其中,在整个附图中,相同符号表示相同部件,其中:
图1为具有联接到碳氢化合物生产系统的基于涡轮机的服务系统的系统的实施例的示意图;
图2为图1的系统的实施例的示意图,进一步示出控制系统和组合循环系统;
图3为图1和图2的系统的实施例的示意图,进一步示出燃气涡轮机发动机、排气供应系统和排气处置系统的细节;
图4为用于运行图1至图3的系统的过程的实施例的流程图;
图5为根据本方法的实施例的燃气涡轮机系统(诸如,超低排放技术(ULET)发电厂)的实施例的示意图示部分;
图6为图5的燃气涡轮机系统的示意图,该图示出增压氧化剂压缩机(BOC)系统的实施例;
图7为图5的燃气涡轮机系统的示意图,该图示出排气(EG)供应系统的实施例;以及
图8为示出根据本方法的实施例的针对在启动期间的燃气涡轮机系统的不同加载分布图(loading profile)的当量比随负荷变化的曲线图。
具体实施方式
本发明的一个或更多个具体的实施例将在下面描述。在提供这些实施例的简要描述的工作中,实际实施方式的所有特征可能不在本说明书中进行描述。应当明白,在作为工程或设计项目的任何此类实际实施方式的开发中,做出众多与实施方式相关的决定以实现指定目标,诸如符合在不同实施方式中彼此不同的系统相关和/或商业相关约束。而且,应当明白,此类工作可能是复杂和费时的,然而,对本领域的普通技术人员来说,承担具有本公开益处的设计、装配和制造仍然是例行工作。
详细示例实施例在本文公开。然而,本文公开的特定结构和功能细节仅仅表示描述示例实施例的目的。然而,本发明的实施例可以体现为许多替代形式,并且不应仅限于本文阐述的实施例。
因此,在示例实施例能够进行各种更改和替换形式时,其实施例借助于附图中的示例示出并将在本文中详细描述。然而,应当理解,本发明并不旨在将示例实施例限制在所公开的特定形式,而是相反,示例实施例旨在覆盖落入本发明的范围内的所有更改、等效物和替代。
本文所使用术语仅用于描述某些实施例,并不旨在限制示例实施例。如本文所用,单数形式“一个(a、an)”、“该(the)”旨在也包含复数形式,除非上下文明确指出。术语“包括(comprises/comprising)”和/或“包含(includes/including)”当用于本文时指定所陈述的特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多个其它特征、整数、步骤、操作、元件、部件和/或其组的存在或添加。
虽然术语第一、第二、主要、次要等可以在本文中被用于描述各个元件,但是这些元件不应受这些术语限制。这些术语仅用于将一个要素与另一个要素区分开。例如但不限于,在没有偏离示例实施例的范围的情况下,第一元件可以被称为第二元件,以及同样,第二元件可以被称为第一元件。正如本文所使用的,术语“和/或”包含一个或更多个关联列出项目的任何一个和全部组合。
仅为了方便读者,特定术语可以被用于本文中,但是不应被视为本发明的范围的限制。例如,词组像“上面”、“下面”、“左侧”、“右侧”、“前面”、“后面”、“顶部”、“底部”、“水平的”、“垂直的”、“上游”、“下游”、“前部”、“后部”等;仅描述在附图中示出的构形。实际上,本发明的实施例的一个或更多个元件可以在任何方向取向,且因此,所述术语应当被理解为涵盖此类变化,除非以其他方式指出。
如下面所详细论述的,所公开的实施例通常涉及具有排气再循环(EGR)的燃气涡轮机系统,且特别地,涉及使用EGR的燃气涡轮机系统的化学计量操作。例如,燃气涡轮机系统可被配置成沿排气再循环路径再循环排气,连同至少一些再循环排气一起化学计量燃烧燃料和氧化剂,并收集排气用于各种目标系统。排气再循环连同化学计量燃烧可帮助增加排气中二氧化碳(CO2)的浓度水平,该排气然后能够被后处理以分离和提纯CO2和氮气(N2)以用于各种目标系统。燃气涡轮机系统也可采用沿排气再循环路径的各种排气处置(例如,热回收、催化反应等),从而增加CO2的浓度水平、减少其它排放(例如,一氧化碳、氮氧化物以及未燃烧碳氢化合物)的浓度水平并增加能量回收(例如,用热回收单元)。此外,燃气涡轮机发动机可被配置成与一个或更多个扩散火焰(例如,使用扩散燃料喷嘴)、预混合火焰(例如,使用预混合燃料喷嘴)或它们的任何组合来燃烧燃料和氧化剂。在某些实施例中,扩散火焰可帮助将化学计量燃烧稳定性和操作保持在特定限度内,这进而有助于增加CO2的产量。例如,与用预混合火焰运行的燃气涡轮机系统相比,用扩散火焰运行的燃气涡轮机系统可使更大量的EGR可行。EGR的增加量进而帮助增加CO2产量。可能的目标系统包含管道、储罐、固碳(carbon sequestration)系统,以及碳氢化合物生产系统,诸如提高原油采收率(EOR)系统。
具体地,本实施例涉及燃气涡轮机系统,即包含超低排放技术(ULET)发电厂的化学计量排气再循环(EGR)系统。这些系统通常包含联接到电网并生成用于电网的电力的至少一个燃气涡轮机发动机。例如,本实施例包含具有一个或更多个发电机的ULET发电厂,该一个或更多个发电机将由一个或更多个EGR燃气涡轮机发动机所提供的机械功率的一部分转换为用于输送到电网的电力。应明白,此ULET发电厂可尝试对电网中的瞬态事件(例如,电压和/或频率的快速变化的周期)做出响应。例如,通过增加一个或更多个燃气涡轮机的机械功率输出以便增加一个或更多个发电机的电力输出,ULET发电厂可对瞬态事件做出响应并解决该瞬态事件。通过具体示例,电网上的瞬态事件可包含频率下降(例如,电网频率下降1%)以及ULET发电厂可在特定时间窗(例如,在瞬态事件开始的约10秒内)内增加其电力输出(例如,拾取发电厂的额定基本负荷容量的10%),以解决该瞬态事件。例如,对瞬态事件的响应可包含快速增加至SEGR燃气涡轮机系统的燃烧器的氧化剂和燃料流二者,从而保持大致化学计量燃烧同时增加功率输出。遗憾的是,在没有所公开的实施例的情况下,使用SEGR燃气涡轮机系统供电的ULET可能不具有任何过量的氧化剂(例如,空气或氧气),从而能对瞬态事件做出快速响应,因为SEGR系统在燃料和氧化剂的化学计量比下运行或者接近燃料和氧化剂的化学计量比运行。
因此,如下面更详细阐述的,本实施例涉及用于控制发电SEGR燃气涡轮机系统(例如,ULET发电厂)的部件以快速增加该系统的机械功率输出和/或电力输出以便解决附接电网中的瞬态事件(例如,频率和/或电压下降)的方法。具体地,某些实施例可能够使ULET发电厂快速增加燃烧器中的可用氧化剂的量以便快速增加系统的可用机械功率和电力。另外,某些实施例可能够使ULET发电厂在发电厂加载期间(例如,在启动期间),增加燃烧器中的可用氧化剂的量以解决在发电厂在非排放合规的模式中运行时发生的瞬态电网事件。其它当前公开的实施例可能够使ULET发电厂禁用ULET发电厂的某些部件(例如,产气压缩机)以便减少或限制在发电厂内的电力消耗,这可暂时增加从发电厂输出的电力量以支持在瞬态事件期间的电网。另外,本实施例能够使控制系统利用闭环和开环控制策略的组合,并且可进一步允许ULET发电厂在超出某些程序化运行约束或限制(例如,燃气涡轮机发动机的扭矩限制)的状态下临时运行以便解决电网上的瞬态事件。
考虑到上述实施例,图1为具有与基于涡轮机的服务系统14相关联的碳氢化合物生产系统12的系统10的实施例的示意图。如下面进一步详细论述的,基于涡轮机的服务系统14的各种实施例被构造成向碳氢化合物生产系统12提供促进油和/或气生产或回收的各种服务,诸如电力、机械功率和流体(例如,排气)。在所示出的实施例中,碳氢化合物生产系统12包含油/气抽取系统16和联接到地下储层20(例如,油、气或碳氢化合物储层)的提高原油采收率(EOR)系统18。油/气抽取系统16包含各种地面设备22,诸如联接到油/气井26的采油树或生产树24。而且,井26可包含一个或更多个管件28,其延伸通过地球32中的钻孔30至地下储层20。树24包含一个或更多个阀、扼流圈、隔离套、防喷器以及各种流量控制装置,其调节压力并控制到地下储层20和来自该地下储层20的流量。虽然树24通常被用于控制从地下储层20流出的生产流体(例如,油或气)的流量,EOR系统18可通过将一种或更多种流体喷射到地下储层20中以增加油或气的生产。
因此,EOR系统18可包含流体喷射系统34,其具有一个或更多个管件36,该一个或更多个管件36延伸通过地球32中的孔38至地下储层20。例如,EOR系统18可以将一种或更多种流体40(例如,气体、蒸汽、水、化学物或其任何组合)传送到流体喷射系统34中。例如,如下面所进一步详细论述的,EOR系统18可被联接到基于涡轮机的服务系统14,使得系统14将排气42(例如,基本没有氧或完全没有氧)传送到EOR系统18以用作喷射流体40。流体喷射系统34将流体40(例如,排气42)传送通过一个或更多个管件36到地下储层20中,如箭头44所指示的。喷射流体40通过与油/气井26的管件28距离偏移距离46的管件36进入地下储层20。因此,喷射流体40置换沉积在地下储层20中的油/气48,并通过碳氢化合物生产系统12的一个或更多个管件28驱动油/气48上升,如箭头50所指示的。如下面所进一步详细论述的,喷射流体40可包括源自基于涡轮机的服务系统14的排气42,该基于涡轮机的服务系统14能够生成在碳氢化合物生产系统12所需的现场排气42。换句话说,基于涡轮机的系统14可同时生成供碳氢化合物生产系统12使用的一种或更多种服务(例如,电力、机械功率、蒸汽、水(例如,淡化水)以及排气(例如,基本没有氧)),从而减少或消除此类服务对外部源的依赖。
在所示出的实施例中,基于涡轮机的服务系统14包含化学计量排气再循环(SEGR)燃气涡轮机系统52和排气(EG)处置系统54。燃气涡轮机系统52可被配置成在化学计量燃烧运行模式(例如,化学计量控制模式)和非化学计量燃烧运行模式(例如,非化学计量控制模式)(诸如贫燃料控制模式或富燃料控制模式)中运行。在化学计量控制模式中,燃烧通常以燃料和氧化剂的大致化学计量比发生,从而产生大致化学计量燃烧。具体地,化学计量燃烧通常包括在燃烧反应中基本消耗全部的燃料和氧化剂,使得燃烧产物基本没有或完全没有未燃烧燃料和氧化剂。化学计量燃烧的一个量度是当量比,或phi(Φ),其是实际燃料/氧化剂比相对于化学计量燃料/氧化剂比的比。大于1.0的当量比产生燃料和氧化剂的富燃料燃烧,反之,小于1.0的当量比产生燃料和氧化剂的贫燃料燃烧。相反,1.0的当量比产生既不是富燃料又不是贫燃料的燃烧,从而在燃烧反应中基本消耗所有的燃料和氧化剂。在所公开实施例的背景下,术语“化学计量”或“基本化学计量”可指约0.95到约1.05的当量比。然而,所公开的实施例也可包含1.0加上或减去0.01、0.02、0.03、0.04、0.05或更多的当量比。再者,在基于涡轮机的服务系统14中的燃料和氧化剂的化学计量燃烧可产生基本没有未燃烧燃料或氧化剂剩下的燃烧产物或排气(例如,42)。例如,排气42可具有小于1、2、3、4或5体积百分比的氧化剂(例如,氧)、未燃烧燃料或碳氢化合物(例如,HC)、氮氧化物(例如,NOx)、一氧化碳(CO)、硫氧化物(例如,SOx)、氢和其它未完全燃烧产物。通过进一步示例,排气42可以具有小于约每百万份体积的10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000份(ppmv)的氧化剂(例如,氧)、未燃烧燃料或碳氢化合物(例如,HC)、氮氧化物(例如,NOx)、一氧化碳(CO)、硫氧化物(例如,SOx)、氢和其它未完全燃烧产物。然而,所公开实施例也可在排气42中产生其它范围的残留燃料、氧化剂和其它排放水平。如本文所使用的,术语排放、排放水平和排放目标可指的是特定燃烧产物(例如,NOx、CO、SOx、O2、N2、H2、HC等)的浓度水平,其可以存在于再循环气体流、排出的气体流(例如,排放到大气中)以及用于各种目标系统(例如,碳氢化合物生产系统12)中的气体流中。
虽然SEGR燃气涡轮机系统52和EG处置系统54可在不同实施例中包含各种部件,所示出的EG处置系统54包括接收和处理源自SEGR燃气涡轮机系统52的排气60的热回收蒸汽发生器(HRSG)56以及排气再循环(EGR)系统58。HRSG 56可以包括一个或更多个热交换器、冷凝器和各种热回收设备,所述设备集中起将排气60的热传递给水流从而生成蒸汽62的作用。蒸汽62可被用在一个或更多个蒸汽涡轮机、EOR系统18或碳氢化合物生产系统12的任何其他部分中。例如,HRSG 56可以生成低压、中压和/或高压蒸汽62,其可以被选择性应用于低压、中压和高压蒸汽涡轮机级或EOR系统18的不同应用。除了蒸汽62之外,处理水64(例如,淡化水)可以通过HRSG56、EGR系统58和/或EG处置系统54的其他部分或SEGR燃气涡轮机系统52生成。处理水64(例如,淡化水)在例如内陆或沙漠地区的水短缺区域会是特别有用的。处理水64可以至少部分由于驱动SEGR燃气涡轮机系统52内燃料燃烧的大体积空气生成。虽然蒸汽62和水64的现场生成可能在许多应用中是有益的(包含碳氢化合物生产系统12),排气42、60的现场生成对EOR系统18可能是特别有益的,这是由于来源于SEGR燃气涡轮机系统52的其低氧含量、高压和热量。因此,HRSG 56、EGR系统58和/或EG处置系统54的另一部分可输出排气66或将排气66再循环到SEGR燃气涡轮机系统52中,同时还将排气42传送到EOR系统18以与碳氢化合物生产系统12一起使用。同样,排气42可从SEGR燃气涡轮机系统52直接抽取(即,没有经过EG处置系统54),以用于碳氢化合物生产系统12的EOR系统18。
排气再循环通过EG处置系统54的EGR系统58来处理。例如,EGR系统58包含一个或更多个管道、阀、鼓风机、排气处理系统(例如,过滤器、微粒去除单元、气体分离单元、气体净化单元、热交换器、热回收单元、水分去除单元、催化剂单元、化学物喷射单元或它们的任何组合)以及控制装置,以将排气沿排气再循环路径从SEGR燃气涡轮机系统52的输出端(例如,排放的排气60)再循环到输入端(例如,进气排气66)。在所示出的实施例中,SEGR燃气涡轮机系统52将排气66吸入到具有一个或更多个压缩机的压缩机部,从而将排气66压缩连同氧化剂68和一个或更多个燃料70的吸气供燃烧器部使用。氧化剂68可包括环境空气、纯氧、富氧空气、氧减少空气、氧-氮混合物或促进燃料70燃烧的任何合适氧化剂。燃料70可包括一种或更多种气体燃料、液体燃料或它们的任何组合。例如,燃料70可包括天然气、液化天然气(LNG)、合成气、甲烷、乙烷、丙烷、丁烷、石脑油、煤油、柴油、乙醇、甲醇、生物燃料或它们的任何组合。
SEGR燃气涡轮机系统52在燃烧器部中混合并燃烧排气66、氧化剂68和燃料70,从而生成热燃烧气体或排气60,以驱动涡轮机部中的一个或更多个涡轮机级。在某些实施例中,在燃烧器部中的每个燃烧器包含一个或更多个预混合燃料喷嘴、一个或更多个扩散燃料喷嘴或它们的任何组合。例如,每个预混合燃料喷嘴可被配置成在内部混合在燃料喷嘴内和/或部分在该燃料喷嘴上游的氧化剂68和燃料70,从而将氧化剂燃料混合物从燃料喷嘴喷射到用于预混合燃烧(例如,预混合火焰)的燃烧区中。通过进一步示例,每个扩散燃料喷嘴可被配置成将燃料喷嘴内的氧化剂68流与燃料70流隔离,从而将来自燃料喷嘴的氧化剂68和燃料70分别喷射到用于扩散燃烧(例如,扩散火焰)的燃烧区中。具体地,通过扩散燃料喷嘴提供的扩散燃烧延迟氧化剂68与燃料70的混合,直到初始燃烧点,即火焰区域。在采用扩散燃料喷嘴的实施例中,扩散火焰可提供增加的火焰稳定性,因为扩散火焰通常在氧化剂68与燃料70的单独流之间的化学计量点(即,在氧化剂68与燃料70在混合时)形成。在某些实施例中,一种或更多种稀释剂(例如,排气60、蒸汽、氮或另一惰性气体)可在扩散燃料喷嘴或预混合燃料喷嘴中与氧化剂68、燃料70或两者预混合。此外,一种或更多种稀释剂(例如,排气60、蒸汽、氮或另一惰性气体)可在每个燃燃烧器内的燃烧点处或在其下游被喷射到燃烧器中。使用这些稀释剂可帮助调剂火焰(例如,预混合火焰或扩散火焰),从而帮助减少NOx(诸如一氧化氮(NO)和二氧化氮(NO2))排放。与火焰的类型无关,燃烧产生热燃烧气体或排气60,以驱动一个或更多个涡轮机级。在每个涡轮机级被排气60驱动时,SEGR燃气涡轮机系统52生成机械功率(M)72和/或电力(E)74(例如,经由发电机)。系统52也输出排气60,并且可进一步输出水64。再者,水64可为处理水,诸如淡化水,这在各种现场或非现场应用中是有用的。
排气抽取也由使用一个或更多个抽取点76的SEGR燃气涡轮机系统52提供。例如,所示出的实施例包含具有排气(EG)抽取系统80和排气(EG)处理系统82的排气(EG)供应系统78,其从抽取点76接收排气42、处理排气42并接着向各个目标系统供应或分配排气42。目标系统可包含EOR系统18和/或其它系统,诸如管道86、储罐88或固碳系统90。EG抽取系统80可包含一个或更多个管道、阀、控制装置和流分离件,这促进排气42与氧化剂68、燃料70以及其它杂质的隔离,同时也控制被抽取排气42的温度、压力和流率。EG处理系统82可包含一个或更多个热交换器(例如,热回收单元,诸如热回收蒸汽发生器、冷凝器、冷却器或加热器)、催化剂系统(例如,氧化催化剂系统)、微粒和/或水去除系统(例如,气体脱水单元、惯性分离器、聚结过滤器、不透水过滤器以及其它过滤器)、化学物喷射系统、溶剂型处理系统(例如,吸收剂、闪蒸罐等)、碳收集系统、气体分离系统、气体净化系统和/或溶剂型处理系统、排气压缩机或它们的任何组合。EG处理系统82的这些子系统能够控制温度、压力、流率、水分含量(例如,水去除量)、微粒含量(例如,微粒去除量)以及气体成分(例如,CO2、N2等的百分比)。
根据目标系统,被抽取排气42通过EG处理系统82的一个或更多个子系统进行处理。例如,EG处理系统82可引导全部或部分排气42通过碳收集系统、气体分离系统、气体净化系统和/或溶剂型处理系统,其被控制以分离和净化含碳气体(例如,二氧化碳)92和/或氮气(N2)94以供各种目标系统使用。例如,EG处理系统82的实施例可执行气体分离和净化以产生排气42的多个不同流95,诸如第一流96、第二流97和第三流98。第一流96可具有富二氧化碳和/或贫氮气(例如,富CO2贫N2流)的第一成分。第二流97可具有含有在中间浓度水平的二氧化碳和/或氮气(例如,中间浓度CO2、N2流)的第二成分。第三流98可具有贫二氧化碳和/或富氮气(例如,贫CO2富N2流)的第三成分。每个流95(例如,96、97和98)可包含气体脱水单元、过滤器、气体压缩机或它们的任何组合,以促进流95输送到目标系统。在某些实施例中,富CO2贫N2流96可具有大于约70、75、80、85、90、95、96、97、98或99体积百分比的CO2纯度或浓度水平,以及小于约1、2、3、4、5、10、15、20、25或30体积百分比的N2纯度或浓度水平。相反,贫CO2富N2流98可具有小于约1、2、3、4、5、10、15、20、25或30体积百分比的CO2纯度或浓度水平,以及大于约70、75、80、85、90、95、96、97、98或99体积百分比的N2纯度或浓度水平。中间浓度的CO2、N2流97可具有在约30到70、35到65、40到60或45到55体积百分比之间的CO2纯度或浓度水平和/或N2纯度或浓度水平。虽然前述范围仅仅是非限制性示例,但富CO2贫N2流96和贫CO2富N2流98可能特别适合与EOR系统18和其它系统84一起使用。然而,这些富、贫或中间浓度CO2流95中的任何一个可单独或以各种组合与EOR系统18和其它系统84一起使用。例如,EOR系统18和其它系统84(例如,管道86、储罐88以及固碳系统90)均可以接收一个或更多个富CO2贫N2流96、一个或更多个贫CO2富N2流98、一个或更多个中间浓度CO2、N2流97、以及一个或更多个未处理的排气42流(即,绕过EG处理系统82)。
EG抽取系统80沿压缩机部、燃烧器部和/或涡轮机部在一个或更多个抽取点76处抽取排气42,使得排气42可以以合适温度和压力用在EOR系统18和其它系统84中。EG抽取系统80和/或EG处理系统82还可以循环流体流(例如,排气42)至EG处置系统54和从EG处置系统54循环流体流。例如,经过EG处置系统54的排气42的一部分可以被EG抽取系统80抽取以用于EOR系统18和其它系统84中。在某些实施例中,EG供应系统78和EG处置系统54可彼此独立或集成在一起,并因此可使用单独或共同的子系统。例如,EG处理系统82可被EG供应系统78和EG处置系统54两者使用。从EG处置系统54抽取的排气42可经历多级气体处理,诸如在EG处置系统54中的一个或更多个气体处理级,接着是EG处理系统82中的一个或更多个气体处理附加级。
在每个抽取点76处,由于在EG处置系统54中的基本上化学计量燃烧和/或气体处理,被抽取排气42可基本不含氧化剂68和燃料70(例如,未燃烧的燃料或碳氢化合物)。而且,根据目标系统,被抽取排气42可在EG供应系统78的EG处理系统82中经受进一步处理,从而进一步降低任何残留氧化剂68、燃料70或其它不良燃烧产物。例如,在EG处理系统82中的处理之前或之后,被抽取排气42可具有小于1、2、3、4或5体积百分比的氧化剂(例如,氧)、未燃烧燃料或碳氢化合物(例如,HC)、氮氧化物(例如,NOx)、一氧化碳(CO)、硫氧化物(例如,SOx)、氢和其它未完全燃烧产物。通过进一步示例,在EG处理系统82中的处理之前或之后,被抽取排气42可以具有小于约每百万份体积的10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000份(ppmv)的氧化剂(例如,氧)、未燃烧燃料或碳氢化合物(例如,HC)、氮氧化物(例如,NOx)、一氧化碳(CO)、硫氧化物(例如,SOx)、氢和其他未完全燃烧产物。因此,排气42特别适合与EOR系统18一起使用。
涡轮机系统52的EGR运行具体使能在多个位置76处的排气抽取。例如,系统52的压缩机部可被用于压缩没有任何氧化剂68的排气66(即,只压缩排气66),使得基本上无氧排气42可在输入氧化剂68和燃料70之前从压缩机部和/或燃烧器部抽取。抽取点76可被定位在毗邻压缩机级之间的级间端口处、在沿压缩机排出套管的端口处、在沿燃烧器部中的每个燃烧器的端口处或它们的任何组合。在某些实施例中,排气66可不与氧化剂68和燃料70混合,直到其到达燃烧器部中的每个燃烧器的盖端部和/或燃料喷嘴。而且,一个或更多个流动隔板(例如,壁、分隔器、挡板等)可被用于将氧化剂68和燃料70与抽取点76隔离。利用这些流动隔板,抽取点76可直接沿燃烧器部中每个燃烧器的壁进行布置。
一旦排气66、氧化剂68和燃料70流过该盖端部(例如,通过燃料喷嘴)进入每个燃烧器的燃烧部分(例如,燃烧腔室)中,SEGR燃气涡轮机系统52被控制提供排气66、氧化剂68和燃料70的大致化学计量燃烧。例如,系统52可保持约0.95到约1.05的当量比。结果,在每个燃烧器中的排气66、氧化剂68和燃料70的混合物的燃烧产物基本是没有氧和未燃烧燃料。因此,燃烧产物(或排气)可从SEGR燃气涡轮机系统52的涡轮机部被抽取以用作被传送到EOR系统18的排气42。沿涡轮机部,抽取点76可被设置在任何涡轮机级处,例如毗邻涡轮机级之间的级间端口处。因此,通过使用任何前述抽取点76,基于涡轮机的服务系统14可生成排气42、抽取排气42并输送排气42到碳氢化合物生产系统12(例如,EOR系统18)以用于地下储层20的油/气48生产。
图2为图1的系统10的实施例的示意图,该图示出被联接到基于涡轮机的服务系统14和碳氢化合物生产系统12的控制系统100。在所示出的实施例中,基于涡轮机的服务系统14包含组合循环系统102,该组合循环系统102包含作为顶循环(topping cycle)的SEGR燃气涡轮机系统52、作为底循环(bottoming cycle)的蒸汽涡轮机104、和HRSG 56以从排气60回收热量以生成用于驱动蒸汽涡轮机104的蒸汽62。再者,SEGR燃气涡轮机系统52接收、混合并化学计量燃烧排气66、氧化剂68和燃料70(例如,预混合火焰和/或扩散火焰),从而产生排气60、机械功率72、电力74和/或水64。例如,SEGR燃气涡轮机系统52可驱动一个或更多个负荷或机器106,诸如发电机、氧化剂压缩机(例如,主空气压缩机)、齿轮箱、泵、碳氢化合物生产系统12的设备或它们的任何组合。在一些实施例中,机器106可包含其它驱动件,诸如与SEGR燃气涡轮机系统52串联的电动马达或蒸汽涡轮机(例如,蒸汽涡轮机104)。因此,由SEGR燃气涡轮机系统52(以及任何附加驱动件)驱动的机器106的输出可包含机械功率72和电力74。机械功率72和/或电力74可用于向碳氢化合物生产系统12现场提供动力,电力74可被分配到电网或它们的任何组合。机器106的输出还可包含压缩流体,诸如用于吸入到SEGR燃气涡轮机系统52的燃烧部中的压缩氧化剂68(例如,空气或氧)。这些输出中的每个(例如,排气60、机械功率72、电力74和/或水64)可被认为是基于涡轮机的服务系统14的服务。
SEGR燃气涡轮机系统52产生可基本不含氧的排气42、60,并且将这种排气42、60传送到EG处置系统54和/或EG供应系统78。EG供应系统78可处理排气42(例如,流95)并将其输送到碳氢化合物生产系统12和/或其它系统84。如上所讨论的,EG处置系统54可包含HRSG56和EGR系统58。HRSG 56可包含一个或更多个热交换器、冷凝器和各种热回收设备,该热回收设备可被用于回收排气60的热量或将该热量传递给水108以生成用于驱动蒸汽涡轮机104的蒸汽62。类似于SEGR燃气涡轮机系统52,蒸汽涡轮机104可驱动一个或更多个负荷或机器106,从而生成机械功率72和电力74。在所示出的实施例中,SEGR燃气涡轮机系统52和蒸汽涡轮机104被串联布置以驱动相同的机器106。然而,在另一些实施例中,SEGR燃气涡轮机系统52和蒸汽涡轮机104可单独驱动不同的机器106,以独立生成机械功率72和/或电力74。在蒸汽涡轮机104被来自HRSG 56的蒸汽62驱动时,蒸汽62的温度和压力逐渐减小。因此,蒸汽涡轮机104将使用过的蒸汽62和/或水108再循环回到HRSG 56中,以用于经由排气60的热回收生成另外的蒸汽。除了蒸汽生成之外,HRSG 56、EGR系统58和/或EG处置系统54的另一个部分可产生水64、与碳氢化合物生产系统12一起使用的排气42、以及用作至SEGR燃气涡轮机系统52的输入的排气66。例如,水64可为处理水64,诸如用于其它应用中的淡化水。淡化水在低可用水量的地区是特别有用的。关于排气60,EG处置系统54的实施例可被配置成通过EGR系统58再循环排气60,排气60可经过或不经过HRSG 56。
在所示出的实施例中,SEGR燃气涡轮机系统52具有排气再循环路径110,该排气再循环路径110从系统52的排气出口延伸到排气进口。沿着路径110,排气60经过EG处置系统54,在所示出的实施例中,EG处置系统54包含HRSG 56和EGR系统58。EGR系统58可包含沿路径110串联和/或并联布置的一个或更多个管道、阀、鼓风机、气体处理系统(例如,过滤器、微粒去除单元、气体分离单元、气体净化单元、热交换器、诸如热回收蒸汽发生器的热回收单元、水分去除单元、催化剂单元、化学物喷射单元或它们的任何组合)。换句话说,EGR系统58可包含沿在系统52的排气出口与排气进口之间的排气再循环路径110的任何流量控制部件、压力控制部件、温度控制部件、水分控制部件和气体成分控制部件。因此,在具有沿路径110的HRSG 56的实施例中,HRSG 56可被认为是EGR系统58的部件。然而,在某些实施例中,HRSG 56可沿独立于排气再循环路径110的排气路径进行设置。不管HRSG 56是否沿着单独路径或与EGR系统58共用的路径,HRSG 56和EGR系统58吸入排气60并输出再循环排气66、与EG供应系统78(例如,用于碳氢化合物生产系统12和/或其它系统84)一起使用的排气42、或另一种排气输出。再者,SEGR燃气涡轮机系统52吸入、混合和化学计量燃烧排气66、氧化剂68和燃料70(例如,预混合火焰和/或扩散火焰),以产生用于分配到EG处置系统54、碳氢化合物生产系统12或其它系统84的基本不含氧和不含燃料的排气60。
如上面参照图1所指出的,碳氢化合物生产系统12可包含各种设备,以促进通过油/气井26从地下储层20回收或生产油/气48。例如,碳氢化合物生产系统12可包含具有流体喷射系统34的EOR系统18。在所示出的实施例中,流体喷射系统34包含排气喷射EOR系统112和蒸汽喷射EOR系统114。虽然流体喷射系统34可从各种源接收流体,但是所示出的实施例可从基于涡轮机的服务系统14接收排气42和蒸汽62。由基于涡轮机的服务系统14产生的排气42和/或蒸汽62也可被传送到碳氢化合物生产系统12以用于其它油/气系统116。
排气42和/或蒸汽62的数量、质量和流量可通过控制系统100来控制。控制系统100可完全专用于基于涡轮机的服务系统14,或控制系统100也可以可选提供用于控制碳氢化合物生产系统12和/或其它系统84的控制装置(或促进控制的至少某些数据)。在所示出的实施例中,控制系统100包含控制器118,其具有处理器120、存储器122、蒸汽涡轮机控制装置124、SEGR气体轮机系统控制装置126和机器控制装置128。处理器120可包含单一处理器或两个或更多个冗余处理器,诸如用于控制基于涡轮机的服务系统14的三重冗余处理器。存储器122可包含易失性和/或非易失性存储器。例如,存储器122可包含一个或更多个硬盘驱动器、闪存、只读存储器、随机存取存储器或它们的任何组合。控制装置124、126和128可包含软件和/或硬件控制装置。例如,控制装置124、126和128可包含存储在存储器122中并可由处理器120执行的各种指令或代码。控制装置124被配置成控制蒸汽涡轮机104的运行,SEGR燃气涡轮机系统控制装置126被配置成控制系统52,以及机器控制装置128被配置成控制机器106。因此,控制器118(例如,控制装置124、126和128)可被配置成协调基于涡轮机的服务系统14的各种子系统,以向碳氢化合物生产系统12提供合适的排气42的流。
在控制系统100的某些实施例中,在附图中示出或在本文中描述的每个元件(例如,系统、子系统和部件)包含(例如,直接在这类元件内、在这类元件上游或下游)一个或更多个工业控制特征件,诸如传感器和控制装置,该工业控制特征件在工业控制网络上连同控制器118一起是彼此通信联接的。例如,与每个元件相关联的控制装置可包含专用装置控制器(例如,包含处理器、存储器和控制指令)、一个或更多个致动器、阀、开关和工业控制设备,其基于传感器反馈130、来自控制器118的控制信号、来自用户的控制信号或它们的任何组合进行控制。因此,本文描述的任何控制功能可用控制指令实现,该控制指令由控制器118、与每个元件关联的专用装置控制器或它们的组合存储和/或执行。
为了促进此类控制功能,控制系统100包含在整个系统10中分布的一个或更多个传感器,以获得用于执行各种控制装置(例如控制装置124、126和128)的传感器反馈130。例如,传感器反馈130可从传感器获得,该传感器分布在整个SEGR燃气涡轮机系统52、机器106、EG处置系统54、蒸汽涡轮机104、碳氢化合物生产系统12中,或分布在整个基于涡轮机的服务系统14或碳氢化合物生产系统12的任何其它部件中。例如,传感器反馈130可包含温度反馈、压力反馈、流率反馈、火焰温度反馈、燃烧动力学反馈、吸入氧化剂成分反馈、吸入燃料成分反馈、排气成分反馈、机械功率72的输出水平、电力74的输出水平、排气42、60的输出量、水64的输出量或质量或它们的任何组合。例如,传感器反馈130可包含排气42、60的组成,以促进在SEGR燃气涡轮机系统52中的化学计量燃烧。例如,传感器反馈130可包含来自沿氧化剂68的氧化剂供应路径的一个或更多个吸入氧化剂传感器、沿燃料70的燃料供应路径的一个或更多个吸入燃料传感器和沿排气再循环路径110和/或在SEGR燃气涡轮机系统52内布置的一个或更多个排气排放传感器的反馈。吸入氧化剂传感器、吸入燃料传感器和排气排放传感器可包含温度传感器、压力传感器、流率传感器和组成传感器。排放传感器可包含用于氮氧化物的传感器(例如,NOx传感器)、用于碳氧化物的传感器(例如,CO传感器和CO2传感器)、用于硫氧化物的传感器(例如,SOx传感器)、用于氢的传感器(例如,H2传感器)、用于氧的传感器(例如,O2传感器)、用于未燃烧碳氢化合物的传感器(例如,HC传感器)、或用于未完全燃烧的其它产物的传感器,或它们的任何组合。
通过使用这种反馈130,控制系统100可调节(例如,增加、减少或保持)排气66、氧化剂68和/或燃料70至SEGR燃气涡轮机系统52(除了其它运行参数以外)中的进气流量,以将当量比保持在合适范围内,例如在约0.95到约1.05之间、在约0.95到约1.0之间、在约1.0到约1.05之间或大致在1.0。例如,控制系统100可分析反馈130以监测排气排放(例如,氮氧化物、诸如CO和CO2的碳氧化物、硫氧化物、氢、氧、未燃烧碳氢化合物和未完全燃烧的其它产物的浓度水平)和/或确定当量比,并接着控制一个或更多个部件以调节排气排放(例如,排气42的浓度水平)和/或当量比。受控部件可包含参照附图示出和描述的任何部件,其包含但不限于,沿氧化剂68、燃料70和排气66的供应路径的阀;氧化剂压缩机、燃料泵或在EG处置系统54中的任何部件;SEGR燃气涡轮机系统52的任何部件;或它们的任何组合。受控部件可调节(例如,增加、减少或保持)在SEGR燃气涡轮机系统52内燃烧的氧化剂68、燃料70和排气66的流率、温度、压力或百分比(例如,当量比)。受控部件也可包含一个或更多个气体处理系统,诸如催化剂单元(例如,氧化催化剂单元)、催化剂单元供应装置(例如,氧化燃料、热量、电力等)、气体净化和/或分离单元(例如,溶剂型分离器、吸收器、闪蒸罐等)以及过滤单元。气体处理系统可帮助减少沿排气再循环路径110、通风口路径(例如,排放到大气中)或到EG供应系统78的抽取路径的各种排气排放。
在某些实施例中,控制系统100可分析反馈130并控制一个或更多个部件以保持或减少排放水平(例如,排气42、60、95的浓度水平)到目标范围,诸如小于每百万份体积约10、20、30、40、50、100、200、300、400、500、1000、2000、3000、4000、5000或10000份(ppmv)。对于排气排放中的每种,例如氮氧化物、一氧化碳、硫氧化物、氢、氧、未燃烧碳氢化合物和未完全燃烧的其它产物的浓度水平,这些目标范围可为相同或不同的。例如,根据当量比,控制系统100可将氧化剂(例如,氧)的排气排放(例如,浓度水平)选择性控制在小于约10、20、30、40、50、60、70、80、90、100、250、500、750或1000ppmv的目标范围内;将一氧化碳(CO)选择性控制在小于约20、50、100、200、500、1000、2500或5000ppmv的目标范围内;以及将氮氧化物(NOX)选择性控制在小于约50、100、200、300、400或500ppmv的目标范围内。在以大致化学计量当量比运行的某些实施例中,控制系统100可将氧化剂(例如,氧)的排气排放(例如,浓度水平)选择性控制在小于约10、20、30、40、50、60、70、80、90或100ppmv的目标范围内;以及将一氧化碳(CO)选择性控制在小于约500、1000、2000、3000、4000或5000ppmv的目标范围内。在以贫燃料当量比(例如,在大约0.95到1.0之间)运行的某些实施例中,控制系统100可将氧化剂(例如,氧)的排气排放(例如,浓度水平)选择性控制在小于约500、600、700、800、900、1000、1100、1200、1300、1400或1500ppmv的目标范围内;将一氧化碳(CO)选择性控制在小于约10、20、30、40、50、60、70、80、90、100、150或200ppmv的目标范围内;以及将氮氧化物(例如,NOx)选择性控制在小于约50、100、150、200、250、300、350或400ppmv的目标范围内。前述目标范围仅仅是示例,并不旨在限制本公开实施例的范围。
控制系统100还可被联接到本地接口132和远程接口134。例如,本地接口132可包含现场设置在基于涡轮机的服务系统14和/或碳氢化合物生产系统12处的计算机工作站。相反,远程接口134可包含诸如通过互联网连接的不在基于涡轮机的服务系统14和碳氢化合物生产系统12现场设置的计算机工作站。这些接口132和134诸如通过传感器反馈130的一个或更多个图形显示、运行参数等等促进基于涡轮机的服务系统14的监测和控制。
再者,如上所指出的,控制器118包含各种控制装置124、126和128,以促进控制基于涡轮机的服务系统14。蒸汽涡轮机控制装置124可接收传感器反馈130并输出控制命令以促使蒸汽涡轮机104运行。例如,蒸汽涡轮机控制装置124可从HRSG 56、机器106、沿蒸汽62路径的温度和压力传感器、沿水108路径的温度和压力传感器以及指示机械功率72和电力74的各个传感器接收传感器反馈130。同样,SEGR燃气涡轮机系统控制装置126可从沿SEGR燃气涡轮机系统52、机器106、EG处置系统54或它们的任何组合设置的一个或更多个传感器接收传感器反馈130。例如,传感器反馈130可从设置在SEGR燃气涡轮机系统52内部或外部的温度传感器、压力传感器、间隙传感器、振动传感器、火焰传感器、燃料组成传感器、排气组成传感器或它们的任何组合获得。最终,机器控制装置128可以从与机械功率72和电力74相关联的各个传感器以及布置在机器106内的传感器接收传感器反馈130。这些控制装置124、126和128中的每个控制装置使用传感器反馈130改善基于涡轮机的服务系统14的运行。
在所示出的实施例中,SEGR燃气涡轮机系统控制装置126可执行指令以控制在EG处置系统54、EG供应系统78、碳氢化合物生产系统12和/或其它系统84中的排气42、60、95的数量和质量。例如,SEGR燃气涡轮机系统控制装置126可将排气60中的氧化剂(例如,氧)和/或未燃烧燃料的水平保持在低于适合于与排气喷射EOR系统112一起使用的阈值。在某些实施例中,阈值水平可为小于排气42、60中的氧化剂(例如,氧)和/或未燃烧燃料的1、2、3、4或5体积百分比;或氧化剂(例如,氧)和/或未燃烧燃料(和其它排气排放)的阈值水平可小于排气42、60中的约每百万份体积的10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000份(ppmv)。通过进一步示例,为了实现这些低水平的氧化剂(例如,氧)和/或未燃烧燃料,SEGR燃气涡轮机系统控制装置126可将在SEGR燃气涡轮机系统52中燃烧的当量比保持在约0.95和约1.05之间。SEGR燃气涡轮机系统控制装置126还可控制EG抽取系统80和EG处理系统82,以将排气42、60、95的温度、压力、流率和气体组成保持在用于排气喷射EOR系统112、管道86、储罐88和固碳系统90的适合范围内。如上所讨论的,EG处理系统82可被控制将排气42净化和/或分离为一种或更多种气体流95,诸如富CO2贫N2流96,中间浓度CO2、N2流97,以及贫CO2富N2流98。除了用于排气42、60和95的控制装置以外,控制装置124、126和128可执行一个或更多个指令以将机械功率72保持在合适功率范围内,或将电力74保持在合适频率和电力范围内。
图3为系统10的实施例的示意图,其进一步示出与碳氢化合物生产系统12和/或其它系统84一起使用的SEGR燃气涡轮机系统52的细节。在所示出的实施例中,SEGR燃气涡轮机系统52包含联接到EG处置系统54的燃气涡轮机发动机150。所示出的燃气涡轮机发动机150包括压缩机部152、燃烧器部154以及膨胀器部或涡轮机部156。压缩机部152包含一个或更多个排气压缩机或压缩机级158,诸如以串联布置设置的1到20级旋转压缩机叶片。同样,燃烧器部154包含一个或更多个燃烧器160,诸如围绕SEGR燃气涡轮机系统52的旋转轴线162周向分布的1到20个燃烧器160。而且,每个燃烧器160可包含一个或更多个燃料喷嘴164,其被配置成喷射排气66、氧化剂68和/或燃料70。例如,每个燃烧器160的盖端部166可容纳1个、2个、3个、4个、5个、6个或更多个燃料喷嘴164,其可将排气66、氧化剂68和/或燃料70的流或混合物喷射到燃烧器160的燃烧部分168(例如,燃烧腔室)中。
燃料喷嘴164可包含预混合燃料喷嘴164(例如,其被配置成预混合氧化剂68和燃料70以用于生成氧化剂/燃料预混火焰)和/或扩散燃料喷嘴164(例如,其被配置成喷射氧化剂68和燃料70的单独的流以用于生成氧化剂/燃料扩散火焰)的任何组合。预混合燃料喷嘴164的实施例可包含旋流叶片、混合腔室、或其它特征件,以在喷射到燃烧腔室168中和在燃烧腔室168中燃烧之前,使该氧化剂68和燃料70在喷嘴164内内部混合。预混合燃料喷嘴164还可接收至少一些部分混合的氧化剂68和燃料70。在某些实施例中,每个扩散燃料喷嘴164可隔离氧化剂68与燃料70的流直到喷射点,同时还隔离一种或更多种稀释剂(例如,排气66、蒸汽、氮或另一种惰性气体)的流直到喷射点。在另一些实施例中,每个扩散燃料喷嘴164可隔离氧化剂68与燃料70的流直到喷射点,同时在喷射点之前,部分地混合一种或更多种稀释剂(例如,排气66、蒸汽、氮或另一种惰性气体)与氧化剂68和/或燃料70。此外,一种或更多种稀释剂(例如,排气66、蒸汽、氮或另一种惰性气体)可被喷射到在燃烧区处或其下游的燃烧器中(例如,喷射到燃烧的热产物中),从而帮助减小燃烧的热产物的温度并减少NOx(例如,NO和NO2)的排放。不管燃料喷嘴164的类型,SEGR燃气涡轮机系统52可被控制以提供氧化剂68和燃料70的大致化学计量燃烧。
在使用扩散燃料喷嘴164的扩散燃烧实施例中,燃料70和氧化剂68通常不在扩散火焰的上游混合,而是燃料70和氧化剂68在火焰表面处直接混合和反应,和/或火焰表面存在于燃料70与氧化剂68之间的混合的位置处。具体地,燃料70和氧化剂68单独接近火焰表面(或扩散边界/界面),并接着沿火焰表面(或扩散边界/界面)扩散(例如,经由分子和粘性扩散)以生成扩散火焰。值的注意的是,燃料70和氧化剂68沿该火焰表面(或扩散边界/界面)可以是大致化学计量比的,这可沿该火焰表面产生更大的火焰温度(例如,峰值火焰温度)。与贫燃料或富燃料的燃料/氧化剂比相比,该化学计量燃料/氧化剂比通常产生更大的火焰温度(例如,峰值火焰温度)。因此,扩散火焰可基本上比预混火焰更加稳定,因为燃料70和氧化剂68的扩散帮助保持沿火焰表面的化学计量比(和更大温度)。虽然更大的火焰温度也能够导致更大的排气排放,诸如NOx排放,但是所公开的实施例使用一种或更多种稀释剂帮助控制温度和排放,同时还避免燃料70和氧化剂68的任何预混合。例如,所公开的实施例可引入一种或更多种稀释剂与燃料70和氧化剂68分隔开(例如,在燃烧点之后和/或扩散火焰的下游),从而帮助降低温度和减少由扩散火焰产生的排放(例如,NOx排放)。
如图所示,在运行时,压缩机部152接收并压缩来自EG处置系统54的排气66,并将压缩后的排气170输出到燃烧器部154中的每个燃烧器160。在燃料60、氧化剂68和排气170在每个燃烧器160内燃烧时,附加排气或燃烧产物172(即,燃烧气体)被传送到涡轮机部156。类似于压缩机部152,涡轮机部156包含一个或更多个涡轮机或涡轮机级174,其可包含一系列转动涡轮机叶片。这些涡轮机叶片接着被在燃烧器部154中所生成的燃烧产物172驱动,从而驱动联接到机器106的轴176的转动。再者,机器106可包含联接到SEGR燃气涡轮机系统52的任一端的各种设备,诸如联接到涡轮机部156的机器106、178和/或联接到压缩机部152的机器106、180。在某些实施例中,机器106、178、180可包含一个或更多个发电机、用于氧化剂68的氧化剂压缩机、用于燃料70的燃料泵、齿轮箱或联接到SEGR燃气涡轮机系统52的附加驱动件(例如,蒸汽涡轮机104、电动马达等)。非限制性示例在下面参照表格1进一步详细论述。如图所示,涡轮机部156输出排气60以沿排气再循环路径110从涡轮机部156的排气出口182再循环到排气进口184进入压缩机部152。如上面所详细论述的,沿着排气再循环路径110,排气60经过EG处置系统54(例如,HRSG 56和/或EGR系统58)。
再者,在燃烧器部154中的每个燃烧器160接收、混合并化学计量燃烧压缩的排气170、氧化剂68和燃料70,以产生附加排气或燃烧产物172以驱动涡轮机部156。在某些实施例中,氧化剂68被氧化剂压缩系统186(诸如,具有一个或更多个氧化剂压缩机(MOC)的主氧化剂压缩(MOC)系统(例如,主空气压缩(MAC)系统))压缩。氧化剂压缩系统186包含联接到驱动件190的氧化剂压缩机188。例如,驱动件190可包含电动马达、燃烧发动机或它们的任何组合。在某些实施例中,驱动件190可为涡轮机发动机,诸如燃气涡轮机发动机150。因此,氧化剂压缩系统186可为机器106的一体部分。换句话说,压缩机188可由被燃气涡轮机发动机150的轴176供应的机械功率72直接或间接驱动。在此实施例中,驱动件190可被排除,因为压缩机188依赖涡轮机发动机150的功率输出。然而,在采用不止一个氧化剂压缩机的某些实施例中,第一氧化剂压缩机(例如,低压(LP)氧化剂压缩机)可被驱动件190驱动,而轴176驱动第二氧化剂压缩机(例如,高压(HP)氧化剂压缩机),或反之亦然。例如,在另一实施例中,HP MOC被驱动件190驱动,以及LP氧化剂压缩机被轴176驱动。在所示出的实施例中,氧化剂压缩系统186与机器106分隔开。在这些实施例中的每个中,压缩系统186压缩氧化剂68并将其供应给燃料喷嘴164和燃烧器160。因此,机器106、178、180中的一些或全部可被配置成增加压缩系统186(例如,压缩机188和/或附加压缩机)的运行效率。
由元件编号106A、106B、106C、106D、106E和106F所指示的机器106的各个部件可在一个或更多个串联布置、并联布置或串联与并联布置的任何组合中沿轴176的线和/或平行于轴176的线设置。例如,机器106、178、180(例如,106A到106F)可包含下列设备以任何次序的任何串联和/或并联布置,该设备包括:一个或更多个齿轮箱(例如,平行轴、行星齿轮箱)、一个或更多个压缩机(例如,氧化剂压缩机、增压压缩机(诸如,EG增压压缩机))、一个或更多个发电单元(例如,发电机)、一个或更多个驱动件(例如,蒸汽涡轮机发动机、电动马达)、热交换单元(例如,直接或间接热交换器)、离合器或它们的任何组合。压缩机可包含轴向压缩机、径向或离心压缩机或它们的任何组合,每种压缩机具有一个或更多个压缩级。关于热交换器,直接热交换器可包含喷淋(spray)冷却器(例如,喷淋中间冷却器),其将液体喷淋喷射到气体流中(例如,氧化剂流)以用于直接冷却气体流。间接热交换器可包含将第一流和第二流分隔开的至少一个壁(例如,管壳式热交换器),诸如与冷却剂流(例如,水、空气、致冷剂或任何其它液态或气态冷却剂)分隔开的流体流(例如,氧化剂流),其中,冷却剂流与流体流没有任何直接接触地传递来自流体流的热。间接热交换器的示例包含中间冷却器、热交换器和热回收单元,诸如热回收蒸汽发生器。热交换器也可包含加热器。如下面进一步详细论述的,这些机器部件中的每个可被用在如在表格1中列出的非限制性示例所指示的各种组合中。
通常,机器106、178、180可被配置成通过例如调节在系统186中的一个或更多个氧化剂压缩机的运行速度、通过冷却和/或抽取过剩电力促进氧化剂68的压缩来增加压缩系统186的效率。本公开的实施例旨在包含在机器106、178、180中以串联和并联布置的前述部件的任何和全部排列,其中,所述部件中的一个、不止一个、全部部件或没有任何部件从轴176获得动力。如下面所示,表格1示出靠近压缩机和涡轮机部152、156设置和/或联接到该压缩机和该涡轮机部的机器106、178、180的布置的一些非限制性示例。
表格1
如上面表格1所示,冷却单元被表示为CLR,离合器被表示为CLU,驱动件被表示为DRV,齿轮箱被表示为GBX,发电机被表示为GEN,加热单元被表示为HTR,主氧化剂压缩机单元被表示为MOC,其中,低压和高压变量被分别表示为LP MOC和HP MOC,以及蒸汽发生器单元被表示为STGN。虽然表格1示出机器106、178、180依次朝着压缩机部152或涡轮机部156,但是表格1也旨在覆盖机器106、178、180的相反次序。在表格1中,包含两个或更多个部件的任何单元旨在覆盖所述部件的并联布置。表格1并不旨在排除机器106、178、180的任何未示出的排列。机器106、178、180的这些部件可使能发送到燃气涡轮机发动机150的氧化剂68的温度、压力和流率的反馈控制。如下面所进一步详细论述的,氧化剂68和燃料70可被供应给处于被具体选择的位置处的燃气涡轮机150,以促进压缩排气170隔离和抽取,而氧化剂68或燃料70未将排气170的质量降低。
如图3所示,EG供应系统78被设置在燃气涡轮机发动机150与目标系统(例如,碳氢化合物生产系统12和其它系统84)之间。具体地,EG供应系统78(例如EG抽取系统(EGES)80)可被联接到在沿压缩机部152、燃烧器部154和/或涡轮机部156的一个或更多个抽取点76处的燃气涡轮机发动机150。例如,抽取点76可被定位在毗邻的压缩机级之间,诸如在压缩机级之间的2、3、4、5、6、7、8、9或10个级间抽取点76。这些级间抽取点76中的每个提供被抽取排气42的不同温度和压力。同样,抽取点76可被定位在毗邻的涡轮机级之间,诸如在涡轮机级之间的2、3、4、5、6、7、8、9或10个级间抽取点76。这些级间抽取点76中的每个提供被抽取排气42的不同温度和压力。通过进一步示例,抽取点76可被定位在整个燃烧器部154的多个位置处,其可提供不同温度、压力、流率和气体组成。这些抽取点76中的每个可包含EG抽取导管、一个或更多个阀、传感器以及控制装置,其可被用于选择性控制被抽取排气42到EG供应系统78的流。
通过EG供应系统78分配的被抽取排气42具有适合于目标系统(例如,碳氢化合物生产系统12和其它系统84)的受控组分。例如,在这些抽取点76中的每个处,排气170可与氧化剂68和燃料70的喷射点(或流)基本隔离。换句话说,EG供应系统78可被具体设计成从燃气涡轮机发动机150抽取排气170而没有任何添加的氧化剂68或燃料70。而且,鉴于在每个燃烧器160的化学计量燃烧,被抽取排气42可以是基本上不含氧和燃料。EG供应系统78可将被抽取排气42直接或间接传送到碳氢化合物生产系统12和/或其它系统84以用于各种处理,诸如提高原油采收率、固碳、存储或运输到非现场位置。然而,在某些实施例中,EG供应系统78包含在与目标系统一起使用之前,用于进一步处理排气42的EG处理系统(EGTS)82。例如,EG处理系统82可将排气42净化和/或分离为一种或更多种流95,例如富CO2贫N2流96,中间浓度CO2、N2流97,以及贫CO2富N2流98。这些处理后的排气流95可被单独使用,或与碳氢化合物生产系统12和其它系统84(例如,管道86、储罐88以及固碳系统90)的任何组合一起使用。
类似于在EG供应系统78中执行的排气处理,EG处置系统54可包含多个排气(EG)处理部件192,例如通过元件编号194、196、198、200、202、204、206、208和210所指示的。这些EG处理部件192(例如,194到210)可以以一个或更多个串联布置、并联布置或串联和平行布置的任何组合沿排气再循环路径110进行设置。例如,EG处理部件192(例如,194到210)可包含下列设备以任何次序的任何串联和/或平行布置,所述设备包括:一个或更多个热交换器(例如,热回收单元,诸如热回收蒸汽发生器、冷凝器、冷却器或加热器)、催化剂系统(例如,氧化催化剂系统)、微粒和/或水去除系统(例如,惯性分离器、聚结过滤器、不透水过滤器以及其它过滤器)、化学物喷射系统、溶剂型处理系统(例如,吸收剂、闪蒸罐等)、碳收集系统、气体分离系统、气体净化系统和/或溶剂型处理系统,或它们的任何组合。在某些实施例中,催化剂系统可包含氧化催化剂、一氧化碳还原催化剂、氮氧化物还原催化剂、氧化铝、氧化锆、硅氧化物、钛氧化物、氧化铂、氧化钯、氧化钴或混合金属氧化物,或它们的组合。所公开实施例旨在包含在串联和并联布置中的前述部件192的任何和全部排列。如下面所述,表格2示出沿排气再循环路径110的部件192的布置的一些非限制性示例。
表格2
如上面表格2中所示,催化剂单元被表示为CU,氧化催化剂单元被表示为OCU,增压鼓风机被表示为BB,热交换器被表示为HX,热回收单元被表示为HRU,热回收蒸汽发生器被表示为HRSG,冷凝器被表示为COND,蒸汽涡轮机被表示为ST,微粒去除单元被表示为PRU,水分去除单元被表示为MRU,过滤器被表示为FIL,凝聚过滤器被表示为CFIL,不透水过滤器被表示为WFIL,惯性分离器被表示为INER,以及稀释剂供应系统(例如,蒸汽、氮或另一惰性气体)被表示为DIL。虽然表格2示出按顺序从涡轮机部156的排气出口182朝压缩机部152的排气进口184的部件192,但是表格2也旨在覆盖所示出部件192的相反顺序。在表格2中,包含两个或更多个部件的任何单元旨在覆盖带有所述部件、所述部件并联布置或它们的任何组合的集成单元。而且,在表格2的背景下,HRU、HRSG和COND为HE的示例;HRSG为HRU的示例;COND、WFIL和CFIL为WRU的示例;INER、FIL、WFIL和CFIL为PRU的示例;以及WFIL和CFIL为FIL的示例。再者,表格2并不旨在排除部件192的任何未示出的排列。在某些实施例中,所示出的部件192(例如,194到210)可以被部分或完全集成在HRSG 56、EGR系统58或它们的任何组合内。这些EG处理部件192可使能温度、压力、流率和气体成分的反馈控制,同时也从排气60去除水分和微粒。而且,被处理排气60可在一个或更多个抽取点76处被抽取以用于EG供应系统78和/或被再循环到压缩机部152的排气进口184。
在被处理时,再循环排气66经过压缩机部152,SEGR燃气涡轮机系统52可沿一个或更多个管道212(例如,放气导管或旁通导管)排出被压缩排气的一部分。每个管道212可将排气传送到一个或更多个热交换器214(例如,冷却单元)中,从而冷却再循环回到SEGR燃气涡轮机系统52中的排气。例如,在经过热交换器214后,被冷却排气的一部分可被传送到沿管道212的涡轮机部156,以用于冷却和/或密封涡轮机套管、涡轮机外罩、轴承和其它部件。在此实施例中,SEGR燃气涡轮机系统52不传送任何氧化剂68(或其它潜在污染物)通过涡轮机部156以用于冷却和/或密封目的,并因此,被冷却排气的任何泄漏将不污染流过涡轮机部156的涡轮机级并驱动该涡轮机级的热燃烧产物(例如,工作排气)。通过进一步示例,在经过热交换器214之后,被冷却排气的一部分可沿管道216(例如,返回导管)被传送到压缩机部152的上游压缩机级,从而提高通过压缩机部152压缩的效率。在此实施例中,热交换器214可被配置为压缩机部152的级间冷却单元。以此方式,被冷却排气帮助增加SEGR燃气涡轮机系统52的运行效率,同时帮助保持排气的纯度(例如,基本不含氧化剂和燃料)。
图4为在图1至图3中示出的系统10的操作过程220的实施例的流程图。在某些实施例中,过程220可为计算机实施的过程,该过程存取存储在存储器122上的一个或更多个指令,并执行在图2中示出的控制器118的处理器120上的指令。例如,在过程220中的每个步骤可包含参照图2所述的控制系统100的控制器118可执行的指令。
过程220可通过初始化图1至图3的SEGR燃气涡轮机系统52的启动模式开始,如块222所指示的。例如,该启动模式可包括SEGR燃气涡轮机系统52的逐步倾斜上升,以保持热梯度、振动和间隙(例如,在旋转与静止部件之间)在可接受阈值内。例如,在启动模式222期间,过程220可开始向燃烧器部154的燃烧器160和燃料喷嘴164供应压缩后的氧化剂68,如块224所指示的。在某些实施例中,压缩后的氧化剂可包含压缩空气、氧、富氧空气、氧减少空气、氧氮混合物或它们的任何组合。例如,氧化剂68可被在图3中示出的氧化剂压缩系统186压缩。在启动模式222期间,过程220也可开始向燃烧器160和燃料喷嘴164供应燃料,如块226所指示的。在启动模式222期间,过程220也可开始向燃烧器160和燃料喷嘴164供应(可用)排气,如块228所指示的。例如,燃料喷嘴164可产生一种或更多种扩散火焰、预混合火焰或扩散火焰与预混合火焰的组合。在启动模式222期间,通过燃气涡轮机发动机156生成的排气60在数量和/或质量上可能是不足或不稳定的。因此,在启动模式期间,过程220可从一个或更多个存储单元(例如,储罐88)、管道86、其它SEGR燃气涡轮机系统52或其它排气源供应排气66。
接着,过程220可在燃烧器160中燃烧压缩后的氧化剂、燃料和排气的混合物以产生热燃烧气体172,如块230所指示的。具体地,过程220可通过图2的控制系统100进行控制,以促进在燃烧器部154的燃烧器160中的混合物的化学计量燃烧(例如,化学计量扩散燃烧、预混合燃烧或两者)。然而,在启动模式222期间,保持混合物的化学计量燃烧可能是特别困难的(并因此,热燃烧气体172中可能存在低水平的氧化剂和未燃烧燃料)。因此,在启动模式222中,热燃烧气体172可能比在稳定状态模式期间具有更大量的残留氧化剂68和/或燃料70,如在下面所进一步详细论述的。为此,过程220可在启动模式期间,执行一个或更多个控制指令以减少或消除在热燃烧气体172中的残留氧化剂68和/或燃料70。
接着,过程220用热燃烧气体172驱动涡轮机部156,如块232所指示的。例如,热燃烧气体172可驱动被设置在涡轮机部156内的一个或更多个涡轮机级174。在涡轮机部156的下游,过程220可处理来自最后涡轮机级174的排气60,如块234所指示的。例如,排气处理234可包含对任何残留氧化剂68和/或燃料70的过滤、催化反应、利用HRSG 56的化学处理、热回收等等。过程220也可将排气60的至少一些再循环回到SEGR燃气涡轮机系统52的压缩机部152,如块236所指示的。例如,排气再循环236可包括经过具有EG处置系统54的排气再循环路径110的通道,如图1至图3所示。
再循环排气66可进而在压缩机部152中被压缩,如块238所指示的。例如,SEGR燃气涡轮机系统52可在压缩机部152的一个或更多个压缩机级158中相继压缩再循环排气66。压缩后的排气170随后可被供应给燃烧器160和燃料喷嘴164,如块228所指示的。接着可重复步骤230、232、234、236和238,直到过程220最终转变到稳态模式,如块240所指示的。在转变240之后,过程220可继续执行步骤224到238,但是也可开始经由EG供应系统78抽取排气42,如块242所指示的。例如,排气42可从沿压缩机部152、燃烧器部154和涡轮机部156的一个或更多个抽取点76抽取,如图3所示。过程220可进而从EG供应系统78向碳氢化合物生产系统12供应被抽取排气42,如块244所指示的。碳氢化合物生产系统12接着可将排气42喷射到地球32中以用于提高原油采收率,如块246所指示的。例如,被抽取排气42可被如图1至图3所示的EOR系统18的排气喷射EOR系统112使用。
如上所述,本实施例使能控制SEGR燃气涡轮机系统52(例如,ULET发电厂)以在瞬态电网事件期间支持电网。换句话说,本实施例能够使ULET发电厂快速增加其负荷以支持经受电压或频率事件的电网。通过具体示例,根据本方法的ULET发电厂可提供主响应或主频率响应(PFR)以对电网中的瞬态频率事件做出响应。例如,在降低电网系统的频率的事件中,PFR通常可涉及快速拾取其基本负荷输出的相应部分以便抵消电网频率的下降的发电厂。
对于在贫燃料模式中运行的非化学计量燃气涡轮机系统,过量的氧化剂可在整个运行期间存在于燃烧器中。因此,在检测到瞬态事件(例如,欠压或欠频事件)时,至燃气涡轮机系统的燃烧器的燃料流率可被快速调整以增加系统的机械功率输出和电力输出。相比之下,对于所公开的SEGR燃气涡轮机系统52,可在其运行的大致部分期间使氧化剂和燃料平衡在大致化学计量比。因此,对于SEGR燃气涡轮机系统52,氧化剂和燃料两者的量可增加,以便增加电力输出和机械功率输出以在瞬态事件期间支持电网。一般来说,对于SEGR燃气涡轮机系统52的某些实施例,空气流调整可通常以比燃料流调整更慢的速率受影响。对于此类实施例,这个效果可能是由于与某些燃料流执行器(例如,控制阀)的响应能力相比,某些空气流执行器的更慢的响应能力(例如,进口导向叶片和/或定子叶片)。应明白,在SEGR燃气涡轮机系统52中增加燃料流率而没有增加氧化剂可将当量比(Φ)驱动到可抑制火焰温度的富燃料模式,该富燃料模式可实际减小由涡轮机部156所产生的机械功率。因此,对于下面论述的某些实施例,燃料流率变化通常可跟随或跟踪解决瞬态事件所做出的氧化剂流率变化。
考虑到上面的描述,下面阐述五个不同的示例实施例(示例1、示例2、示例3、示例4和示例5),所述示例实施例描述用于控制SEGR燃气涡轮机系统52(例如,ULET发电厂)的运行以便允许该系统对电网中的瞬态事件做出响应(例如,向电网提供PFR)的方法。应明白,下面描述的一个或更多个实施例可单独使用或在与另一实施例的各种组合中使用以解决瞬态事件。一般而言,下面论述的某些实施例涉及快速增加在SEGR燃气涡轮机系统52的燃烧器中的氧化剂浓度以及燃料浓度,以便增加机械功率输出和电力输出以解决瞬态事件。下面论述的其它实施例涉及临时减少ULET发电厂内的电力消耗以有效增加净电力输出,以便解决瞬态事件。下面论述的其它实施例使能SEGR燃气涡轮机系统52解决在加载期间在非化学计量模式(例如,非排放合规模式)中运行时的瞬态事件。
图5大体示出在下面关于示例1至示例5详述的控制策略的实施例。图5为根据本技术的实施例的SEGR燃气涡轮机系统52(例如,ULET发电厂)的示意图。图5中的SEGR燃气涡轮机系统52包含接收氧化剂68(例如,空气、氧、富氧空气、或氧减少空气)流的主氧化剂压缩机系统(MOC)186和排气再循环(EGR)流42,并输出压缩氧化剂流300。在某些实施例中,压缩氧化剂流300在到达燃烧器160之前,可被引导通过增压氧化剂压缩机系统(BOC)302以用于进一步压缩,如下面所论述的。在另一些实施例中,BOC 302可能不存在。所示的燃烧器160接收压缩氧化剂流300以及横越调节控制阀303(例如,液压致动的控制阀303)的燃料70流和来自压缩机部152的压缩排气42流,并产生经燃烧以形成高压排气172(即,燃烧气体或燃烧产物)的氧化剂/燃料混合物,该混合物随后被传送到涡轮机部156。在某些实施例中,由来自压缩机部152的燃烧器160接收的压缩排气42流的一部分可沿燃烧器160的部分被传输(例如,通过燃烧器160的一个或更多个歧管或外罩)以冷却燃烧硬件的外表面。如图5中所示,在横越并冷却燃烧器160的歧管或外罩之后,该压缩排气42流可随后被传送到EG供应系统78以供其它系统(例如,上面论述的碳氢化合物生产系统12)稍后使用。
图5中示出的涡轮机部156通过使高压排气172膨胀生成机械功率,并且该机械功率可被用于驱动SEGR燃气涡轮机系统52的各个部分,该各个部分包含例如MOC 186、压缩机部152和发电机106。在离开涡轮机部156之后,排气42可被提供给所示的EG处置系统54。如上所述,EG处置系统54还可包含HRSG 56和再循环鼓风机304(也被称为增压鼓风机或EGR鼓风机),以及其它部件。在被EG处置系统54处理之后,排气42的一部分可被传送到压缩机部152的进口或进气口,而排气42的另一部分可被传送通过调节控制阀308并进入MOC 186的进口或进气口309。将排气42从涡轮机部156带到压缩机部152(包含EG处置系统54)的路径一般可被称为排气返回(EGR)回路305。此外,由发电机106所产生的电力可被供应至电网306。
另外,所示的SEGR燃气涡轮机系统52包含控制器系统100,该控制器系统100通信联接到SEGR燃气涡轮机系统52的各个部件并控制所述各个部件。一般来说,控制系统100可根据下面描述的控制策略从这些部件接收运行数据和/或向这些部件提供控制信号。控制系统100包含能够实施闭环控制策略的闭环控制器118A,在该闭环控制策略中,基于SEGR燃气涡轮机系统52的一个或更多个部件的运行参数来生成控制信号,以提供SEGR燃气涡轮机系统52的各个部件的基于反馈的控制。控制系统100也包含与闭环控制器118A并行实施并且能够实施开环控制策略的开环控制器118B,在该开环控制策略中,控制信号并不基于一个或更多个部件的运行参数来生成,而是基于其它因素(例如,瞬态事件发生的确定或经过某些时间量)。在某些实施例中,开环控制策略和闭环控制策略可在单个控制器中实施,该单个控制器可根据下面阐述的方法协调操作(例如,正确假定并放弃SEGR燃气涡轮机系统52的部分的控制)。另外,控制器系统100可被通信联接到一个或更多个传感器310,该传感器执行电网306的测量并有助于检测电网306中的瞬态事件(例如,欠压或欠频事件)。在另一些实施例中,控制器系统100可基于来自电网306的控制器或控制系统的指令确定瞬态事件的发生。
在下面陈述的某些示例实施例中,在对电网306中的瞬态事件做出响应时,控制系统100可临时放松(例如,增加)SEGR燃气涡轮机系统52的一个或更多个程序化运行限制。例如,在某些实施例中,除了或替代下面阐述的示例,控制器100可临时增加SEGR燃气涡轮机系统52的部件(例如,涡轮机部156或联接至该涡轮机部的轴311)的程序化扭矩限制约束以允许涡轮机部156临时增加机械功率输出,从而允许发电机106临时增加电力输出以在瞬态事件期间支持电网306。在另一些实施例中,放松约束可包含SEGR燃气涡轮机系统52的扭矩限制、速度限制、压力限制、流率限制、电压限制、电流限制、功率限制或另外合适约束。
示例1.限制至MOC 186的EGR流以增加在燃烧器160中的氧化剂可利用性
在某些实施例中,图5中示出的SEGR燃气涡轮机系统52(例如,ULET发电厂)可以在化学计量比(即,Φ在约0.95和1.05之间)下运行或接近该化学计量比运行。在本示例实施例中,SEGR燃气涡轮机系统52包含前述的调节控制阀308,该调节控制阀调节从再循环鼓风机304至MOC 186的进口的排气42流。控制器118A和控制器118B可分别(例如,并行)实施用于通过控制阀308来控制排气42的流率的闭环控制策略和开环控制策略,其中,命令更小值(即,通过控制阀308的更低流率)的控制器118A或控制器118B占优势并提供适当的控制信号。
对于本示例,控制器118A的闭环控制策略可命令通过控制阀308的排气42的流率为输送到MOC 186的进口309的排气42和氧化剂68两者的总流率的固定百分比(例如,99%、95%、90%、85%、70%、75%或另一合适的固定百分比)。同时,控制器118B的并行开环控制策略可在SEGR燃气涡轮机系统52的正常运行期间,命令控制阀308处于完全打开位置,而且可在确定电网306中发生瞬态事件时,命令控制阀308处于完全闭合位置(例如,立即或在可编程时延(programmable time delay)之后)。在控制阀308处于完全闭合位置时,基本没有排气42被输送到MOC 186的进口309。这致使MOC 186接收更多的氧化剂68(例如,更多的新鲜空气流或更多的氧气流),这增加在燃烧器160中的氧化剂68的丰度。无论何时控制系统100检测到氧化剂增加,闭环控制器118A可以相称的方式增加通过控制阀303的燃料70流,以在对瞬态事件做出响应的整个过程中,将当量比保持接近约1(例如,Φ在约0.95和1.05之间)。因此,输送到燃烧器160并由该燃烧器消耗的氧化剂68和燃料70两者的增加量致使SEGR燃气涡轮机系统52的机械功率输出增加以及至电网306的发电机106的电力输出增加以适应瞬态事件,同时仍然将当量比保持接近约1(例如,Φ在约0.95和1.05之间)。
因此,在SEGR燃气涡轮机系统52的整个运行期间,控制器118A可确定控制阀308的期望位置,该控制阀的期望位置向MOC 186的进口309提供排气42的期望流率,如闭环控制策略所命令的。具体地,控制器118A可确定闭环控制策略命令控制阀308的特定位置,该控制阀308的特定位置提供通过该控制阀的排气42的流率,该流率为输送到MOC 186的进口的氧化剂68和排气42两者的总流率的固定百分比(例如,70%、80%、90%、95%、98%或另一合适的值)。另外,在SEGR燃气涡轮机系统52的正常运行期间(即,不发生瞬态电网事件),控制器118B可确定控制阀308应被完全或大部分打开以向MOC 186的进口309提供排气42的最大流率,如开环控制策略所命令的。因此,在SEGR燃气涡轮机系统52的正常运行期间,由于由控制器118A所使用的闭环控制策略通常将命令控制阀308的更加闭合的位置(即,通过更低流率),控制器118A占优势、恳求控制系统100基于控制器118A命令的位置向控制阀308发送适当的控制信号。
然而,在(例如,由传感器310)确定瞬态事件在电网中发生时,控制器118B可确定控制阀308应被完全或大部分闭合以基本不向MOC 186的进口309提供提供排气42,如开环控制策略所命令的。在这里,相比于控制器118A所使用的闭环控制策略,由于由控制器118B所使用的开环控制策略通常命令控制阀308处于更加闭合的位置(即,通过更低流率),控制器118B占优势、恳求控制系统100基于控制器118B命令的位置向控制阀308发送适当的控制信号。在某些实施例中,控制系统100可立即或在可编程或预定时延之后向控制阀308发送控制信号。接着,控制阀308可维持处于完全闭合位置可编程或预定时延(例如,基于电网306上的瞬态事件的典型时长),在此时延之后,开环控制策略可命令控制阀308应在时间段内(例如,以可编程或预定斜变速率)逐步返回到完全打开位置。因此,在该斜变期间的一些点处,相比于控制器118B的开环策略,闭环控制策略应命令控制阀308处于更加闭合的位置(即,通过更低流率),从而致使控制系统100基于控制器118A所期望的位置再次向控制阀308提供控制信号。
示例2.调节MOC 186的运行参数以增加燃烧器160中的氧化剂可利用性
在某些实施例中,图5中示出的SEGR燃气涡轮机系统52(例如,ULET发电厂)可以在化学计量比(即,Φ在约0.95和1.05之间)下运行或接近该化学计量比运行。如上所提到的,SEGR燃气涡轮机系统52的MOC 186可包含多个IGV 312,其调节流入MOC 186的进口309的排气42和氧化剂68的流。控制器118A和控制器118B可分别(例如,并行)实施闭环控制策略和开环控制策略,以用于控制MOC IGV 312的位置,其中,命令更高IGV角(即,更加打开的MOCIGV位置)的控制器118A或控制器118B占优势。
对于该示例,控制器118A的闭环控制策略可命令基于SEGR燃气涡轮机系统52的当前运行参数的MOC IGV角或位置。例如,此闭环控制策略通常可寻求限制输送到燃烧器160的氧化剂的量以保持系统52中的大致化学计量燃烧。在SEGR燃气涡轮机系统52的正常运行期间,控制器118B的开环控制策略可命令与控制器118A的闭环控制策略大致相同的MOCIGV位置。然而,在检测到电网306中的瞬态事件时,相比于由控制器118A的闭环控制策略所命令的IGV位置,控制器118B可命令更大(更加打开)的为可编程固定百分比(例如,1%、2%、3%、4%、5%、6%、7%、8%、9%或10%或更大)的MOC IGV位置(例如,立即或在可编程时延之后)。因此,进入MOC 186的进口309的氧化剂68的总流将增加,从而致使燃烧器160中的氧化剂68的丰度增加。无论何时控制系统100检测到氧化剂增加,闭环控制器118A可引起控制系统100以相称的方式增加通过控制阀303的燃料70流,以在对瞬态事件做出响应的整个过程中,将当量比保持接近约1(例如,Φ在约0.95和1.05之间)。因此,输送到燃烧器160(并由该燃烧器消耗)的氧化剂68和燃料70两者的增加量致使SEGR燃气涡轮机系统52的机械功率输出增加以及至电网306的发电机106的电力输出增加以适应瞬态事件,同时仍然将当量比保持接近约1(例如,Φ在约0.95和1.05之间)。
因此,在SEGR燃气涡轮机系统52的整个运行期间,控制器118A可基于SEGR燃气涡轮机系统52的运行需求确定由闭环控制策略所命令的期望MOC IGV位置。另外,在SEGR燃气涡轮机系统52的正常运行期间(即,无瞬态电网事件),控制器118B的开环控制策略可命令与控制器118A的闭环控制策略所命令的相同的期望MOC IGV位置。然而,在(例如,经由传感器310)确定瞬态事件在电网中发生时,控制器118B可确定MOC IGV位置应为比由控制器118A的闭环控制策略所命令的MOC IGV位置更加打开的可编程或预定量(例如,5%、10%或15%)。在这里,相比于控制器118A所使用的闭环控制策略,由于由控制器118B所使用的开环控制策略通常命令IGV的更加打开的位置(即,更高的角度),控制器118B占优势、恳求控制系统100基于控制器118B所命令的位置向MOC IGV 312发送适当的控制信号。在某些实施例中,控制系统100可立即或在可编程或预定时延之后向IGV 312发送控制信号。接着,MOCIGV 312可维持处于由控制器118B所命令的更加打开的位置以可编程或预定时延(例如,基于电网306上的瞬态事件的典型时长),在此时延之后,开环控制策略可命令MOC IGV 312在时间段内(例如,以可编程或预定斜变速率)逐步返回到由控制器118A的闭环策略所命令的位置。因此,在该斜变期间的一些点处,控制器118B的开环控制策略将命令与控制器118A的闭环控制策略相同的MOC IGV位置,从而将MOC IGV控制有效移交返回到控制器118A。
示例3.调节BOC系统302的运行参数以增加燃烧器160中的氧化剂可利用性
在某些实施例中,图5中示出的SEGR燃气涡轮机系统52(例如,ULET发电厂)可以在化学计量比(即,Φ在约0.95和1.05之间)下运行或接近该化学计量比运行。如上所提到的,在某些实施例中,SEGR燃气涡轮机系统52可包含增压氧化剂压缩机(BOC)系统302,其可与MOC 186串联工作以产生用于输送到燃烧器160的压缩氧化剂流300。图6示出根据本方法的实施例的BOC 302的部件。在图6中示出的BOC 302包含级间系统320(在本文中,也被称为级间冷却系统320)以及增压氧化剂压缩机322,该增压氧化剂压缩机具有若干BOC进口导向叶片(IGV)324并由驱动系统326提供动力。在某些实施例中,级间冷却系统320可被定位在MOC186的压缩级和BOC302之间,并且可包含在MOC 186的压缩级和BOC 302之间耗散热量的热交换装置(例如,充当中间冷却器)。级间冷却系统320可通过更改所包含的热交换装置的热负荷来控制(例如,经由增加或减少由级间冷却系统320所接收到的冷却剂流),该热负荷会影响到达增压氧化剂压缩机322的IGV 324的压缩氧化剂流300的密度。在另一些实施例中,级间冷却系统320可与BOC302分隔开(例如,未与BOC 302的部件成组)或可能完全不存在,从而不否定本方法的效果。
此外,如图6中所示,SEGR燃气涡轮机系统52包含控制系统100,该控制系统100包含上面介绍的闭环控制器118A和开环控制器118B。在SEGR燃气涡轮机系统52的运行期间,控制系统100被通信联接以从BOC 302的部件接收运行信息和/或向该部件提供控制信号。例如,控制系统100可提供影响BOC 302的运行参数的控制信号,该运行参数诸如BOC IGV324的位置或角度、驱动系统326和/或压缩机322的速度、和/或可在BOC 302中存在的各种调节控制阀(例如,进口节流阀328、排出节流阀330、一个或更多个再循环阀(recyclevalve)(未示出)或任何其它合适的控制阀)的位置(或由该调节控制阀提供的流率)。另外,在某些实施例中,控制系统100可提供影响级间冷却系统320的运行参数的控制信号,例如,通过增加或减少在级间冷却系统320中的冷却剂流,这可增加或减少离开级间冷却系统320的压缩氧化剂流300的密度。例如,在此类实施例中,在级间冷却系统320基于来自控制系统100的信号增加压缩氧化剂流300的密度时,压缩氧化剂流300的总流量(例如,每单位时间的体积)也增加,输送到燃烧器160的每单位时间的氧化剂量也增加(例如,更大的氧化剂流)。应明白,BOC 302的前述运行参数仅作为示例被提供,并且影响BOC 302的性能或输出的任何设置或参数可根据本技术进行调节。控制器118A和118B可分别(例如,并行)实施闭环控制策略和开环控制策略,用于控制BOC 302的部件的运行参数,其中,命令更高BOC性能设置(例如,产生通过BOC 302的更高速率的氧化剂流300的设置)的控制器118A或控制器118B占优势。
对于该示例,控制器118A的闭环控制策略可基于SEGR燃气涡轮机系统52的当前运行来命令BOC 302的部件的运行参数(例如,BOC IGV的位置、压缩机322和/或驱动系统326的速度、由控制阀328和330的位置所提供的氧化剂流率、级间冷却系统320的热交换装置的冷却剂流率,等等)的值。在SEGR燃气涡轮机系统52的正常运行期间(即,未在电网306中检测到瞬态事件),控制器118B的开环控制策略可命令BOC 302的运行参数的值,该值与由控制器118A的闭环控制策略所命令的值相同。然而,在检测到电网306中的瞬态事件时,控制器118B可(例如,立即或在可编程时延之后)命令BOC 302的运行参数的值,该值比由控制器118A的闭环控制策略所命令的值大可编程或预定量或百分比(例如,提供1%、2%、3%、4%、5%、6%、7%、8%、9%或10%或更多的氧化剂流300)。由于开环控制器118B所命令的这种更高氧化剂流,在燃烧器160中的氧化剂68的丰度也增加。如图5中所示,无论何时控制系统100检测到氧化剂的这种增加,闭环控制器118A可引起控制系统100以相称的方式增加通过控制阀303的燃料70流,以在对瞬态事件做出响应的整个过程中,将当量比保持接近约1(例如,Φ在约0.95和1.05之间)。因此,输送到燃烧器160并由该燃烧器消耗的氧化剂68和燃料70两者的增加量致使SEGR燃气涡轮机系统52的机械功率输出增加以及至电网306的发电机106的电力输出增加以适应瞬态事件,同时仍然将当量比保持接近约1(例如,Φ在约0.95和1.05之间)。
因此,在SEGR燃气涡轮机系统52的整个运行过程中,控制器118A可基于SEGR燃气涡轮机系统52的运行需求,确定如由闭环控制策略所命令的BOC 302的运行参数(例如,BOCIGV 324的位置、压缩机322和/或驱动系统326的速度、由控制阀328和330的位置所提供的氧化剂流率,等等)的值。另外,在SEGR燃气涡轮机系统52的正常运行期间(即,无瞬态电网事件),控制器118B的开环控制策略可命令BOC 302的运行参数的期望值,该期望值与由控制器118A的闭环控制策略所命令的值相同。然而,在(例如,经由传感器310)确定瞬态事件在电网中发生时,控制器118B可确定BOC 302的运行参数的值应为比控制器118A的闭环控制策略所命令的值大(例如,BOC IGV 324的更加打开的位置、压缩机322和/或驱动系统326的更快速度、通过控制阀328和330的更高氧化剂流率、通过级间冷却系统320的更高密度的压缩冷却液流300,等)可编程或预定量(例如,5%、10%、15%或20%)。
例如,在瞬态事件期间,在由控制器118B所使用的开环控制策略通常命令BOC IGV324的比控制器118A所使用的闭环控制策略所命令的位置更加打开的位置(即,更高角度),控制器118B占优势、恳求控制系统100基于控制器118B所命令的位置向BOC IGV 324发送适当的控制信号。在某些实施例中,控制系统100可立即(例如,在瞬态事件的时间处)或在可编程或预定时延之后向BOC 302发送控制信号。接着,BOC 302可维持处于由控制器118B所命令的更高性能状态以可编程或预定时延(例如,基于电网306上的瞬态事件的典型时长),在此时延之后,开环控制策略可命令BOC 302的运行参数的值应在时间段内(例如,以可编程或预定斜变速率)逐步返回到由控制器118A的闭环策略所命令的值。因此,在该斜变期间的一些点处,控制器118B的开环控制策略应命令与控制器118A的闭环控制策略相同的运行参数值,从而将BOC 302控制有效移交返回到控制器118A。
示例4.减少SEGR燃气涡轮机系统52中的电力消耗以增加电力输出。
在某些实施例中,图5中示出的SEGR燃气涡轮机系统52(例如,ULET发电厂)可以在化学计量比(即,Φ在约0.95和1.05之间)下运行或接近该化学计量比运行,或可以非化学计量比(例如,在如下面论述的非排放合规模式中)运行。另外,SEGR燃气涡轮机系统52可包含EG供应系统78,该EG供应系统78可接收并处理排气流42的一部分(例如,相对高压力的排气流42)以用于该系统的其它部分(例如,碳氢化合物生产系统12)中。图7示出SEGR燃气涡轮机系统52的实施例的一部分,并且更具体地,示出EG供应系统78的部件。因此,图7包含上面论述的燃烧器160和EG处置系统54。另外,图7中示出的EG供应系统78被联接到燃烧器160的一部分以在排气流42横越燃烧器160的至少一部分(例如,歧管或外罩)之后接收该排气流42(例如,上面论述的冷却排气流42)。
另外,如图7中所示,控制系统100可被通信联接到EG供应系统78的各个部分,以从这些部件接收运行信息,和/或基于使用闭环控制器118A和开环控制器118B分别并行实施的闭环控制策略和开环控制策略,向这些部件提供控制信号。具体地,对于所示的实施例,控制系统100被通信联接到与产气压缩机340的运行相关联的一个或更多个部件。例如,如图7中所示,控制系统100可提供控制信号以控制产气压缩机340的进口导向叶片(IGV)342的位置、控制向产气压缩机340提供动力的驱动系统344的速度、和/或控制进口节流阀346和排出节流阀348以及可与产气压缩机340的运行相关联的任何其它合适控制阀(例如,再循环阀(未示出))的位置(通过上述控制阀的排气42的流率)。应明白,产气压缩机340的运行参数的前述列表仅作为示例被提供,并且影响产气压缩机340和/或EG供应系统78的性能或输出的任何设置或参数可根据本技术进行控制。
另外,控制系统100可提供控制信号以调节通过产气排放阀350和产气再循环阀352的排气42的位置和/或流率。如图7中所示,产气排放阀350通常可调节从SEGR燃气涡轮机系统52的EG系统排放(例如,到大气中)的排气42流,同时产气再循环阀352通常可调节可返回到EG处置系统54或EGR回路305的任何部分的排气42流。在产气排放阀350和产气再循环阀352两者均处于完全闭合位置时,离开产气压缩机340的总排气42流可被引导到EG处理系统82以用于进一步净化、存储和/或使用。
考虑到前面的描述,在SEGR燃气涡轮机系统52的正常运行期间(例如,电网306中无瞬态事件),控制系统100的闭环控制器118A可向EG供应系统78的各个部件提供控制信号,以基于SEGR燃气涡轮机系统52的运行在EGR回路305中大致保持期望的压力。例如,在某些实施例中,闭环控制器118A可提供控制信号以调节产气压缩机340的性能参数(例如,IGV342的位置、控制阀346和348的位置、驱动系统344的速度,等等),以增加或减小提供给SEGR燃气涡轮机系统52的EG处置系统54的排气42的压力。除了或代替产气压缩机340的性能参数,在某些实施例中,闭环控制器118A可提供控制信号以打开产气排放阀350,以减少输送到EG处置系统54的排气42的量(例如,减小EG回路305中的压力)和/或提供控制信号以打开产气再循环阀352,以增加输送到EG处置系统54的排气42的量(例如,增加EG回路305中的压力)。在某些实施例中,控制阀350和352的位置可比产气压缩机340的性能参数更快被调节,并因此可提供SEGR燃气涡轮机系统52的更多响应控制。此外,闭环控制器118A通常可寻求将产气排放阀350和产气循环阀352保持在基本闭合位置,以便确保产气压缩机340的有效运行(例如,避免不必要的运行和功率消耗)。
如所提到的,控制系统100包含与闭环控制器118A并行实施的开环控制器118B,并且命令产气压缩机340的较低性能参数值的控制器占优势。在SEGR燃气涡轮机系统52的正常运行期间(例如,电网306中无瞬态事件),由开环控制器118B所利用的开环控制策略通常可命令产气压缩机340的性能参数(例如,IGV 342的位置、控制阀346和348的位置、驱动系统344的速度、或另一合适的性能参数)的值,该值与由闭环控制器118A的闭环控制策略所命令的值大致相同。
然而,在检测到电网306中的瞬态事件时,开环控制器118B可(例如,立即或在可编程或预定时延之后)命令产气压缩机340的性能参数值的具体实施为小于由闭环控制器118A当前命令的性能参数值(例如,IGV 342的更加闭合位置、驱动系统344的更慢速度等)的为可编程或预定量(例如,固定百分比)。例如,在检测到瞬态事件时,开环控制器118B可命令驱动系统344(其确定产气压缩机340的速度)的速度应被设定为小于由闭环控制器118A所命令的驱动系统344的速度的为固定百分比(例如,2%、5%、10%、15%、20%或另一合适的百分比)的值。因此,由于开环控制器118B命令比闭环控制器118A更小的产气压缩机340的性能参数的值,开环控制器118B占优势,以及控制系统100提供适当的控制信号以基于控制器118B的命令来调节产气压缩机340的性能参数的值。
应明白,临时降低产气压缩机340的性能参数的值(例如,使用IGV 342的更加闭合位置、使用驱动系统344的更慢速度、使用通过控制阀346和348的更低流率,等)可致使产气压缩机340以及SEGR燃气涡轮机系统52作为整体消耗更少的电力。在某些实施例中,SEGR燃气涡轮机系统52可至少消耗内部或本地(例如,由图5所示的发电机106)生成的电力的一部分,并且可向电网306输出剩下的电力。因此,在某些实施例中,临时降低SEGR燃气涡轮机系统52内的电力消耗而大致不影响所生成的电力能够使SEGR燃气涡轮机系统52在瞬态事件期间向电网306临时输出额外的电能。根据本方法的实施例,虽然调整产气压缩机340的性能参数目前作为示例被提供,但是在另一些实施例中,设置在EG处置系统54和/或EGR回路305下游的其它部件或系统(例如,泵、压缩机、风扇、鼓风机等等)的性能参数可被另外或替代地调节以临时降低SEGR燃气涡轮机系统52的内部功率消耗。
因此,在一旦确定瞬态事件正发生或在可编程时延之后发生,开环控制器118B降低产气压缩机340的性能参数的值可编程或预定量(例如,固定百分比)时,SEGR燃气涡轮机系统52可具有用于在瞬态事件期间支持电网306的额外电力。在某些实施例中,在开环控制器118B在控制产气压缩机340的性能参数时,通过调节产气排放控制阀350和产气再循环控制阀352的位置,闭环控制器118A可继续提供对EGR回路305中的排气42的压力的闭环控制,以控制被输送到EG处置系统54的排气42流。在可编程时延(例如,电网306中的典型瞬态事件的时长)之后,开环控制器118B可以可编程或预定斜变速率逐步恢复产气压缩机342的性能参数的值,该值当前由闭环控制器118A命令,从而将控制有效移交返回给闭环控制器118A。
示例5.处理在SEGR燃气涡轮机系统52的负荷斜变上升时电网中的瞬态事件。
对于上述的示例1至示例4,在检测到电网306中的瞬态事件时,在图5中示出的SEGR燃气涡轮机系统52(例如,ULET发电厂)可初始在化学计量比(即,Φ在约0.95和1.05之间)下运行或接近该化学计量比运行。然而,应明白,在SEGR燃气涡轮机系统52被加载时(例如,在启动SEGR燃气涡轮机系统52期间),SEGR燃气涡轮机系统52也会遇到电网306中的瞬态事件。因此,示例5为本方法的另一实施例,该方法能够使图5中示出的SEGR燃气涡轮机系统52(例如,ULET发电厂)在系统加载期间在非排放合规模式(例如,在贫燃料燃烧期间)中运行时对电网306中的瞬态事件做出响应。
如下面所论述的,设想SEGR燃气涡轮机系统52(例如,ULET发电厂)可以在两种不同模式中运行:排放合规模式以及非排放合规模式,在该排放合规模式中,压缩氧化剂流和燃料流被协调以在燃烧器160内实现大致化学计量比,在该非排放合规模式中,压缩氧化剂流和燃料流被协调以便在燃烧器160内实现贫燃料燃烧(例如,燃料与氧化剂的比小于化学计量燃烧的比)。如下面所阐述的,本方法的实施例能够在加载期间进一步增加氧化剂丰度,从而允许SEGR燃气涡轮机系统52临时增加机械功率输出和电力输出以便对在加载期间电网306中的瞬态事件做出响应。
考虑到前面的描述,图8为针对SEGR燃气涡轮机系统52的当量比(Φ)随负荷变化的曲线图400。具体地,曲线图400示出两个加载分布图:正常加载分布图402和更改的加载分布图404,其能够使SEGR燃气涡轮机系统52大致更好处理在加载期间电网306中的瞬态事件。此外,曲线图400包含几个区域,该几个区域表示SEGR燃气涡轮机系统52的运行的不同模式。这些区域包含非排放合规区域(无主频率响应(PFR))406、非排放合规区域(具有PFR)408、非排放合规转移区域(无PFR)410和排放合规区域(具有PFR)412。一般来说,控制系统100可控制SEGR燃气涡轮机系统52以最终在化学计量比(即,Φ约为1)下运行或接近该化学计量比运行,如区域412中的加载分布图402和404所示。然而,如下面所论述的,在SEGR燃气涡轮机系统52在化学计量比下运行或接近该化学计量比运行之前,加载分布图402和404不同于区域406、408、410。
对于SEGR燃气涡轮机系统52的正常加载分布图402,当量比可在整个区域406、408和410中稳定增加,使得SEGR燃气涡轮机系统52可在排放合规区域(具有PFR)412中在化学计量比下运行或接近该化学计量比运行。越过非排放合规区域(具有PFR)408,SEGR燃气涡轮机系统52可仍然解决电网306中的瞬态事件(例如,欠频事件)。如上面所论述的,在电网306中的瞬态事件期间,向SEGR燃气涡轮机系统52的燃烧器160提供额外氧化剂(以及额外燃料)能够使SEGR燃气涡轮机系统52快速增加电力输出以解决瞬态事件。然而,对于在图8中示出的加载分布图402,目标可为SEGR燃气涡轮机系统52尽可能快地斜变上升到化学计量比。
相比之下,在图8中示出的加载分布图404表示在将SEGR燃气涡轮机系统52引升至化学计量比的目标和提高SEGR燃气涡轮机系统52在非排放合规区域(具有PFR)408内处理电网306中的瞬态事件的能力之间的折衷。因此,加载分布图404比横越区域406和408的正常加载分布图402保持更低的当量比(Φ)(例如,相对于正常加载分布图402受抑制的当量比)。例如,在某些实施例中,加载分布图404可保持横越区域406和408的在约0.3和约0.7之间、在约0.4和约0.6之间、在约0.45和约0.55之间或约0.5的当量比(Φ)。就是说,在加载过程期间,取代给定负荷中可能提供最高当量比,加载分布图404在整个区域406和408保持大致低的当量比(例如,Φ被保持在最小值),这意味着SEGR燃气涡轮机系统52一般可在这些区域内保持较高的氧化剂丰度,以便使ULET发电厂能够具有对电网306中的瞬态事件做出响应的最大可能的能力。因此,如上所述,SEGR燃气涡轮机系统52中(例如,在燃烧器160中和EGR回路305中)的较高氧化剂丰度一般允许SEGR燃气涡轮机系统52更快速地增加机械功率输出和电力输出(例如,经由增加的燃料流),以便在非排放合规(具有PFR)区域408期间在瞬态事件期间支持电网306。随后,在转移区域410期间,该转移区域可能缺乏PFR或可能对电网306的频率变化不太敏感,SEGR燃气涡轮机系统52的当量比可快速增加,使得SEGR燃气涡轮机系统52在排放合规区域(具有PFR)412中以化学计量比或接近该化学计量比运行,如加载分布图404所示。根据上面阐述的实施例,一旦SEGR燃气涡轮机系统52基本上实现在区域412中的化学计量燃烧和排放合规,SEGR燃气涡轮机系统52可再次对电网频率变化做出响应。
本方法的技术效果包含能够使SEGR燃气涡轮机系统(诸如,ULET发电厂)输出功率以快速增加机械功率输出和/或电力输出,以便解决附接电网中的瞬态事件(例如,频率和/或电压下降)。具体地,某些实施例通过使燃烧器中的可用氧化剂的量能够快速增加同时配合供应给燃烧器的燃料的快速增加,以便快速增加电厂的机械功率和电力同时仍然保持为1或约接近1的当量比,能够使ULET发电厂对瞬态电网事件做出响应。另外,某些实施例可通过能够增加对整个电厂加载部分(例如,在启动期间,当在非排放合规模式中运行时)的燃烧器中的可用氧化剂的量(例如,小于0.5的当量比),使得至燃烧器的燃料的快速添加快速增加电厂的机械功率输出和电力输出,能够使ULET发电厂对瞬态电网事件做出响应。其它当前公开的实施例可通过减少或限制ULET发电厂的某些部件(例如,产气压缩机)的运行以便减少或限制发电厂内的电力消耗(这可临时增加从发电厂输出的电力量),能够使ULET发电厂在瞬态事件期间支持电网。
附加描述
本实施例提供能够使EGR燃气涡轮机系统(例如,ULET发电厂)对附接电网中的瞬态事件(例如,欠频或欠压事件)做出响应的系统和方法。提供以下条款作为本公开的进一步描述:
实施例1.一种电网干扰响应方法,包括以下步骤:将氧化剂和再循环低氧含量气体流的第一部分引入到至少一个氧化剂压缩机以产生压缩氧化剂流;以大致化学计量比将压缩氧化剂流和燃料流引入到至少一个燃气涡轮机发动机燃烧器并在燃烧点之前或在燃烧点处中的至少一者的位置处大致混合所述压缩氧化剂流和所述燃料流;燃烧所述压缩氧化剂流和所述燃料流的所述混合物以产生高温高压低氧含量流;将该高温高压低氧含量流引入到所述燃气涡轮机发动机的膨胀器部并使该高温高压低氧含量流膨胀以产生机械功率和再循环低氧含量气体流;使用该机械功率的第一部分驱动所述燃气涡轮机发动机的压缩机部;使用该机械功率的第二部分驱动下列项中的至少一项:发电机、所述至少一个氧化剂压缩机或至少一个其它机械装置;向本地电网或远程电网中的至少一者输出发电机功率的至少一部分;检测电网瞬态事件;并降低再循环低氧含量气体流的第一部分的流率,从而增加压缩氧化剂流的氧含量、增加燃料流率以保持大致的化学计量比并增加燃气涡轮机发动机的功率输出。
实施例2.一种电网干扰响应方法,包括以下步骤:将氧化剂引入到至少一个氧化剂压缩机以产生压缩氧化剂流;通过调节氧化剂压缩机的进口导向叶片、可变定子叶片或氧化剂压缩机或氧化剂压缩机的转速中的至少一者,由闭环反馈控制系统控制压缩氧化剂流的流率;以大致化学计量比将压缩氧化剂流和燃料流引入到至少一个燃气涡轮机发动机燃烧器并在燃烧点之前或在燃烧点处中的至少一者的位置大致混合所述压缩氧化剂流和所述燃料流;燃烧所述压缩氧化剂流和所述燃料流的所述混合物以产生高温高压低氧含量流;将该高温高压低氧含量流引入到所述燃气涡轮机发动机的膨胀器部并使该高温高压低氧含量流膨胀以产生机械功率和再循环低氧含量气体流;使用该机械功率的第一部分驱动所述燃气涡轮机发动机的压缩机部;使用该机械功率的第二部分驱动下列项中的至少一项:发电机、所述至少一个氧化剂压缩机或至少一个其它机械装置;向本地电网或远程电网中的至少一者输出发电机功率的至少一部分;检测电网瞬态事件;通过调节所述进口导向叶片、所述可变定子叶片或所述氧化剂压缩机速度中的至少一者,将所述闭环反馈控制器转移至开环模式并增加压缩氧化剂流率;并增加燃料流率以保持大致的化学计量比并增加燃气涡轮机发动机的功率输出。
实施例3.一种电网干扰响应方法,包括以下步骤:将氧化剂引入到氧化剂压缩机和至少一个增压氧化剂压缩机以产生压缩氧化剂流;通过调节增压氧化剂压缩机的进口导向叶片、增压氧化剂压缩机的可变定子叶片或增压氧化剂压缩机的转速中的至少一者,由闭环反馈控制系统控制压缩氧化剂流的流率;以大致化学计量比将压缩氧化剂流和燃料流引入到至少一个燃气涡轮机发动机燃烧器并在燃烧点之前或在燃烧点处中的至少一者的位置大致混合所述压缩氧化剂流和所述燃料流;燃烧所述压缩氧化剂流和所述燃料流的所述混合物以产生高温高压低氧含量流;将该高温高压低氧含量流引入到所述燃气涡轮机发动机的膨胀器部并使该高温高压低氧含量流膨胀以产生机械功率和再循环低氧含量气体流;使用该机械功率的第一部分驱动所述燃气涡轮机发动机的压缩机部;使用该机械功率的第二部分驱动下列项中的至少一项:发电机、所述一个氧化剂压缩机、所述至少一个增压氧化剂压缩机或至少一个其它机械装置;向本地电网或远程电网中的至少一者输出发电机功率的至少一部分;检测电网瞬态事件;通过调节所述进口导向叶片、所述可变定子叶片或所述增压氧化剂压缩机速度中的至少一者,将所述闭环反馈控制器转移至开环模式并增加压缩氧化剂流率;并增加燃料流率以保持大致的化学计量比并增加燃气涡轮机发动机的功率输出。
实施例4.一种电网干扰响应方法,包括以下步骤:将氧化剂引入到至少一个氧化剂压缩机以产生压缩氧化剂流;以大致化学计量比将压缩氧化剂流和燃料流引入到至少一个燃气涡轮机发动机燃烧器并在为在燃烧点之前或在该燃烧点处中的至少一者的位置大致混合所述压缩氧化剂流和所述燃料流;燃烧所述压缩氧化剂流和所述燃料流的所述混合物以产生高温高压低氧含量流;将该高温高压低氧含量流引入到所述燃气涡轮机发动机的膨胀器部并使该高温高压低氧含量流膨胀以产生机械功率和再循环低氧含量气体流;使用该机械功率的第一部分驱动所述燃气涡轮机发动机的压缩机部;使用该机械功率的第二部分驱动发电机、所述至少一个氧化剂压缩机或至少一个其它机械装置中的至少一者;向本地电网或远程电网中的至少一者输出发电机功率的至少一部分;抽取再循环低氧含量气体流的第二部分并向产气压缩机引入所述第二部分以产生压缩产气流;通过调节该产气压缩机的进口导向叶片、该产气压缩机的可变定子叶片或产气压缩机的转速中的至少一者,由闭环反馈控制系统控制压缩产气流的流率,并向输送点和储存设施中的至少一者输送压缩产气流的第一部分;排出再循环低氧含量气体流的第三部分并由闭环反馈控制系统控制再循环低氧含量气体流的所述第三部分的流率;向再循环低氧含量气体流再循环压缩产气流的第二部分并由闭环反馈控制系统控制压缩产气流的所述第二部分的流率;由集成控制系统控制所述压缩机产气流的流率、再循环低氧含量气体流的所述第三部分的流率和压缩产气流的所述第二部分的流率,以至少控制所述再循环低氧含量气体流的压力;检测电网瞬态事件;并通过调节所述产气压缩机进口导向叶片、所述产气压缩机可变定子叶片或所述产气压缩机速度中的至少一者将所述压缩产气流闭环反馈控制器转移至开环反馈模式并减少压缩产气流率,并增加可用功率以用于输出。
实施例5.根据任一前述实施例所述的方法,还包括将ULET发电厂运行区域划分为排放合规区域和非排放合规区域。
实施例6.根据任一前述实施例所述的方法,其中,燃气涡轮机燃烧当量比以非排放合规区域内的最小水平来控制,以便最大化在EGR回路内的可用氧以支持传统的主频率响应(PFR)方法。
实施例7.根据任一前述实施例所述的方法,其中,从运行的非排放合规区域转移至运行的排放合规区域受从贫燃烧(低当量比)至大致化学计量燃烧(当量比约等于1)的快速转移影响。
实施例8.根据任一前述实施例所述的方法,其中,从贫燃烧至化学计量燃烧的转移在关于发电厂负荷的窄区域内受影响,其中,ULET发电厂控制系统可被临时使得对电网频率变化不灵敏。
实施例9.一种方法,包括:在排气再循环(EGR)燃气涡轮机系统的燃烧器中燃烧燃料和氧化剂,该EGR燃气涡轮机系统产生电力并向电网提供该电力的一部分;并响应于与电网相关联的瞬态事件,控制EGR燃气涡轮机系统的一个或更多个参数以增加提供至电网的电力的部分,其中,控制包括下列项中的一项或更多项:(A)响应于在EGR燃气涡轮机系统在贫燃料燃烧模式中运行时的瞬态事件,增加至燃烧器的燃料的流率;(B)响应于该瞬态事件增加在燃烧器中的氧化剂的浓度和/或流率,并响应于氧化剂的增加的浓度增加至燃烧器的燃料的流率以保持在该燃烧器中的大致化学计量当量比;或(C)响应于该瞬态事件减少电力的本地消耗以增加提供至电网的电力的部分。
实施例10.根据任一前述实施例所述的方法,其中,在贫燃料燃烧模式中运行EGR燃气涡轮机系统包括以存在的过量氧化剂来运行EGR燃气涡轮机系统的燃烧器,并且其中,增加至燃烧器的燃料的流率包括响应于瞬态事件临时增加至燃烧器的燃料的流率。
实施例11.根据任一前述实施例所述的方法,包括将包含氧化剂和再循环排气的进气流引入到设置在EGR燃气涡轮机系统中的燃烧器上游的氧化剂压缩机,并且其中,增加燃烧器中的氧化剂的浓度包括响应于瞬态事件增加进气流中的氧化剂与再循环排气的比。
实施例12.根据任一前述实施例所述的方法,其中,继瞬态事件后立即或在第一可编程时延之后,将所述再循环排气的流率从较高流率减小可编程量到较低流率;并且进一步包括:在继减小所述再循环排气的流率后的第二可编程时延之后,将所述再循环排气的流率逐步增加到所述较高流率。
实施例13.根据任一前述实施例所述的方法,包括控制设置在EGR燃气涡轮机系统中的燃烧器上游的至少一个氧化剂压缩机的一个或更多个性能参数,并且其中,增加燃烧器中的氧化剂的浓度包括响应于瞬态事件,增加至少一个氧化剂压缩机的一个或更多个性能参数,并且其中,至少一个氧化剂压缩机包括主氧化剂压缩机、增压氧化剂压缩机或它们的组合。
实施例14.根据任一前述实施例所述的方法,其中,至少一个氧化剂压缩机的一个或更多个性能参数包括:进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置。
实施例15.根据任一前述实施例所述的方法,其中,增加至少一个氧化剂压缩机的一个或更多个性能参数包括:继瞬态事件后立即或在第一可编程时延之后,将至少一个氧化剂压缩机的一个或更多个性能参数从较低性能设置增加可编程量到较高性能设置;并且进一步包括:在继增加至少一个氧化剂压缩机的一个或更多个性能参数后的第二可编程时延之后,将至少一个氧化剂压缩机的一个或更多个性能参数逐步降低到较低性能设置。
实施例16.根据任一前述实施例所述的方法,其中,减少电力的本地消耗包括:继瞬态事件后立即或在第一可编程时延之后,将产气压缩机的一个或更多个性能参数从较高性能设置减少可编程量到较低性能设置;并且进一步包括:在继减小产气压缩机的一个或更多个性能参数后的第二可编程时延之后,将产气压缩机的一个或更多个性能参数逐步增加到较高性能设置。
实施例17.根据任一前述实施例所述的方法,其中,产气压缩机的一个或更多个性能参数包括:进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置。
实施例18.根据任一前述实施例所述的方法,包括:继瞬态事件后立即或在第一可编程时延之后,临时增加EGR燃气涡轮机系统的一个或更多个可编程约束,并且其中,EGR燃气涡轮机系统的一个或更多个可编程约束包括EGR燃气涡轮机系统的扭矩限制、速度限制、压力限制、流率限制或功率限制。
实施例19.根据任一前述实施例所述的方法,其中,EGR燃气涡轮机系统为超低排放技术(ULET)发电厂的一部分。
实施例20.一种系统,该系统包括:排气再循环(EGR)燃气涡轮机系统,该EGR燃气涡轮机系统包括被构造成接收燃料并用氧化剂使燃料燃烧的燃烧器,以及由来自燃烧器的燃烧产物驱动的涡轮机;由该涡轮机驱动的发电机,其中,该发电机被构造成生成电力并向电网输出该电力的一部分;以及控制系统,其包括闭环控制器和开环控制器,该闭环控制器被构造成控制EGR燃气涡轮机系统的一个或更多个参数,该开环控制器被构造成响应于瞬态事件临时控制EGR燃气涡轮机系统的一个或更多个参数以增加输出到电网的电力的部分,其中,开环控制器被构造成:响应于在EGR燃气涡轮机系统在非排放合规模式中运行时的瞬态事件,提供控制信号以增加至燃烧器的燃料的流率;并且响应于在EGR燃气涡轮机系统在排放合规模式中运行时的瞬态事件,提供控制信号以增加燃烧器中的氧化剂的浓度或减少电力的本地消耗或这两者。
实施例21.根据任一前述实施例所述的系统,其中,闭环控制器被构造成响应于氧化剂的增加的浓度,提供控制信号以增加至燃烧器的燃料的流率以保持在燃烧器中的大致化学计量当量比。
实施例22.根据任一前述实施例所述的系统,包括设置在燃烧器的上游并被构造成接收包含氧化剂流和再循环排气流的进气流的至少一个氧化剂压缩机,其中,开环控制器被构造成响应于瞬态事件,向控制阀提供控制信号以通过减少再循环排气流来增加氧化剂流与再循环排气流的比。
实施例23.根据任一前述实施例所述的系统,包括设置在燃烧器上游的至少一个氧化剂压缩机,并且其中,开环控制器被构造成响应于瞬态事件,向至少一个氧化剂压缩机提供控制信号以调节该至少一个氧化剂压缩机的一个或更多个性能参数,并且其中,该至少一个氧化剂压缩机的一个或更多个性能参数包括:进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置。
实施例24.根据任一前述实施例所述的系统,包括产气压缩机,该产气压缩机被构造成接收来自EGR燃气涡轮机系统的排气再循环(ERG)回路的排气流并压缩该排气流,其中,开环控制器被构造成向产气压缩机提供控制信号以调节下列项中的一项或更多项:产气压缩机的进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置,以便减少产气压缩机的电力的本地消耗。
实施例25.根据任一前述实施例的系统,其中,控制系统被构造成在EGR燃气涡轮机系统在非排放合规模式中运行时,提供控制信号以将该EGR燃气涡轮机系统的燃烧器中的当量比保持在约0.3和0.7之间。
实施例26.一种存储可由电子装置的处理器执行的指令的非暂态计算机可读介质,该指令包含:确定联接到EGR燃气涡轮机系统的电网中发生瞬态事件的指令,其中,该瞬态事件为欠频或欠压事件;响应于在EGR燃气涡轮机系统在非化学计量燃烧模式中运行时的瞬态事件,增加至该EGR燃气涡轮机系统的燃烧器的燃料的流率的指令;以及响应于在EGR燃气涡轮机系统中化学计量燃烧模式中运行时的瞬态事件,在增加至燃烧器的燃料的流率之前增加至该燃烧器的氧化剂的流率,或减少电力的本地消耗以增加被输出到附接电网的电力的一部分或这两者的指令。
实施例27.根据任一前述实施例所述的介质,其中,增加至燃烧器的氧化剂的流率的指令包括:响应于瞬态事件,向设置在EGR燃气涡轮机系统的EGR回路中的氧化剂压缩机的上游的控制阀提供控制信号以减少至氧化剂压缩机的进口的再循环排气流的指令。
实施例28.根据任一前述实施例所述的介质,其中,增加至燃烧器的氧化剂的流率的指令包括:响应于瞬态事件,调节下列项中的一项或更多项的指令:设置在燃烧器上游的至少一个氧化剂压缩机的进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置,以增加至少一个氧化剂压缩机的性能。
实施例29.根据任一前述实施例所述的介质,其中,减少电力的本地消耗的指令包括:调节下列项中的一项或更多项的指令:产气压缩机的进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置,以减少产气压缩机的功率消耗。
本书面描述使用示例来公开本发明(包含最佳模式),并且也使本领域的任何技术人员能够实践本发明,包含制作和使用任何装置或系统并执行任何包含的方法。本发明的可授予专利权范围由权利要求定义,并且可包含本领域的技术人员想到的其它示例。如果此类其它示例具有与权利要求的字面语言不冲突的结构元件或如果此类其它示例包含与权利要求的字面语言并无大致不同的等效结构元件,则该类其它示例旨在权利要求的范围内。

Claims (24)

1.一种用于排气再循环燃气涡轮机系统的方法,其包括:
在所述排气再循环燃气涡轮机系统即EGR燃气涡轮机系统的燃烧器中燃烧燃料和氧化剂,所述EGR燃气涡轮机系统产生电力并向电网提供所述电力的一部分;并且
响应于与所述电网中的电力相关联的瞬态事件,控制所述EGR燃气涡轮机系统的一个或更多个参数以增加提供至所述电网的所述电力的所述一部分以提供主频率响应即PFR,其中所述瞬态事件包括所述电网中的所述电力的频率或电压的快速变化的周期,其中控制包括下列项中的一项或更多项:
(A)在所述EGR燃气涡轮机系统在贫燃料燃烧模式中运行时,响应于所述瞬态事件,增加至所述燃烧器的燃料的流率以提供所述PFR;
(B)响应于所述瞬态事件,增加在所述燃烧器中的所述氧化剂的浓度和/或流率以提供所述PFR,并响应于所述氧化剂的增加的浓度和/或流率,增加至所述燃烧器的燃料的流率,以保持在所述燃烧器中的大致化学计量当量比;或
(C)响应于所述瞬态事件,减少所述电力的本地消耗以提供所述PFR,以增加提供至所述电网的所述电力的所述一部分。
2.根据权利要求1所述的方法,其中,在贫燃料燃烧模式中运行所述EGR燃气涡轮机系统包括:利用存在的过量氧化剂运行所述EGR燃气涡轮机系统的所述燃烧器,并且其中,增加至所述燃烧器的燃料的所述流率包括:响应于所述瞬态事件,临时增加至所述燃烧器的燃料的所述流率。
3.根据权利要求1所述的方法,其包括:将包含所述氧化剂和再循环排气的进气流引入到设置在所述EGR燃气涡轮机系统中的所述燃烧器上游的氧化剂压缩机,并且其中,增加在所述燃烧器中的所述氧化剂的所述浓度包括:响应于所述瞬态事件,增加所述进气流中所述氧化剂与所述再循环排气的比。
4.根据权利要求3所述的方法,其中,继所述瞬态事件后立即或在第一可编程时延之后,将所述再循环排气的流率从较高流率减小可编程量到较低流率;并且进一步包括:在继减小所述再循环排气的所述流率后的第二可编程时延之后,将所述再循环排气的所述流率逐步增加到所述较高流率。
5.根据权利要求1所述的方法,其包括:控制设置在所述EGR燃气涡轮机系统中的所述燃烧器上游的至少一个氧化剂压缩机的一个或更多个性能参数,并且其中,增加在所述燃烧器中的所述氧化剂的所述浓度和/或流率包括:响应于所述瞬态事件增加所述至少一个氧化剂压缩机的所述一个或更多个性能参数,并且其中,所述至少一个氧化剂压缩机包括主氧化剂压缩机、增压氧化剂压缩机或它们的组合。
6.根据权利要求5所述的方法,其中,所述至少一个氧化剂压缩机的所述一个或更多个性能参数包括:进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置。
7.根据权利要求5所述的方法,其中,增加所述至少一个氧化剂压缩机的所述一个或更多个性能参数包括:继所述瞬态事件后立即或在第一可编程时延之后,将所述至少一个氧化剂压缩机的所述一个或更多个性能参数从较低性能设置增加可编程量到较高性能设置;并且进一步包括:在继增加所述至少一个氧化剂压缩机的所述一个或更多个性能参数后的第二可编程时延之后,将所述至少一个氧化剂压缩机的所述一个或更多个性能参数逐步减小到所述较低性能设置。
8.根据权利要求1所述的方法,其中,减少所述电力的所述本地消耗包括:继所述瞬态事件后立即或在第一可编程时延之后,将产气压缩机的一个或更多个性能参数从较高性能设置减小可编程量到较低性能设置;并且进一步包括:在继减小所述产气压缩机的所述一个或更多个性能参数后的第二可编程时延之后,将所述产气压缩机的所述一个或更多个性能参数逐步增加到所述较高性能设置。
9.根据权利要求8所述的方法,其中,所述产气压缩机的所述一个或更多个性能参数包括:进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置。
10.根据权利要求1所述的方法,其包括:继所述瞬态事件后立即或在第一可编程时延之后,临时增加所述EGR燃气涡轮机系统的一个或更多个可编程约束,并且其中,所述EGR燃气涡轮机系统的所述一个或更多个可编程约束包括所述EGR燃气涡轮机系统的扭矩限制、速度限制、压力限制、流率限制或功率限制。
11.根据权利要求1所述的方法,其中,所述EGR燃气涡轮机系统为超低排放技术发电厂即ULET发电厂的一部分。
12.根据权利要求1所述的方法,其包括:经由与所述电网联接的一个或更多个传感器检测与所述电网相关联的所述瞬态事件。
13.一种用于排气再循环燃气涡轮机系统的系统,其包括:
所述排气再循环燃气涡轮机系统,即EGR燃气涡轮机系统,其包括:
被构造成接收燃料并利用氧化剂燃烧所述燃料的燃烧器;以及
由所述燃烧器的燃烧产物驱动的涡轮机;
由所述涡轮机驱动的发电机,其中,所述发电机被构造成生成电力并向电网输出所述电力的一部分;以及
控制系统,其包括:
被构造成控制所述EGR燃气涡轮机系统的一个或更多个参数的闭环控制器;以及
被构造成响应于瞬态事件临时控制所述EGR燃气涡轮机系统的所述一个或更多个参数以增加输出至所述电网的所述电力的所述一部分以提供主频率响应即PFR的开环控制器,其中,开环控制器被构造成:
在所述EGR燃气涡轮机系统在非排放合规模式中运行时,响应于所述瞬态事件,提供控制信号以增加至所述燃烧器的燃料的流率,以提供所述PFR;并且
在所述EGR燃气涡轮机系统在排放合规模式中运行时,响应于所述瞬态事件,提供控制信号以增加在所述燃烧器中的所述氧化剂的浓度或减少所述电力的本地消耗或这两者,以提供所述PFR。
14.根据权利要求13所述的用于排气再循环燃气涡轮机系统的系统,其中,所述闭环控制器被构造成响应于所述氧化剂的增加的浓度,提供控制信号以增加至所述燃烧器的所述燃料的所述流率,以保持在所述燃烧器中的大致化学计量当量比。
15.根据权利要求13所述的用于排气再循环燃气涡轮机系统的系统,其包括:设置在所述燃烧器上游并被构造成接收包含氧化剂流和再循环排气流的进气流的至少一个氧化剂压缩机,其中,所述开环控制器被构造成响应于所述瞬态事件,向控制阀提供控制信号以通过减少所述再循环排气流来增加所述氧化剂流与所述再循环排气流的比。
16.根据权利要求13所述的用于排气再循环燃气涡轮机系统的系统,其包括:设置在所述燃烧器的上游的至少一个氧化剂压缩机,并且其中,所述开环控制器被构造成响应于所述瞬态事件,向所述至少一个氧化剂压缩机提供控制信号以调节所述至少一个氧化剂压缩机的一个或更多个性能参数,并且其中,所述至少一个氧化剂压缩机的所述一个或更多个性能参数包括:进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置。
17.根据权利要求13所述的用于排气再循环燃气涡轮机系统的系统,其包括:被构造成从所述EGR燃气涡轮机系统的排气再循环回路即EGR回路接收排气流并且压缩所述排气流的产气压缩机,其中,所述开环控制器被构造成向所述产气压缩机提供控制信号以调节下列项中的一项或更多项:所述产气压缩机的进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置,以便减少所述产气压缩机的所述电力的所述本地消耗。
18.根据权利要求13所述的用于排气再循环燃气涡轮机系统的系统,其中,所述控制系统被构造成在所述EGR燃气涡轮机系统在非排放合规模式中运行时,提供控制信号以将所述EGR燃气涡轮机系统的所述燃烧器中的当量比保持在0.3和0.7之间。
19.根据权利要求13所述的用于排气再循环燃气涡轮机系统的系统,其包括联接到所述电网和所述控制系统的一个或更多个传感器,其中所述控制系统被构造成至少部分基于来自所述一个或更多个传感器的反馈检测与所述电网相关联的所述瞬态事件何时发生。
20.一种存储可由电子装置的处理器执行的指令的非暂态计算机可读介质,所述指令包含:
确定在联接到EGR燃气涡轮机系统的电网中发生瞬态事件的指令,其中,所述瞬态事件为欠频事件或欠压事件;
在所述EGR燃气涡轮机系统在非化学计量燃烧模式中运行时,响应于所述瞬态事件,增加至所述EGR燃气涡轮机系统的燃烧器的燃料的流率以提供主频率响应即PFR的指令;以及
在所述EGR燃气涡轮机系统在化学计量燃烧模式中运行时,响应于所述瞬态事件,在增加至所述燃烧器的燃料的所述流率之前增加至所述燃烧器的氧化剂的流率,或者减少电力的本地消耗以增加被输出到附接电网的电力的一部分,或者这两者以提供所述PFR的指令。
21.根据权利要求20所述的介质,其中,增加至所述燃烧器的氧化剂的所述流率的指令包括:响应于所述瞬态事件,向设置在所述EGR燃气涡轮机系统的EGR回路中的氧化剂压缩机上游的控制阀提供控制信号,以减少至所述氧化剂压缩机的进口的再循环排气流的指令。
22.根据权利要求20所述的介质,其中,增加至所述燃烧器的氧化剂的所述流率的指令包括:响应于所述瞬态事件以调节下列项中的一项或更多项的指令:设置在所述燃烧器的上游的至少一个氧化剂压缩机的进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置,以增加所述至少一个氧化剂压缩机的性能。
23.根据权利要求20所述的介质,其中,减少所述电力的所述本地消耗的指令包括:调节下列项中的一项或更多项的指令:产气压缩机的进口导向叶片位置、可变定子叶片位置、速度、进口节流阀位置、排出节流阀位置或再循环阀位置,以降低所述产气压缩机的功率消耗。
24.根据权利要求20所述的介质,其中,确定在联接到所述EGR燃气涡轮机系统的所述电网中发生所述瞬态事件的所述指令包括利用来自联接到所述电网的一个或更多个传感器的反馈来检测所述欠频事件或所述欠压事件的指令。
CN201480077431.6A 2014-01-27 2014-12-31 用于化学计量排气再循环燃气涡轮机系统的系统和方法 Expired - Fee Related CN107076033B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461932178P 2014-01-27 2014-01-27
US61/932,178 2014-01-27
US14/585,950 2014-12-30
US14/585,950 US10079564B2 (en) 2014-01-27 2014-12-30 System and method for a stoichiometric exhaust gas recirculation gas turbine system
PCT/US2014/073048 WO2015112317A1 (en) 2014-01-27 2014-12-31 System and method for a stoichiometric exhaust gas recirculation gas turbine system

Publications (2)

Publication Number Publication Date
CN107076033A CN107076033A (zh) 2017-08-18
CN107076033B true CN107076033B (zh) 2019-02-12

Family

ID=53680023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480077431.6A Expired - Fee Related CN107076033B (zh) 2014-01-27 2014-12-31 用于化学计量排气再循环燃气涡轮机系统的系统和方法

Country Status (11)

Country Link
US (2) US10079564B2 (zh)
EP (1) EP3102811A1 (zh)
JP (1) JP2017505878A (zh)
CN (1) CN107076033B (zh)
AR (1) AR099659A1 (zh)
AU (2) AU2014379485B2 (zh)
CA (1) CA2938046A1 (zh)
MX (1) MX2016009709A (zh)
RU (1) RU2678608C2 (zh)
SG (1) SG11201606026XA (zh)
WO (1) WO2015112317A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US20140182298A1 (en) * 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company Stoichiometric combustion control for gas turbine system with exhaust gas recirculation
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10060359B2 (en) * 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) * 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN107636543B (zh) * 2015-09-02 2019-03-12 三菱电机株式会社 仿真装置和计算机能读取的记录介质
US10076055B2 (en) * 2016-06-06 2018-09-11 General Electric Company Systems and methods for cooling a compartmentalized and ducted electrical enclosure
NL2019940B1 (en) * 2017-11-20 2019-05-24 Micro Turbine Tech B V Micro gas turbine designed to limit heat losses therefrom
WO2019142025A1 (en) * 2018-01-19 2019-07-25 Rajeev Hiremath A system and a method for power generation
CN109611872B (zh) * 2018-12-05 2021-08-27 新奥数能科技有限公司 一种降低锅炉燃烧产生的氮氧化物的方法及装置
FR3099319B1 (fr) * 2019-07-26 2021-06-25 Safran Aircraft Engines Turbomachine comprenant une machine électrique ayant une fonction de démarreur-générateur et procédé de régulation de la vitesse d’une telle machine électrique
US11916396B2 (en) * 2021-06-08 2024-02-27 GE Grid GmbH Systems and methods for control of power generation assets
US11905817B2 (en) 2021-12-16 2024-02-20 Saudi Arabian Oil Company Method and system for managing carbon dioxide supplies using machine learning
GB202205354D0 (en) * 2022-04-12 2022-05-25 Rolls Royce Plc Fuel delivery
US20240003270A1 (en) * 2022-07-01 2024-01-04 General Electric Company Combined cycle power plants with exhaust gas recirculation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100549389C (zh) * 2005-07-08 2009-10-14 通用电气公司 二氧化碳分离的发电系统和方法
CN102953814A (zh) * 2011-08-25 2013-03-06 通用电气公司 功率装置和使用方法
WO2013155214A1 (en) * 2012-04-12 2013-10-17 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
WO2013163045A1 (en) * 2012-04-26 2013-10-31 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine

Family Cites Families (661)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488911A (en) 1946-11-09 1949-11-22 Surface Combustion Corp Combustion apparatus for use with turbines
GB776269A (en) 1952-11-08 1957-06-05 Licentia Gmbh A gas turbine plant
US2884758A (en) 1956-09-10 1959-05-05 Bbc Brown Boveri & Cie Regulating device for burner operating with simultaneous combustion of gaseous and liquid fuel
US3631672A (en) 1969-08-04 1972-01-04 Gen Electric Eductor cooled gas turbine casing
US3643430A (en) 1970-03-04 1972-02-22 United Aircraft Corp Smoke reduction combustion chamber
US3705492A (en) 1971-01-11 1972-12-12 Gen Motors Corp Regenerative gas turbine system
US3841382A (en) 1973-03-16 1974-10-15 Maloney Crawford Tank Glycol regenerator using controller gas stripping under vacuum
US3949548A (en) 1974-06-13 1976-04-13 Lockwood Jr Hanford N Gas turbine regeneration system
GB1490145A (en) 1974-09-11 1977-10-26 Mtu Muenchen Gmbh Gas turbine engine
US4043395A (en) 1975-03-13 1977-08-23 Continental Oil Company Method for removing methane from coal
US4018046A (en) 1975-07-17 1977-04-19 Avco Corporation Infrared radiation suppressor for gas turbine engine
NL7612453A (nl) 1975-11-24 1977-05-26 Gen Electric Geintegreerde lichtgasproduktieinstallatie en werkwijze voor de opwekking van elektrische energie.
US4077206A (en) 1976-04-16 1978-03-07 The Boeing Company Gas turbine mixer apparatus for suppressing engine core noise and engine fan noise
US4204401A (en) 1976-07-19 1980-05-27 The Hydragon Corporation Turbine engine with exhaust gas recirculation
US4380895A (en) 1976-09-09 1983-04-26 Rolls-Royce Limited Combustion chamber for a gas turbine engine having a variable rate diffuser upstream of air inlet means
US4066214A (en) 1976-10-14 1978-01-03 The Boeing Company Gas turbine exhaust nozzle for controlled temperature flow across adjoining airfoils
US4117671A (en) 1976-12-30 1978-10-03 The Boeing Company Noise suppressing exhaust mixer assembly for ducted-fan, turbojet engine
US4165609A (en) 1977-03-02 1979-08-28 The Boeing Company Gas turbine mixer apparatus
US4092095A (en) 1977-03-18 1978-05-30 Combustion Unlimited Incorporated Combustor for waste gases
US4112676A (en) 1977-04-05 1978-09-12 Westinghouse Electric Corp. Hybrid combustor with staged injection of pre-mixed fuel
US4271664A (en) 1977-07-21 1981-06-09 Hydragon Corporation Turbine engine with exhaust gas recirculation
RO73353A2 (ro) 1977-08-12 1981-09-24 Institutul De Cercetari Si Proiectari Pentru Petrol Si Gaze,Ro Procedeu de desulfurare a fluidelor din zacamintele de hidrocarburi extrase prin sonde
US4101294A (en) 1977-08-15 1978-07-18 General Electric Company Production of hot, saturated fuel gas
US4160640A (en) 1977-08-30 1979-07-10 Maev Vladimir A Method of fuel burning in combustion chambers and annular combustion chamber for carrying same into effect
US4222240A (en) 1978-02-06 1980-09-16 Castellano Thomas P Turbocharged engine
US4236378A (en) 1978-03-01 1980-12-02 General Electric Company Sectoral combustor for burning low-BTU fuel gas
DE2808690C2 (de) 1978-03-01 1983-11-17 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Einrichtung zur Erzeugung von Heißdampf für die Gewinnung von Erdöl
US4498288A (en) 1978-10-13 1985-02-12 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
US4253301A (en) 1978-10-13 1981-03-03 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
US4345426A (en) 1980-03-27 1982-08-24 Egnell Rolf A Device for burning fuel with air
GB2080934B (en) 1980-07-21 1984-02-15 Hitachi Ltd Low btu gas burner
US4352269A (en) 1980-07-25 1982-10-05 Mechanical Technology Incorporated Stirling engine combustor
GB2082259B (en) 1980-08-15 1984-03-07 Rolls Royce Exhaust flow mixers and nozzles
US4442665A (en) 1980-10-17 1984-04-17 General Electric Company Coal gasification power generation plant
US4480985A (en) 1980-12-22 1984-11-06 Arkansas Patents, Inc. Pulsing combustion
US4479484A (en) 1980-12-22 1984-10-30 Arkansas Patents, Inc. Pulsing combustion
US4637792A (en) 1980-12-22 1987-01-20 Arkansas Patents, Inc. Pulsing combustion
US4488865A (en) 1980-12-22 1984-12-18 Arkansas Patents, Inc. Pulsing combustion
US4344486A (en) 1981-02-27 1982-08-17 Standard Oil Company (Indiana) Method for enhanced oil recovery
US4399652A (en) 1981-03-30 1983-08-23 Curtiss-Wright Corporation Low BTU gas combustor
US4414334A (en) 1981-08-07 1983-11-08 Phillips Petroleum Company Oxygen scavenging with enzymes
US4434613A (en) 1981-09-02 1984-03-06 General Electric Company Closed cycle gas turbine for gaseous production
US4445842A (en) 1981-11-05 1984-05-01 Thermal Systems Engineering, Inc. Recuperative burner with exhaust gas recirculation means
GB2117053B (en) 1982-02-18 1985-06-05 Boc Group Plc Gas turbines and engines
US4498289A (en) 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
US4548034A (en) 1983-05-05 1985-10-22 Rolls-Royce Limited Bypass gas turbine aeroengines and exhaust mixers therefor
US4528811A (en) 1983-06-03 1985-07-16 General Electric Co. Closed-cycle gas turbine chemical processor
GB2149456B (en) 1983-11-08 1987-07-29 Rolls Royce Exhaust mixing in turbofan aeroengines
US4561245A (en) 1983-11-14 1985-12-31 Atlantic Richfield Company Turbine anti-icing system
US4602614A (en) 1983-11-30 1986-07-29 United Stirling, Inc. Hybrid solar/combustion powered receiver
SE439057B (sv) 1984-06-05 1985-05-28 United Stirling Ab & Co Anordning for forbrenning av ett brensle med syrgas och inblandning av en del av de vid forbrenningen bildade avgaserna
EP0169431B1 (en) 1984-07-10 1990-04-11 Hitachi, Ltd. Gas turbine combustor
US4606721A (en) 1984-11-07 1986-08-19 Tifa Limited Combustion chamber noise suppressor
US4653278A (en) 1985-08-23 1987-03-31 General Electric Company Gas turbine engine carburetor
US4651712A (en) 1985-10-11 1987-03-24 Arkansas Patents, Inc. Pulsing combustion
NO163612C (no) 1986-01-23 1990-06-27 Norsk Energi Fremgangsmaate og anlegg for fremstilling av nitrogen for anvendelse under hoeyt trykk.
US4858428A (en) 1986-04-24 1989-08-22 Paul Marius A Advanced integrated propulsion system with total optimized cycle for gas turbines
US4753666A (en) 1986-07-24 1988-06-28 Chevron Research Company Distillative processing of CO2 and hydrocarbons for enhanced oil recovery
US4681678A (en) 1986-10-10 1987-07-21 Combustion Engineering, Inc. Sample dilution system for supercritical fluid chromatography
US4684465A (en) 1986-10-10 1987-08-04 Combustion Engineering, Inc. Supercritical fluid chromatograph with pneumatically controlled pump
US4817387A (en) 1986-10-27 1989-04-04 Hamilton C. Forman, Trustee Turbocharger/supercharger control device
US4762543A (en) 1987-03-19 1988-08-09 Amoco Corporation Carbon dioxide recovery
US5084438A (en) 1988-03-23 1992-01-28 Nec Corporation Electronic device substrate using silicon semiconductor substrate
US4883122A (en) 1988-09-27 1989-11-28 Amoco Corporation Method of coalbed methane production
JP2713627B2 (ja) 1989-03-20 1998-02-16 株式会社日立製作所 ガスタービン燃焼器、これを備えているガスタービン設備、及びこの燃焼方法
US4946597A (en) 1989-03-24 1990-08-07 Esso Resources Canada Limited Low temperature bitumen recovery process
US4976100A (en) 1989-06-01 1990-12-11 Westinghouse Electric Corp. System and method for heat recovery in a combined cycle power plant
US5135387A (en) 1989-10-19 1992-08-04 It-Mcgill Environmental Systems, Inc. Nitrogen oxide control using internally recirculated flue gas
US5044932A (en) 1989-10-19 1991-09-03 It-Mcgill Pollution Control Systems, Inc. Nitrogen oxide control using internally recirculated flue gas
SE467646B (sv) 1989-11-20 1992-08-24 Abb Carbon Ab Saett vid roekgasrening i pfbc-anlaeggning
US5123248A (en) 1990-03-28 1992-06-23 General Electric Company Low emissions combustor
JP2954972B2 (ja) 1990-04-18 1999-09-27 三菱重工業株式会社 ガス化ガス燃焼ガスタービン発電プラント
US5271905A (en) 1990-04-27 1993-12-21 Mobil Oil Corporation Apparatus for multi-stage fast fluidized bed regeneration of catalyst
JPH0450433A (ja) 1990-06-20 1992-02-19 Toyota Motor Corp 直列2段過給内燃機関の排気ガス再循環装置
SU1744290A1 (ru) * 1990-07-09 1992-06-30 Казанский Авиационный Институт Им.А.Н.Туполева Способ работы газотурбинной установки
US5141049A (en) 1990-08-09 1992-08-25 The Badger Company, Inc. Treatment of heat exchangers to reduce corrosion and by-product reactions
US5154596A (en) 1990-09-07 1992-10-13 John Zink Company, A Division Of Koch Engineering Company, Inc. Methods and apparatus for burning fuel with low NOx formation
US5098282A (en) 1990-09-07 1992-03-24 John Zink Company Methods and apparatus for burning fuel with low NOx formation
US5197289A (en) 1990-11-26 1993-03-30 General Electric Company Double dome combustor
US5085274A (en) 1991-02-11 1992-02-04 Amoco Corporation Recovery of methane from solid carbonaceous subterranean of formations
DE4110507C2 (de) 1991-03-30 1994-04-07 Mtu Muenchen Gmbh Brenner für Gasturbinentriebwerke mit mindestens einer für die Zufuhr von Verbrennungsluft lastabhängig regulierbaren Dralleinrichtung
RU2034192C1 (ru) * 1991-04-04 1995-04-30 Девочкин Михаил Алексеевич Парогазовая установка
US5073105A (en) 1991-05-01 1991-12-17 Callidus Technologies Inc. Low NOx burner assemblies
US5147111A (en) 1991-08-02 1992-09-15 Atlantic Richfield Company Cavity induced stimulation method of coal degasification wells
US5255506A (en) 1991-11-25 1993-10-26 General Motors Corporation Solid fuel combustion system for gas turbine engine
US5183232A (en) 1992-01-31 1993-02-02 Gale John A Interlocking strain relief shelf bracket
US5238395A (en) 1992-03-27 1993-08-24 John Zink Company Low nox gas burner apparatus and methods
US5195884A (en) 1992-03-27 1993-03-23 John Zink Company, A Division Of Koch Engineering Company, Inc. Low NOx formation burner apparatus and methods
US5634329A (en) 1992-04-30 1997-06-03 Abb Carbon Ab Method of maintaining a nominal working temperature of flue gases in a PFBC power plant
US5332036A (en) 1992-05-15 1994-07-26 The Boc Group, Inc. Method of recovery of natural gases from underground coal formations
US5295350A (en) 1992-06-26 1994-03-22 Texaco Inc. Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
US5355668A (en) 1993-01-29 1994-10-18 General Electric Company Catalyst-bearing component of gas turbine engine
US5628184A (en) 1993-02-03 1997-05-13 Santos; Rolando R. Apparatus for reducing the production of NOx in a gas turbine
US5361586A (en) 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
US5388395A (en) 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
US5444971A (en) 1993-04-28 1995-08-29 Holenberger; Charles R. Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers
US5359847B1 (en) 1993-06-01 1996-04-09 Westinghouse Electric Corp Dual fuel ultra-flow nox combustor
US5638674A (en) 1993-07-07 1997-06-17 Mowill; R. Jan Convectively cooled, single stage, fully premixed controllable fuel/air combustor with tangential admission
US5572862A (en) 1993-07-07 1996-11-12 Mowill Rolf Jan Convectively cooled, single stage, fully premixed fuel/air combustor for gas turbine engine modules
US5628182A (en) 1993-07-07 1997-05-13 Mowill; R. Jan Star combustor with dilution ports in can portions
PL171012B1 (pl) 1993-07-08 1997-02-28 Waclaw Borszynski Uklad do mokrego oczyszczania spalin z procesów spalania, korzystnie wegla, koksu,oleju opalowego PL
US5794431A (en) 1993-07-14 1998-08-18 Hitachi, Ltd. Exhaust recirculation type combined plant
US5535584A (en) 1993-10-19 1996-07-16 California Energy Commission Performance enhanced gas turbine powerplants
US5345756A (en) 1993-10-20 1994-09-13 Texaco Inc. Partial oxidation process with production of power
US5394688A (en) 1993-10-27 1995-03-07 Westinghouse Electric Corporation Gas turbine combustor swirl vane arrangement
CN1052053C (zh) 1993-12-10 2000-05-03 卡伯特公司 一种改进的以液化天然气为燃料的联合循环发电设备
US5542840A (en) 1994-01-26 1996-08-06 Zeeco Inc. Burner for combusting gas and/or liquid fuel with low NOx production
US5458481A (en) 1994-01-26 1995-10-17 Zeeco, Inc. Burner for combusting gas with low NOx production
NO180520C (no) 1994-02-15 1997-05-07 Kvaerner Asa Fremgangsmåte til fjerning av karbondioksid fra forbrenningsgasser
JP2950720B2 (ja) 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法
US5439054A (en) 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
DE4411624A1 (de) 1994-04-02 1995-10-05 Abb Management Ag Brennkammer mit Vormischbrennern
US5581998A (en) 1994-06-22 1996-12-10 Craig; Joe D. Biomass fuel turbine combuster
US5402847A (en) 1994-07-22 1995-04-04 Conoco Inc. Coal bed methane recovery
JPH10505145A (ja) 1994-08-25 1998-05-19 クリーン エナジー システムズ, インコーポレイテッド 汚染を減少した動力発生システム及びそのためのガス発生機
US5640840A (en) 1994-12-12 1997-06-24 Westinghouse Electric Corporation Recuperative steam cooled gas turbine method and apparatus
US5836164A (en) 1995-01-30 1998-11-17 Hitachi, Ltd. Gas turbine combustor
US5657631A (en) 1995-03-13 1997-08-19 B.B.A. Research & Development, Inc. Injector for turbine engines
AU5662296A (en) 1995-03-24 1996-10-16 Ultimate Power Engineering Group, Inc. High vanadium content fuel combustor and system
US5685158A (en) 1995-03-31 1997-11-11 General Electric Company Compressor rotor cooling system for a gas turbine
CN1112505C (zh) 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机
EP0747635B1 (en) 1995-06-05 2003-01-15 Rolls-Royce Corporation Dry low oxides of nitrogen lean premix module for industrial gas turbine engines
US5680764A (en) 1995-06-07 1997-10-28 Clean Energy Systems, Inc. Clean air engines transportation and other power applications
US6170264B1 (en) 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
US5992388A (en) 1995-06-12 1999-11-30 Patentanwalt Hans Rudolf Gachnang Fuel gas admixing process and device
US5722230A (en) 1995-08-08 1998-03-03 General Electric Co. Center burner in a multi-burner combustor
US5724805A (en) 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US5725054A (en) 1995-08-22 1998-03-10 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Enhancement of residual oil recovery using a mixture of nitrogen or methane diluted with carbon dioxide in a single-well injection process
US5638675A (en) 1995-09-08 1997-06-17 United Technologies Corporation Double lobed mixer with major and minor lobes
GB9520002D0 (en) 1995-09-30 1995-12-06 Rolls Royce Plc Turbine engine control system
DE19539774A1 (de) 1995-10-26 1997-04-30 Asea Brown Boveri Zwischengekühlter Verdichter
ATE191254T1 (de) 1995-12-27 2000-04-15 Shell Int Research Flamenlose verbrennvorrichtung und verfahren
DE19549143A1 (de) 1995-12-29 1997-07-03 Abb Research Ltd Gasturbinenringbrennkammer
US6201029B1 (en) 1996-02-13 2001-03-13 Marathon Oil Company Staged combustion of a low heating value fuel gas for driving a gas turbine
US5669958A (en) 1996-02-29 1997-09-23 Membrane Technology And Research, Inc. Methane/nitrogen separation process
GB2311596B (en) 1996-03-29 2000-07-12 Europ Gas Turbines Ltd Combustor for gas - or liquid - fuelled turbine
DE19618868C2 (de) 1996-05-10 1998-07-02 Daimler Benz Ag Brennkraftmaschine mit einem Abgasrückführsystem
US5930990A (en) 1996-05-14 1999-08-03 The Dow Chemical Company Method and apparatus for achieving power augmentation in gas turbines via wet compression
US5901547A (en) 1996-06-03 1999-05-11 Air Products And Chemicals, Inc. Operation method for integrated gasification combined cycle power generation system
US5950417A (en) 1996-07-19 1999-09-14 Foster Wheeler Energy International Inc. Topping combustor for low oxygen vitiated air streams
JPH10259736A (ja) 1997-03-19 1998-09-29 Mitsubishi Heavy Ind Ltd 低NOx燃焼器
US5850732A (en) 1997-05-13 1998-12-22 Capstone Turbine Corporation Low emissions combustion system for a gas turbine engine
US5937634A (en) 1997-05-30 1999-08-17 Solar Turbines Inc Emission control for a gas turbine engine
US6062026A (en) 1997-05-30 2000-05-16 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
NO308399B1 (no) 1997-06-06 2000-09-11 Norsk Hydro As Prosess for generering av kraft og/eller varme
NO308400B1 (no) 1997-06-06 2000-09-11 Norsk Hydro As Kraftgenereringsprosess omfattende en forbrenningsprosess
US6256976B1 (en) 1997-06-27 2001-07-10 Hitachi, Ltd. Exhaust gas recirculation type combined plant
US5771867A (en) 1997-07-03 1998-06-30 Caterpillar Inc. Control system for exhaust gas recovery system in an internal combustion engine
US5771868A (en) 1997-07-03 1998-06-30 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
SE9702830D0 (sv) 1997-07-31 1997-07-31 Nonox Eng Ab Environment friendly high efficiency power generation method based on gaseous fuels and a combined cycle with a nitrogen free gas turbine and a conventional steam turbine
US6079974A (en) 1997-10-14 2000-06-27 Beloit Technologies, Inc. Combustion chamber to accommodate a split-stream of recycled gases
US6360528B1 (en) 1997-10-31 2002-03-26 General Electric Company Chevron exhaust nozzle for a gas turbine engine
US6032465A (en) 1997-12-18 2000-03-07 Alliedsignal Inc. Integral turbine exhaust gas recirculation control valve
DE59811106D1 (de) 1998-02-25 2004-05-06 Alstom Technology Ltd Baden Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage mit einem CO2-Prozess
US6082113A (en) 1998-05-22 2000-07-04 Pratt & Whitney Canada Corp. Gas turbine fuel injector
US6082093A (en) 1998-05-27 2000-07-04 Solar Turbines Inc. Combustion air control system for a gas turbine engine
NO982504D0 (no) 1998-06-02 1998-06-02 Aker Eng As Fjerning av CO2 i r°kgass
US6244338B1 (en) 1998-06-23 2001-06-12 The University Of Wyoming Research Corp., System for improving coalbed gas production
US7717173B2 (en) 1998-07-06 2010-05-18 Ecycling, LLC Methods of improving oil or gas production with recycled, increased sodium water
US6038849A (en) * 1998-07-07 2000-03-21 Michael Nakhamkin Method of operating a combustion turbine power plant using supplemental compressed air
US6089855A (en) 1998-07-10 2000-07-18 Thermo Power Corporation Low NOx multistage combustor
US6125627A (en) 1998-08-11 2000-10-03 Allison Advanced Development Company Method and apparatus for spraying fuel within a gas turbine engine
US6148602A (en) 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
GB9818160D0 (en) 1998-08-21 1998-10-14 Rolls Royce Plc A combustion chamber
US6314721B1 (en) 1998-09-04 2001-11-13 United Technologies Corporation Tabbed nozzle for jet noise suppression
NO317870B1 (no) 1998-09-16 2004-12-27 Statoil Asa Fremgangsmate for a fremstille en H<N>2</N>-rik gass og en CO<N>2</N>-rik gass ved hoyt trykk
NO319681B1 (no) 1998-09-16 2005-09-05 Statoil Asa Fremgangsmate for fremstilling av en H2-rik gass og en CO2-rik gass ved hoyt trykk
DE69923403T2 (de) 1998-10-14 2005-07-07 Nissan Motor Co., Ltd., Yokohama Abgasreinigungseinrichtung
NO984956D0 (no) 1998-10-23 1998-10-23 Nyfotek As Brenner
US5968349A (en) 1998-11-16 1999-10-19 Bhp Minerals International Inc. Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands
US6230103B1 (en) 1998-11-18 2001-05-08 Power Tech Associates, Inc. Method of determining concentration of exhaust components in a gas turbine engine
NO308401B1 (no) 1998-12-04 2000-09-11 Norsk Hydro As FremgangsmÕte for gjenvinning av CO2 som genereres i en forbrenningsprosess samt anvendelse derav
US6216549B1 (en) 1998-12-11 2001-04-17 The United States Of America As Represented By The Secretary Of The Interior Collapsible bag sediment/water quality flow-weighted sampler
DE19857234C2 (de) 1998-12-11 2000-09-28 Daimler Chrysler Ag Vorrichtung zur Abgasrückführung
WO2000040851A1 (en) 1999-01-04 2000-07-13 Allison Advanced Development Company Exhaust mixer and apparatus using same
US6183241B1 (en) 1999-02-10 2001-02-06 Midwest Research Institute Uniform-burning matrix burner
NO990812L (no) 1999-02-19 2000-08-21 Norsk Hydro As Metode for Õ fjerne og gjenvinne CO2 fra eksosgass
US6202442B1 (en) 1999-04-05 2001-03-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'expoitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid and process for the operation thereof
US6276171B1 (en) 1999-04-05 2001-08-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid, process for the operation thereof
GB9911867D0 (en) 1999-05-22 1999-07-21 Rolls Royce Plc A combustion chamber assembly and a method of operating a combustion chamber assembly
US6305929B1 (en) 1999-05-24 2001-10-23 Suk Ho Chung Laser-induced ignition system using a cavity
US6283087B1 (en) 1999-06-01 2001-09-04 Kjell Isaksen Enhanced method of closed vessel combustion
US6263659B1 (en) 1999-06-04 2001-07-24 Air Products And Chemicals, Inc. Air separation process integrated with gas turbine combustion engine driver
US6256994B1 (en) 1999-06-04 2001-07-10 Air Products And Chemicals, Inc. Operation of an air separation process with a combustion engine for the production of atmospheric gas products and electric power
US6345493B1 (en) 1999-06-04 2002-02-12 Air Products And Chemicals, Inc. Air separation process and system with gas turbine drivers
US7065953B1 (en) 1999-06-10 2006-06-27 Enhanced Turbine Output Holding Supercharging system for gas turbines
US6324867B1 (en) 1999-06-15 2001-12-04 Exxonmobil Oil Corporation Process and system for liquefying natural gas
SE9902491L (sv) 1999-06-30 2000-12-31 Saab Automobile Förbränningsmotor med avgasåtermatning
US6202574B1 (en) 1999-07-09 2001-03-20 Abb Alstom Power Inc. Combustion method and apparatus for producing a carbon dioxide end product
TR200200154T2 (tr) 1999-07-22 2002-10-21 Bechtel Corporation Bir kombine çevrim santralinde sıvı gazın buharlaştırılmasına yönelik yöntem ve düzenek.
US6301888B1 (en) 1999-07-22 2001-10-16 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Low emission, diesel-cycle engine
US6248794B1 (en) 1999-08-05 2001-06-19 Atlantic Richfield Company Integrated process for converting hydrocarbon gas to liquids
WO2001011215A1 (en) 1999-08-09 2001-02-15 Technion Research And Development Foundation Ltd. Novel design of adiabatic combustors
US6101983A (en) 1999-08-11 2000-08-15 General Electric Co. Modified gas turbine system with advanced pressurized fluidized bed combustor cycle
ATE533998T1 (de) 1999-08-16 2011-12-15 Nippon Furnace Co Ltd Vorrichtung und verfahren zur brennstoffzufuhr
US7015271B2 (en) 1999-08-19 2006-03-21 Ppg Industries Ohio, Inc. Hydrophobic particulate inorganic oxides and polymeric compositions containing same
WO2001018371A1 (en) 1999-09-07 2001-03-15 Geza Vermes Ambient pressure gas turbine system
DE19944922A1 (de) 1999-09-20 2001-03-22 Asea Brown Boveri Steuerung von Primärmassnahmen zur Reduktion der thermischen Stickoxidbildung in Gasturbinen
DE19949739C1 (de) 1999-10-15 2001-08-23 Karlsruhe Forschzent Massesensitiver Sensor
US6383461B1 (en) 1999-10-26 2002-05-07 John Zink Company, Llc Fuel dilution methods and apparatus for NOx reduction
US20010004838A1 (en) 1999-10-29 2001-06-28 Wong Kenneth Kai Integrated heat exchanger system for producing carbon dioxide
US6298652B1 (en) 1999-12-13 2001-10-09 Exxon Mobil Chemical Patents Inc. Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines
US6266954B1 (en) 1999-12-15 2001-07-31 General Electric Co. Double wall bearing cone
US6484503B1 (en) 2000-01-12 2002-11-26 Arie Raz Compression and condensation of turbine exhaust steam
DE10001110A1 (de) 2000-01-13 2001-08-16 Alstom Power Schweiz Ag Baden Verfahren zur Rückgewinnung von Wasser aus dem Rauchgas eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
DE10001997A1 (de) 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
US6247315B1 (en) 2000-03-08 2001-06-19 American Air Liquids, Inc. Oxidant control in co-generation installations
US6247316B1 (en) 2000-03-22 2001-06-19 Clean Energy Systems, Inc. Clean air engines for transportation and other power applications
US6405536B1 (en) 2000-03-27 2002-06-18 Wu-Chi Ho Gas turbine combustor burning LBTU fuel gas
US6508209B1 (en) 2000-04-03 2003-01-21 R. Kirk Collier, Jr. Reformed natural gas for powering an internal combustion engine
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
FR2808223B1 (fr) 2000-04-27 2002-11-22 Inst Francais Du Petrole Procede de purification d'un effluent contenant du gaz carbonique et des hydrocarbures par combustion
SE523342C2 (sv) 2000-05-02 2004-04-13 Volvo Teknisk Utveckling Ab Anordning och förfarande för reduktion av en gaskomponent i en avgasström från en förbränningsmotor
AU2001276823A1 (en) 2000-05-12 2001-12-03 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
US6429020B1 (en) 2000-06-02 2002-08-06 The United States Of America As Represented By The United States Department Of Energy Flashback detection sensor for lean premix fuel nozzles
JP3864671B2 (ja) 2000-06-12 2007-01-10 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
US6374594B1 (en) 2000-07-12 2002-04-23 Power Systems Mfg., Llc Silo/can-annular low emissions combustor
US6282901B1 (en) 2000-07-19 2001-09-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated air separation process
US6502383B1 (en) 2000-08-31 2003-01-07 General Electric Company Stub airfoil exhaust nozzle
US6301889B1 (en) 2000-09-21 2001-10-16 Caterpillar Inc. Turbocharger with exhaust gas recirculation
DE10049040A1 (de) 2000-10-04 2002-06-13 Alstom Switzerland Ltd Verfahren zur Regeneration einer Katalysatoranlage und Vorrichtung zur Durchführung des Verfahrens
DE10049912A1 (de) 2000-10-10 2002-04-11 Daimler Chrysler Ag Brennkraftmaschine mit Abgasturbolader und Compound-Nutzturbine
DE10050248A1 (de) 2000-10-11 2002-04-18 Alstom Switzerland Ltd Brenner
GB0025552D0 (en) 2000-10-18 2000-11-29 Air Prod & Chem Process and apparatus for the generation of power
US7097925B2 (en) 2000-10-30 2006-08-29 Questair Technologies Inc. High temperature fuel cell power plant
US6412278B1 (en) 2000-11-10 2002-07-02 Borgwarner, Inc. Hydraulically powered exhaust gas recirculation system
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
DE10064270A1 (de) 2000-12-22 2002-07-11 Alstom Switzerland Ltd Verfahren zum Betrieb einer Gasturbinenanlage sowie eine diesbezügliche Gasturbinenanlage
WO2002055851A1 (en) 2001-01-08 2002-07-18 Catalytica Energy Systems, Inc. CATALYST PLACEMENT IN COMBUSTION CYLINDER FOR REDUCTION OF NOx AND PARTICULATE SOOT
US6467270B2 (en) 2001-01-31 2002-10-22 Cummins Inc. Exhaust gas recirculation air handling system for an internal combustion engine
US6715916B2 (en) 2001-02-08 2004-04-06 General Electric Company System and method for determining gas turbine firing and combustion reference temperatures having correction for water content in fuel
US6606861B2 (en) 2001-02-26 2003-08-19 United Technologies Corporation Low emissions combustor for a gas turbine engine
US7578132B2 (en) 2001-03-03 2009-08-25 Rolls-Royce Plc Gas turbine engine exhaust nozzle
US6821501B2 (en) 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US6412302B1 (en) 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
US6499990B1 (en) 2001-03-07 2002-12-31 Zeeco, Inc. Low NOx burner apparatus and method
GB2373299B (en) 2001-03-12 2004-10-27 Alstom Power Nv Re-fired gas turbine engine
DE60227355D1 (de) 2001-03-15 2008-08-14 Alexei Leonidovich Zapadinski Verfahren zum entwickeln einer kohlenwasserstoff-lagerstätte sowie anlagenkomplex zur ausführung des verfahrens
US6732531B2 (en) 2001-03-16 2004-05-11 Capstone Turbine Corporation Combustion system for a gas turbine engine with variable airflow pressure actuated premix injector
US6745573B2 (en) 2001-03-23 2004-06-08 American Air Liquide, Inc. Integrated air separation and power generation process
US6615576B2 (en) 2001-03-29 2003-09-09 Honeywell International Inc. Tortuous path quiet exhaust eductor system
US6487863B1 (en) 2001-03-30 2002-12-03 Siemens Westinghouse Power Corporation Method and apparatus for cooling high temperature components in a gas turbine
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US6782947B2 (en) 2001-04-24 2004-08-31 Shell Oil Company In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
JP3972599B2 (ja) 2001-04-27 2007-09-05 日産自動車株式会社 ディーゼルエンジンの制御装置
US6868677B2 (en) 2001-05-24 2005-03-22 Clean Energy Systems, Inc. Combined fuel cell and fuel combustion power generation systems
WO2002097252A1 (en) 2001-05-30 2002-12-05 Conoco Inc. Lng regasification process and system
EP1262714A1 (de) 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Brenner mit Abgasrückführung
US6484507B1 (en) 2001-06-05 2002-11-26 Louis A. Pradt Method and apparatus for controlling liquid droplet size and quantity in a stream of gas
US6622645B2 (en) 2001-06-15 2003-09-23 Honeywell International Inc. Combustion optimization with inferential sensor
US6794766B2 (en) * 2001-06-29 2004-09-21 General Electric Company Method and operational strategy for controlling variable stator vanes of a gas turbine power generator compressor component during under-frequency events
DE10131798A1 (de) 2001-06-30 2003-01-16 Daimler Chrysler Ag Kraftfahrzeug mit Aktivkohlefilter und Verfahren zur Regeneration eines Aktivkohlefilters
US6813889B2 (en) 2001-08-29 2004-11-09 Hitachi, Ltd. Gas turbine combustor and operating method thereof
US6923915B2 (en) 2001-08-30 2005-08-02 Tda Research, Inc. Process for the removal of impurities from combustion fullerenes
WO2003018958A1 (en) 2001-08-31 2003-03-06 Statoil Asa Method and plant for enhanced oil recovery and simultaneous synthesis of hydrocarbons from natural gas
US20030221409A1 (en) 2002-05-29 2003-12-04 Mcgowan Thomas F. Pollution reduction fuel efficient combustion turbine
JP2003090250A (ja) 2001-09-18 2003-03-28 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
EP1448880A1 (de) 2001-09-24 2004-08-25 ALSTOM Technology Ltd Gasturbinenanlage für ein arbeitsmedium in form eines kohlendioxid/wasser-gemisches
EP1432889B1 (de) 2001-10-01 2006-07-12 Alstom Technology Ltd Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
DE10152803A1 (de) 2001-10-25 2003-05-15 Daimler Chrysler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung
JP2005516141A (ja) 2001-10-26 2005-06-02 アルストム テクノロジー リミテッド 高排気ガス再循環率で動作するように構成したガスタービンとその動作方法
CA2465384C (en) 2001-11-09 2008-09-09 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine system comprising closed system of fuel and combustion gas using underground coal bed
US6790030B2 (en) 2001-11-20 2004-09-14 The Regents Of The University Of California Multi-stage combustion using nitrogen-enriched air
US6505567B1 (en) 2001-11-26 2003-01-14 Alstom (Switzerland) Ltd Oxygen fired circulating fluidized bed steam generator
EP1521719A4 (en) 2001-12-03 2008-01-23 Clean Energy Systems Inc CARBON AND SYNGAS FUEL ENERGY GENERATION SYSTEMS WITHOUT ATMOSPHERIC EMISSIONS
GB2382847A (en) 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
JP3887777B2 (ja) * 2001-12-10 2007-02-28 株式会社日立製作所 ガスタービン発電設備のガバナフリー制御方法及び制御装置
US20030134241A1 (en) 2002-01-14 2003-07-17 Ovidiu Marin Process and apparatus of combustion for reduction of nitrogen oxide emissions
US6743829B2 (en) 2002-01-18 2004-06-01 Bp Corporation North America Inc. Integrated processing of natural gas into liquid products
US6722436B2 (en) 2002-01-25 2004-04-20 Precision Drilling Technology Services Group Inc. Apparatus and method for operating an internal combustion engine to reduce free oxygen contained within engine exhaust gas
US6752620B2 (en) 2002-01-31 2004-06-22 Air Products And Chemicals, Inc. Large scale vortex devices for improved burner operation
US6725665B2 (en) 2002-02-04 2004-04-27 Alstom Technology Ltd Method of operation of gas turbine having multiple burners
US6745624B2 (en) 2002-02-05 2004-06-08 Ford Global Technologies, Llc Method and system for calibrating a tire pressure sensing system for an automotive vehicle
US7284362B2 (en) 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US6823852B2 (en) 2002-02-19 2004-11-30 Collier Technologies, Llc Low-emission internal combustion engine
US7313916B2 (en) 2002-03-22 2008-01-01 Philip Morris Usa Inc. Method and apparatus for generating power by combustion of vaporized fuel
US6532745B1 (en) 2002-04-10 2003-03-18 David L. Neary Partially-open gas turbine cycle providing high thermal efficiencies and ultra-low emissions
DE60313392T2 (de) 2002-05-16 2007-08-09 Rolls-Royce Plc Gasturbine
JP3684208B2 (ja) * 2002-05-20 2005-08-17 株式会社東芝 ガスタービン制御装置
US6644041B1 (en) 2002-06-03 2003-11-11 Volker Eyermann System in process for the vaporization of liquefied natural gas
US7491250B2 (en) 2002-06-25 2009-02-17 Exxonmobil Research And Engineering Company Pressure swing reforming
GB2390150A (en) 2002-06-26 2003-12-31 Alstom Reheat combustion system for a gas turbine including an accoustic screen
US6702570B2 (en) 2002-06-28 2004-03-09 Praxair Technology Inc. Firing method for a heat consuming device utilizing oxy-fuel combustion
US6748004B2 (en) 2002-07-25 2004-06-08 Air Liquide America, L.P. Methods and apparatus for improved energy efficient control of an electric arc furnace fume extraction system
US6772583B2 (en) 2002-09-11 2004-08-10 Siemens Westinghouse Power Corporation Can combustor for a gas turbine engine
US6826913B2 (en) 2002-10-31 2004-12-07 Honeywell International Inc. Airflow modulation technique for low emissions combustors
US7143606B2 (en) 2002-11-01 2006-12-05 L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude Combined air separation natural gas liquefaction plant
WO2004042200A1 (en) 2002-11-08 2004-05-21 Alstom Technology Ltd Gas turbine power plant and method of operating the same
AU2003295610B2 (en) 2002-11-15 2010-01-28 Clean Energy Systems, Inc. Low pollution power generation system with ion transfer membrane air separation
WO2004046514A1 (en) 2002-11-15 2004-06-03 Catalytica Energy Systems, Inc. Devices and methods for reduction of nox emissions from lean burn engines
GB0226983D0 (en) 2002-11-19 2002-12-24 Boc Group Plc Nitrogen rejection method and apparatus
DE10257704A1 (de) 2002-12-11 2004-07-15 Alstom Technology Ltd Verfahren zur Verbrennung eines Brennstoffs
AU2002351515A1 (en) 2002-12-13 2004-07-09 Petrosa (The Petroleum Oil & Gas Corporation Of Sa (Pty) Ltd A method for oil recovery from an oil field
NO20026021D0 (no) 2002-12-13 2002-12-13 Statoil Asa I & K Ir Pat Fremgangsmåte for ökt oljeutvinning
US6731501B1 (en) 2003-01-03 2004-05-04 Jian-Roung Cheng Heat dissipating device for dissipating heat generated by a disk drive module inside a computer housing
US6851413B1 (en) 2003-01-10 2005-02-08 Ronnell Company, Inc. Method and apparatus to increase combustion efficiency and to reduce exhaust gas pollutants from combustion of a fuel
US6929423B2 (en) 2003-01-16 2005-08-16 Paul A. Kittle Gas recovery from landfills using aqueous foam
BRPI0406806A (pt) 2003-01-17 2005-12-27 Catalytica Energy Sys Inc Sistema e método de controle dinâmico para multicombustor catalìtico para motor de turbina a gás
US7416137B2 (en) 2003-01-22 2008-08-26 Vast Power Systems, Inc. Thermodynamic cycles using thermal diluent
US9254729B2 (en) 2003-01-22 2016-02-09 Vast Power Portfolio, Llc Partial load combustion cycles
US8631657B2 (en) 2003-01-22 2014-01-21 Vast Power Portfolio, Llc Thermodynamic cycles with thermal diluent
US6820428B2 (en) 2003-01-30 2004-11-23 Wylie Inventions Company, Inc. Supercritical combined cycle for generating electric power
GB2398863B (en) 2003-01-31 2007-10-17 Alstom Combustion Chamber
US7618606B2 (en) 2003-02-06 2009-11-17 The Ohio State University Separation of carbon dioxide (CO2) from gas mixtures
US6675579B1 (en) 2003-02-06 2004-01-13 Ford Global Technologies, Llc HCCI engine intake/exhaust systems for fast inlet temperature and pressure control with intake pressure boosting
US7490472B2 (en) 2003-02-11 2009-02-17 Statoil Asa Efficient combined cycle power plant with CO2 capture and a combustor arrangement with separate flows
US7053128B2 (en) 2003-02-28 2006-05-30 Exxonmobil Research And Engineering Company Hydrocarbon synthesis process using pressure swing reforming
US20040170559A1 (en) 2003-02-28 2004-09-02 Frank Hershkowitz Hydrogen manufacture using pressure swing reforming
US7217303B2 (en) 2003-02-28 2007-05-15 Exxonmobil Research And Engineering Company Pressure swing reforming for fuel cell systems
US7914764B2 (en) 2003-02-28 2011-03-29 Exxonmobil Research And Engineering Company Hydrogen manufacture using pressure swing reforming
US7045553B2 (en) 2003-02-28 2006-05-16 Exxonmobil Research And Engineering Company Hydrocarbon synthesis process using pressure swing reforming
US7637093B2 (en) 2003-03-18 2009-12-29 Fluor Technologies Corporation Humid air turbine cycle with carbon dioxide recovery
US7401577B2 (en) 2003-03-19 2008-07-22 American Air Liquide, Inc. Real time optimization and control of oxygen enhanced boilers
US7074033B2 (en) 2003-03-22 2006-07-11 David Lloyd Neary Partially-open fired heater cycle providing high thermal efficiencies and ultra-low emissions
US7168265B2 (en) 2003-03-27 2007-01-30 Bp Corporation North America Inc. Integrated processing of natural gas into liquid products
WO2004085816A1 (de) 2003-03-28 2004-10-07 Siemens Aktiengesellschaft TEMPERATURMESSEINRICHTUNG UND REGELUNG FÜR DIE HEIßGASTEMPERATUR EINER GASTURBINE
EP1618335A1 (en) 2003-04-29 2006-01-25 Her Majesty the Queen in Right of Canada as Represented by The Minister of Natural Resources In-situ capture of carbon dioxide and sulphur dioxide in a fluidized bed combustor
CA2460292C (en) 2003-05-08 2011-08-23 Sulzer Chemtech Ag A static mixer
US7503948B2 (en) 2003-05-23 2009-03-17 Exxonmobil Research And Engineering Company Solid oxide fuel cell systems having temperature swing reforming
DE10325111A1 (de) 2003-06-02 2005-01-05 Alstom Technology Ltd Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassende Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
US7056482B2 (en) 2003-06-12 2006-06-06 Cansolv Technologies Inc. Method for recovery of CO2 from gas streams
US7043898B2 (en) 2003-06-23 2006-05-16 Pratt & Whitney Canada Corp. Combined exhaust duct and mixer for a gas turbine engine
DE10334590B4 (de) 2003-07-28 2006-10-26 Uhde Gmbh Verfahren zur Gewinnung von Wasserstoff aus einem methanhaltigen Gas, insbesondere Erdgas und Anlage zur Durchführung des Verfahrens
US7007487B2 (en) 2003-07-31 2006-03-07 Mes International, Inc. Recuperated gas turbine engine system and method employing catalytic combustion
GB0323255D0 (en) 2003-10-04 2003-11-05 Rolls Royce Plc Method and system for controlling fuel supply in a combustion turbine engine
DE10350044A1 (de) 2003-10-27 2005-05-25 Basf Ag Verfahren zur Herstellung von 1-Buten
US6904815B2 (en) 2003-10-28 2005-06-14 General Electric Company Configurable multi-point sampling method and system for representative gas composition measurements in a stratified gas flow stream
NO321817B1 (no) 2003-11-06 2006-07-10 Sargas As Renseanlegg for varmekraftverk
US6988549B1 (en) 2003-11-14 2006-01-24 John A Babcock SAGD-plus
US7032388B2 (en) 2003-11-17 2006-04-25 General Electric Company Method and system for incorporating an emission sensor into a gas turbine controller
US6939130B2 (en) 2003-12-05 2005-09-06 Gas Technology Institute High-heat transfer low-NOx combustion system
US7299619B2 (en) 2003-12-13 2007-11-27 Siemens Power Generation, Inc. Vaporization of liquefied natural gas for increased efficiency in power cycles
US7183328B2 (en) 2003-12-17 2007-02-27 Exxonmobil Chemical Patents Inc. Methanol manufacture using pressure swing reforming
US7124589B2 (en) 2003-12-22 2006-10-24 David Neary Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions
DE10360951A1 (de) 2003-12-23 2005-07-28 Alstom Technology Ltd Wärmekraftanlage mit sequentieller Verbrennung und reduziertem CO2-Ausstoß sowie Verfahren zum Betreiben einer derartigen Anlage
US20050144961A1 (en) 2003-12-24 2005-07-07 General Electric Company System and method for cogeneration of hydrogen and electricity
DE10361824A1 (de) 2003-12-30 2005-07-28 Basf Ag Verfahren zur Herstellung von Butadien
DE10361823A1 (de) 2003-12-30 2005-08-11 Basf Ag Verfahren zur Herstellung von Butadien und 1-Buten
US7096669B2 (en) 2004-01-13 2006-08-29 Compressor Controls Corp. Method and apparatus for the prevention of critical process variable excursions in one or more turbomachines
EP1720632B8 (en) 2004-01-20 2016-04-20 Fluor Technologies Corporation Methods and configurations for acid gas enrichment
US7305817B2 (en) 2004-02-09 2007-12-11 General Electric Company Sinuous chevron exhaust nozzle
JP2005226847A (ja) 2004-02-10 2005-08-25 Ebara Corp 燃焼装置及び燃焼方法
US7468173B2 (en) 2004-02-25 2008-12-23 Sunstone Corporation Method for producing nitrogen to use in under balanced drilling, secondary recovery production operations and pipeline maintenance
DE102004009794A1 (de) 2004-02-28 2005-09-22 Daimlerchrysler Ag Brennkraftmaschine mit zwei Abgasturboladern
US6971242B2 (en) 2004-03-02 2005-12-06 Caterpillar Inc. Burner for a gas turbine engine
US8951951B2 (en) 2004-03-02 2015-02-10 Troxler Electronic Laboratories, Inc. Solvent compositions for removing petroleum residue from a substrate and methods of use thereof
US7752848B2 (en) 2004-03-29 2010-07-13 General Electric Company System and method for co-production of hydrogen and electrical energy
DE502005003324D1 (de) 2004-03-30 2008-04-30 Alstom Technology Ltd Vorrichtung und verfahren zur flammenstabilisierung in einem brenner
WO2005095863A1 (de) 2004-03-31 2005-10-13 Alstom Technology Ltd Brenner
US20050241311A1 (en) 2004-04-16 2005-11-03 Pronske Keith L Zero emissions closed rankine cycle power system
US7302801B2 (en) 2004-04-19 2007-12-04 Hamilton Sundstrand Corporation Lean-staged pyrospin combustor
US7185497B2 (en) 2004-05-04 2007-03-06 Honeywell International, Inc. Rich quick mix combustion system
EP1756475B1 (en) 2004-05-06 2012-11-14 New Power Concepts LLC Gaseous fuel burner
ITBO20040296A1 (it) 2004-05-11 2004-08-11 Itea Spa Combustori ad alta efficienza e impatto ambientale ridotto, e procedimenti per la produzione di energia elettrica da esso derivabili
US7438744B2 (en) 2004-05-14 2008-10-21 Eco/Technologies, Llc Method and system for sequestering carbon emissions from a combustor/boiler
WO2005119029A1 (en) 2004-05-19 2005-12-15 Fluor Technologies Corporation Triple cycle power plant
US7065972B2 (en) 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US7010921B2 (en) 2004-06-01 2006-03-14 General Electric Company Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US6993916B2 (en) 2004-06-08 2006-02-07 General Electric Company Burner tube and method for mixing air and gas in a gas turbine engine
US7197880B2 (en) 2004-06-10 2007-04-03 United States Department Of Energy Lean blowoff detection sensor
WO2005124231A2 (en) 2004-06-11 2005-12-29 Vast Power Systems, Inc. Low emissions combustion apparatus and method
US7472550B2 (en) 2004-06-14 2009-01-06 University Of Florida Research Foundation, Inc. Combined cooling and power plant with water extraction
MX2007000341A (es) 2004-07-14 2007-03-27 Fluor Tech Corp Configuraciones y metodos para generacion de energia con regasificacion de gas natural licuado integrado.
DE102004039164A1 (de) 2004-08-11 2006-03-02 Alstom Technology Ltd Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
US7498009B2 (en) 2004-08-16 2009-03-03 Dana Uv, Inc. Controlled spectrum ultraviolet radiation pollution control process
DE102004039927A1 (de) 2004-08-18 2006-02-23 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführeinrichtung
DE102004040893A1 (de) 2004-08-24 2006-03-02 Bayerische Motoren Werke Ag Abgasturbolader
US7137623B2 (en) 2004-09-17 2006-11-21 Spx Cooling Technologies, Inc. Heating tower apparatus and method with isolation of outlet and inlet air
CN100532306C (zh) 2004-09-29 2009-08-26 太平洋水泥株式会社 水泥窑燃烧气体抽气灰尘的处理系统及处理方法
ES2478626T3 (es) 2004-09-29 2014-07-22 Taiheiyo Cement Corporation Sistema y procedimiento para tratar polvo en gas extraído de gas de combustión de un horno de cemento
JP4626251B2 (ja) 2004-10-06 2011-02-02 株式会社日立製作所 燃焼器及び燃焼器の燃焼方法
US7381393B2 (en) 2004-10-07 2008-06-03 The Regents Of The University Of California Process for sulfur removal suitable for treating high-pressure gas streams
US7434384B2 (en) 2004-10-25 2008-10-14 United Technologies Corporation Fluid mixer with an integral fluid capture ducts forming auxiliary secondary chutes at the discharge end of said ducts
US7762084B2 (en) 2004-11-12 2010-07-27 Rolls-Royce Canada, Ltd. System and method for controlling the working line position in a gas turbine engine compressor
US7357857B2 (en) 2004-11-29 2008-04-15 Baker Hughes Incorporated Process for extracting bitumen
US7389635B2 (en) 2004-12-01 2008-06-24 Honeywell International Inc. Twisted mixer with open center body
US7506501B2 (en) 2004-12-01 2009-03-24 Honeywell International Inc. Compact mixer with trimmable open centerbody
EP1666823A1 (de) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
JP2006183599A (ja) 2004-12-28 2006-07-13 Nissan Motor Co Ltd 内燃機関の排気浄化装置
PL1681090T3 (pl) 2005-01-17 2007-10-31 Balcke Duerr Gmbh Urządzenie i sposób mieszania strumienia płynu w kanale przepływowym
CN1847766A (zh) 2005-02-11 2006-10-18 林德股份公司 通过与冷却液体直接热交换而冷却气体的方法和装置
US20060183009A1 (en) 2005-02-11 2006-08-17 Berlowitz Paul J Fuel cell fuel processor with hydrogen buffering
US7875402B2 (en) 2005-02-23 2011-01-25 Exxonmobil Research And Engineering Company Proton conducting solid oxide fuel cell systems having temperature swing reforming
US7137256B1 (en) 2005-02-28 2006-11-21 Peter Stuttaford Method of operating a combustion system for increased turndown capability
US20060196812A1 (en) 2005-03-02 2006-09-07 Beetge Jan H Zone settling aid and method for producing dry diluted bitumen with reduced losses of asphaltenes
US7194869B2 (en) 2005-03-08 2007-03-27 Siemens Power Generation, Inc. Turbine exhaust water recovery system
EP1858803B1 (en) 2005-03-14 2016-07-06 Geoffrey Gerald Weedon A process for the production of hydrogen with co-production and capture of carbon dioxide
US7681394B2 (en) 2005-03-25 2010-03-23 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Control methods for low emission internal combustion system
EP1864065A4 (en) 2005-03-30 2017-12-20 Fluor Technologies Corporation Integrated of lng regasification with refinery and power generation
WO2006104800A2 (en) 2005-03-30 2006-10-05 Fluor Technologies Corporation Configurations and methods for thermal integration of lng regasification and power plants
DE102005015151A1 (de) 2005-03-31 2006-10-26 Alstom Technology Ltd. Gasturbinenanlage
US7906304B2 (en) 2005-04-05 2011-03-15 Geosynfuels, Llc Method and bioreactor for producing synfuel from carbonaceous material
US20090025390A1 (en) 2005-04-05 2009-01-29 Sargas As Low CO2 Thermal Powerplant
DE102005017905A1 (de) 2005-04-18 2006-10-19 Behr Gmbh & Co. Kg Vorrichtung zur gekühlten Rückführung von Abgas einer Brennkraftmaschine eines Kraftfahrzeuges
DE112006001149B4 (de) 2005-05-02 2013-04-04 Vast Power Portfolio, Llc Verfahren und Vorrichtung für die Nasskompression
US7827782B2 (en) 2005-05-19 2010-11-09 Ford Global Technologies, Llc Method for remediating emissions
US7874350B2 (en) 2005-05-23 2011-01-25 Precision Combustion, Inc. Reducing the energy requirements for the production of heavy oil
US7789159B1 (en) 2005-05-27 2010-09-07 Bader Mansour S Methods to de-sulfate saline streams
US7980312B1 (en) 2005-06-20 2011-07-19 Hill Gilman A Integrated in situ retorting and refining of oil shale
WO2007002608A2 (en) 2005-06-27 2007-01-04 Solid Gas Technologies Llc Clathrate hydrate modular storage, applications and utilization processes
US7966822B2 (en) 2005-06-30 2011-06-28 General Electric Company Reverse-flow gas turbine combustion system
US7481048B2 (en) 2005-06-30 2009-01-27 Caterpillar Inc. Regeneration assembly
US7752850B2 (en) 2005-07-01 2010-07-13 Siemens Energy, Inc. Controlled pilot oxidizer for a gas turbine combustor
US7670135B1 (en) 2005-07-13 2010-03-02 Zeeco, Inc. Burner and method for induction of flue gas
WO2007021909A2 (en) 2005-08-10 2007-02-22 Clean Energy Systems, Inc. Hydrogen production from an oxyfuel combustor
DE112006002198T9 (de) 2005-08-16 2009-02-26 CO2CRC Technologies Pty. Ltd., Parkville Anlage und Verfahren zum Entfernen von Kohlendioxid aus Gasströmen
EP1757778B1 (de) 2005-08-23 2015-12-23 Balcke-Dürr GmbH Abgasführung einer Gasturbine sowie Verfahren zum Vermischen des Abgases der Gasturbine
US7225623B2 (en) 2005-08-23 2007-06-05 General Electric Company Trapped vortex cavity afterburner
US7562519B1 (en) 2005-09-03 2009-07-21 Florida Turbine Technologies, Inc. Gas turbine engine with an air cooled bearing
US7410525B1 (en) 2005-09-12 2008-08-12 Uop Llc Mixed matrix membranes incorporating microporous polymers as fillers
DE102005048911A1 (de) 2005-10-10 2007-04-12 Behr Gmbh & Co. Kg Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine
US7690204B2 (en) 2005-10-12 2010-04-06 Praxair Technology, Inc. Method of maintaining a fuel Wobbe index in an IGCC installation
US7513100B2 (en) 2005-10-24 2009-04-07 General Electric Company Systems for low emission gas turbine energy generation
US7493769B2 (en) 2005-10-25 2009-02-24 General Electric Company Assembly and method for cooling rear bearing and exhaust frame of gas turbine
US7827794B1 (en) 2005-11-04 2010-11-09 Clean Energy Systems, Inc. Ultra low emissions fast starting power plant
EA016697B1 (ru) 2005-11-07 2012-06-29 Спешиэлист Проусес Текнолоджиз Лимитед Функциональная жидкость и способ получения функциональной жидкости
US7765810B2 (en) 2005-11-15 2010-08-03 Precision Combustion, Inc. Method for obtaining ultra-low NOx emissions from gas turbines operating at high turbine inlet temperatures
AU2006327196B2 (en) 2005-11-18 2011-05-12 Exxonmobil Upstream Research Company Method of drilling and producing hydrocarbons from subsurface formations
US20070144747A1 (en) 2005-12-02 2007-06-28 Hce, Llc Coal bed pretreatment for enhanced carbon dioxide sequestration
US7726114B2 (en) 2005-12-07 2010-06-01 General Electric Company Integrated combustor-heat exchanger and systems for power generation using the same
WO2007068682A1 (en) 2005-12-12 2007-06-21 Shell Internationale Research Maatschappij B.V. Enhanced oil recovery process and a process for the sequestration of carbon dioxide
US7634915B2 (en) 2005-12-13 2009-12-22 General Electric Company Systems and methods for power generation and hydrogen production with carbon dioxide isolation
US7655071B2 (en) 2005-12-16 2010-02-02 Shell Oil Company Process for cooling down a hot flue gas stream
US7846401B2 (en) 2005-12-23 2010-12-07 Exxonmobil Research And Engineering Company Controlled combustion for regenerative reactors
US8038773B2 (en) 2005-12-28 2011-10-18 Jupiter Oxygen Corporation Integrated capture of fossil fuel gas pollutants including CO2 with energy recovery
US7909898B2 (en) 2006-02-01 2011-03-22 Air Products And Chemicals, Inc. Method of treating a gaseous mixture comprising hydrogen and carbon dioxide
EP1821035A1 (en) 2006-02-15 2007-08-22 Siemens Aktiengesellschaft Gas turbine burner and method of mixing fuel and air in a swirling area of a gas turbine burner
DE102006024778B3 (de) 2006-03-02 2007-07-19 J. Eberspächer GmbH & Co. KG Statischer Mischer und Abgasbehandlungseinrichtung
EP2040848A1 (en) 2006-03-07 2009-04-01 Marathon Oil Sands (U.S.A.) Inc. Processing asphaltene-containing tailings
US7650744B2 (en) 2006-03-24 2010-01-26 General Electric Company Systems and methods of reducing NOx emissions in gas turbine systems and internal combustion engines
JP4418442B2 (ja) 2006-03-30 2010-02-17 三菱重工業株式会社 ガスタービンの燃焼器及び燃焼制御方法
US7591866B2 (en) 2006-03-31 2009-09-22 Ranendra Bose Methane gas recovery and usage system for coalmines, municipal land fills and oil refinery distillation tower vent stacks
US7654320B2 (en) 2006-04-07 2010-02-02 Occidental Energy Ventures Corp. System and method for processing a mixture of hydrocarbon and CO2 gas produced from a hydrocarbon reservoir
US7644573B2 (en) 2006-04-18 2010-01-12 General Electric Company Gas turbine inlet conditioning system and method
US20070245736A1 (en) 2006-04-25 2007-10-25 Eastman Chemical Company Process for superheated steam
US20070249738A1 (en) 2006-04-25 2007-10-25 Haynes Joel M Premixed partial oxidation syngas generator
DE102006019780A1 (de) 2006-04-28 2007-11-08 Daimlerchrysler Ag Abgasturbolader in einer Brennkraftmaschine
US8479523B2 (en) * 2006-05-26 2013-07-09 General Electric Company Method for gas turbine operation during under-frequency operation through use of air extraction
US7886522B2 (en) 2006-06-05 2011-02-15 Kammel Refaat Diesel gas turbine system and related methods
JP4162016B2 (ja) 2006-06-08 2008-10-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2007147216A1 (en) 2006-06-23 2007-12-27 Bhp Billiton Innovation Pty Ltd Power generation
US7691788B2 (en) 2006-06-26 2010-04-06 Schlumberger Technology Corporation Compositions and methods of using same in producing heavy oil and bitumen
US20080006561A1 (en) 2006-07-05 2008-01-10 Moran Lyle E Dearomatized asphalt
EP2038219A1 (en) 2006-07-07 2009-03-25 Shell Internationale Research Maatschappij B.V. Process for the manufacture of carbon disulphide and use of a liquid stream comprising carbon disulphide for enhanced oil recovery
KR100735841B1 (ko) 2006-07-31 2007-07-06 한국과학기술원 천연가스 하이드레이트로부터 메탄가스를 회수하는 방법
WO2008024449A2 (en) 2006-08-23 2008-02-28 Praxair Technology, Inc. Gasification and steam methane reforming integrated polygeneration method and system
US20080047280A1 (en) 2006-08-24 2008-02-28 Bhp Billiton Limited Heat recovery system
US7681401B2 (en) * 2006-08-24 2010-03-23 General Electric Company Methods and systems for operating a gas turbine
JP4265634B2 (ja) 2006-09-15 2009-05-20 トヨタ自動車株式会社 電動パーキングブレーキシステム
MX2009002537A (es) 2006-09-18 2009-03-20 Shell Int Research Proceso para la manufactura de disulfuro de carbono.
US7520134B2 (en) 2006-09-29 2009-04-21 General Electric Company Methods and apparatus for injecting fluids into a turbine engine
JP2008095541A (ja) 2006-10-06 2008-04-24 Toufuji Denki Kk ターボチャージャ
US7942008B2 (en) 2006-10-09 2011-05-17 General Electric Company Method and system for reducing power plant emissions
GB0620883D0 (en) 2006-10-20 2006-11-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine
US7566394B2 (en) 2006-10-20 2009-07-28 Saudi Arabian Oil Company Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent
US7763163B2 (en) 2006-10-20 2010-07-27 Saudi Arabian Oil Company Process for removal of nitrogen and poly-nuclear aromatics from hydrocracker feedstocks
US7721543B2 (en) 2006-10-23 2010-05-25 Southwest Research Institute System and method for cooling a combustion gas charge
US7492054B2 (en) 2006-10-24 2009-02-17 Catlin Christopher S River and tidal power harvester
US7827778B2 (en) 2006-11-07 2010-11-09 General Electric Company Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions
US7739864B2 (en) 2006-11-07 2010-06-22 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US7895822B2 (en) 2006-11-07 2011-03-01 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US7947115B2 (en) 2006-11-16 2011-05-24 Siemens Energy, Inc. System and method for generation of high pressure air in an integrated gasification combined cycle system
US20080118310A1 (en) 2006-11-20 2008-05-22 Graham Robert G All-ceramic heat exchangers, systems in which they are used and processes for the use of such systems
US7921633B2 (en) 2006-11-21 2011-04-12 Siemens Energy, Inc. System and method employing direct gasification for power generation
US20080127632A1 (en) 2006-11-30 2008-06-05 General Electric Company Carbon dioxide capture systems and methods
US7789658B2 (en) 2006-12-14 2010-09-07 Uop Llc Fired heater
US7856829B2 (en) 2006-12-15 2010-12-28 Praxair Technology, Inc. Electrical power generation method
US7815873B2 (en) 2006-12-15 2010-10-19 Exxonmobil Research And Engineering Company Controlled combustion for regenerative reactors with mixer/flow distributor
US7802434B2 (en) 2006-12-18 2010-09-28 General Electric Company Systems and processes for reducing NOx emissions
EP1944268A1 (en) 2006-12-18 2008-07-16 BP Alternative Energy Holdings Limited Process
US20080155984A1 (en) 2007-01-03 2008-07-03 Ke Liu Reforming system for combined cycle plant with partial CO2 capture
US7943097B2 (en) 2007-01-09 2011-05-17 Catalytic Solutions, Inc. Reactor system for reducing NOx emissions from boilers
US7819951B2 (en) 2007-01-23 2010-10-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
FR2911667B1 (fr) 2007-01-23 2009-10-02 Snecma Sa Systeme d'injection de carburant a double injecteur.
JP5574710B2 (ja) 2007-01-25 2014-08-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 発電所での二酸化炭素放出量を減少させる方法
EP1950494A1 (de) 2007-01-29 2008-07-30 Siemens Aktiengesellschaft Brennkammer für eine Gasturbine
US20080178611A1 (en) 2007-01-30 2008-07-31 Foster Wheeler Usa Corporation Ecological Liquefied Natural Gas (LNG) Vaporizer System
US7841186B2 (en) 2007-01-31 2010-11-30 Power Systems Mfg., Llc Inlet bleed heat and power augmentation for a gas turbine engine
NZ579549A (en) 2007-02-12 2011-01-28 Sasol Tech Pty Ltd Co-production of power and hydrocarbons
EP1959143B1 (en) 2007-02-13 2010-10-20 Yamada Manufacturing Co., Ltd. Oil pump pressure control device
US8356485B2 (en) 2007-02-27 2013-01-22 Siemens Energy, Inc. System and method for oxygen separation in an integrated gasification combined cycle system
US20080251234A1 (en) 2007-04-16 2008-10-16 Wilson Turbopower, Inc. Regenerator wheel apparatus
US20080250795A1 (en) 2007-04-16 2008-10-16 Conocophillips Company Air Vaporizer and Its Use in Base-Load LNG Regasification Plant
CA2613873C (en) 2007-05-03 2008-10-28 Imperial Oil Resources Limited An improved process for recovering solvent from asphaltene containing tailings resulting from a separation process
WO2008137815A1 (en) 2007-05-04 2008-11-13 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
US7654330B2 (en) 2007-05-19 2010-02-02 Pioneer Energy, Inc. Apparatus, methods, and systems for extracting petroleum using a portable coal reformer
US8616294B2 (en) 2007-05-20 2013-12-31 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US7918906B2 (en) 2007-05-20 2011-04-05 Pioneer Energy Inc. Compact natural gas steam reformer with linear countercurrent heat exchanger
FR2916363A1 (fr) 2007-05-23 2008-11-28 Air Liquide Procede de purification d'un gaz par cpsa a deux paliers de regeneration et unite de purification permettant la mise en oeuvre de ce procede
WO2008153697A1 (en) 2007-05-25 2008-12-18 Exxonmobil Upstream Research Company A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US7874140B2 (en) 2007-06-08 2011-01-25 Foster Wheeler North America Corp. Method of and power plant for generating power by oxyfuel combustion
US8850789B2 (en) 2007-06-13 2014-10-07 General Electric Company Systems and methods for power generation with exhaust gas recirculation
WO2008155242A1 (de) 2007-06-19 2008-12-24 Alstom Technology Ltd Gasturbinenanlage mit abgasrezirkulation
US20090000762A1 (en) 2007-06-29 2009-01-01 Wilson Turbopower, Inc. Brush-seal and matrix for regenerative heat exchanger, and method of adjusting same
US7708804B2 (en) 2007-07-11 2010-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of a gaseous mixture
US8061120B2 (en) 2007-07-30 2011-11-22 Herng Shinn Hwang Catalytic EGR oxidizer for IC engines and gas turbines
CA2638588A1 (en) 2007-08-09 2009-02-09 Tapco International Corporation Exterior trim pieces with weather stripping and colored protective layer
EP2188040A1 (en) 2007-08-30 2010-05-26 Shell Internationale Research Maatschappij B.V. Process for removal of hydrogen sulphide and carbon dioxide from an acid gas stream
US7845406B2 (en) 2007-08-30 2010-12-07 George Nitschke Enhanced oil recovery system for use with a geopressured-geothermal conversion system
US8127558B2 (en) 2007-08-31 2012-03-06 Siemens Energy, Inc. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air
US20090056342A1 (en) 2007-09-04 2009-03-05 General Electric Company Methods and Systems for Gas Turbine Part-Load Operating Conditions
US9404418B2 (en) 2007-09-28 2016-08-02 General Electric Company Low emission turbine system and method
US8167960B2 (en) 2007-10-22 2012-05-01 Osum Oil Sands Corp. Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil
US7861511B2 (en) 2007-10-30 2011-01-04 General Electric Company System for recirculating the exhaust of a turbomachine
US8220268B2 (en) 2007-11-28 2012-07-17 Caterpillar Inc. Turbine engine having fuel-cooled air intercooling
CN101939075B (zh) 2007-11-28 2013-08-14 布莱阿姆青年大学 从废气中捕集二氧化碳
EP2067941A3 (de) 2007-12-06 2013-06-26 Alstom Technology Ltd Kombikraftwerk mit Abgasrückführung und CO2-Abscheidung sowie Verfahren zum Betrieb eines solchen Kombikraftwerks
US8133298B2 (en) 2007-12-06 2012-03-13 Air Products And Chemicals, Inc. Blast furnace iron production with integrated power generation
US7536252B1 (en) 2007-12-10 2009-05-19 General Electric Company Method and system for controlling a flowrate of a recirculated exhaust gas
US8046986B2 (en) 2007-12-10 2011-11-01 General Electric Company Method and system for controlling an exhaust gas recirculation system
US20090157230A1 (en) 2007-12-14 2009-06-18 General Electric Company Method for controlling a flowrate of a recirculated exhaust gas
JP5118496B2 (ja) 2008-01-10 2013-01-16 三菱重工業株式会社 ガスタービンの排気部の構造およびガスタービン
GB0800940D0 (en) 2008-01-18 2008-02-27 Milled Carbon Ltd Recycling carbon fibre
US7695703B2 (en) 2008-02-01 2010-04-13 Siemens Energy, Inc. High temperature catalyst and process for selective catalytic reduction of NOx in exhaust gases of fossil fuel combustion
US20090193809A1 (en) 2008-02-04 2009-08-06 Mark Stewart Schroder Method and system to facilitate combined cycle working fluid modification and combustion thereof
US8176982B2 (en) 2008-02-06 2012-05-15 Osum Oil Sands Corp. Method of controlling a recovery and upgrading operation in a reservoir
CA2715973C (en) 2008-02-12 2014-02-11 Foret Plasma Labs, Llc System, method and apparatus for lean combustion with plasma from an electrical arc
EP2093403B1 (en) 2008-02-19 2016-09-28 C.R.F. Società Consortile per Azioni EGR control system
US8051638B2 (en) 2008-02-19 2011-11-08 General Electric Company Systems and methods for exhaust gas recirculation (EGR) for turbine engines
US20090223227A1 (en) 2008-03-05 2009-09-10 General Electric Company Combustion cap with crown mixing holes
US8448418B2 (en) 2008-03-11 2013-05-28 General Electric Company Method for controlling a flowrate of a recirculated exhaust gas
US7926292B2 (en) 2008-03-19 2011-04-19 Gas Technology Institute Partial oxidation gas turbine cooling
US8001789B2 (en) 2008-03-26 2011-08-23 Alstom Technologies Ltd., Llc Utilizing inlet bleed heat to improve mixing and engine turndown
US7985399B2 (en) 2008-03-27 2011-07-26 Praxair Technology, Inc. Hydrogen production method and facility
MY153097A (en) 2008-03-28 2014-12-31 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
MY156350A (en) 2008-03-28 2016-02-15 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
EP2107305A1 (en) 2008-04-01 2009-10-07 Siemens Aktiengesellschaft Gas turbine system and method
US8459017B2 (en) 2008-04-09 2013-06-11 Woodward, Inc. Low pressure drop mixer for radial mixing of internal combustion engine exhaust flows, combustor incorporating same, and methods of mixing
US8272777B2 (en) 2008-04-21 2012-09-25 Heinrich Gillet Gmbh (Tenneco) Method for mixing an exhaust gas flow
FR2930594B1 (fr) 2008-04-29 2013-04-26 Faurecia Sys Echappement Element d'echappement comportant un moyen statique pour melanger un additif a des gaz d'echappement
US8240153B2 (en) 2008-05-14 2012-08-14 General Electric Company Method and system for controlling a set point for extracting air from a compressor to provide turbine cooling air in a gas turbine
US8397482B2 (en) 2008-05-15 2013-03-19 General Electric Company Dry 3-way catalytic reduction of gas turbine NOx
WO2009141733A1 (en) 2008-05-20 2009-11-26 Osum Oil Sands Corp. Method of managing carbon reduction for hydrocarbon producers
US20090301054A1 (en) 2008-06-04 2009-12-10 Simpson Stanley F Turbine system having exhaust gas recirculation and reheat
US20100003123A1 (en) 2008-07-01 2010-01-07 Smith Craig F Inlet air heating system for a gas turbine engine
US7955403B2 (en) 2008-07-16 2011-06-07 Kellogg Brown & Root Llc Systems and methods for producing substitute natural gas
US20100018218A1 (en) 2008-07-25 2010-01-28 Riley Horace E Power plant with emissions recovery
EP2310478A2 (en) 2008-07-31 2011-04-20 Alstom Technology Ltd System for hot solids combustion and gasification
US7753972B2 (en) 2008-08-17 2010-07-13 Pioneer Energy, Inc Portable apparatus for extracting low carbon petroleum and for generating low carbon electricity
US7674443B1 (en) 2008-08-18 2010-03-09 Irvin Davis Zero emission gasification, power generation, carbon oxides management and metallurgical reduction processes, apparatus, systems, and integration thereof
WO2010020655A1 (en) 2008-08-21 2010-02-25 Shell Internationale Research Maatschappij B.V. Improved process for production of elemental iron
US8745978B2 (en) 2008-09-19 2014-06-10 Renault Trucks Mixing device in an exhaust gas pipe
US7931888B2 (en) 2008-09-22 2011-04-26 Praxair Technology, Inc. Hydrogen production method
US8316784B2 (en) 2008-09-26 2012-11-27 Air Products And Chemicals, Inc. Oxy/fuel combustion system with minimized flue gas recirculation
EA026915B1 (ru) 2008-10-14 2017-05-31 Эксонмобил Апстрим Рисерч Компани Способы и системы для регулирования продуктов горения
US8454350B2 (en) 2008-10-29 2013-06-04 General Electric Company Diluent shroud for combustor
PE20120245A1 (es) 2008-11-24 2012-04-21 Ares Turbine As Turbina de gas con combustion externa, aplicando intercambiador termico regenerativo giratorio
EP2192347B1 (en) 2008-11-26 2014-01-01 Siemens Aktiengesellschaft Tubular swirling chamber
CA2646171A1 (en) 2008-12-10 2010-06-10 Her Majesty The Queen In Right Of Canada, As Represented By The Minist Of Natural Resources Canada High pressure direct contact oxy-fired steam generator
CA2974504C (en) 2008-12-12 2021-04-06 Maoz Betser-Zilevitch Steam generation process and system for enhanced oil recovery
US20100170253A1 (en) 2009-01-07 2010-07-08 General Electric Company Method and apparatus for fuel injection in a turbine engine
US20100180565A1 (en) 2009-01-16 2010-07-22 General Electric Company Methods for increasing carbon dioxide content in gas turbine exhaust and systems for achieving the same
JP4746111B2 (ja) 2009-02-27 2011-08-10 三菱重工業株式会社 Co2回収装置及びその方法
US20100326084A1 (en) 2009-03-04 2010-12-30 Anderson Roger E Methods of oxy-combustion power generation using low heating value fuel
US8127937B2 (en) 2009-03-27 2012-03-06 Uop Llc High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US8127936B2 (en) 2009-03-27 2012-03-06 Uop Llc High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US20100300102A1 (en) 2009-05-28 2010-12-02 General Electric Company Method and apparatus for air and fuel injection in a turbine
US20100310356A1 (en) * 2009-06-04 2010-12-09 General Electric Company Clutched steam turbine low pressure sections and methods therefore
JP5173941B2 (ja) 2009-06-04 2013-04-03 三菱重工業株式会社 Co2回収装置
US9353940B2 (en) 2009-06-05 2016-05-31 Exxonmobil Upstream Research Company Combustor systems and combustion burners for combusting a fuel
JP5383338B2 (ja) 2009-06-17 2014-01-08 三菱重工業株式会社 Co2回収装置及びco2回収方法
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
EP2284359A1 (en) 2009-07-08 2011-02-16 Bergen Teknologioverføring AS Method of enhanced oil recovery from geological reservoirs
US8348551B2 (en) 2009-07-29 2013-01-08 Terratherm, Inc. Method and system for treating contaminated materials
US8479489B2 (en) 2009-08-27 2013-07-09 General Electric Company Turbine exhaust recirculation
MY163113A (en) 2009-09-01 2017-08-15 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US10001272B2 (en) 2009-09-03 2018-06-19 General Electric Technology Gmbh Apparatus and method for close coupling of heat recovery steam generators with gas turbines
US7937948B2 (en) 2009-09-23 2011-05-10 Pioneer Energy, Inc. Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
EP2301650B1 (en) 2009-09-24 2016-11-02 Haldor Topsøe A/S Process and catalyst system for scr of nox
US8381525B2 (en) 2009-09-30 2013-02-26 General Electric Company System and method using low emissions gas turbine cycle with partial air separation
US20110088379A1 (en) 2009-10-15 2011-04-21 General Electric Company Exhaust gas diffuser
US8337139B2 (en) 2009-11-10 2012-12-25 General Electric Company Method and system for reducing the impact on the performance of a turbomachine operating an extraction system
SG10201407421UA (en) 2009-11-12 2014-12-30 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US20110126512A1 (en) 2009-11-30 2011-06-02 Honeywell International Inc. Turbofan gas turbine engine aerodynamic mixer
US20110138766A1 (en) 2009-12-15 2011-06-16 General Electric Company System and method of improving emission performance of a gas turbine
US8337613B2 (en) 2010-01-11 2012-12-25 Bert Zauderer Slagging coal combustor for cementitious slag production, metal oxide reduction, shale gas and oil recovery, enviromental remediation, emission control and CO2 sequestration
DE102010009043B4 (de) 2010-02-23 2013-11-07 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Statischer Mischer für eine Abgasanlage einer Brennkraftmaschine
US8438852B2 (en) 2010-04-06 2013-05-14 General Electric Company Annular ring-manifold quaternary fuel distributor
US8463451B2 (en) * 2010-04-19 2013-06-11 General Electric Company Automatic primary frequency response contribution monitoring system and method
US8635875B2 (en) 2010-04-29 2014-01-28 Pratt & Whitney Canada Corp. Gas turbine engine exhaust mixer including circumferentially spaced-apart radial rows of tabs extending downstream on the radial walls, crests and troughs
US8372251B2 (en) 2010-05-21 2013-02-12 General Electric Company System for protecting gasifier surfaces from corrosion
EA027439B1 (ru) 2010-07-02 2017-07-31 Эксонмобил Апстрим Рисерч Компани Интегрированные системы для производства электроэнергии (варианты) и способ производства электроэнергии
MY156099A (en) 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
CN102959203B (zh) 2010-07-02 2018-10-09 埃克森美孚上游研究公司 通过排气再循环的浓缩空气的化学计量燃烧
MY164051A (en) 2010-07-02 2017-11-15 Exxonmobil Upstream Res Co Low emission triple-cycle power generation systems and methods
CN102959202B (zh) 2010-07-02 2016-08-03 埃克森美孚上游研究公司 集成系统、发电的方法和联合循环发电系统
SG186158A1 (en) 2010-07-02 2013-01-30 Exxonmobil Upstream Res Co Low emission power generation systems and methods
US8226912B2 (en) 2010-07-13 2012-07-24 Air Products And Chemicals, Inc. Method of treating a gaseous mixture comprising hydrogen, carbon dioxide and hydrogen sulphide
US8268044B2 (en) 2010-07-13 2012-09-18 Air Products And Chemicals, Inc. Separation of a sour syngas stream
US8206669B2 (en) 2010-07-27 2012-06-26 Air Products And Chemicals, Inc. Method and apparatus for treating a sour gas
US9097182B2 (en) 2010-08-05 2015-08-04 General Electric Company Thermal control system for fault detection and mitigation within a power generation system
US8627643B2 (en) 2010-08-05 2014-01-14 General Electric Company System and method for measuring temperature within a turbine system
US9019108B2 (en) 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
CA2805089C (en) 2010-08-06 2018-04-03 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
US8220248B2 (en) 2010-09-13 2012-07-17 Membrane Technology And Research, Inc Power generation process with partial recycle of carbon dioxide
US8220247B2 (en) 2010-09-13 2012-07-17 Membrane Technology And Research, Inc. Power generation process with partial recycle of carbon dioxide
US8166766B2 (en) 2010-09-23 2012-05-01 General Electric Company System and method to generate electricity
US8991187B2 (en) 2010-10-11 2015-03-31 General Electric Company Combustor with a lean pre-nozzle fuel injection system
US8726628B2 (en) 2010-10-22 2014-05-20 General Electric Company Combined cycle power plant including a carbon dioxide collection system
US9074530B2 (en) 2011-01-13 2015-07-07 General Electric Company Stoichiometric exhaust gas recirculation and related combustion control
RU2560099C2 (ru) 2011-01-31 2015-08-20 Дженерал Электрик Компани Топливное сопло (варианты)
TWI563164B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
US20140007590A1 (en) 2011-03-22 2014-01-09 Richard A. Huntington Systems and Methods For Carbon Dioxide Capture In Low Emission Turbine Systems
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TW201303143A (zh) 2011-03-22 2013-01-16 Exxonmobil Upstream Res Co 低排放渦輪機系統中用於攫取二氧化碳及產生動力的系統與方法
US8101146B2 (en) 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
US8910485B2 (en) 2011-04-15 2014-12-16 General Electric Company Stoichiometric exhaust gas recirculation combustor with extraction port for cooling air
US8281596B1 (en) 2011-05-16 2012-10-09 General Electric Company Combustor assembly for a turbomachine
CA2742565C (en) 2011-06-10 2019-04-02 Imperial Oil Resources Limited Methods and systems for providing steam
US8694172B2 (en) * 2011-07-12 2014-04-08 General Electric Company Systems and devices for controlling power generation
US8347600B2 (en) 2011-08-25 2013-01-08 General Electric Company Power plant and method of operation
US8453461B2 (en) 2011-08-25 2013-06-04 General Electric Company Power plant and method of operation
US8245493B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and control method
US8205455B2 (en) 2011-08-25 2012-06-26 General Electric Company Power plant and method of operation
US8266883B2 (en) * 2011-08-25 2012-09-18 General Electric Company Power plant start-up method and method of venting the power plant
US8245492B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and method of operation
US20120023954A1 (en) 2011-08-25 2012-02-02 General Electric Company Power plant and method of operation
US8713947B2 (en) 2011-08-25 2014-05-06 General Electric Company Power plant with gas separation system
US8453462B2 (en) 2011-08-25 2013-06-04 General Electric Company Method of operating a stoichiometric exhaust gas recirculation power plant
US9127598B2 (en) 2011-08-25 2015-09-08 General Electric Company Control method for stoichiometric exhaust gas recirculation power plant
US20130086917A1 (en) 2011-10-06 2013-04-11 Ilya Aleksandrovich Slobodyanskiy Apparatus for head end direct air injection with enhanced mixing capabilities
US9097424B2 (en) 2012-03-12 2015-08-04 General Electric Company System for supplying a fuel and working fluid mixture to a combustor
EP2831505B8 (en) 2012-03-29 2017-07-19 General Electric Company Turbomachine combustor assembly
WO2013147632A1 (en) 2012-03-29 2013-10-03 General Electric Company Bi-directional end cover with extraction capability for gas turbine combustor
US20130255267A1 (en) * 2012-03-30 2013-10-03 General Electric Company System and method of improving emission performance of a gas turbine
US20130269357A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a secondary flow system
US20130269355A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling an extraction pressure and temperature of a stoichiometric egr system
US20130269360A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a powerplant during low-load operations
US20130269361A1 (en) 2012-04-12 2013-10-17 General Electric Company Methods relating to reheat combustion turbine engines with exhaust gas recirculation
US20130269356A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US20130269310A1 (en) 2012-04-12 2013-10-17 General Electric Company Systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US20130269358A1 (en) 2012-04-12 2013-10-17 General Electric Company Methods, systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US8539749B1 (en) 2012-04-12 2013-09-24 General Electric Company Systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US9347375B2 (en) 2012-06-22 2016-05-24 General Electronic Company Hot EGR driven by turbomachinery
US20140060073A1 (en) 2012-08-28 2014-03-06 General Electric Company Multiple point overboard extractor for gas turbine
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US20140182304A1 (en) 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company System and method for a turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US20140182298A1 (en) 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company Stoichiometric combustion control for gas turbine system with exhaust gas recirculation
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US20140182305A1 (en) 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company System and method for a turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
WO2014071118A1 (en) 2012-11-02 2014-05-08 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100549389C (zh) * 2005-07-08 2009-10-14 通用电气公司 二氧化碳分离的发电系统和方法
CN102953814A (zh) * 2011-08-25 2013-03-06 通用电气公司 功率装置和使用方法
WO2013155214A1 (en) * 2012-04-12 2013-10-17 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
WO2013163045A1 (en) * 2012-04-26 2013-10-31 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine

Also Published As

Publication number Publication date
US10079564B2 (en) 2018-09-18
RU2016134897A3 (zh) 2018-08-14
EP3102811A1 (en) 2016-12-14
AU2014379485A1 (en) 2016-08-18
US20150214879A1 (en) 2015-07-30
WO2015112317A1 (en) 2015-07-30
RU2678608C2 (ru) 2019-01-30
JP2017505878A (ja) 2017-02-23
US20190013756A1 (en) 2019-01-10
AU2014379485B2 (en) 2019-01-17
CN107076033A (zh) 2017-08-18
AU2019202596A1 (en) 2019-05-02
SG11201606026XA (en) 2016-08-30
MX2016009709A (es) 2016-12-20
US10727768B2 (en) 2020-07-28
AR099659A1 (es) 2016-08-10
RU2016134897A (ru) 2018-03-12
CA2938046A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
CN107076033B (zh) 用于化学计量排气再循环燃气涡轮机系统的系统和方法
CN106414952B (zh) 用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统和方法
CN105579687B (zh) 控制排气再循环燃气涡轮系统中排气流量的系统和方法
CN105765196B (zh) 用于氧化剂加热系统的系统和方法
CN104769255B (zh) 用于化学计量排气再循环燃气涡轮机系统的系统和方法
CN104937239B (zh) 化学计量的排气再循环燃气涡轮系统中氧化剂压缩的系统和方法
CN106062340B (zh) 用于燃气涡轮发动机的系统和方法
CN105745419B (zh) 使用排气再循环控制燃气涡轮发动机中的燃烧和排放的系统和方法
CN106715837B (zh) 燃气涡轮机系统及相应的方法
CN105492728B (zh) 用于监测具有排气再循环的燃气涡轮机系统的系统和方法
CN105593492B (zh) 用于燃料喷嘴的系统和方法
CN105074139B (zh) 燃气轮机系统及其操作方法
CN105121810B (zh) 燃气涡轮负荷控制系统
CN105008806B (zh) 用于在化学计量的排气再循环燃气轮机系统中使用氧化剂‑稀释剂混合扩散燃烧的系统和方法
CN105189940B (zh) 用于保护具有排气再循环的气体涡轮发动机中的组件的系统和方法
CN107076024B (zh) 用于具有排气再循环的燃气涡轮机系统的燃烧控制的方法和系统
CN105189973B (zh) 在化学计量的排气再循环燃气轮机系统中用扩散燃烧控制负载的系统和方法
CN107076023B (zh) 用于启动具有排气再循环的燃气涡轮机系统传动系的方法和系统
CN104736817B (zh) 再循环用于燃气涡轮发动机中多个流动路径中的排气的系统和方法
CN108141166A (zh) 响应于电网过频率事件用于化学计量的排气再循环燃气涡轮的系统和方法
CN107548433B (zh) 用于具有排气再循环的燃气涡轮发动机中高体积氧化剂流的系统和方法
CN105637206A (zh) 用于排放来自燃气涡轮发动机的燃烧气体的系统和方法
CN107864660A (zh) 估计具有排气再循环的燃气涡轮的燃烧当量比的系统和方法
CN105074168B (zh) 对具有排气再循环的燃气涡轮系统的化学计量燃烧控制
TW201432137A (zh) 在化學計量廢氣再循環氣渦輪系統中用於氧化劑壓縮之系統與方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190212

Termination date: 20191231

CF01 Termination of patent right due to non-payment of annual fee