CN105745419B - 使用排气再循环控制燃气涡轮发动机中的燃烧和排放的系统和方法 - Google Patents
使用排气再循环控制燃气涡轮发动机中的燃烧和排放的系统和方法 Download PDFInfo
- Publication number
- CN105745419B CN105745419B CN201480053841.7A CN201480053841A CN105745419B CN 105745419 B CN105745419 B CN 105745419B CN 201480053841 A CN201480053841 A CN 201480053841A CN 105745419 B CN105745419 B CN 105745419B
- Authority
- CN
- China
- Prior art keywords
- oxidant
- fuel
- exhaust
- gas
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/34—Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
- F23C9/08—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/16—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/26—Controlling the air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/002—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid using an auxiliary fluid
- F02C1/005—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid using an auxiliary fluid being recirculated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/60—Fluid transfer
- F05D2260/61—Removal of CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/08—Purpose of the control system to produce clean exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/08—Purpose of the control system to produce clean exhaust gases
- F05D2270/083—Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2202/00—Fluegas recirculation
- F23C2202/20—Premixing fluegas with fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2202/00—Fluegas recirculation
- F23C2202/30—Premixing fluegas with combustion air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2221/00—Pretreatment or prehandling
- F23N2221/12—Recycling exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2241/00—Applications
- F23N2241/20—Gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/40—Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
在一个实施例中,系统包括涡轮燃烧器,涡轮燃烧器具有围绕燃烧室设置的燃烧器衬套,在燃烧室的相对于燃烧气体通过燃烧室的流动的下游方向的上游的盖端,围绕燃烧器衬套偏置设置以限定通道的流套,以及通道内的障碍物。盖端被配置为朝燃烧室引导氧化剂流和第一燃料流。通道被配置为朝盖端引导气体流,并且配置为朝涡轮燃烧器的涡轮端引导氧化剂流的一部分。气体流包括基本上惰性气体。障碍物被配置为阻碍通道内朝涡轮端的所述氧化剂流的一部分,并且被配置为阻碍通道内朝所述盖端的气体流。
Description
相关申请的交叉引用
本申请要求于2013年7月30日提交的题为“SYSTEM AND METHOD OF CONTROLLINGCOMBUSTION AND EMISSIONS IN GAS TURBINE ENGINE WITH EXHAUST GASRECIRCULATION”的美国临时专利申请61/860,214的优先权和权益,上述申请通过引用整体合并于此以用于各种目的。
技术领域
本文公开的主题涉及燃气涡轮,并且更具体地涉及带有排气再循环的燃气涡轮。
背景技术
燃气涡轮发动机的应用领域非常广泛,例如发电、航空器以及各种机械装置。燃气涡轮发动机通常在燃烧器部燃烧燃料和氧化剂(例如,空气)以生成热燃烧气体,然后该气体驱动涡轮部中的一个或多个涡轮级。进而涡轮部驱动压缩机部的一个或多个压缩机级,由此压缩随同燃料吸入燃烧器部中的氧化剂。再者,所述燃料和氧化剂在燃烧器部中混合,然后燃烧以产生热燃烧气体。遗憾地是,燃烧器部的某些组件被暴露于高温下,这可以降低组件的寿命。另外,使用氧化剂冷却组件或燃烧气体可以增加排气中氧化剂的浓度。
发明内容
下面概述在范围上与最初要求保护的发明匹配的某些实施例。这些实施例并不旨在限制要求保护的发明的范围,相反这些实施例仅旨在提供本发明的可能形式的简短概括。事实上,本发明可以包含可与下面阐述的实施例类似或不同的各种形式。
在一个实施例中,系统包括涡轮燃烧器,所述涡轮燃烧器具有围绕燃烧室设置的燃烧器衬套,在所述燃烧室相对于燃烧气体通过所述燃烧室的流动的下游方向的上游的盖端,以围绕所述燃烧器衬套偏置设置以限定通道的流量套筒,以及所述通道内的障碍物。所述盖端被配置为朝所述燃烧室引导氧化剂流和第一燃料流。所述通道被配置为朝所述首端引导气体流,并且配置为朝所述涡轮燃烧器的涡轮端引导所述氧化剂流的一部分。所述气体流包括大量惰性气体。所述障碍物被配置为阻碍氧化剂流的一部分朝向涡轮端,并且被配置为阻碍气体流朝向所述通道内的盖端。
在另一实施例中,一种系统包括涡轮燃烧器,所述涡轮燃烧器具有围绕燃烧室设置的燃烧器衬套和围绕所述燃烧器衬套偏置设置以限定通道的流量套筒。所述通道包括配置为沿第一方向引导氧化剂以与燃烧室中的第一燃料反应以产生燃烧气体的氧化剂部。所述通道也包括配置为沿着基本上与第一方向相反的第二方向引导惰性气体的冷却部。所述惰性气体被配置为冷却燃烧器衬套和燃烧室内的燃烧气体。所述通道还包括在所述氧化剂部和所述冷却部之间的障碍物部。所述障碍部被配置为将氧化剂部中的氧化剂与冷却部中的惰性气体充分分离。
在另一实施例中,一种方法包括将氧化剂和燃料从涡轮燃烧器的盖端注入到燃烧室内,在燃烧室中燃烧氧化剂和燃料以提供基本上化学计量燃烧,并且使用排气流冷却所述燃烧室。所述排气流沿围绕燃烧室设置的通道被从涡轮燃烧器的涡轮端朝着盖端向上游引导。所述方法还包括使用障碍物阻碍通道内的排气流,所述障碍包括动态障碍、物理障碍或它们的任意组合。
附图说明
当参照附图阅读以下详细说明时,本发明的这些和其他特征、方面和优点将变得更加容易被理解,其中在整个附图中相似符号代表相似部件,其中:
图1是具有耦连到烃类生产系统的基于涡轮的服务系统的系统实施例的示意图;
图2是图1的系统实施例的示意图,其进一步示出控制系统和组合循环系统;
图3是图1和图2的系统实施例的示意图,其进一步示出燃气涡轮发动机、排气供应系统和排气处理系统的细节;
图4是用于运行图1-3的系统的过程实施例的流程图;
图5是具有排气再循环并且在流量套筒内具有障碍部的燃气涡轮发动机的燃烧器部实施例的原理图;
图6是在障碍部内具有动态障碍的图5中燃气涡轮发动机的燃烧器部实施例的原理图;
图7是在障碍部内具有物理障碍的图5中燃气涡轮发动机的燃烧器部实施例的原理图;
图8是沿图7的线8-8截取的涡轮燃烧器的实施例的截面视图;以及
图9是沿图7的线8-8截取的涡轮燃烧器的实施例的截面视图;
具体实施方式
本发明的一个或多个具体实施例将在下面描述。为了提供这些实施例的简要描述,实际实施方式的所有特征可能没有在本说明书中描述。应认识到,在任何此类实际实施方式的开发中(例如在工程规划或设计项目中),需要做出众多针对实施方式的决定以实现特定目标,例如符合在不同实施方式中彼此不同的系统相关约束和/或商业相关约束。而且,应认识到,这种开发工作可能是复杂和费时的,然而,对受益于本公开的本领域普通技术人员来说,承担设计、装配和制造仍然是例行工作。
本文公开了详细的示例性实施例。但是,本文公开的特定结构和功能细节仅仅代表描述示例性实施例的目的。而本发明的实施例可以体现为许多替代形式,并且不应解释为仅限于本文阐述的实施例。
因此,虽然示例性实施例能够具有各种修改和替换形式,但其实施例通过附图中的示例的方式示出并将在本文详细描述。然而,应当理解的是,本发明并不打算将示例性实施例局限于所公开的具体形式,而是相反,示例性实施例旨在覆盖落入本发明的范围内的所有修改、等同物和替代实施例。
本文所使用的术语仅用于描述某些实施例,并不是为了限制示例性实施例。正如本文所使用,单数形式“一”、“一个”、“该”也包括复数形式,除非上下文中明确指出不同含意。当用于本文时,术语“包括”和/或“包含”指定存在所陈述特征、整数、步骤、操作、元件和/或组件,但不排除存在和添加一个或更多个其他特征、整数、步骤、操作、元件、组件和/或其群组。
虽然术语第一、第二、主要、次要等可以在本文中被用于描述各个元件,但是这些元件不应受这些术语限制。这些术语仅用于将一个元件与另一个元件区分开。例如但不限于,第一元件可以被称为第二元件,并且同样,第二元件可以被称为第一元件,而不偏离示例性实施例的范围。正如本文所使用的,术语“和/或”包括一个或更多个关联列出项目中的任意一个、全部及其组合。
本文可能使用某些术语,这仅为了方便读者而不应被视为对本发明的范围的限制。例如,诸如“上面”、“下面”、“左侧”、“右侧”、“前面”、“后面”、“顶部”、“底部”、“水平”、“垂直”、“上游”、“下游”、“前部”、“后部”等词仅描述在附图中示出的构形。事实上,本发明的实施例的一个或多个元件可以以任何方向取向,因此,所述术语应当被理解为包含这类变化,除非以其他方式指出不同。
如下面所详细讨论的,所公开的实施例一般涉及带有排气再循环(EGR)的燃气涡轮系统,尤其是涉及使用EGR的燃气涡轮系统的化学计量操作。例如,燃气涡轮系统可以被配置为沿着排气再循环路径再循环排气,使燃料和氧化剂与至少某些再循环排气一起以化学计量燃烧,并且收集排气用于各个目标系统。排气的再循环可以与化学计量燃烧一起帮助增加排气中的二氧化碳(CO2)浓度水平,然后二氧化碳可以被后处理以分离和提纯CO2和氮气(N2)用于各个目标系统。燃气涡轮系统还可以采用沿着排气再循环路径的各种排气处理(例如热回收、催化反应等),从而增加CO2的浓度水平,减少其他排放物(例如一氧化碳、氮氧化物以及未燃烧烃类)的浓度水平,并且(例如用热回收单元)增加能量回收。此外,燃气涡轮发动机可以被配置为使用一个或多个扩散火焰(例如,使用扩散燃料喷嘴)、预混火焰(例如,使用预混燃料喷嘴)或其任意组合来燃烧燃料和氧化剂。在某些实施例中,扩散火焰可以帮助保持在对化学计量燃烧的某些极限内的稳定性和运行,其进而帮助增加CO2的产生。例如,与使用预混火焰运行的燃气涡轮系统相比,使用扩散火焰运行的燃气涡轮系统可以允许更大量的EGR。进而,增加的EGR量有助于增加CO2产生。可能的目标系统包括管线(pipelines)、储罐、碳封存系统和烃类生产系统,诸如强化油回收(EOR)系统。
如下面描述的,化学计量排气再循环(SEGR)燃气涡轮系统的一些实施例可以将氧化剂和燃料从燃烧器的盖端部分供应到燃烧室内,并且分开地供应惰性气体(例如,排气)到在燃烧器的相对涡轮端部分处的燃烧器,以冷却燃烧室内的燃烧器衬套和燃烧气体。通道内沿燃烧器衬套的障碍物(例如,物理障碍物、局部物理障碍物、动态障碍物)可以在燃烧室外部将氧化剂和惰性气体分开。在一些实施例中,燃烧器可以具有区别供给和控制的燃料喷嘴组,以将氧化剂和一种或多种燃料注入到燃烧室内。氧化剂和惰性气体可以以相反的方向流经通道。氧化剂和惰性气体可以不在燃烧室内火焰上游(例如,燃烧反应)混合。在一些实施例中,氧化剂被集中靠近火焰区域以提高燃烧效率,由此影响当量比。将当量比调节到大约1.0(例如,在0.95至1.05之间)可以降低SEGR燃气涡轮系统的排气内氧化剂、燃料和/或其他成分(如氧化氮、水)的浓度。然而,在当量比处于或接近1.0时(例如,基本上化学计量燃烧),燃烧温度也可以更高。更高的燃烧温度可以产生更多排放物,例如氮氧化物(NOx)排放物。惰性气体(例如,排气)可以作为燃烧器和/或燃烧气体的散热器。也就是说,惰性气体(例如,排气)可以帮助降低燃烧气体的温度,进而在不将更多氧化剂(例如,氧气)引入燃烧气体的情况下,减少NOx排放。在一些实施例中,调节当量比到大约1.0可以增加二氧化碳的浓度,其可以用于强化油回收系统,同时排气作为稀释剂的使用可以保持燃烧气体中NOx、氧气和燃料的低水平。排气或从排气中抽取的二氧化碳可以被流体注入系统利用用于强化油回收。
图1是具有与基于涡轮的服务系统14关联的烃类生产系统12的系统10的实施例的示意图。如下面进一步详细讨论的,基于涡轮的服务系统14的各种实施例被配置为向烃类生产系统12提供各种服务例如电力、机械功和流体(例如排气)以促进油和/或气的生产或回收。在图示的实施例中,烃类生产系统12包括油/气抽取系统16和强化油回收(EOR)系统18,二者被耦连到地下储层20(例如油、气或烃类储层)。油/气抽取系统16包括各种表面设备22,例如耦连到油/气井26的圣诞树或生产树24。此外,井26可以包括通过土地32中的钻孔30延伸到地下储层20的一个或多个管件28。树24包括一个或多个阀门、扼流圈、隔离套、防喷器以及各种流量控制装置,其调节压力并且控制去到和来自地下储层20的流动。虽然树24通常被用于控制从地下储层20流出的生产流体(例如油或气)的流动,但是EOR系统18可以通过将一种或多种流体注入地下储层20中来增加油或气的产量。
因此,EOR系统18可以包括流体注入系统34,该流体注入系统34具有通过土地32中的孔30延伸到地下储层20的一个或多个管件36。例如,EOR系统18可以将一种或多种流体40例如气体、蒸汽、水、化学物质或其任何组合输送到流体注入系统34中。例如,如下面所进一步详细讨论的,EOR系统18可以被耦连到基于涡轮的服务系统14,使得系统14将排气42(例如,基本没有氧气或完全没有氧气)输送到EOR系统18用作注入流体40。流体注入系统34通过一个或多个管件36将流体40(例如排气42)输送到地下储层20中,如箭头44所指示。注入流体40通过与油/气井26的管件28间隔开一偏移距离46的管件36进入地下储层20。因此,注入流体40使安置在地下储层20中的油/气48移位,并驱动油/气48通过烃类生产系统12的一个或多个管件28上升,如箭头50所指示。如下面所进一步详细讨论的,注入流体40可以包括源自基于涡轮的服务系统14的排气42,该基于涡轮的服务系统14能够根据烃类生产系统12的需要在现场生成排气42。换句话说,基于涡轮的服务系统14可以同时生成供烃类生产系统12使用的一种或多种服务(例如电力、机械功、蒸汽、水(例如淡化水)以及排气(例如基本没有氧气)),从而降低或消除这类服务对外部源的依赖。
在图示的实施例中,基于涡轮的服务系统14包括化学计量排气再循环(SEGR)燃气涡轮系统52和排气(EG)处理系统54。燃气涡轮系统52可以被配置为以化学计量燃烧操作模式(例如化学计量控制模式)和非化学计量燃烧操作模式(例如非化学计量控制模式)如稀燃料控制模式或富燃料控制模式操作。在化学计量控制模式中,燃烧通常以燃料和氧化剂的大致化学计量比发生,从而产生大致化学计量燃烧。特别地,化学计量燃烧通常包括在燃烧反应中消耗几乎全部的燃料和氧化剂,使得燃烧产物基本没有或完全没有未燃烧燃料和氧化剂。化学计量燃烧的一个量度是当量比或phi(φ),其是实际燃料/氧化剂比率相对于化学计量燃料/氧化剂比率的比率。大于1.0的当量比导致燃料和氧化剂的富燃料燃烧,而小于1.0的当量比导致燃料和氧化剂的稀燃料燃烧。相反,1.0的当量比导致既不是富燃料又不是稀燃料的燃烧,从而在燃烧反应中基本消耗所有的燃料和氧化剂。在本公开实施例的背景下,术语化学计量或基本化学计量可以指的是大约0.95到大约1.05的当量比。然而,本公开的实施例也可以包括1.0加上或减去0.01、0.02、0.03、0.04、0.05或更多的当量比。再者,在基于涡轮的服务系统14中的燃料和氧化剂的化学计量燃烧可以导致基本没有剩下的未燃烧燃料或氧化剂的燃烧产物或排气(例如42)。例如,排气42可以具有小于1%、2%、3%、4%或5%体积百分比的氧化剂(例如氧气)、未燃烧燃料或烃类(例如HC)、氮氧化物(例如NOx)、一氧化碳(CO)、硫氧化物(例如SOx)、氢和其他未完全燃烧产物。通过进一步的示例,排气42可以具有小于大约10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000每百万份体积(ppmv)的氧化剂(例如氧)、未燃烧燃料或烃类(例如HC)、氮氧化物(例如NOx)、一氧化碳(CO)、硫氧化物(例如SOx)、氢和未完全燃烧产物。然而,本公开实施例还可以在排气42中产生其他范围的残留燃料、氧化剂和其他排放物水平。如本文所使用,术语排放物、排放物水平和排放物目标可以指的是某些燃烧产物(例如NOx、CO、SOx、O2、N2、H2、HC等)的浓度水平,所述燃烧产物可以存在于再循环气体流、排出气体流(例如排放到大气中)以及用在各种目标系统(例如烃类生产系统12)中的气体流。
虽然不同实施例中的SEGR燃气涡轮系统52和EG处理系统54可以包括各种组件,但图示的EG处理系统54包括热回收蒸汽发生器(HRSG)56和排气再循环(EGR)系统58,二者接收并处理源自SEGR燃气涡轮系统52的排气60。HRSG 56可以包括一个或多个热交换器、冷凝器和各种热回收设备,它们一起用于将热量从排气60传递至水流,由此产生蒸汽62。蒸汽62可以被用在一个或多个蒸汽涡轮、EOR系统18或烃类生产系统12的任何其他部分中。例如,HRSG 56可以生成低压、中压和/或高压蒸汽62,其可以被选择性应用于低压、中压和高压蒸汽涡轮级或EOR系统18的不同应用中。除了蒸汽62之外,处理水64例如淡化水也可以由HRSG56、EGR系统58和/或EG处理系统54的另一部分或SEGR燃气涡轮系统52生成。处理水64(例如淡化水)在例如内陆或沙漠地区等水短缺区域可能是特别有用的。处理水64可以至少部分由于驱动SEGR燃气涡轮系统52内的燃料燃烧的大体积空气而生成。虽然蒸汽62和水64的现场生成在许多应用(包括烃类生产系统12)中是特别有利的,但排气42、60的现场生成对EOR系统18来说是特别有利的,这是由于所述排气从SEGR燃气涡轮系统52获得低氧含量、高压和热度。因此,HRSG 56、EGR系统58和/或EG处理系统54的另一部分可以将排气66输出或再循环到SEGR燃气涡轮系统52中,同时还将排气42输送到EOR系统18以供烃类生产系统12使用。同样,可以从SEGR燃气涡轮系统52直接抽取排气42(即无需经过EG处理系统54),以用于烃类生产系统12的EOR系统18。
排气再循环由EG处理系统54的EGR系统58来处理。例如,EGR系统58包括一个或多个管道、阀门、鼓风机、排气处置系统(例如过滤器、微粒去除单元、气体分离单元、气体净化单元、热交换器、热回收单元、湿气去除单元、催化剂单元、化学注入单元或其任何组合)以及沿着从SEGR燃气涡轮系统52的输出端(例如释放的排气60)到输入端(例如吸入的排气66)的排气再循环路径来再循环排气的控件。在图示的实施例中,SEGR燃气涡轮系统52将排气66吸入到具有一个或多个压缩机的压缩机部,从而将排气66与氧化剂68和一种或多种燃料70的进气一起压缩以供燃烧器部使用。氧化剂68可以包括环境空气、纯氧、富氧空气、减氧空气、氧-氮混合物或有利于燃料70燃烧的任何合适的氧化剂。燃料70可以包括一种或多种气体燃料、液体燃料或其任何组合。例如,燃料70可以包括天然气、液化天然气(LNG)、合成气、甲烷、乙烷、丙烷、丁烷、石脑油、煤油、柴油、乙醇、甲醇、生物燃料或其任何组合。
SEGR燃气涡轮系统52在燃烧器部中混合并燃烧排气66、氧化剂68和燃料70,从而生成驱动涡轮部中的一个或多个涡轮级的热燃烧气体或排气60。在某些实施例中,燃烧器部中的每个燃烧器包括一个或多个预混燃料喷嘴、一个或多个扩散燃料喷嘴或其任何组合。例如,每个预混燃料喷嘴可以被配置为在燃料喷嘴内和/或部分地在该燃料喷嘴上游在内部混合氧化剂68和燃料70,从而将氧化剂-燃料混合物从燃料喷嘴注入到燃烧区中用以预混合燃烧(例如,预混火焰)。通过进一步的示例,每个扩散燃料喷嘴可以被配置为隔离燃料喷嘴内的氧化剂68与燃料70的流动,从而将氧化剂68和燃料70分别从燃料喷嘴注入到燃烧区中用以扩散燃烧(例如扩散火焰)。特别地,由扩散燃料喷嘴提供的扩散燃烧延迟了氧化剂68与燃料70的混合,直到初始燃烧点即火焰区域。在采用扩散燃料喷嘴的实施例中,扩散火焰可以提供增加的火焰稳定性,这是因为扩散火焰通常在氧化剂68与燃料70的分离流之间的化学计量点处(即在氧化剂68与燃料70混合时)形成。在某些实施例中,一种或多种稀释剂(例如排气60、蒸汽、氮或其他惰性气体)可以在扩散燃料喷嘴或预混燃料喷嘴中与氧化剂68、燃料70或两者预混合。此外,一个或多个稀释剂(例如排气60、蒸汽、氮或其他惰性气体)可以在每个燃燃烧器内的燃烧点处或其下游被注入到燃烧器中。使用这些稀释剂可以帮助调剂火焰(例如预混火焰或扩散火焰),从而帮助减少NOx排放物,例如一氧化氮(NO)和二氧化氮(NO2)。不管火焰的类型如何,燃烧产生热燃烧气体或排气60以驱动一个或多个涡轮级。在每个涡轮级由排气60驱动时,SEGR燃气涡轮系统52产生机械功72和/或电力74(例如,经由发电机)。系统52还输出排气60,并且可以进一步输出水64。再者,水64可以是经处理的水例如淡化水,这在各种现场应用或非现场应用中可能是有用的。
排气抽取还通过使用一个或多个抽取点76的SEGR燃气涡轮系统52来提供。例如,图示的实施例包括具有排气(EG)抽取系统(EGES)80和排气(EG)处置系统(EGTS)82的排气(EG)供应系统78,其从抽取点76接收排气42,处置排气42,并接着向各个目标系统供应或分配排气42。所述目标系统可以包括EOR系统18和/或其他系统,例如管线86、储罐88或碳封存系统(carbon sequestration system)90。EG抽取系统80可以包括一个或多个管道、阀门、控件和流动分离装置,这有利于隔离排气42与氧化剂68、燃料70和其他杂质,同时也控制所抽取的排气42的温度、压力和流量。EG处置系统82可以包括一个或多个热交换器(例如热回收单元例如热回收蒸汽发生器、冷凝器、冷却器或加热器)、催化剂系统(例如氧化催化剂系统)、微粒和/或水去除系统(例如气体脱水单元、惯性分离器、聚结过滤器、不可透水性过滤器以及其他过滤器)、化学注入系统、基于溶剂的处置系统(例如吸收剂、闪蒸罐等)、碳收集系统、气体分离系统、气体净化系统和/或基于溶剂的处理系统、排气压缩机或其任何组合。EG处置系统82的这些子系统使得能够控制温度、压力、流量、湿气含量(例如水去除量)、微粒含量(例如微粒去除量)以及气体成分(例如CO2、N2等的百分比)。
根据目标系统,所抽取的排气42通过EG处置系统82的一个或多个子系统进行处理。例如,EG处置系统82可以引导全部或部分排气42通过碳采集系统、气体分离系统、气体净化系统和/或基于溶剂的处置系统,所述系统被控制以分离和净化含碳气体(例如二氧化碳)92和/或氮气(N2)94供各种目标系统使用。例如,EG处置系统82的实施例可以执行气体分离和净化以产生排气42的多个不同流95,例如第一流96、第二流97和第三流98。第一流96可以具有富二氧化碳和/或稀氮气的第一成分(例如富CO2稀N2流)。第二流97可以具有含有中等浓度水平的二氧化碳和/或氮气的第二成分(例如中等浓度CO2、N2流)。第三流98可以具有稀二氧化碳和/或富氮气的第三成分(例如稀CO2富N2流)。每个流95(例如96、97和98)可以包括气体脱水单元、过滤器、气体压缩机或其任何组合,以便促进将流95输送到目标系统。在某些实施例中,富CO2稀N2流96可以具有大于大约70%、75%、80%、85%、90%、95%、96%、97%、98%或99%体积百分比的CO2纯度或浓度水平,以及小于大约1%、2%、3%、4%、5%、10%、15%、20%、25%或30%体积百分比的N2纯度或浓度水平。相反,稀CO2富N2流98可以具有小于大约1%、2%、3%、4%、5%、10%、15%、20%、25%或30%体积百分比的CO2纯度或浓度水平,以及大于大约70%、75%、80%、85%、90%、95%、96%、97%、98%或99%体积百分比的N2纯度或浓度水平。中等浓度CO2、N2流97可以具有在大约30%到70%、35%到65%、40%到60%或45%到55%之间的体积百分比的CO2纯度或浓度水平和/或N2纯度或浓度水平。虽然前述范围仅是非限制性示例,但富CO2稀N2流96和稀CO2富N2流98可以特别适用于EOR系统18和其他系统84。然而,这些富、稀或中等浓度CO2流95的任一种可以单独地或以各种组合形式用于EOR系统18和其他系统84。例如,EOR系统18和其他系统84(例如管线86、储罐88以及碳封存系统90)中的每一个可以接收一个或多个富CO2稀N2流96、一个或多个稀CO2富N2流98,一个或多个中等浓度CO2、N2流97以及一个或多个未处理排气42流(即绕过EG处置系统82)。
EG抽取系统80在沿着压缩机部、燃烧器部和/或涡轮部的一个或多个抽取点76处抽取排气42,使得排气42可以以合适温度和压力用在EOR系统18和其他系统84中。EG抽取系统80和/或EG处置系统82还可以使流向EG处理系统54和流出EG处理系统54的流体(例如排气42)循环。例如,穿过EG处理系统54的一部分排气42可以被EG抽取系统80抽取以用于EOR系统18和其他系统84。在某些实施例中,EG供应系统78和EG处理系统54可以是彼此独立的或集成在一起,并因此可以使用独立的或公共的子系统。例如,EG处置系统82可以被EG供应系统78和EG处理系统54两者使用。从EG处理系统54抽取的排气42可以经历多个气体处置级,例如在EG处理系统54的一个或多个气体处置级之后紧接着是EG处置系统82的一个或多个附加气体处置级。
在每个抽取点76处,由于EG处理系统54中的基本化学计量燃烧和/或气体处置,所抽取的排气42可以基本没有氧化剂68和燃料70(例如未燃烧的燃料或烃类)。此外,根据目标系统,所抽取的排气42可以在EG供应系统78的EG处置系统82中经受进一步处置,从而进一步降低任何残留氧化剂68、燃料70或其他不期望燃烧产物。例如,在EG处置系统82中进行处置之前或之后,所抽取的排气42可以具有小于1%、2%、3%、4%或5%体积百分比的氧化剂(例如氧气)、未燃烧燃料或烃类(例如HC)、氮氧化物(例如NOx)、一氧化碳(CO)、硫氧化物(例如SOX)、氢气和其他不完全燃烧产物。通过进一步的示例,在EG处置系统82中进行处置之前或之后,所抽取的排气42可以具有小于大约10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000每百万份体积(ppmv)的氧化剂(例如氧气)、未燃烧燃料或烃类(例如HC)、氮氧化物(例如NOx)、一氧化碳(CO)、硫氧化物(例如SOx)、氢气和不完全燃烧产物。因此,排气42特别适用于EOR系统18。
涡轮系统52的EGR操作具体使得能够在多个位置76处抽取排气。例如,系统52的压缩机部可以用于压缩没有任何氧化剂68的排气66(即只压缩排气66),使得可以在氧化剂68和燃料70的进入之前从压缩机部和/或燃烧器部抽取基本无氧的排气42。抽取点76可以被设置在相邻压缩机级的级间端口处、在沿着压缩机排放套管/罩壳(casing)的端口处、在沿着燃烧器部中的每个燃烧器的端口处或其任何组合。在某些实施例中,排气66可以不与氧化剂68和燃料70混合,直到其达到燃烧器部中的每个燃烧器的盖端部和/或燃料喷嘴。此外,一个或多个流动隔离器(例如壁件、分隔器、挡板等)可以用于将氧化剂68和燃料70与抽取点76隔离开。通过这些流动隔离器,抽取点76可以直接沿着燃烧器部中每个燃烧器的壁安置。
一旦排气66、氧化剂68和燃料70流过所述盖端部分(例如通过燃料喷嘴)进入每个燃烧器的燃烧部分(例如燃烧室),则SEGR燃气涡轮系统52被控制提供排气66、氧化剂68和燃料70的基本化学计量燃烧。例如,系统52可以保持大约0.95到大约1.05的当量比。结果,在每个燃烧器中的排气66、氧化剂68和燃料70的混合物的燃烧产物基本没有氧气和未燃烧燃料。因此,可以从SEGR燃气涡轮系统52的涡轮部抽取该燃烧产物(或排气)以用作被输送到EOR系统18的排气42。沿着涡轮部,抽取点76可以被设置在任何涡轮级处,例如相邻涡轮级之间的级间端口。因此,使用任何前述抽取点76,基于涡轮的服务系统14可以生成、抽取和传送排气42到烃类生产系统12(例如EOR系统18),以用于从地下储层20生产油/气48。
图2是图1的系统10的实施例的示意图,其示出被耦连到基于涡轮的服务系统14和烃类生产系统12的控制系统100。在图示的实施例中,基于涡轮的服务系统14包括组合循环系统102,该组合循环系统102包括作为顶部循环的SEGR燃气涡轮系统52、作为底部循环的蒸汽涡轮104以及从排气60回收热量以生成用于驱动蒸汽涡轮104的蒸汽62的HRSG 56。再者,SEGR燃气涡轮系统52接收、混合并且按化学计量燃烧排气66、氧化剂68和燃料70(例如,预混火焰和/或扩散火焰),从而产生排气60、机械功72、电力74和/或水64。例如,SEGR燃气涡轮系统52可以驱动一个或多个负载或机器106,例如发电机、氧化剂压缩机(例如主空气压缩机)、齿轮箱、泵、烃类生产系统12的设备或其任何组合。在某些实施例中,机器106可以包括其他驱动器,例如与SEGR燃气涡轮系统52串联的电动马达或蒸汽涡轮(例如蒸汽涡轮104)。因此,由SEGR燃气涡轮系统52(以及任何附加驱动器)驱动的机器106的输出可以包括机械功72和电力74。机械功72和/或电力74可以现场用于对烃类生产系统12提供动力,电力74可以被分配到电网,或其任何组合。机器106的输出还可以包括压缩流体,例如压缩氧化剂68(例如空气或氧气),用以吸入到SEGR燃气涡轮系统52的燃烧部中。这些输出中的每一个(例如排气60、机械功72、电力74和/或水64)可以被认为是基于涡轮的服务系统14的服务。
SEGR燃气涡轮系统52产生可能基本无氧的排气42、60,并且将这种排气42、60输送到EG处理系统54和/或EG供应系统78。EG供应系统78可以处置并传送排气42(例如流95)至烃类生产系统12和/或其他系统84。如上面所讨论的,EG处理系统54可以包括HRSG 56和EGR系统58。HRSG 56可以包括一个或多个热交换器、冷凝器和各种热回收设备,所述热回收设备可以被用于回收来自排气60的热量或将其传递给水108以生成用于驱动蒸汽涡轮104的蒸汽62。类似于SEGR燃气涡轮系统52,蒸汽涡轮104可以驱动一个或多个负载或机器106,由此生成机械功72和电力74。在图示的实施例中,SEGR燃气涡轮系统52和蒸汽涡轮104被串联布置以驱动相同的机器106。然而,在其他实施例中,SEGR燃气涡轮系统52和蒸汽涡轮104可以单独驱动不同的机器106,以便独立生成机械功72和/或电力74。在蒸汽涡轮104由来自HRSG 56的蒸汽62驱动时,蒸汽62的温度和压力逐渐降低。因此,蒸汽涡轮104将使用过的蒸汽62和/或水108再循环回到HRSG 56中,以便经由排气60的热回收用于生成额外的蒸汽。除了生成蒸汽之外,HRSG 56、EGR系统58和/或EG处理系统54的其他部分还可以产生水64、用于烃类生产系统12的排气42以及用作进入SEGR燃气涡轮系统52的输入的排气66。例如,水64可以是经处理的水64,例如用于其他应用的淡化水。淡化水在低可用水量地区是特别有用的。关于排气60,EG处理系统54的实施例可以被配置为通过EGR系统58再循环排气60,排气60可以经过或不经过HRSG 56。
在图示的实施例中,SEGR燃气涡轮系统52具有排气再循环路径110,该路径从系统52的排气出口延伸到排气入口。沿着路径110,排气60穿过EG处理系统54,在图示的实施例中,EG处理系统54包括HRSG 56和EGR系统58。EGR系统58可以包括沿着路径110串联和/或并联布置的一个或多个导管、阀门、鼓风机、气体处置系统(例如过滤器、微粒去除单元、气体分离单元、气体净化单元、热交换器、热回收单元如热回收蒸汽发生器、湿气去除单元、催化剂单元、化学注入单元或其任何组合)。换句话说,沿着在系统52的排气出口与排气入口之间的排气再循环路径110,EGR系统58可以包括任何流动控制组件、压力控制组件、温度控制组件、湿气控制组件和气体成分控制组件。因此,在具有沿着路径110的HRSG 56的实施例中,HRSG 56可以被认为是EGR系统58的组件。然而,在某些实施例中,HRSG 56可以沿着独立于排气再循环路径110的排气路径安置。不管HRSG 56是沿着单独路径还是与EGR系统58共用的路径,HRSG 56和EGR系统58都吸入排气60并且输出再循环排气66、用于EG供应系统78(例如用于烃类生产系统12和/或其他系统84)的排气42或者排气的其他输出。再者,SEGR燃气涡轮系统52吸入、混合并按化学计量燃烧排气66、氧化剂68和燃料70(例如预混火焰和/或扩散火焰),以产生用于分配到EG处理系统54、烃类生产系统12或其他系统84的基本无氧且无燃料的排气60。
如上面参照图1所述,烃类生产系统12可以包括用于促进通过油/气井26从地下储层20回收或生产油/气48的各种设备。例如,烃类生产系统12可以包括具有流体注入系统34的EOR系统18。在图示的实施例中,流体注入系统34包括排气注入EOR系统112和蒸汽注入EOR系统114。虽然流体注入系统34可以从各种来源接收流体,但图示的实施例可以从基于涡轮的服务系统14接收排气42和蒸汽62。由基于涡轮的服务系统14产生的排气42和/或蒸汽62还可以被输送到烃类生产系统12以用于其他油/气系统116。
排气42和/或蒸汽62的数量、质量和流量可以由控制系统100来控制。控制系统100可以完全专用于基于涡轮的服务系统14,或者控制系统100也可以可选地提供对烃类生产系统12和/或其他系统84的控制(或有利于控制的至少某些数据)。在图示的实施例中,控制系统100包括控制器118,该控制器具有处理器120、存储器122、蒸汽涡轮控件124、SEGR燃气涡轮系统控件126和机器控件128。处理器120可以包括单一处理器或者两个或更多个冗余处理器,例如用于控制基于涡轮的服务系统14的三重冗余处理器。存储器122可以包括易失性存储器和/或非易失性存储器。例如,存储器122可以包括一个或多个硬盘驱动器、闪存、只读存储器、随机存取存储器或其任何组合。控件124、126和128可以包括软件和/或硬件控件。例如,控件124、126和128可以包括存储在存储器122中并由处理器120可执行的各种指令或代码。控件124被配置为控制蒸汽涡轮104的操作,SEGR燃气涡轮系统控件126被配置为控制系统52,并且机器控件128被配置为控制机器106。因此,控制器118(例如控件124、126和128)可以被配置为协调基于涡轮的服务系统14的各个子系统,以向烃类生产系统12提供合适的排气流42。
在控制系统100的某些实施例中,在附图中示出或在本文描述的每个元件(例如系统、子系统和组件)包括(例如直接在这类元件内、在这类元件上游或下游)一个或多个工业控制部件例如传感器和控制装置,所述工业控制部件在工业控制网络上与控制器118一起彼此通信耦连。例如,与每个元件关联的控制装置可以包括专用装置控制器(例如,包括处理器、存储器和控制指令)、一个或多个致动器、阀门、开关和工业控制设备,其使得能够基于传感器反馈130、来自控制器118的控制信号、来自用户的控制信号或其任何组合进行控制。因此,本文描述的任何控制功能可以通过控制指令来实施,所述控制指令存储在控制器118、与每个元件关联的专用装置控制器或其组合中和/或可由其执行。
为了利于这类控制功能,控制系统100包括在整个系统10分布的一个或多个传感器,以获得用于执行各种控件例如控件124、126和128的传感器反馈130。例如,传感器反馈130可以从传感器获得,所述传感器分布在整个SEGR燃气涡轮系统52、机器106、EG处理系统54、蒸汽涡轮104、烃类生产系统12中,或分布在整个基于涡轮的服务系统14或烃类生产系统12的任何其他组件中。例如,传感器反馈130可以包括温度反馈、压力反馈、流量反馈、火焰温度反馈、燃烧动力学反馈、吸入氧化剂成分反馈、吸入燃料成分反馈、排气成分反馈、机械功72的输出水平、电力74的输出水平、排气42、60的输出数量、水64的输出数量或质量或其任何组合。例如,传感器反馈130可以包括排气42、60的成分,以促进在SEGR燃气涡轮系统52中的化学计量燃烧。例如,传感器反馈130可以包括来自沿着氧化剂68的氧化剂供应路径的一个或多个吸入氧化剂传感器、沿着燃料70的燃料供应路径的一个或多个吸入燃料传感器以及沿着排气再循环路径110和/或在SEGR燃气涡轮系统52内安置的一个或多个排气排放传感器的反馈。吸入氧化剂传感器、吸入燃料传感器和排气排放传感器可以包括温度传感器、压力传感器、流量传感器和成分传感器。排放传感器可以包括用于氮氧化物(例如NOx传感器)、碳氧化物(例如CO传感器和CO2传感器)、硫氧化物(例如SOx传感器)、氢(例如H2传感器)、氧(例如O2传感器)、未燃烧烃类(例如HC传感器)或其他不完全燃烧产物或其任何组合的传感器。
使用这种反馈130,控制系统100可以调节(例如增加、减少或保持)排气66、氧化剂68和/或燃料70进入SEGR燃气涡轮系统52(除了其他操作参数以外)的进气流量,以保持当量比在合适范围内,例如在大约0.95到大约1.05之间、在大约0.95到大约1.0之间、在大约1.0到大约1.05之间或大致为1.0。例如,控制系统100可以分析反馈130以监测排气排放(例如,氮氧化物、碳氧化物如CO和CO2、硫氧化物、氢气、氧气、未燃烧烃和其他不完全燃烧产物的浓度水平)和/或确定当量比,然后控制一个或多个组件以调节排气排放(例如排气42的浓度水平)和/或当量比。受控组件可以包括参照附图示出和描述的任何组件,其包括但不限于:沿着氧化剂68、燃料70和排气66的供应路径的阀门;EG处理系统54中的氧化剂压缩机、燃料泵或其任何组件;SEGR燃气涡轮系统52的任何组件或其任何组合。受控组件可以调节(例如增加、减少或保持)在SEGR燃气涡轮系统52内燃烧的氧化剂68、燃料70和排气66的流量、温度、压力或百分比(例如当量比)。受控组件还可以包括一个或多个气体处置系统,例如催化剂单元(例如氧化催化剂单元)、用于催化剂单元的供应源(例如氧化燃料、热量、电力等)、气体净化和/或分离单元(例如基于溶剂的分离器、吸收器、闪蒸罐等)以及过滤单元。气体处置系统可以帮助减少沿着排气再循环路径110、排气孔路径(例如排放到大气中)或至EG供应系统78的抽取路径的各种排气排放。
在某些实施例中,控制系统100可以分析反馈130并控制一个或多个组件以保持或减少排放水平(例如,排气42、60、95的浓度水平)至目标范围,例如每百万份体积(ppmv)小于大约10、20、30、40、50、100、200、300、400、500、1000、2000、3000、4000、5000或10000份。针对每种排气排放例如氮氧化物、一氧化碳、硫氧化物、氢气、氧气、未燃烧烃类和其他不完全燃烧产物的浓度水平,这些目标范围可以是相同或不同的。例如,根据当量比,控制系统100可以将氧化剂(例如氧气)的排气排放(例如浓度水平)选择性地控制在小于大约10、20、30、40、50、60、70、80、90、100、250、500、750或1000ppmv的目标范围内;将一氧化碳(CO)的排气排放选择性地控制在小于大约20、50、100、200、500、1000、2500或5000ppmv的目标范围内;并且将氮氧化物(NOx)的排气排放选择性地控制在小于大约50、100、200、300、400或500ppmv的目标范围内。在以大致化学计量当量比操作的某些实施例中,控制系统100可以将氧化剂(例如氧气)的排气排放(例如浓度水平)选择性地控制在小于大约10、20、30、40、50、60、70、80、90或100ppmv的目标范围内;并且将一氧化碳(CO)的排气排放选择性地控制在小于大约500、1000、2000、3000、4000或5000ppmv的目标范围内。在以稀燃料当量比(例如在大约0.95到1.0之间)操作的某些实施例中,控制系统100可以将氧化剂(例如氧气)的排气排放(例如浓度水平)选择性地控制在小于大约500、600、700、800、900、1000、1100、1200、1300、1400或1500ppmv的目标范围内;将一氧化碳(CO)的排气排放选择性地控制在小于大约10、20、30、40、50、60、70、80、90、100、150或200ppmv的目标范围内;并且将氮氧化物(例如NOx)的排气排放选择性地控制在小于大约50、100、150、200、250、300、350或400ppmv的目标范围内。前述目标范围仅仅是示例,并不旨在限制所公开实施例的范围。
控制系统100还可以被耦连到本地接口132和远程接口134。例如,本地接口132可以包括现场安置在基于涡轮的服务系统14和/或烃类生产系统12处的计算机工作站。相反,远程接口134可以包括相对于基于涡轮的服务系统14和烃类生产系统12非现场安置的计算机工作站,例如通过互联网连接的计算机工作站。这些接口132和134例如通过传感器反馈130的一个或多个图形显示、操作参数等等来促进基于涡轮的服务系统14的监测和控制。
再者,如上所述,控制器118包括各种控件124、126和128,以促进基于涡轮的服务系统14的控制。蒸汽涡轮控件124可以接收传感器反馈130并输出有利于蒸汽涡轮104操作的控制命令。例如,蒸汽涡轮控件124可以从HRSG 56、机器106,沿着蒸汽62的路径的温度和压力传感器、沿着水108的路径的温度和压力传感器以及指示机械功72和电力74的各种传感器接收传感器反馈130。同样,SEGR燃气涡轮系统控件126可以从沿着SEGR燃气涡轮系统52、机器106、EG处理系统54或其任何组合安置的一个或多个传感器接收传感器反馈130。例如,传感器反馈130可以从安置在SEGR燃气涡轮系统52内部或外部的温度传感器、压力传感器、间隙传感器、振动传感器、火焰传感器、燃料成分传感器、排气成分传感器或其任何组合获得。最终,机器控件128可以从与机械功72和电力74关联的各种传感器以及安置在机器106内的传感器接收传感器反馈130。这些控件124、126和128中的每个控件使用传感器反馈130来改善基于涡轮的服务系统14的操作。
在图示的实施例中,SEGR燃气涡轮系统控件126可以执行指令以控制在EG处理系统54、EG供应系统78、烃类生产系统12和/或其他系统84中的排气42、60、95的数量和质量。例如,SEGR燃气涡轮系统控件126可以将排气60中的氧化剂(例如氧气)和/或未燃烧燃料的水平保持为低于适合用于排气注入EOR系统112的阈值。在某些实施例中,氧化剂(例如氧气)和/或未燃烧燃料的阈值水平可以是小于排气42、60体积百分比的1%、2%、3%、4%或5%;或者氧化剂(例如氧气)和/或未燃烧燃料(和其他排气排放物)的阈值水平可以是小于排气42、60的每百万份体积(ppmv)的大约10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000或5000份。通过进一步实施例,为了实现氧化剂(例如氧气)和/或未燃烧燃料的这些低水平,SEGR燃气涡轮系统控件126可以将SEGR燃气涡轮系统52中的燃烧当量比保持在大约0.95与大约1.05之间。SEGR燃气涡轮系统控件126还可以控制EG抽取系统80和EG处置系统82以将排气42、60、95的温度、压力、流量和气体成分保持在适合用于排气注入EOR系统112、管线86、储罐88和碳封存系统90的范围内。如上面所讨论,EG处置系统82可以被控制以将排气42净化和/或分离成一种或多种气体流95,例如富CO2稀N2流96、中等浓度CO2、N2流97以及稀CO2富N2流98。除了控制排气42、60和95以外,控件124、126和128还可以执行一个或多个指令以将机械功72保持在合适的功率范围内,或将电力74保持在合适的频率和功率范围内。
图3是系统10的实施例的示意图,其进一步示出用于烃类生产系统12和/或其他系统84的SEGR燃气涡轮系统52的细节。在图示的实施例中,SEGR燃气涡轮系统52包括耦连到EG处理系统54的燃气涡轮发动机150。图示的燃气涡轮发动机150包括压缩机部152、燃烧器部154以及膨胀器部或涡轮部156。压缩机部152包括一个或多个排气压缩机或压缩机级158,例如以串联布置安置的1到20级可转动压缩机叶片。同样,燃烧器部154包括一个或多个燃烧器160,例如围绕SEGR燃气涡轮系统52的可转动轴线162圆周分布的1到20个燃烧器160。而且,每个燃烧器160可以包括一个或多个燃料喷嘴164,其被配置为注入排气66、氧化剂68和/或燃料70。例如,每个燃烧器160的盖端部166可以容纳1、2、3、4、5、6个或更多燃料喷嘴164,其可以将排气66、氧化剂68和/或燃料70的流或混合物注入到燃烧器160的燃烧部168(例如燃烧室)中。
燃料喷嘴164可以包括预混燃料喷嘴164(例如,其被配置为预混合氧化剂68和燃料70以便生成氧化剂/燃料预混火焰)和/或扩散燃料喷嘴164(例如,其被配置为注入氧化剂68和燃料70的分离流以便生成氧化剂/燃料扩散火焰)的任何组合。预混燃料喷嘴164的实施例可以包括在氧化剂68和燃料70注入到燃烧器168中并在其中燃烧之前在内部混合喷嘴164内的氧化剂68和燃料70的旋流叶片、混合室或其他部件。预混燃料喷嘴164还可以接收至少某些部分混合的氧化剂68和燃料70。在某些实施例中,每个扩散燃料喷嘴164可以隔离氧化剂68与燃料70的流动直到注入点,同时也隔离一种或多种稀释剂(例如排气66、蒸汽、氮气或其他惰性气体)的流动直到注入点。在其他实施例中,每个扩散燃料喷嘴164可以隔离氧化剂68与燃料70的流动直到注入点,同时在注入点之前部分混合一种或多种稀释剂(例如排气66、蒸汽、氮气或其他惰性气体)与氧化剂68和/或燃料70。此外,一种或多种稀释剂(例如排气66、蒸汽、氮气或其他惰性气体)可以在燃烧区处或燃烧区下游被注入燃烧器中(例如注入到燃烧的热产物中),从而帮助减少燃烧的热产物的温度并且减少NOx(例如NO和NO2)的排放。不管燃料喷嘴164的类型如何,SEGR燃气涡轮系统52都可以被控制以提供氧化剂68和燃料70的大致化学计量燃烧。
在使用扩散燃料喷嘴164的扩散燃烧实施例中,燃料70和氧化剂68通常不在扩散火焰的上游混合,而是燃料70和氧化剂68直接在火焰表面混合和反应,和/或火焰表面存在于燃料70与氧化剂68之间的混合位置处。特别地,燃料70和氧化剂68分离地靠近火焰表面(或扩散边界/界面),然后沿着火焰表面(或扩散边界/界面)扩散(例如经由分子扩散和粘性扩散)以生成扩散火焰。值得注意的是,燃料70和氧化剂68沿着该火焰表面(或扩散边界/界面)可以处于大致化学计量比,这可以导致沿着这个火焰表面的更大的火焰温度(例如峰值火焰温度)。与稀燃料或富燃料的燃料/氧化剂比相比,该化学计量燃料/氧化剂比通常产生更大的火焰温度(例如峰值火焰温度)。结果,扩散火焰基本上可以比预混火焰更稳定,这是因为燃料70和氧化剂68的扩散有助于保持沿着火焰表面的化学计量比(以及更大的温度)。虽然更大的火焰温度也可以导致更大的排气排放例如NOx排放,但所公开的实施例使用一种或多种稀释剂来帮助控制温度和排放,同时仍然避免燃料70和氧化剂68的任何预混合。例如,所公开的实施例可以引入(例如在燃烧点之后和/或扩散火焰的下游)与燃料70和氧化剂68分开的一种或多种稀释剂,从而帮助降低温度和减少由扩散火焰产生的排放(例如NOx排放)。
如图所示,在操作中,压缩机部152接收并压缩来自EG处理系统54的排气66,并且将压缩后的排气170输出到燃烧器部154中的每个燃烧器160。在燃料60、氧化剂68和排气170在每个燃烧器160内燃烧时,附加排气或燃烧产物172(即燃烧气体)被输送到涡轮部156。类似于压缩机部152,涡轮部156包括一个或多个涡轮或涡轮级174,其可以包括一系列可转动涡轮叶片。然后这些涡轮叶片由在燃烧器部154中生成的燃烧产物172驱动,由此驱动耦连到机器106的轴176的转动。再者,机器106可以包括耦连到SEGR燃气涡轮系统52的任一端的各种设备,例如耦连到涡轮部156的机器106、178和/或耦连到压缩机部152的机器106、180。在某些实施例中,机器106、178、180可以包括一个或多个发电机、用于氧化剂68的氧化剂压缩机、用于燃料70的燃料泵、齿轮箱或耦连到SEGR燃气涡轮系统52的附加驱动器(例如蒸汽涡轮104、电动机等)。非限制性示例在下面参照表格1进一步详细讨论。如图所示,涡轮部156输出排气60以沿着从涡轮部156的排气出口182到进入压缩机部152的排气入口184的排气再循环路径110再循环。如上面所详细讨论的,沿着排气再循环路径110,排气60穿过EG处理系统54(例如HRSG 56和/或EGR系统58)。
再者,燃烧器部154中的每个燃烧器160接收、混合并且以化学计量燃烧所压缩的排气170、氧化剂68和燃料70,以产生驱动涡轮部156的附加排气或燃烧产物172。在某些实施例中,氧化剂68被氧化剂压缩系统186例如具有一个或多个氧化剂压缩机(MOC)的主氧化剂压缩(MOC)系统(例如,主空气压缩(MAC)系统)压缩。氧化剂压缩系统186包括耦连到驱动器190的氧化剂压缩机188。例如,驱动器190可以包括电动机、燃烧发动机或其任何组合。在某些实施例中,驱动器190可以是涡轮发动机,例如燃气涡轮发动机150。因此,氧化剂压缩系统186可以是机器106的整体部分。换句话说,压缩机188可以被由燃气涡轮发动机150的轴176供应的机械功72直接或间接驱动。在这类实施例中,驱动器190可以被排除在外,这是因为压缩机188依赖来自涡轮发动机150的动力输出。然而,在采用不止一个氧化剂压缩机的某些实施例中,第一氧化剂压缩机(例如低压(LP)氧化剂压缩机)可以由驱动器190驱动,而轴176驱动第二氧化剂压缩机(例如高压(HP)氧化剂压缩机),或反之亦然。例如,在另一个实施例中,HP MOC由驱动器190驱动,并且LP氧化剂压缩机由轴176驱动。在图示的实施例中,氧化剂压缩系统186与机器106是分开的。在这些实施例中的每个实施例中,压缩系统186压缩氧化剂68并将氧化剂68供应给燃料喷嘴164和燃烧器160。因此,机器106、178、180中的某些或全部可以被配置为增加压缩系统186(例如压缩机188和/或附加压缩机)的操作效率。
由元件编号106A、106B、106C、106D、106E和106F所指示的机器106的各个组件可以沿着轴176的线和/或平行于轴176的线以一个或多个串联布置、并联布置或串联与并联布置的任何组合安置。例如,机器106、178、180(例如106A至106F)可以包括下列设备以任何次序的任何串联和/或并联布置:一个或多个齿轮箱(例如平行轴、行星齿轮箱)、一个或多个压缩机(例如氧化剂压缩机、增压压缩机如EG增压压缩机)、一个或多个发电单元(例如发电机)、一个或多个驱动器(例如蒸汽涡轮发动机、电机)、热交换单元(例如直接或间接热交换器)、离合器(clutch)或其任何组合。所述压缩机可以包括轴向压缩机、径向或离心压缩机或其任何组合,每种压缩机具有一个或多个压缩级。关于热交换器,直接热交换器可以包括喷淋冷却器(例如喷淋中间冷却器),其将液体喷淋物注入到气流(例如氧化剂流)中以便直接冷却气流。间接热交换器可以包括将第一流与第二流分开的至少一个壁(例如管壳式热交换器),例如与冷却剂流(例如水、空气、制冷剂或任何其他液态或气态冷却剂)分开的流体流(例如氧化剂流),其中冷却剂流在与流体流没有任何直接接触的情况下传递来自流体流的热量。间接热交换器的示例包括中间冷却器热交换器和热回收单元,例如热回收蒸汽发生器。热交换器还可以包括加热器。如下面进一步详细讨论的,这些机器组件中的每个组件可以被用在如表格1中阐述的非限制性示例所指示的各种组合中。
通常,机器106、178、180可以被配置为通过例如调节系统186中的一个或多个氧化剂压缩机的操作速度、通过冷却以促进氧化剂68的压缩和/或抽取过剩电力,来增加压缩系统186的效率。所公开的实施例旨在包括在机器106、178、180中以串联和并联布置的前述组件的任何和全部排列组合,其中所述组件中的一个、多于一个、全部组件或没有任何组件从轴176获得动力。如下面所示,表格1示出靠近压缩机和涡轮部152、156安置的和/或耦连到压缩机和涡轮部152、156的机器106、178、180的布置的某些非限制性示例。
表格1
如上面表格1所示,冷却单元被表示为CLR,联轴器被表示为CLU,驱动器被表示为DRV,齿轮箱被表示为GBX,发电机被表示为GEN,加热单元被表示为HTR,主氧化剂压缩机单元被表示为MOC并且其低压和高压变体被分别表示为LP MOC和HP MOC,以及蒸汽发生器单元被表示为STGN。虽然表格1示出了依次朝向压缩机部152或涡轮部156的机器106、178、180,但表格1也旨在覆盖机器106、178、180的相反次序。在表格1中,包括两个或更多个组件的任何单元旨在覆盖所述组件的并联布置。表格1并不希望排除机器106、178、180的任何未示出的排列组合。机器106、178、180的这些组件可以使得能够对发送到燃气涡轮发动机150的氧化剂68的温度、压力和流量进行反馈控制。如下面所进一步详细讨论的,氧化剂68和燃料70可以在特别选定的位置处被供应给燃气涡轮发动机150以促进隔离和抽取压缩排气170,而没有使排气170的质量降低的任何氧化剂68或燃料70。
如图3所示,EG供应系统78被安置在燃气涡轮发动机150与目标系统(例如烃类生产系统12和其他系统84)之间。特别地,EG供应系统78(例如EG抽取系统(EGES)80)可以在沿着压缩机部152、燃烧器部154和/或涡轮部156的一个或多个抽取点76处被耦连到燃气涡轮发动机150。例如,抽取点76可以被定位在相邻压缩机级之间,例如在压缩机级之间的2、3、4、5、6、7、8、9或10个级间抽取点76。这些级间抽取点76中的每个抽取点提供被抽取排气42的不同温度和压力。类似地,抽取点76可以被定位在相邻涡轮级之间,例如在涡轮级之间的2、3、4、5、6、7、8、9或10个级间抽取点76。这些级间抽取点76中的每个抽取点提供被抽取排气42的不同温度和压力。通过进一步的示例,抽取点76可以被定位在整个燃烧器部154的多个位置处,其可以提供不同温度、压力、流量和气体成分。这些抽取点76中的每个抽取点可以包括EG抽取导管、一个或多个阀门、传感器以及控件,其可以被用于选择性地控制所抽取的排气42到EG供应系统78的流动。
通过EG供应系统78分配的被抽取排气42具有适用于目标系统(例如烃类生产系统12和其他系统84)的受控成分。例如,在这些抽取点76中的每个抽取点处,排气170可以与氧化剂68和燃料70的注入点(或流动)充分隔离。换句话说,EG供应系统78可以被特别设计为在没有任何添加的氧化剂68或燃料70的情况下从排气涡轮发动机150抽取排气170。此外,鉴于在每个燃烧器160中的化学计量燃烧,所抽取的排气42可以是基本没有氧气和燃料的。EG供应系统78可以将所抽取的排气42直接或间接输送到烃类生产系统12和/或其他系统84以用于各种处理,例如强化油回收、碳封存、存储或运输到非现场位置。然而,在某些实施例中,EG供应系统78包括在供目标系统使用之前用于进一步处置排气42的EG处置系统(EGTS)82。例如,EG处置系统82可以将排气42净化和/或分离为一种或多种流95,例如富CO2稀N2流96、中等浓度CO2、N2流97以及稀CO2富N2流98。这些经处置的排气流95可以被独立地或以任何组合方式用于烃类生产系统12和其他系统84(例如管线86、储罐88和碳封存系统90)。
类似于在EG供应系统78中执行的排气处置,EG处理系统54可以包括多个排气(EG)处置组件192,例如由元件编号194、196、198、200、202、204、206、208和210所指示的那些组件。这些EG处置组件192(例如194至210)可以沿着排气再循环路径110以一个或多个串联布置、并联布置或串联与并联布置的任何组合安置。例如,EG处置组件192(例如194至210)可以包括下列组件以任何次序的任何串联和/或并联布置:一个或多个热交换器(例如热回收单元例如热回收蒸汽发生器、冷凝器、冷却器或加热器)、催化剂系统(例如氧化催化剂系统)、微粒和/或水去除系统(例如惯性分离器、聚结过滤器、不透水过滤器以及其他过滤器)、化学注入系统、基于溶剂的处置系统(例如吸收剂、闪蒸罐等)、碳收集系统、气体分离系统、气体净化系统和/或基于溶剂的处置系统或其任何组合。在某些实施例中,催化剂系统可以包括氧化催化剂、一氧化碳还原催化剂、氮氧化物还原催化剂、氧化铝、氧化锆、硅氧化物、钛氧化物、氧化铂、氧化钯、氧化钴或混合金属氧化物或其组合。所公开的实施例旨在包括前述组件192以串联和并联布置的任何和全部排列组合。如下面所示,表格2描述了沿着排气再循环路径110的组件192的布置的某些非限制示例。
表格2
如上面表格2所示,催化剂单元被表示为CU,氧化催化剂单元被表示为OCU,增压鼓风机被表示为BB,热交换器被表示为HX,热回收单元被表示为HRU,热回收蒸汽发生器被表示为HRSG,冷凝器被表示为COND,蒸汽涡轮被表示为ST,微粒去除单元被表示为PRU,湿气去除单元被表示为MRU,过滤器被表示为FIL,凝聚过滤器被表示为CFIL,不透水过滤器被表示为WFIL,惯性分离器被表示为INER,以及稀释剂供应系统(例如蒸汽、氮气或其他惰性气体)被表示为DIL。虽然表格2示出按顺序从涡轮部156的排气出口182朝向压缩机部152的排气入口184的组件192,但表格2也旨在覆盖所示出组件192的相反顺序。在表格2中,包括两个或更多个组件的任何单元旨在覆盖具有所述组件的集成单元、所述组件的并联布置或其任何组合。此外,在表格2的背景下,HRU、HRSG和COND是HE的示例;HRSG是HRU的示例;COND、WFIL和CFIL是WRU的示例;INER、FIL、WFIL和CFIL是PRU的示例;以及WFIL和CFIL是FIL的示例。再者,表格2并不希望排除组件192的任何未示出的排列组合。在某些实施例中,所示出的组件192(例如194至210)可以被部分或完全集成在HRSG 56、EGR系统58或其任何组合内。这些EG处置组件192可以使得能够对温度、压力、流量和气体成分进行反馈控制,同时也从排气60中去除湿气和微粒。此外,经处置的排气60可以在一个或多个抽取点76处被抽取以便在EG供应系统78中使用和/或被再循环到压缩机部152的排气入口184。
当经处置的再循环排气66穿过压缩机部152时,SEGR燃气涡轮系统52可以沿着一个或多个管线212(例如排泄导管或旁通导管)排泄一部分压缩排气。每个管线212可以将排气输送到一个或多个热交换器214(例如冷却单元),从而冷却排气以便将其再循环回到SEGR燃气涡轮系统52中。例如,在穿过热交换器214后,一部分被冷却的排气可以沿着管线212被输送到涡轮部156,用于冷却和/或密封涡轮壳体、涡轮外罩、轴承和其他组件。在这类实施例中,SEGR燃气涡轮系统52不输送任何氧化剂68(或其他潜在的污染物)通过涡轮部156以用于冷却和/或密封目的,因此,冷却排气的任何泄漏将不会污染流过并驱动涡轮部156的涡轮级的热燃烧产物(例如工作排气)。通过进一步的示例,在穿过热交换器214之后,一部分冷却排气可以沿着管线216(例如返回导管)被输送到压缩机部152的上游压缩机级,从而提高压缩机部152的压缩效率。在这类实施例中,热交换器214可以被配置为压缩机部152的级间冷却单元。以此方式,冷却排气帮助增加SEGR燃气涡轮系统52的操作效率,同时帮助保持排气的纯度(例如基本没有氧化剂和燃料)。
图4是在图1-3中示出的系统10的操作过程220的实施例的流程图。在某些实施例中,过程220可以是计算机实施的过程,其存取存储在存储器122上的一个或多个指令,并且在图2中示出的控制器118的处理器120上执行所述指令。例如,过程220中的每个步骤可以包括通过参照图2所描述的控制系统100的控制器118可执行的指令。
过程220可以开始于启动图1-3的SEGR燃气涡轮系统52的起动模式,如块222所指示。例如,所述起动模式可以包括SEGR燃气涡轮系统52的逐步倾斜上升,以保持热梯度、振动和间隙(例如在旋转部件与静止部件之间)在可接受的阈值内。例如,在起动模式222期间,过程220可以开始供应经压缩的氧化剂68到燃烧器部154的燃烧器160和燃料喷嘴164,如块224所指示。在某些实施例中,经压缩的氧化剂可以包括压缩空气、氧气、富氧空气、减氧空气、氧气-氮气混合物或其任何组合。例如,氧化剂68可以被图3中示出的氧化剂压缩系统186压缩。在起动模式222期间,过程220也可以开始向燃烧器160和燃料喷嘴164供应燃料,如块226所指示。在起动模式222期间,过程220也可以开始供应排气(如果可用)到燃烧器160和燃料喷嘴164,如块228所指示。例如,燃料喷嘴164可以产生一种或多种扩散火焰、预混火焰或扩散火焰与预混火焰的组合。在起动模式222期间,由燃气涡轮发动机156生成的排气60在数量和/或质量上可能是不足或不稳定的。因此,在起动模式期间,过程220可以从一个或多个存储单元(例如储罐88)、管线86、其他SEGR燃气涡轮系统52或其他排气源供应排气66。
然后,过程220可以通过一个或多个扩散火焰、预混火焰或扩散火焰与预混火焰的组合如方框230指示地在燃烧器160中燃烧经压缩的氧化剂、燃料和排气的混合物以产生热燃烧气体172。特别地,过程220可以由图2的控制系统100来控制,以促进燃烧器部154的燃烧器160中的混合物的化学计量燃烧(例如化学计量扩散燃烧、预混燃烧或两者全部)。然而,在起动模式222期间,可能特别难以保持混合物的化学计量燃烧(因此,热燃烧气体172中可能存在低水平的氧化剂和未燃烧燃料)。结果,在起动模式222期间,热燃烧气体172可能比在如下面所进一步详细讨论的稳定状态模式期间具有更大量的残留氧化剂68和/或燃料70。由于这个原因,过程220可以在起动模式期间执行一个或多个控制指令以减少或消除热燃烧气体172中的残留氧化剂68和/或燃料70。
然后,过程220用热燃烧气体172驱动涡轮部156,如块232所指示。例如,热燃烧气体172可以驱动被安置在涡轮部156内的一个或多个涡轮级174。在涡轮部156的下游,过程220可以处置来自最终涡轮级174的排气60,如块234所指示。例如,排气处置234可以包括过滤、任何残留氧化剂68和/或燃料70的催化剂反应、化学处理、用HRSG 56进行热回收等。过程220还可以将至少一些排气60再循环回到SEGR燃气涡轮系统52的压缩机部152,如块236所指示。例如,排气再循环236可以包括穿过具有EG处理系统54的排气再循环路径110,如图1-3所示。
进而,再循环排气66可以在压缩机部152中被压缩,如块238所指示。例如,SEGR燃气涡轮系统52可以在压缩机部152的一个或多个压缩机级158中相继压缩再循环排气66。结果,经压缩的排气170可以被供应给燃烧器160和燃料喷嘴164,如块228所指示。然后可以重复步骤230、232、234、236和238,直到过程220最终过渡到稳态模式,如块240所指示。在过渡240后,过程220可以继续执行步骤224至238,但是也可以开始经由EG供应系统78抽取排气42,如块242所指示。例如,可以从沿着压缩机部152、燃烧器部154和涡轮部156的一个或多个抽取点76抽取排气42,如图3所示。进而,过程220可以从EG供应系统78向烃类生产系统12供应所抽取的排气42,如块244所指示。然后,烃类生产系统12可以将排气42注入到大地32中以用于强化油回收,如块246所指示。例如,所抽取的排气42可以被如图1-3所示的EOR系统18的排气注入EOR系统112使用。
在SEGR燃气涡轮系统52的一些实施例中,排气42被再循环并被用于冷却燃气涡轮发动机150的燃烧器部154。图5是燃烧器部154的示意图,其包括图6-9中详细示出的各种特征。图5中与在之前附图中所示元件相同的元件被标以相同的参考数字。燃烧器160的轴向方向由箭头294指示,径向方向由箭头296指示,并且周向方向由箭头298指示。如图5所示,氧化剂压缩系统186产生可以被提供到燃烧器160的盖端部分302处各个位置的压缩氧化剂300。燃料70被提供到涡轮燃烧器160的盖端部分302中的一个或多个燃料喷嘴164。如上所述,氧化剂300和燃料70可以在被注入燃烧器160之前经由一个或多个预混燃料喷嘴混合,可以经由一个或多个扩散火焰喷嘴在燃烧室160内混合或它们的任意组合。因此,燃料喷嘴164可以是扩散喷嘴、预混燃料喷嘴或它们的任意组合。压缩的氧化剂300可包括空气、氧气、富氧空气、氧气减少空气或氧氮混合物。在一些实施例中,压缩的氧化剂300可具有小于大约10%、5%、或1%体积百分比的排气42的浓度。如上所讨论的,SEGR燃气涡轮系统52可以通过压缩机部152和至少一部分燃烧器部154(例如,一个或多个燃烧器160)再循环一部分排气42(例如,压缩的排气170)。在下面所讨论的一些实施例中,排气42和/或相对惰性气体304不会通过燃烧器160的盖端部分302再循环。来自压缩机部152的压缩排气170和/或相对惰性气体304可以被供应到燃烧器160的涡轮端部分310,而不是供应到盖端部分302,从而有助于保持氧化剂300和惰性气体304之间的隔离。在一些实施例中,惰性气体304可具有小于大约10%、5%、或1%体积百分比的氧化剂300(例如,氧气(O2))。一种或多种燃料70可以被供应到燃料喷嘴164。例如,燃料70可以包括但不限于气体燃料(例如,天然气、工艺气体、甲烷、氢气、一氧化碳),液体燃料(例如,轻馏分、煤油、加热油),或它们的任意组合。
所述压缩机部152供应惰性气体304(例如,氮气、二氧化碳、一氧化碳、压缩的排气170)到压缩机排放壳体305,其封闭燃烧器部154的燃烧器160的至少一部分(例如,燃烧室168)。相对于氧化剂300,惰性气体304可以是充分惰性的(例如,不起反应的)。燃烧室168被盖端部分302的燃烧器帽306和沿燃烧器160轴线294的燃烧器衬套308(例如,内壁)部分地封闭。燃烧器衬套308围绕燃烧室168在周向方向298上延伸。燃烧器160的涡轮端部分310将来自下游方向312的氧化剂300和燃料70燃烧后的燃烧气体172导向到涡轮部156。在一些实施例中,离开燃烧器160的燃烧气体172可以基本上不含氧化剂300和燃料70,且浓度小于氧化剂300和燃料70的体积百分比约10%、5%、3%、2%或1%。流量套筒314(例如,中间壁)形成围绕燃烧器衬套308的通道316,其使流体(例如,惰性气体304例如排气170)能够沿燃烧器168外侧流动。通道316围绕燃烧器衬套308在周向方向298上延伸,并且流量套筒314围绕通道316在周向方向298上延伸。在一些实施例中,惰性气体304作为燃烧室168的主要冷却介质和/或燃烧气体172的散热器。
通道316可以通向盖端部分302和排放壳体305。在一些实施例中,压缩氧化剂300的一部分沿着从盖端部分302朝涡轮部156的相对于燃烧气体172的下游方向312进入通道316的氧化剂部318。惰性气体304(例如排气170)在相对于燃烧气体172的上游方向322中从燃烧器160的涡轮端部分310进入通道316的冷却部320。障碍部324将氧化剂部318与冷却部320分离。如下面详细地讨论,障碍部324可以包括至少部分地阻碍氧化剂300和惰性气体304在通道316内相互作用的物理障碍物,和/或障碍部324可以包括动态障碍物。相对的流动(例如,沿下游方向312的氧化剂300,沿上游方向322的惰性气体304)在充分阻碍任一流动流到另一部(例如,氧化剂部318,冷却部320)的动态障碍物处相互作用。
在一些实施例中,抽取套筒326围绕至少部分流量套筒314和燃烧器部154周向298地延伸。抽取套筒326与流量套筒314流体连通,由此使流量套筒314中的一些惰性气体304(例如,压缩的排气170)能够被抽取到排放抽取系统80。惰性气体304可以被排入抽取套筒326,以控制通道316内的惰性气体304的流量。如下面在一些实施例所描述的,压缩的排气170可以通过SEGR涡轮系统52被再循环并且可以被流体注入系统36利用以用于强化油回收。
图6示出在通道316内具有被动态障碍物340分开的氧化剂300和惰性气体304的燃烧器160的实施例的示意图。氧化剂300和燃料70被供应到盖端部分302和燃料喷嘴164。控制器342控制燃料70和氧化剂300到盖端部分302的供应。控制器342可以控制燃料喷嘴164以调节燃烧室168内的氧化剂300和燃料70的混合与分布。氧化剂300的部分344可以沿燃烧衬套308被供应到通道316。混合孔346可以引导氧化剂部分344进入到燃烧室168内以混合(例如,均匀地混合)来自燃料喷嘴164的氧化剂300和燃料70,以稳定来自一个或多个燃料喷嘴164的火焰348(例如,扩散火焰和/或预混火焰),和/或形成燃烧室168内的火焰348。控制器342可以调节通过燃烧器帽306注入的氧化剂/燃料混合,并且控制器342可以调节通过混合孔346或通道316供应的氧化剂部分344,以控制燃烧室168内的反应当量比。在一些实施例中,燃烧器衬套308可以具有靠近盖端部分302的一行或多行混合孔346。例如,燃烧器衬套308可以具有大约1至1000、1至500、1至100、1至10或任意其他数量行的围绕燃烧器衬套308的混合孔346,其中每个行可以包括大约1至1000或更多的孔346。在一些实施例中,混合孔346可以绕着燃烧器衬套308被对称地间隔开。在一些实施例中,混合孔346的位置、形状和/或大小可以至少部分基于与燃烧室帽306的间隔而不同。混合孔346的形状可以包括但不限于圆形、狭槽或V形,或者任何它们的组合。
惰性气体304从压缩机排放壳体305通过入口350进入流量套筒314。惰性气体304通过一个或多个冷却过程冷却燃烧器衬套308。例如,流经入口350的惰性气体304可以通过对衬套308冲击冷却来冷却与入口350相对的燃烧器衬套308。流经通道316的冷却部320的惰性气体304可以通过沿外表面352对流冷却和/或薄膜冷却来冷却衬套308。惰性气体304可以通过流经燃烧器衬套308内的混合孔346和/或稀释孔356来冷却内表面354。在一些实施例中,燃烧器衬套308可以在混合孔346的下游(例如,箭头312)具有一行或多行稀释孔356。例如,燃烧器衬套308可以具有大约1至1000、1至500、1至100、1至10或任意其他数量行的围绕燃烧器衬套308的稀释孔356。在一些实施例中,稀释孔356围绕燃烧器衬套308被对称地间隔开。如上面关于混合孔346所讨论的,稀释孔356可以包括至少部分基于与燃烧室帽306的间隔的各种位置、形状和/或大小。
在一些实施例中,混合孔346引导惰性气体304(例如,排气170)进入燃烧室168以与来自燃料喷嘴164的氧化剂300和燃料70混合,以稳定火焰348,以熄灭火焰348和减少排放(例如,NOX排放),和/或形成燃烧室168内的火焰348。在一些实施例中,混合氧化剂300和燃料70可以有助于使当量比大约为1.0。混合孔346延伸穿过沿火焰区域358的燃烧器衬套308。火焰区域358至少部分地环绕燃烧室168内的火焰348。因此,混合孔346可以将流体(例如,氧化剂300、惰性气体304)引导向火焰348,以影响燃烧的当量比。通过混合孔346的所述流体(例如,氧化剂300,惰性气体304)的流量、速度和/或方向可以影响燃烧室168内火焰348的各种参数。例如,流体的流量和速度可以通过形成火焰348来影响氧化剂300和燃料70的混合。在一些实施例中,通过与下游方向成角度的混合孔346的流体流动可以沿燃烧器衬套308形成冷却薄膜(例如,薄膜冷却)。
稀释孔356延伸通过沿稀释区域360的燃烧器衬套308。稀释区360可以在火焰区域358和连接到涡轮端部分310的涡轮部156之间。稀释孔356可以引导惰性气体304(例如,排气170)进入燃烧室168,以冷却燃烧气体172和/或稀释涡轮端部310附近的反应物(例如,氧化剂300,燃料70)。通过稀释孔356的惰性气体304的流量、速度和/或方向可以影响燃烧气体172的各种参数。例如,增加惰性气体304的速度可以混合燃烧气体172以增加当量比和/或增加未反应的氧化剂300或燃料70的稀释。增加惰性气体304的流量可以进一步稀释和冷却燃烧气体172,其可以有助于降低例如NOX的排放。在一些实施例中,在火焰区域358内的燃烧气体172和火焰348大约在1800℃至2200℃之间。在涡轮端部分310的出口362处,惰性气体304将燃烧气体172冷却至低于大约1700℃。在一些实施例中,惰性气体304可以通过稀释区域360将燃烧气体172冷却大约100℃、250℃、500℃、750℃或1000℃或更多。在一些实施例中,稀释孔356在稀释区域360内是阶梯形的(staged),以实现期望的从燃烧气体172的热排出、期望的燃烧气体172的出口温度曲线,或者期望的惰性气体304分布,或者其任意组合。
惰性气体304(例如,排气170)进入通道316并且沿上游方向322向盖端部分302流动。在一些实施例中,控制器342可以控制沿着流量套筒344和/或抽取套筒326的一个或多个阀门364,以控制惰性气体304进入通道316的流量。可以被理解的,惰性气体304和氧化剂300可被增压到燃烧气体172的压力,从而惰性气体304和氧化剂300可以流入燃烧室168内。氧化剂部分344进入通道316,并且沿着下游方向312从盖端部分302朝着涡轮端部分310流动。在一些实施例中,氧化剂部分344和惰性气体304在通道316内的动态障碍物340处相互作用。动态障碍物340是相对的氧化剂部分344流和惰性气体304流的相互作用。在动态障碍物340处,向下游流动的氧化剂部分344基本上阻碍惰性气体304向上游流动超过动态障碍物340,并且向上游流动的惰性气体304基本上阻碍氧化剂部分344向下游流动超过动态障碍物340。动态障碍物340被定位在通道316的障碍部324内,将在通道316内的氧化剂部分344与惰性气体304分隔。因此,通道316的氧化剂部318供应基本上不含惰性气体304的氧化剂部分344,并且通道316的冷却部320供应基本上不含氧化剂部分344的惰性气体304。在燃烧器160的操作期间,动态障碍物340沿通道316的位置可以至少部分基于通道316内氧化剂部分344和惰性气体304的参数(例如,相对流量、压力、速度)可(例如动态地)调节。调节动态障碍物340的位置会影响氧化剂部318和冷却部320的相对长度。
动态障碍物340可以位于通道316内惰性气体304的压力约等于氧化剂部分344的压力处,或压力平衡点处。例如,如果通道316中的惰性气体304的压力约等于盖端部分302处氧化剂300的压力,那么动态障碍物340可以被定位在靠近盖端部分302的第一位置366。将动态障碍物340定位在盖端部分302附近可以减少通过混合孔346的氧化剂部分344的流动,并且增加通过混合孔346的惰性气体304的流动。在第一位置366处的动态障碍物340可以降低火焰区域358中氧化剂300的浓度。如果通道316中的氧化剂部分344的压力约等于压缩机排放壳体305中惰性气体304的压力,那么动态障碍物340可以被定位在靠近燃烧器160的涡轮端部分310的第二位置368处。将动态障碍物340定位在涡轮端部分310附近可以降低或消除通过混合孔346的惰性气体304的流动,并且增加通过混合孔346的氧化剂部分344的流动。在第二位置368处的动态障碍物340可以增加火焰区域358中的氧化剂300的浓度。压力平衡点和动态障碍物340在通道316内氧化剂部分344和惰性气体304之间的相应位置可以通过控制通道316内氧化剂部分344和惰性气体304的压力而被控制。动态障碍物340可以被定位在通道316内,以控制通过混合孔346和/或稀释孔356的流体的成分。例如,动态障碍物340可以相对于混合孔346被定位,以调节供应到燃烧室168的氧化剂部分344,由此影响燃烧的当量比。动态障碍物340可以被定位,以通过惰性气体304(例如,排气170)控制燃烧器衬套308和燃烧气体172的冷却。因此,动态障碍物340的位置可以控制通过燃烧器衬套308进入燃烧室168的流体的成分、氧化剂300和燃料70的混合、火焰348的形状、燃烧衬套308的温度、燃烧气体172的温度、燃烧气体172中的排放物(例如,NOx)或它们的任意组合。
该控制器342可以通过控制氧化剂部分344进入通道316的流动和通过控制通道316内惰性气体304(例如,排气170)的流动而控制动态障碍物340的位置。在一些实施例中,控制器342通过控制盖端部分302中的氧化剂部分344的压力,和/或通过控制供应到燃料喷嘴164的氧化剂300的流量来控制氧化剂部分344的流动。控制器342可以通过控制排气42进入压缩机排放壳体305的流动、通过控制压缩机排放壳体305内的压力和/或通过控制通过抽取套筒326的泄流370来控制惰性气体304进入通道316的流动。被连接至抽取套筒326的阀门364可以控制通过通道316的惰性气体304的流动。例如,打开阀门364可以增加泄流370并且减少通过冷却部320的惰性气体304的流动,由此朝涡轮端部分310移动动态障碍物340。关闭阀门364可以减少到排气抽取系统80的泄流370,并且可以增加通过冷却剂部分320进入燃烧室168的惰性气体304的流动。因此,关闭阀门364可以朝盖端部分302移动动态障碍物340。控制器342可以控制氧化剂部分344和惰性气体304,以调节通道316内动态障碍物340,同时保持盖端部分302基本上不含惰性气体304。控制器342可以调节通道内的动态障碍物340,同时保持在涡轮端部分310处的燃烧气体172基本上不含氧化剂300。如上所述,具有低浓度的燃烧气体172(例如,小于约10%、5%或1%体积百分比的氧化剂300)可以作为压缩的排气170被再循环通过燃烧器,和/或被燃料注入系统36利用以用于强化油回收。
图7示出在通道316内具有被通道316的障碍部324中的物理障碍物400或分隔物分开的氧化剂300和惰性气体304的燃烧器160的实施例的原理图。如上面图6所描述,氧化剂300可以进入盖端部分302并且惰性气体304可以进入通道316。物理障碍物400被布置在燃烧器衬套308和流量套筒314之间,至少部分地阻碍流体流通过通道316。在一些实施例中,物理障碍物400是与燃烧器衬套308和流量套筒314分开的组件。例如,物理障碍物400可以是围绕燃烧器衬套308的装配件(例如,环形物、部分环形物、环状壁)。物理障碍物400可以具有密封以接合燃烧器衬套308和流量套筒314,并且以至少部分阻碍氧化剂部分344和惰性气体304之间的流体连通。在一些实施例中,物理障碍物400被连接到燃烧器衬套308或流量套筒314,或者与燃烧器衬套308或流量套筒314一体形成。例如,物理障碍物400可以是围绕燃烧器衬套308或在流量套筒314内周向298设置的法兰。
在一些实施例中,物理障碍物400基本上阻碍障碍部324的整个通道,从而阻碍惰性气体304和氧化剂部分344在通道316内相互作用。如图中7所示,除了基本上阻碍通道316中氧化剂部分344和惰性气体304之间的全部流体连通的物理障碍物400之外,一个或多个部分物理障碍物402也可以被布置在通道316内。一个或多个部分物理障碍物402可以影响越过局部物理障碍物402通过混合孔346或稀释孔356进入燃烧室的流体(如,氧化剂部分344、惰性气体304)的压力、速度、和/或流量。例如,在氧化剂部318中混合孔346之间的部分物理障碍物402可以降低通过部分物理障碍物402下游(例如,箭头312)的混合孔346的氧化剂部分344的流量或压力。
在一些实施例中,部分物理障碍物402包括约束或限制横跨部分物理障碍物402的流体连通的通道或流动导向装置。部分物理障碍物402可以影响在部分物理障碍物402周围流动的氧化剂300或惰性气体304的速度和/或压力。因此,一个或多个部分物理障碍物402可以被利用以控制上面所讨论的动态障碍物340的位置。例如,在冷却部320中稀释孔356的上游(例如,箭头322)的部分物理障碍物402可以降低惰性气体304的压力,以便动态障碍物340临近混合孔346或在混合孔346之间被定位进而实现期望的当量比,而不是临近盖端部分302被定位。在一些实施例中,部分物理障碍物402还可以被用于控制氧化剂部分344和惰性气体304进入通道316的流动以形成动态障碍物340。
如以上所描述的,控制器342可以控制氧化剂300到盖端部分302的流动,并且可以控制惰性气体304(例如,排气170)进入通道316和抽取套筒326的流动。在一些实施例中,控制器342控制第一燃料404到第一组406的燃料喷嘴164的分布,并且控制第二燃料408到第二组410的燃料喷嘴164的分布。每一组406,410可以包括一个或多个燃料喷嘴164。例如,如图7中所示,第一组406可以包括中心燃料喷嘴,并且第二组410可以包括周边燃料喷嘴(例如,大约1至10个喷嘴)。在一些实施例中,第一组406可以是先导燃料喷嘴(pilot fuelnozzle),并且第一燃料404可以具有比由第二组410周边燃料喷嘴注入的第二燃料408更高的热值。如可以理解的,第一组406燃料喷嘴可在燃气涡轮发动机150的启动时使用,并且第一燃料404的流量可以在燃气涡轮发动机150的一段操作时期之后被降低。第一组406可以改进第二组410的火焰稳定性。在一些实施例中,通过围绕第一组406燃料喷嘴164的燃烧器帽306注入的氧化剂300可以保护和/或稳定第一组406的火焰348。从第一组406燃料喷嘴164注入的第一燃料404可以调节燃烧率,由此影响当量比。在一些实施例中,第二组410燃料喷嘴164提供第二燃料408,第二燃料408被主要用于燃气涡轮发动机150的稳态操作。
第一和第二燃料404、408可包括但不限于天然气、液化天然气(LNG)、合成气、一氧化碳、氢气、甲烷、乙烷、丙烷、丁烷、石脑油、煤油、柴油燃料、轻馏分、燃料油、乙醇、甲醇、生物燃料或它们的任意组合。在一些实施例中,第一和第二燃料404、408是相同的燃料,并且控制器342差异控制到第一组和第二组406、410燃料喷嘴的分配。可以理解的是,虽然上文描述了两种燃料404、408和两组406、410燃料喷嘴164,但是,燃烧器160的一些实施例可以具有1、2、3、4、5或更多组的燃料喷嘴164以将1、2、3、4、5或更多种燃料70注入燃烧室168。
在一些实施例中,第二组410燃料喷嘴164(例如,周边燃料喷嘴)可以提供超过注入燃烧器160的总燃料的大约70%、80%、90%或95%的燃料。控制器342可以控制第二组410燃料喷嘴164,以调节总燃烧器当量比,并且可以控制第一组406燃料喷嘴164(例如,中心燃料喷嘴)以微调当量比。例如,第一组406燃料喷嘴164可以提供小于注入燃烧器160的总燃料的大约30%、20%、10%或5%的燃料。通过第一组406燃料喷嘴164控制第一燃料404的流量,由此使控制器342能够使用相对小的调节量来调节(例如,微调)当量比。例如,在第一组406提供总燃料的大约20%并且第二组410提供总燃料的大约80%的情况下,通过以10%调节第一燃料404(例如,增加,减少)来以大约2%调节燃烧器160中的总燃料。
图8示出沿线8-8截取的图7的燃烧器160的实施例的截面图。在一些实施例中,燃料喷嘴164可以以圆形布置被布置,例如第二组410围绕第一组406周向298布置。可以理解的是,燃烧器160的截面不限于基本上圆形的,并且燃烧器衬套308、流量套筒314和抽取套筒326可以具有其它形状(例如,矩形,卵形)。部分物理障碍物402被布置在通道316内,燃烧器衬套308和流量套筒314之间。在一些实施例中,部分物理障碍物402的部分430在围绕通道316的点处与燃烧器衬套308和流量套筒314接合,并且具有能够实现部分物理障碍物402周围的约束的流体连通的开口432(例如,流动导向装置)。在一些实施例中,衬套开口438可以沿着燃烧器衬套308设置,套筒开口440可以沿着流量套筒314设置,或者内部开口442可以穿过在衬套308和流套314之间的部分物理障碍物40(例如,孔洞、狭槽等)设置。在一些实施例中,部分物理障碍物402可以与燃烧器衬套308或流量套筒314其中之一接合,允许流体(例如,氧化剂部分344、惰性气体304)沿燃烧器衬套308或流量套筒314的另一个绕过局部物理障碍物402。
图9示出沿线8-8截取的图7的燃烧器160的实施例,其中部分物理障碍物402具有另一几何形状。部分物理障碍物402从燃烧器衬套308或流量套筒314的凸出434部分地环绕燃烧器衬套308,由此部分地阻碍氧化剂部分344或惰性气体304在围绕燃烧器衬套308的一些点处的流动。开口432可以在围绕燃烧器衬套308的其他点处延伸横穿通道316,由此实现了氧化剂部分344或惰性气体304围绕部分物理障碍物402的基本不受约束的流动。在一些实施例中,一个或多个部分物理障碍物402的凸出434可以在围绕燃烧器160的轴线436的期望周向方向298上引导通道316中的流体。因此,一个或多个部分物理障碍物402可以将旋转分量(例如,漩涡)提供到通过通道316的氧化剂部分344或惰性气体304的流动。在一些实施例中,一个或多个部分物理障碍物402影响氧化剂部分344或惰性气体304的压力、速度和/或流量,其可以引起动态障碍物340沿通道316在期望的位置处形成。局部物理障碍物402的目前预期实施例可以包括其他几何形状的开口432和突出434,以至少部分地阻碍燃烧器衬套308和流量套筒314之间的通道316。
如上所述的SEGR燃气涡轮系统52和燃烧器160可以在盖端部分302处供应氧化剂300和燃料70到燃烧器160,并且在涡轮端部分310处供应惰性气体304(例如,压缩的排气170)到燃烧器160以用于冷却燃烧器衬套308和燃烧气体172。在一些实施例中,惰性气体304可以冷却燃烧气体172,以减少例如NOx的排放。在一些实施例中,燃烧器160可以具有差异供应和控制的多组燃料喷嘴164,其中氧化剂300和燃料404、408从盖端部分132沿下游方向312流动。在涡轮端部部分310处,惰性气体304(例如,压缩的排气170)被供应通过通道316以冷却燃烧衬套308和燃烧气体172。惰性气体304沿上游方向312流动通过通道316,上游方向312基本上是氧化剂部分342通过通道316的相反方向。氧化剂300和惰性气体304可以不在火焰348(例如,在盖端部分302中)的上游(例如,箭头322)混合。在一些实施例中,氧化剂300从燃料喷嘴164流动,流动通过燃烧器帽306,和/或流动通过混合孔346,以改进在火焰区域360中的氧化剂300的分布和/或浓度。进而,氧化剂300的改进分布有助于增加燃烧的效率,由此影响当量比。例如,氧化剂300流动的改进分布可以有助于提供基本上化学计量燃烧。惰性气体304可以作为燃烧器衬套308和/或燃烧气体172的散热器。降低燃烧气体172的温度可以减少例如NOx的排放。燃烧器衬套308和流套314之间的通道316可以在氧化剂部分344和惰性气体304之间具有一个或多个物理障碍物400和/或一个动态障碍物340。在各种实施例中,通道316内的一个或多个物理障碍物400和/或一个动态障碍物340的位置可以至少部分基于氧化剂部分300、惰性气体304、当量比和其他因素而被调节。
在燃烧器168内的火焰区域358的上游分开氧化剂300和惰性气体304(例如,压缩的排气170)可以增加火焰的稳定性和燃烧完全度。燃料喷嘴164也可以被控制以调节当量比。控制燃料喷嘴164和/或在燃烧器160内的期望点处隔离氧化剂300和惰性气体304可以影响当量比。调节当量比到大约1.0(例如,在0.95和1.05之间)可以降低SEGR燃气涡轮系统52的排气42中的氧化剂300、燃料70和/或其他组分(例如,氮氧化物、水)的浓度。在一些实施例中,调节当量比到大约1.0可以增加被用在强化油回收系统18中的二氧化碳的浓度。排气42或从排气42抽取的二氧化碳可以被流体注入系统36利用以用于强化油回收。
这篇书面说明书使用示例来公开本发明,包括最佳模式,并且还使本领域任何技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任何合并的方法。本发明的专利范围由权利要求书限定,并且可以包括本领域技术人员可想到的其他示例。如果这些其他示例具有不与权利要求的字面语言不同的结构元件,或者如果它们包括与权利要求的字面语言无实质区别的等同结构元件,则它们旨在处于权利要求的范围内。
附加实施例
本发明实施例提供用于控制具有排气再循环的燃气涡轮发动机内的燃烧和排放的系统和方法。需要指出,上述特征的任意一个或其组合可以被用于任何合适的组合中。事实上,目前这类组合的所有变换是可预想的。通过示例的方式,提供以下条款以作为本公开的进一步描述:
实施例1.一种系统,其具有涡轮燃烧器,所述涡轮燃烧器具有围绕燃烧室设置的燃烧器衬套和在所述燃烧室的相对于燃烧气体通过所述燃烧室的流动的下游方向的上游的盖端。所述盖端被配置为朝所述燃烧室引导氧化剂流和第一燃料流。涡轮燃烧器也包括围绕所述燃烧器衬套偏置设置以限定通道的流套,所述通道被配置为朝所述盖端引导气体流,并且配置为朝所述涡轮燃烧器的涡轮端引导所述氧化剂流的一部分。所述气体流包括基本上的惰性气体。所述涡轮燃烧器还包括所述通道内的障碍物,并且所述障碍物被配置为阻碍所述氧化剂流的一部分朝向所述涡轮端,并且被配置为阻碍所述通道内的气体流,朝向所述盖端。
实施例2.根据实施例1所述的系统,其中所述氧化剂流和所述第一燃料流被配置为在所述燃烧室内基本上化学计量燃烧。
实施例3.根据之前任一实施例所述的系统,其中所述盖端包括第一燃料喷嘴和第二燃料喷嘴,所述第一燃料喷嘴被配置为引导所述第一燃料流进入所述燃烧室,所述第二燃料喷嘴被配置为引导第二燃料流进入所述燃烧室,其中所述第一燃料喷嘴独立于所述第二燃料喷嘴被控制。
实施例4.根据之前任一实施例所述的系统,其中所述气体流包括具有低于所述氧化剂或所述第一燃料的大约5%体积百分比的排气。
实施例5.根据之前任一实施例所述的系统,其中所述障碍物包括物理障碍物,所述物理障碍物被配置为延伸横穿所述通道并且将所述通道分离为氧化剂部和冷却部。
实施例6.根据之前任一实施例所述的系统,其中所述障碍物包括动态障碍物,所述动态障碍物被配置为将通道分离为氧化剂部和冷却部。所述动态障碍物包括在所述氧化剂流的部分和所述气体流之间的流体接口,并且所述动态障碍物的位置至少部分基于所述氧化剂流的部分和所述气体流之间的压力差而被控制。
实施例7.根据实施例6所述的系统,其中所述障碍物包括多个流动导向装置,所述流动导向装置被配置为在所述动态障碍物处约束所述通道。
实施例8.根据之前任一实施例所述的系统,其中所述流量套筒被耦接至排泄通道,所述排泄通道被配置为引导所述气体流的一部分进入所述排泄通道。
实施例9.根据之前任一实施例所述的系统,其中所述气体流被配置为冷却所述燃烧器衬套,并且所述气体流被配置为稀释且冷却所述涡轮燃烧器中的所述燃烧气体流。
实施例10.根据之前任一实施例所述的系统,其中所述燃烧器衬套包括多个混合孔和多个稀释孔。所述多个混合孔被配置为引导所述氧化剂流和气体流的至少一种进入所述燃烧室。所述多个稀释孔被配置为引导所述气体流进入所述燃烧室。
实施例11.根据之前任一实施例所述的系统,其中所述系统包括具有所述涡轮燃烧器、涡轮和排气压缩机的燃气涡轮发动机,所述涡轮被来自所述涡轮燃烧器的所述燃烧气体驱动,并且输出所述排气,所述排气压缩机被所述涡轮驱动。所述排气压缩机被配置为压缩所述排气并且传送所述排气到所述涡轮燃烧器。
实施例12.根据实施例11所述的系统,其中所述燃气涡轮发动机是化学计量排气再循环(SEGR)燃气涡轮发动机。
实施例13.根据实施例11或12所述的系统,其中所述系统包括耦接至所述燃气涡轮发动机的排气抽取系统和耦接至所述排气抽取系统的烃类生产系统。
实施例14.一种系统,其包括涡轮燃烧器,所述涡轮燃烧器具有围绕燃烧室设置的燃烧器衬套和围绕所述燃烧器衬套偏置设置以限定通道的流量套筒。所述通道包括配置为在第一方向上引导氧化剂的氧化剂部,其中所述氧化剂被配置为在所述燃烧室中与第一燃料反应,以产生燃烧气体。所述通道也包括配置为沿基本上与所述第一方向相反的第二方向引导惰性气体的冷却部,其中所述惰性气体被配置为冷却所述燃烧器衬套和所述燃烧室内的燃烧气体。所述通道还包括在所述氧化剂部和所述冷却部之间的障碍部,其中所述障碍部被配置为基本上分开所述氧化剂部中的所述氧化剂和所述冷却部中的所述惰性气体。
实施例15.根据实施例14所述的系统,其中所述系统包括控制器,所述控制器配置为控制所述燃烧室中所述氧化剂和所述第一燃料之间的比率。
实施例16.根据实施例15所述的系统,其中所述系统包括配置为将所述第一燃料注入所述燃烧室的第一燃料喷嘴。所述控制器被配置为通过所述第一燃料喷嘴控制一种或多种流以调节所述燃烧室中的所述氧化剂和所述第一燃料之间的第一比率。
实施例17.根据实施例16所述的系统,其中所述系统包括配置为将第二燃料注入所述燃烧室的第二燃料喷嘴,其中所述控制器被配置为通过所述第二燃料喷嘴控制一种或多种流以调节所述燃烧室中的所述氧化剂和所述第二燃料之间的第二比率。
实施例18.根据实施例14、15、16或17所述的系统,其中所述惰性气体包括具有小于所述氧化剂或所述第一燃料的大约5%体积百分比的排气。
实施例19.根据实施例14、15、16、17或18所述的系统,其中所述系统包括控制器,所述控制器被配置为控制进入氧化剂部的第一氧化剂流、进入冷却部的第二惰性气体流以及至少部分基于控制第一流、控制第二流或它们的任意组合来控制所述通道内的所述障碍部的位置。
实施例20.根据实施例14、15、16、17、18或19所述的系统,其中所述通道包括物理障碍物,所述物理障碍物至少部分地延伸在所述燃烧器衬套和流量套筒之间。
实施例21.根据实施例14、15、16、17、18、19或20所述的系统,其中所述氧化剂部包括多个混合孔,其经配置以引导所述氧化剂进入所述燃烧室以与所述第一燃料混合,以增加所述燃烧室内的氧化剂的浓度,或提高与所述第一燃料的反应温度,或它们的任意组合。
实施例22.根据实施例14、15、16、17、18、19、20或21所述的系统,其中所述冷却剂部包括多个稀释孔,所述稀释孔被配置为引导所述惰性气体的第一部分进入所述燃烧室以冷却所述燃烧器衬套,以冷却所述燃烧室中的所述燃烧气体,或降低所述燃烧气体的排放,或它们的任意组合。
实施例23.根据实施例22所述的系统,其中所述冷却剂部包括多个混合孔,所述混合孔被配置为引导所述惰性气体的第二部分进入所述燃烧室以与所述氧化剂和所述第一燃料混合,以熄灭所述氧化剂和所述第一燃料的反应,或减少所述燃烧气体的排放或它们的任意组合。
实施例24.一种方法,其包括将氧化剂和燃料从所述涡轮燃烧器的盖端注入燃烧室,在所述燃烧室中燃烧所述氧化剂和所述燃料以提供基本上化学计量燃烧,并且使用排气流冷却所述燃烧室。所述排气流沿围绕所述燃烧室设置的通道被从所述涡轮燃烧器的涡轮端朝所述盖端向上游引导。所述方法还包括使用障碍物阻碍所述通道内的所述排气流,其中所述障碍物包括动态障碍物、物理障碍物或它们的任意组合。
实施例25.根据实施例24所述的方法,包括至少部分基于对所述氧化剂和通过一个或多个燃料喷嘴注入到所述燃烧室内的所述燃料中的至少一个的控制来控制当量比以提供基本上化学计量燃烧。
实施例26.根据实施例25所述的方法,包括通过控制所述氧化剂和通过所述一个或多个燃料喷嘴的中心燃料喷嘴注入的所述燃料的第一比率,同时保持所述氧化剂和通过所述一个或多个燃料喷嘴的周边燃料喷嘴注入的所述燃料的第二比率来调节所述当量比。
实施例27.根据实施例25所述的方法,包括通过控制所述排气流通过所述通道的混合孔、所述通道的稀释孔或它们的任意组合进入所述燃烧室来调节所述当量比。
实施例28.根据实施例24、25、26或27所述的方法,包括通过使用所述排气流稀释所述燃烧室中的所述燃烧气体、冷却所述燃烧气体或它们的任意组合来减少所述燃烧气体的排放。
实施例29.根据实施例24、25、26、27或28所述的方法,包括排泄来自所述通道的所述排气流的一部分,以控制所述燃烧室的所述冷却。
实施例30.根据实施例24、25、26、27、28或29所述的方法,包括通过控制所述通道中的所述氧化剂的一部分、所述通道中的所述排气流或它们的任意组合来控制所述通道中的所述动态障碍物,其中所述动态障碍物包括所述氧化剂和所述排气流的接口。
Claims (25)
1.一种利用穿过流量套筒的气体流控制涡轮燃烧器中的燃烧的系统,所述系统包括:
所述涡轮燃烧器,其包括:
围绕燃烧室设置的燃烧器衬套;
盖端,其在所述燃烧室的相对于燃烧气体通过所述燃烧室的流动的下游方向的上游,其中所述盖端被配置为朝所述燃烧室引导氧化剂流和第一燃料流;
所述流量套筒,其围绕所述燃烧器衬套偏置设置以限定通道,其中所述通道被配置为朝所述盖端引导所述气体流,并且配置为朝所述涡轮燃烧器的涡轮端引导所述氧化剂流的一部分,其中所述气体流包括惰性气体;以及
动态障碍部,其在所述通道内,包括在所述气体流和所述氧化剂流之间的接口,其中朝向所述盖端区域的所述气体流与朝向所述涡轮端的所述氧化剂流相互作用。
2.根据权利要求1所述的系统,其中所述盖端包括第一燃料喷嘴和第二燃料喷嘴,所述第一燃料喷嘴被配置为引导所述第一燃料流进入所述燃烧室,所述第二燃料喷嘴被配置为引导第二燃料流进入所述燃烧室,其中所述第一燃料喷嘴与所述第二燃料喷嘴分离地被控制。
3.根据权利要求1所述的系统,其中所述气体流包括排气,其中所述排气包括小于5%体积百分比的所述氧化剂或小于5%体积百分比的所述第一燃料。
4.根据权利要求1所述的系统,其中所述动态障碍部包括一个或多个部分物理障碍物以约束所述氧化剂流、所述气体流或者两者。
5.根据权利要求1所述的系统,其中所述动态障碍部包括动态障碍物,其中所述动态障碍物包括在所述氧化剂流的所述部分和所述气体流之间的流体接口,并且所述动态障碍物的位置至少部分基于所述氧化剂流的所述部分和所述气体流之间的压力差而被控制。
6.根据权利要求5所述的系统,其中所述动态障碍部包括多种流动导向装置,所述流动导向装置被配置为约束所述动态障碍物处的所述通道。
7.根据权利要求1所述的系统,其中所述燃烧器衬套包括多个混合孔和多个稀释孔,其中所述多个混合孔被配置为引导所述氧化剂流和所述气体流中的至少一个进入所述燃烧室,并且所述多个稀释孔被配置为引导所述气体流进入所述燃烧室。
8.根据权利要求1所述的系统,包括具有所述涡轮燃烧器、涡轮和排气压缩机的燃气涡轮发动机,所述涡轮被来自所述涡轮燃烧器的所述燃烧气体驱动并且输出排气,所述排气压缩机被所述涡轮驱动,所述排气压缩机被配置为压缩所述排气并且传送所述排气到所述涡轮燃烧器。
9.根据权利要求8所述的系统,其中所述燃气涡轮发动机是化学计量排气再循环(SEGR)燃气涡轮发动机。
10.根据权利要求8所述的系统,包括耦接至所述燃气涡轮发动机的排气抽取系统,和耦接至所述排气抽取系统的烃类生产系统。
11.一种利用穿过流量套筒的惰性气体控制涡轮燃烧器中的燃烧的系统,所述系统包括:
所述涡轮燃烧器,其包括:
围绕燃烧室设置的燃烧器衬套;以及
围绕所述燃烧器衬套偏置设置以限定通道的所述流量套筒,其中所述通道包括:
配置为沿第一方向引导氧化剂的氧化剂部,其中所述氧化剂被配置为在所述燃烧室中与第一燃料反应,以产生燃烧气体;
配置为沿与所述第一方向相反的第二方向引导所述惰性气体的冷却部,其中所述惰性气体被配置为冷却所述燃烧器衬套和所述燃烧室内的所述燃烧气体;以及
在所述氧化剂部和所述冷却部之间的动态障碍部,其中沿所述第一方向流动的所述氧化剂与沿所述第二方向流动的所述惰性气体相互作用。
12.根据权利要求11所述的系统,包括控制器,所述控制器配置为控制所述燃烧室中所述氧化剂和所述第一燃料之间的比率。
13.根据权利要求12所述的系统,包括配置为将所述第一燃料注入所述燃烧室的第一燃料喷嘴,其中所述控制器被配置为控制通过所述第一燃料喷嘴的一个或多个流以调节所述燃烧室中的所述氧化剂和所述第一燃料之间的第一比率。
14.根据权利要求13所述的系统,包括配置为将第二燃料注入所述燃烧室的第二燃料喷嘴,其中所述控制器被配置为控制通过所述第二燃料喷嘴的一个或多个流以调节所述燃烧室中的所述氧化剂和所述第二燃料之间的第二比率。
15.根据权利要求11所述的系统,其中所述惰性气体包括排气,其中所述排气包括小于5%体积百分比的所述氧化剂或小于5%体积百分比的所述第一燃料。
16.根据权利要求11所述的系统,包括控制器,所述控制器被配置为控制进入所述氧化剂部的所述氧化剂的第一流、控制进入所述冷却部的所述惰性气体的第二流以及至少部分基于控制所述第一流、所述第二流或它们的任意组合来控制所述通道内的所述动态障碍部的位置。
17.根据权利要求11所述的系统,其中所述通道包括一个或多个部分物理障碍物以约束氧化剂流、气体流或两者。
18.根据权利要求11所述的系统,其中所述氧化剂部包括多个混合孔,其配置为引导所述氧化剂进入所述燃烧室以与所述第一燃料混合以增加所述燃烧室内的氧化剂的浓度,或提高与所述第一燃料反应的温度,或它们的任意组合。
19.根据权利要求11所述的系统,其中所述冷却剂部包括多个稀释孔,所述稀释孔被配置为引导所述惰性气体的第一部分进入所述燃烧室以冷却所述燃烧器衬套,以冷却所述燃烧室中的所述燃烧气体或降低所述燃烧气体的排放,或它们的任意组合。
20.一种利用穿过围绕涡轮燃烧室设置的通道的排气流控制所述涡轮燃烧器中的燃烧的方法,所述方法包括:
将氧化剂和燃料从涡轮燃烧器的盖端注入燃烧室;
在所述燃烧室中燃烧所述氧化剂和所述燃料以提供具有在0.95至1.05之间的当量比的化学计量燃烧;
使用所述排气流冷却所述燃烧室,其中所述排气流沿围绕所述燃烧室设置的所述通道被从所述涡轮燃烧器的涡轮端朝所述盖端向上游引导;以及
通过控制所述排气流和控制所述氧化剂的流量来控制动态障碍部的位置。
21.根据权利要求20所述的方法,包括至少部分基于对所述氧化剂和通过一个或多个燃料喷嘴注入到所述燃烧室内的所述燃料中的至少一个的控制来控制所述当量比以提供化学计量燃烧。
22.根据权利要求21所述的方法,包括通过控制所述氧化剂和通过所述一个或多个燃料喷嘴的中心燃料喷嘴注入的所述燃料的第一比率,同时保持所述氧化剂和通过所述一个或多个燃料喷嘴的周边燃料喷嘴注入的所述燃料的第二比率来调节所述当量比。
23.根据权利要求21所述的方法,包括通过控制所述排气流通过所述通道的混合孔、所述通道的稀释孔或它们的任意组合进入所述燃烧室来调节所述当量比。
24.根据权利要求20所述的方法,包括排泄来自所述通道的所述排气流的一部分,以控制所述燃烧室的所述冷却。
25.根据权利要求20所述的方法,包括通过控制所述通道中的所述氧化剂的一部分、所述通道中的所述排气流或它们的任意组合来控制所述通道中的所述动态障碍部,其中所述动态障碍部包括所述氧化剂与所述排气流的接口。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361860214P | 2013-07-30 | 2013-07-30 | |
US61/860,214 | 2013-07-30 | ||
US14/444,601 US9903588B2 (en) | 2013-07-30 | 2014-07-28 | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US14/444,601 | 2014-07-28 | ||
PCT/US2014/048722 WO2015017454A1 (en) | 2013-07-30 | 2014-07-29 | System and method of controlling combustion and emissions in gas turbine engine with exhaust gas recirculation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105745419A CN105745419A (zh) | 2016-07-06 |
CN105745419B true CN105745419B (zh) | 2018-03-30 |
Family
ID=52426405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480053841.7A Expired - Fee Related CN105745419B (zh) | 2013-07-30 | 2014-07-29 | 使用排气再循环控制燃气涡轮发动机中的燃烧和排放的系统和方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9903588B2 (zh) |
EP (1) | EP3027867B1 (zh) |
JP (1) | JP6479003B2 (zh) |
CN (1) | CN105745419B (zh) |
WO (1) | WO2015017454A1 (zh) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
RU2637609C2 (ru) * | 2013-02-28 | 2017-12-05 | Эксонмобил Апстрим Рисерч Компани | Система и способ для камеры сгорания турбины |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10253690B2 (en) * | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10316746B2 (en) * | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10280796B2 (en) * | 2015-02-09 | 2019-05-07 | Nuovo Pignone Tecnologie Srl | Integrated turboexpander-generator with gas-lubricated bearings |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
US10024538B2 (en) * | 2015-08-26 | 2018-07-17 | United Technologies Corporation | Apparatus and method for air extraction at a gas turbine engine combustor |
US20170284675A1 (en) * | 2016-03-30 | 2017-10-05 | Siemens Energy, Inc. | Injector assembly and ducting arrangement including such injector assemblies in a combustion system for a gas turbine engine |
WO2018162994A1 (en) | 2017-03-07 | 2018-09-13 | 8 Rivers Capital, Llc | System and method for operation of a flexible fuel combustor for a gas turbine |
MX2019010633A (es) * | 2017-03-07 | 2019-12-19 | 8 Rivers Capital Llc | Sistema y metodo para la combustion de combustibles solidos y sus derivados. |
KR101881289B1 (ko) * | 2018-06-12 | 2018-08-27 | (주)코셉솔루션 | 배기가스 희석장치 |
WO2020021456A1 (en) | 2018-07-23 | 2020-01-30 | 8 Rivers Capital, Llc | System and method for power generation with flameless combustion |
US11255543B2 (en) | 2018-08-07 | 2022-02-22 | General Electric Company | Dilution structure for gas turbine engine combustor |
CN111829011B (zh) * | 2019-04-17 | 2022-03-22 | 中国航发商用航空发动机有限责任公司 | 燃烧室 |
US20220333783A1 (en) * | 2021-03-07 | 2022-10-20 | CPS-Holding Limited | Hydrogen-Fueled Combustor for Gas Turbines |
Family Cites Families (689)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2488911A (en) | 1946-11-09 | 1949-11-22 | Surface Combustion Corp | Combustion apparatus for use with turbines |
BE504870A (zh) * | 1950-07-27 | |||
GB776269A (en) | 1952-11-08 | 1957-06-05 | Licentia Gmbh | A gas turbine plant |
US2884758A (en) | 1956-09-10 | 1959-05-05 | Bbc Brown Boveri & Cie | Regulating device for burner operating with simultaneous combustion of gaseous and liquid fuel |
US3631672A (en) | 1969-08-04 | 1972-01-04 | Gen Electric | Eductor cooled gas turbine casing |
US3643430A (en) | 1970-03-04 | 1972-02-22 | United Aircraft Corp | Smoke reduction combustion chamber |
US3705492A (en) * | 1971-01-11 | 1972-12-12 | Gen Motors Corp | Regenerative gas turbine system |
US3841382A (en) | 1973-03-16 | 1974-10-15 | Maloney Crawford Tank | Glycol regenerator using controller gas stripping under vacuum |
US3949548A (en) | 1974-06-13 | 1976-04-13 | Lockwood Jr Hanford N | Gas turbine regeneration system |
GB1490145A (en) | 1974-09-11 | 1977-10-26 | Mtu Muenchen Gmbh | Gas turbine engine |
US4043395A (en) | 1975-03-13 | 1977-08-23 | Continental Oil Company | Method for removing methane from coal |
US4018046A (en) | 1975-07-17 | 1977-04-19 | Avco Corporation | Infrared radiation suppressor for gas turbine engine |
NL7612453A (nl) | 1975-11-24 | 1977-05-26 | Gen Electric | Geintegreerde lichtgasproduktieinstallatie en werkwijze voor de opwekking van elektrische energie. |
CH587444A5 (zh) * | 1975-12-15 | 1977-04-29 | Fascione Pietro | |
US4040252A (en) * | 1976-01-30 | 1977-08-09 | United Technologies Corporation | Catalytic premixing combustor |
US4077206A (en) | 1976-04-16 | 1978-03-07 | The Boeing Company | Gas turbine mixer apparatus for suppressing engine core noise and engine fan noise |
US4204401A (en) | 1976-07-19 | 1980-05-27 | The Hydragon Corporation | Turbine engine with exhaust gas recirculation |
US4380895A (en) | 1976-09-09 | 1983-04-26 | Rolls-Royce Limited | Combustion chamber for a gas turbine engine having a variable rate diffuser upstream of air inlet means |
US4130388A (en) * | 1976-09-15 | 1978-12-19 | Flynn Burner Corporation | Non-contaminating fuel burner |
US4066214A (en) | 1976-10-14 | 1978-01-03 | The Boeing Company | Gas turbine exhaust nozzle for controlled temperature flow across adjoining airfoils |
US4117671A (en) | 1976-12-30 | 1978-10-03 | The Boeing Company | Noise suppressing exhaust mixer assembly for ducted-fan, turbojet engine |
US4165609A (en) | 1977-03-02 | 1979-08-28 | The Boeing Company | Gas turbine mixer apparatus |
US4092095A (en) | 1977-03-18 | 1978-05-30 | Combustion Unlimited Incorporated | Combustor for waste gases |
US4112676A (en) | 1977-04-05 | 1978-09-12 | Westinghouse Electric Corp. | Hybrid combustor with staged injection of pre-mixed fuel |
US4271664A (en) | 1977-07-21 | 1981-06-09 | Hydragon Corporation | Turbine engine with exhaust gas recirculation |
RO73353A2 (ro) | 1977-08-12 | 1981-09-24 | Institutul De Cercetari Si Proiectari Pentru Petrol Si Gaze,Ro | Procedeu de desulfurare a fluidelor din zacamintele de hidrocarburi extrase prin sonde |
US4101294A (en) | 1977-08-15 | 1978-07-18 | General Electric Company | Production of hot, saturated fuel gas |
US4160640A (en) | 1977-08-30 | 1979-07-10 | Maev Vladimir A | Method of fuel burning in combustion chambers and annular combustion chamber for carrying same into effect |
US4222240A (en) | 1978-02-06 | 1980-09-16 | Castellano Thomas P | Turbocharged engine |
US4236378A (en) | 1978-03-01 | 1980-12-02 | General Electric Company | Sectoral combustor for burning low-BTU fuel gas |
DE2808690C2 (de) | 1978-03-01 | 1983-11-17 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Einrichtung zur Erzeugung von Heißdampf für die Gewinnung von Erdöl |
US4253301A (en) | 1978-10-13 | 1981-03-03 | General Electric Company | Fuel injection staged sectoral combustor for burning low-BTU fuel gas |
US4498288A (en) | 1978-10-13 | 1985-02-12 | General Electric Company | Fuel injection staged sectoral combustor for burning low-BTU fuel gas |
US4345426A (en) | 1980-03-27 | 1982-08-24 | Egnell Rolf A | Device for burning fuel with air |
GB2080934B (en) | 1980-07-21 | 1984-02-15 | Hitachi Ltd | Low btu gas burner |
US4352269A (en) | 1980-07-25 | 1982-10-05 | Mechanical Technology Incorporated | Stirling engine combustor |
US4427362A (en) * | 1980-08-14 | 1984-01-24 | Rockwell International Corporation | Combustion method |
GB2082259B (en) | 1980-08-15 | 1984-03-07 | Rolls Royce | Exhaust flow mixers and nozzles |
US4442665A (en) | 1980-10-17 | 1984-04-17 | General Electric Company | Coal gasification power generation plant |
US4480985A (en) | 1980-12-22 | 1984-11-06 | Arkansas Patents, Inc. | Pulsing combustion |
US4637792A (en) | 1980-12-22 | 1987-01-20 | Arkansas Patents, Inc. | Pulsing combustion |
US4488865A (en) | 1980-12-22 | 1984-12-18 | Arkansas Patents, Inc. | Pulsing combustion |
US4479484A (en) | 1980-12-22 | 1984-10-30 | Arkansas Patents, Inc. | Pulsing combustion |
US4344486A (en) | 1981-02-27 | 1982-08-17 | Standard Oil Company (Indiana) | Method for enhanced oil recovery |
US4399652A (en) | 1981-03-30 | 1983-08-23 | Curtiss-Wright Corporation | Low BTU gas combustor |
CA1198599A (en) * | 1981-04-27 | 1985-12-31 | Robert D. Denton | Method and apparatus for using residue gas in gas turbines |
US4432207A (en) * | 1981-08-06 | 1984-02-21 | General Electric Company | Modular catalytic combustion bed support system |
US4414334A (en) | 1981-08-07 | 1983-11-08 | Phillips Petroleum Company | Oxygen scavenging with enzymes |
US4434613A (en) | 1981-09-02 | 1984-03-06 | General Electric Company | Closed cycle gas turbine for gaseous production |
US4445842A (en) | 1981-11-05 | 1984-05-01 | Thermal Systems Engineering, Inc. | Recuperative burner with exhaust gas recirculation means |
GB2117053B (en) | 1982-02-18 | 1985-06-05 | Boc Group Plc | Gas turbines and engines |
US4787208A (en) * | 1982-03-08 | 1988-11-29 | Westinghouse Electric Corp. | Low-nox, rich-lean combustor |
US4498289A (en) | 1982-12-27 | 1985-02-12 | Ian Osgerby | Carbon dioxide power cycle |
US4548034A (en) | 1983-05-05 | 1985-10-22 | Rolls-Royce Limited | Bypass gas turbine aeroengines and exhaust mixers therefor |
US4528811A (en) | 1983-06-03 | 1985-07-16 | General Electric Co. | Closed-cycle gas turbine chemical processor |
GB2149456B (en) | 1983-11-08 | 1987-07-29 | Rolls Royce | Exhaust mixing in turbofan aeroengines |
US4561245A (en) | 1983-11-14 | 1985-12-31 | Atlantic Richfield Company | Turbine anti-icing system |
US4602614A (en) | 1983-11-30 | 1986-07-29 | United Stirling, Inc. | Hybrid solar/combustion powered receiver |
SE439057B (sv) | 1984-06-05 | 1985-05-28 | United Stirling Ab & Co | Anordning for forbrenning av ett brensle med syrgas och inblandning av en del av de vid forbrenningen bildade avgaserna |
EP0169431B1 (en) | 1984-07-10 | 1990-04-11 | Hitachi, Ltd. | Gas turbine combustor |
US4606721A (en) | 1984-11-07 | 1986-08-19 | Tifa Limited | Combustion chamber noise suppressor |
US4653278A (en) | 1985-08-23 | 1987-03-31 | General Electric Company | Gas turbine engine carburetor |
US4651712A (en) | 1985-10-11 | 1987-03-24 | Arkansas Patents, Inc. | Pulsing combustion |
NO163612C (no) | 1986-01-23 | 1990-06-27 | Norsk Energi | Fremgangsmaate og anlegg for fremstilling av nitrogen for anvendelse under hoeyt trykk. |
US4858428A (en) * | 1986-04-24 | 1989-08-22 | Paul Marius A | Advanced integrated propulsion system with total optimized cycle for gas turbines |
US4753666A (en) | 1986-07-24 | 1988-06-28 | Chevron Research Company | Distillative processing of CO2 and hydrocarbons for enhanced oil recovery |
US4681678A (en) | 1986-10-10 | 1987-07-21 | Combustion Engineering, Inc. | Sample dilution system for supercritical fluid chromatography |
US4684465A (en) | 1986-10-10 | 1987-08-04 | Combustion Engineering, Inc. | Supercritical fluid chromatograph with pneumatically controlled pump |
US4817387A (en) | 1986-10-27 | 1989-04-04 | Hamilton C. Forman, Trustee | Turbocharger/supercharger control device |
US4762543A (en) | 1987-03-19 | 1988-08-09 | Amoco Corporation | Carbon dioxide recovery |
JPH01114623A (ja) | 1987-10-27 | 1989-05-08 | Toshiba Corp | ガスタービン燃焼器 |
US5084438A (en) | 1988-03-23 | 1992-01-28 | Nec Corporation | Electronic device substrate using silicon semiconductor substrate |
US4883122A (en) | 1988-09-27 | 1989-11-28 | Amoco Corporation | Method of coalbed methane production |
JP2713627B2 (ja) | 1989-03-20 | 1998-02-16 | 株式会社日立製作所 | ガスタービン燃焼器、これを備えているガスタービン設備、及びこの燃焼方法 |
US4946597A (en) | 1989-03-24 | 1990-08-07 | Esso Resources Canada Limited | Low temperature bitumen recovery process |
US4976100A (en) | 1989-06-01 | 1990-12-11 | Westinghouse Electric Corp. | System and method for heat recovery in a combined cycle power plant |
US5135387A (en) | 1989-10-19 | 1992-08-04 | It-Mcgill Environmental Systems, Inc. | Nitrogen oxide control using internally recirculated flue gas |
US5044932A (en) | 1989-10-19 | 1991-09-03 | It-Mcgill Pollution Control Systems, Inc. | Nitrogen oxide control using internally recirculated flue gas |
SE467646B (sv) | 1989-11-20 | 1992-08-24 | Abb Carbon Ab | Saett vid roekgasrening i pfbc-anlaeggning |
US5123248A (en) | 1990-03-28 | 1992-06-23 | General Electric Company | Low emissions combustor |
JP2954972B2 (ja) | 1990-04-18 | 1999-09-27 | 三菱重工業株式会社 | ガス化ガス燃焼ガスタービン発電プラント |
US5271905A (en) | 1990-04-27 | 1993-12-21 | Mobil Oil Corporation | Apparatus for multi-stage fast fluidized bed regeneration of catalyst |
JPH0450433A (ja) | 1990-06-20 | 1992-02-19 | Toyota Motor Corp | 直列2段過給内燃機関の排気ガス再循環装置 |
US5141049A (en) | 1990-08-09 | 1992-08-25 | The Badger Company, Inc. | Treatment of heat exchangers to reduce corrosion and by-product reactions |
US5154596A (en) | 1990-09-07 | 1992-10-13 | John Zink Company, A Division Of Koch Engineering Company, Inc. | Methods and apparatus for burning fuel with low NOx formation |
US5098282A (en) | 1990-09-07 | 1992-03-24 | John Zink Company | Methods and apparatus for burning fuel with low NOx formation |
US5197289A (en) | 1990-11-26 | 1993-03-30 | General Electric Company | Double dome combustor |
FR2670869B1 (fr) * | 1990-12-19 | 1994-10-21 | Snecma | Chambre de combustion comportant deux enceintes successives. |
US5085274A (en) | 1991-02-11 | 1992-02-04 | Amoco Corporation | Recovery of methane from solid carbonaceous subterranean of formations |
DE4110507C2 (de) | 1991-03-30 | 1994-04-07 | Mtu Muenchen Gmbh | Brenner für Gasturbinentriebwerke mit mindestens einer für die Zufuhr von Verbrennungsluft lastabhängig regulierbaren Dralleinrichtung |
US5073105A (en) | 1991-05-01 | 1991-12-17 | Callidus Technologies Inc. | Low NOx burner assemblies |
US5147111A (en) | 1991-08-02 | 1992-09-15 | Atlantic Richfield Company | Cavity induced stimulation method of coal degasification wells |
US5255506A (en) | 1991-11-25 | 1993-10-26 | General Motors Corporation | Solid fuel combustion system for gas turbine engine |
US5183232A (en) | 1992-01-31 | 1993-02-02 | Gale John A | Interlocking strain relief shelf bracket |
US5195884A (en) | 1992-03-27 | 1993-03-23 | John Zink Company, A Division Of Koch Engineering Company, Inc. | Low NOx formation burner apparatus and methods |
US5238395A (en) | 1992-03-27 | 1993-08-24 | John Zink Company | Low nox gas burner apparatus and methods |
US5634329A (en) | 1992-04-30 | 1997-06-03 | Abb Carbon Ab | Method of maintaining a nominal working temperature of flue gases in a PFBC power plant |
US5332036A (en) | 1992-05-15 | 1994-07-26 | The Boc Group, Inc. | Method of recovery of natural gases from underground coal formations |
US5295350A (en) | 1992-06-26 | 1994-03-22 | Texaco Inc. | Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas |
US5355668A (en) | 1993-01-29 | 1994-10-18 | General Electric Company | Catalyst-bearing component of gas turbine engine |
US5628184A (en) | 1993-02-03 | 1997-05-13 | Santos; Rolando R. | Apparatus for reducing the production of NOx in a gas turbine |
US5361586A (en) | 1993-04-15 | 1994-11-08 | Westinghouse Electric Corporation | Gas turbine ultra low NOx combustor |
US5388395A (en) | 1993-04-27 | 1995-02-14 | Air Products And Chemicals, Inc. | Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output |
US5444971A (en) | 1993-04-28 | 1995-08-29 | Holenberger; Charles R. | Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers |
US5359847B1 (en) | 1993-06-01 | 1996-04-09 | Westinghouse Electric Corp | Dual fuel ultra-flow nox combustor |
US5628182A (en) | 1993-07-07 | 1997-05-13 | Mowill; R. Jan | Star combustor with dilution ports in can portions |
US5638674A (en) | 1993-07-07 | 1997-06-17 | Mowill; R. Jan | Convectively cooled, single stage, fully premixed controllable fuel/air combustor with tangential admission |
US5572862A (en) | 1993-07-07 | 1996-11-12 | Mowill Rolf Jan | Convectively cooled, single stage, fully premixed fuel/air combustor for gas turbine engine modules |
PL171012B1 (pl) | 1993-07-08 | 1997-02-28 | Waclaw Borszynski | Uklad do mokrego oczyszczania spalin z procesów spalania, korzystnie wegla, koksu,oleju opalowego PL |
US5794431A (en) | 1993-07-14 | 1998-08-18 | Hitachi, Ltd. | Exhaust recirculation type combined plant |
US5535584A (en) | 1993-10-19 | 1996-07-16 | California Energy Commission | Performance enhanced gas turbine powerplants |
US5345756A (en) | 1993-10-20 | 1994-09-13 | Texaco Inc. | Partial oxidation process with production of power |
US5394688A (en) | 1993-10-27 | 1995-03-07 | Westinghouse Electric Corporation | Gas turbine combustor swirl vane arrangement |
BR9405757A (pt) | 1993-12-10 | 1995-11-28 | Cabot Corp | Processo para aumentar capacidade e eficiencia de instalação de ciclos combinados e sistema de instalação de ciclo combinado de gás natural liquefeito |
US5542840A (en) | 1994-01-26 | 1996-08-06 | Zeeco Inc. | Burner for combusting gas and/or liquid fuel with low NOx production |
US5458481A (en) | 1994-01-26 | 1995-10-17 | Zeeco, Inc. | Burner for combusting gas with low NOx production |
NO180520C (no) | 1994-02-15 | 1997-05-07 | Kvaerner Asa | Fremgangsmåte til fjerning av karbondioksid fra forbrenningsgasser |
JP2950720B2 (ja) | 1994-02-24 | 1999-09-20 | 株式会社東芝 | ガスタービン燃焼装置およびその燃焼制御方法 |
US5439054A (en) | 1994-04-01 | 1995-08-08 | Amoco Corporation | Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation |
DE4411624A1 (de) | 1994-04-02 | 1995-10-05 | Abb Management Ag | Brennkammer mit Vormischbrennern |
AU681271B2 (en) * | 1994-06-07 | 1997-08-21 | Westinghouse Electric Corporation | Method and apparatus for sequentially staged combustion using a catalyst |
US5581998A (en) | 1994-06-22 | 1996-12-10 | Craig; Joe D. | Biomass fuel turbine combuster |
US5402847A (en) | 1994-07-22 | 1995-04-04 | Conoco Inc. | Coal bed methane recovery |
EP0828929B1 (en) | 1994-08-25 | 2004-09-22 | Clean Energy Systems, Inc. | Reduced pollution power generation system and gas generator therefore |
US5640840A (en) | 1994-12-12 | 1997-06-24 | Westinghouse Electric Corporation | Recuperative steam cooled gas turbine method and apparatus |
US5836164A (en) | 1995-01-30 | 1998-11-17 | Hitachi, Ltd. | Gas turbine combustor |
US5657631A (en) | 1995-03-13 | 1997-08-19 | B.B.A. Research & Development, Inc. | Injector for turbine engines |
AU5662296A (en) | 1995-03-24 | 1996-10-16 | Ultimate Power Engineering Group, Inc. | High vanadium content fuel combustor and system |
US5685158A (en) | 1995-03-31 | 1997-11-11 | General Electric Company | Compressor rotor cooling system for a gas turbine |
CN1112505C (zh) | 1995-06-01 | 2003-06-25 | 特雷克特贝尔Lng北美公司 | 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机 |
EP0747635B1 (en) | 1995-06-05 | 2003-01-15 | Rolls-Royce Corporation | Dry low oxides of nitrogen lean premix module for industrial gas turbine engines |
US6170264B1 (en) | 1997-09-22 | 2001-01-09 | Clean Energy Systems, Inc. | Hydrocarbon combustion power generation system with CO2 sequestration |
US5680764A (en) | 1995-06-07 | 1997-10-28 | Clean Energy Systems, Inc. | Clean air engines transportation and other power applications |
DE59603723D1 (de) | 1995-06-12 | 1999-12-30 | Gachnang Hans Rudolf | Verfahren zum zumischen von brenngas und vorrichtung zum zumischen von brenngas |
US5946917A (en) * | 1995-06-12 | 1999-09-07 | Siemens Aktiengesellschaft | Catalytic combustion chamber operating on preformed fuel, preferably for a gas turbine |
US5722230A (en) | 1995-08-08 | 1998-03-03 | General Electric Co. | Center burner in a multi-burner combustor |
US5724805A (en) | 1995-08-21 | 1998-03-10 | University Of Massachusetts-Lowell | Power plant with carbon dioxide capture and zero pollutant emissions |
US5725054A (en) | 1995-08-22 | 1998-03-10 | Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College | Enhancement of residual oil recovery using a mixture of nitrogen or methane diluted with carbon dioxide in a single-well injection process |
US5638675A (en) | 1995-09-08 | 1997-06-17 | United Technologies Corporation | Double lobed mixer with major and minor lobes |
GB9520002D0 (en) | 1995-09-30 | 1995-12-06 | Rolls Royce Plc | Turbine engine control system |
CA2187255A1 (en) * | 1995-10-13 | 1997-04-14 | Randall S. Gemmen | Combustor oscillating pressure stabilization and method |
DE19539774A1 (de) | 1995-10-26 | 1997-04-30 | Asea Brown Boveri | Zwischengekühlter Verdichter |
ATE191254T1 (de) | 1995-12-27 | 2000-04-15 | Shell Int Research | Flamenlose verbrennvorrichtung und verfahren |
DE19549143A1 (de) | 1995-12-29 | 1997-07-03 | Abb Research Ltd | Gasturbinenringbrennkammer |
US6201029B1 (en) | 1996-02-13 | 2001-03-13 | Marathon Oil Company | Staged combustion of a low heating value fuel gas for driving a gas turbine |
US5669958A (en) | 1996-02-29 | 1997-09-23 | Membrane Technology And Research, Inc. | Methane/nitrogen separation process |
GB2311596B (en) | 1996-03-29 | 2000-07-12 | Europ Gas Turbines Ltd | Combustor for gas - or liquid - fuelled turbine |
DE19618868C2 (de) | 1996-05-10 | 1998-07-02 | Daimler Benz Ag | Brennkraftmaschine mit einem Abgasrückführsystem |
US5930990A (en) | 1996-05-14 | 1999-08-03 | The Dow Chemical Company | Method and apparatus for achieving power augmentation in gas turbines via wet compression |
US5901547A (en) | 1996-06-03 | 1999-05-11 | Air Products And Chemicals, Inc. | Operation method for integrated gasification combined cycle power generation system |
US5950417A (en) | 1996-07-19 | 1999-09-14 | Foster Wheeler Energy International Inc. | Topping combustor for low oxygen vitiated air streams |
JPH10259736A (ja) | 1997-03-19 | 1998-09-29 | Mitsubishi Heavy Ind Ltd | 低NOx燃焼器 |
US5850732A (en) | 1997-05-13 | 1998-12-22 | Capstone Turbine Corporation | Low emissions combustion system for a gas turbine engine |
US5937634A (en) | 1997-05-30 | 1999-08-17 | Solar Turbines Inc | Emission control for a gas turbine engine |
US6062026A (en) | 1997-05-30 | 2000-05-16 | Turbodyne Systems, Inc. | Turbocharging systems for internal combustion engines |
NO308399B1 (no) | 1997-06-06 | 2000-09-11 | Norsk Hydro As | Prosess for generering av kraft og/eller varme |
NO308400B1 (no) | 1997-06-06 | 2000-09-11 | Norsk Hydro As | Kraftgenereringsprosess omfattende en forbrenningsprosess |
US6200128B1 (en) * | 1997-06-09 | 2001-03-13 | Praxair Technology, Inc. | Method and apparatus for recovering sensible heat from a hot exhaust gas |
US6256976B1 (en) | 1997-06-27 | 2001-07-10 | Hitachi, Ltd. | Exhaust gas recirculation type combined plant |
US5771868A (en) | 1997-07-03 | 1998-06-30 | Turbodyne Systems, Inc. | Turbocharging systems for internal combustion engines |
US5771867A (en) | 1997-07-03 | 1998-06-30 | Caterpillar Inc. | Control system for exhaust gas recovery system in an internal combustion engine |
SE9702830D0 (sv) | 1997-07-31 | 1997-07-31 | Nonox Eng Ab | Environment friendly high efficiency power generation method based on gaseous fuels and a combined cycle with a nitrogen free gas turbine and a conventional steam turbine |
US6079974A (en) | 1997-10-14 | 2000-06-27 | Beloit Technologies, Inc. | Combustion chamber to accommodate a split-stream of recycled gases |
US6360528B1 (en) | 1997-10-31 | 2002-03-26 | General Electric Company | Chevron exhaust nozzle for a gas turbine engine |
US6032465A (en) | 1997-12-18 | 2000-03-07 | Alliedsignal Inc. | Integral turbine exhaust gas recirculation control valve |
EP0939199B1 (de) | 1998-02-25 | 2004-03-31 | ALSTOM Technology Ltd | Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage mit einem CO2-Prozess |
US6082113A (en) | 1998-05-22 | 2000-07-04 | Pratt & Whitney Canada Corp. | Gas turbine fuel injector |
US6082093A (en) | 1998-05-27 | 2000-07-04 | Solar Turbines Inc. | Combustion air control system for a gas turbine engine |
NO982504D0 (no) | 1998-06-02 | 1998-06-02 | Aker Eng As | Fjerning av CO2 i r°kgass |
US6244338B1 (en) | 1998-06-23 | 2001-06-12 | The University Of Wyoming Research Corp., | System for improving coalbed gas production |
US7717173B2 (en) | 1998-07-06 | 2010-05-18 | Ecycling, LLC | Methods of improving oil or gas production with recycled, increased sodium water |
US6089855A (en) * | 1998-07-10 | 2000-07-18 | Thermo Power Corporation | Low NOx multistage combustor |
US6125627A (en) | 1998-08-11 | 2000-10-03 | Allison Advanced Development Company | Method and apparatus for spraying fuel within a gas turbine engine |
US6148602A (en) | 1998-08-12 | 2000-11-21 | Norther Research & Engineering Corporation | Solid-fueled power generation system with carbon dioxide sequestration and method therefor |
GB9818160D0 (en) | 1998-08-21 | 1998-10-14 | Rolls Royce Plc | A combustion chamber |
US6314721B1 (en) | 1998-09-04 | 2001-11-13 | United Technologies Corporation | Tabbed nozzle for jet noise suppression |
NO317870B1 (no) | 1998-09-16 | 2004-12-27 | Statoil Asa | Fremgangsmate for a fremstille en H<N>2</N>-rik gass og en CO<N>2</N>-rik gass ved hoyt trykk |
NO319681B1 (no) | 1998-09-16 | 2005-09-05 | Statoil Asa | Fremgangsmate for fremstilling av en H2-rik gass og en CO2-rik gass ved hoyt trykk |
EP0994243B1 (en) | 1998-10-14 | 2005-01-26 | Nissan Motor Co., Ltd. | Exhaust gas purifying device |
NO984956D0 (no) | 1998-10-23 | 1998-10-23 | Nyfotek As | Brenner |
US5968349A (en) | 1998-11-16 | 1999-10-19 | Bhp Minerals International Inc. | Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands |
US6230103B1 (en) | 1998-11-18 | 2001-05-08 | Power Tech Associates, Inc. | Method of determining concentration of exhaust components in a gas turbine engine |
NO308401B1 (no) | 1998-12-04 | 2000-09-11 | Norsk Hydro As | FremgangsmÕte for gjenvinning av CO2 som genereres i en forbrenningsprosess samt anvendelse derav |
US6216549B1 (en) | 1998-12-11 | 2001-04-17 | The United States Of America As Represented By The Secretary Of The Interior | Collapsible bag sediment/water quality flow-weighted sampler |
DE19857234C2 (de) | 1998-12-11 | 2000-09-28 | Daimler Chrysler Ag | Vorrichtung zur Abgasrückführung |
AU2404000A (en) | 1999-01-04 | 2000-07-24 | Allison Advanced Development Company | Exhaust mixer and apparatus using same |
US6183241B1 (en) | 1999-02-10 | 2001-02-06 | Midwest Research Institute | Uniform-burning matrix burner |
NO990812L (no) | 1999-02-19 | 2000-08-21 | Norsk Hydro As | Metode for Õ fjerne og gjenvinne CO2 fra eksosgass |
US6276171B1 (en) | 1999-04-05 | 2001-08-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Integrated apparatus for generating power and/or oxygen enriched fluid, process for the operation thereof |
US6202442B1 (en) | 1999-04-05 | 2001-03-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'expoitation Des Procedes Georges Claude | Integrated apparatus for generating power and/or oxygen enriched fluid and process for the operation thereof |
GB9911867D0 (en) | 1999-05-22 | 1999-07-21 | Rolls Royce Plc | A combustion chamber assembly and a method of operating a combustion chamber assembly |
US6305929B1 (en) | 1999-05-24 | 2001-10-23 | Suk Ho Chung | Laser-induced ignition system using a cavity |
US6283087B1 (en) | 1999-06-01 | 2001-09-04 | Kjell Isaksen | Enhanced method of closed vessel combustion |
US6256994B1 (en) | 1999-06-04 | 2001-07-10 | Air Products And Chemicals, Inc. | Operation of an air separation process with a combustion engine for the production of atmospheric gas products and electric power |
US6345493B1 (en) | 1999-06-04 | 2002-02-12 | Air Products And Chemicals, Inc. | Air separation process and system with gas turbine drivers |
US6263659B1 (en) | 1999-06-04 | 2001-07-24 | Air Products And Chemicals, Inc. | Air separation process integrated with gas turbine combustion engine driver |
US7065953B1 (en) | 1999-06-10 | 2006-06-27 | Enhanced Turbine Output Holding | Supercharging system for gas turbines |
US6324867B1 (en) | 1999-06-15 | 2001-12-04 | Exxonmobil Oil Corporation | Process and system for liquefying natural gas |
SE9902491L (sv) | 1999-06-30 | 2000-12-31 | Saab Automobile | Förbränningsmotor med avgasåtermatning |
US6202574B1 (en) | 1999-07-09 | 2001-03-20 | Abb Alstom Power Inc. | Combustion method and apparatus for producing a carbon dioxide end product |
EP1208293A4 (en) | 1999-07-22 | 2005-10-05 | Bechtel Corp | METHOD AND APPARATUS FOR VAPORIZING A LIQUID GAS IN A COMBINED CYCLE POWER PLANT |
US6301888B1 (en) | 1999-07-22 | 2001-10-16 | The United States Of America As Represented By The Administrator Of The Environmental Protection Agency | Low emission, diesel-cycle engine |
US6248794B1 (en) | 1999-08-05 | 2001-06-19 | Atlantic Richfield Company | Integrated process for converting hydrocarbon gas to liquids |
AU6522000A (en) | 1999-08-09 | 2001-03-05 | Technion Research & Development Foundation Ltd. | Novel design of adiabatic combustors |
US6101983A (en) | 1999-08-11 | 2000-08-15 | General Electric Co. | Modified gas turbine system with advanced pressurized fluidized bed combustor cycle |
AU6477400A (en) | 1999-08-16 | 2001-03-13 | Nippon Furnace Kogyo Kaisha, Ltd. | Device and method for feeding fuel |
US7015271B2 (en) | 1999-08-19 | 2006-03-21 | Ppg Industries Ohio, Inc. | Hydrophobic particulate inorganic oxides and polymeric compositions containing same |
US6298654B1 (en) | 1999-09-07 | 2001-10-09 | VERMES GéZA | Ambient pressure gas turbine system |
DE19944922A1 (de) | 1999-09-20 | 2001-03-22 | Asea Brown Boveri | Steuerung von Primärmassnahmen zur Reduktion der thermischen Stickoxidbildung in Gasturbinen |
DE19949739C1 (de) | 1999-10-15 | 2001-08-23 | Karlsruhe Forschzent | Massesensitiver Sensor |
US6383461B1 (en) | 1999-10-26 | 2002-05-07 | John Zink Company, Llc | Fuel dilution methods and apparatus for NOx reduction |
US20010004838A1 (en) | 1999-10-29 | 2001-06-28 | Wong Kenneth Kai | Integrated heat exchanger system for producing carbon dioxide |
US6298652B1 (en) | 1999-12-13 | 2001-10-09 | Exxon Mobil Chemical Patents Inc. | Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines |
US6266954B1 (en) | 1999-12-15 | 2001-07-31 | General Electric Co. | Double wall bearing cone |
US6484503B1 (en) | 2000-01-12 | 2002-11-26 | Arie Raz | Compression and condensation of turbine exhaust steam |
DE10001110A1 (de) | 2000-01-13 | 2001-08-16 | Alstom Power Schweiz Ag Baden | Verfahren zur Rückgewinnung von Wasser aus dem Rauchgas eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens |
DE10001997A1 (de) | 2000-01-19 | 2001-07-26 | Alstom Power Schweiz Ag Baden | Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes |
US6247315B1 (en) | 2000-03-08 | 2001-06-19 | American Air Liquids, Inc. | Oxidant control in co-generation installations |
US6247316B1 (en) | 2000-03-22 | 2001-06-19 | Clean Energy Systems, Inc. | Clean air engines for transportation and other power applications |
US6405536B1 (en) | 2000-03-27 | 2002-06-18 | Wu-Chi Ho | Gas turbine combustor burning LBTU fuel gas |
US6508209B1 (en) | 2000-04-03 | 2003-01-21 | R. Kirk Collier, Jr. | Reformed natural gas for powering an internal combustion engine |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
FR2808223B1 (fr) | 2000-04-27 | 2002-11-22 | Inst Francais Du Petrole | Procede de purification d'un effluent contenant du gaz carbonique et des hydrocarbures par combustion |
SE523342C2 (sv) | 2000-05-02 | 2004-04-13 | Volvo Teknisk Utveckling Ab | Anordning och förfarande för reduktion av en gaskomponent i en avgasström från en förbränningsmotor |
AU2001276823A1 (en) | 2000-05-12 | 2001-12-03 | Clean Energy Systems, Inc. | Semi-closed brayton cycle gas turbine power systems |
US6429020B1 (en) | 2000-06-02 | 2002-08-06 | The United States Of America As Represented By The United States Department Of Energy | Flashback detection sensor for lean premix fuel nozzles |
JP3864671B2 (ja) | 2000-06-12 | 2007-01-10 | 日産自動車株式会社 | ディーゼルエンジンの燃料噴射制御装置 |
US6374594B1 (en) | 2000-07-12 | 2002-04-23 | Power Systems Mfg., Llc | Silo/can-annular low emissions combustor |
US6282901B1 (en) | 2000-07-19 | 2001-09-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Integrated air separation process |
US6502383B1 (en) | 2000-08-31 | 2003-01-07 | General Electric Company | Stub airfoil exhaust nozzle |
US6301889B1 (en) | 2000-09-21 | 2001-10-16 | Caterpillar Inc. | Turbocharger with exhaust gas recirculation |
JP2002106844A (ja) * | 2000-09-28 | 2002-04-10 | Ishikawajima Harima Heavy Ind Co Ltd | ガスタービン燃焼器構造 |
DE10049040A1 (de) | 2000-10-04 | 2002-06-13 | Alstom Switzerland Ltd | Verfahren zur Regeneration einer Katalysatoranlage und Vorrichtung zur Durchführung des Verfahrens |
DE10049912A1 (de) | 2000-10-10 | 2002-04-11 | Daimler Chrysler Ag | Brennkraftmaschine mit Abgasturbolader und Compound-Nutzturbine |
DE10050248A1 (de) | 2000-10-11 | 2002-04-18 | Alstom Switzerland Ltd | Brenner |
GB0025552D0 (en) | 2000-10-18 | 2000-11-29 | Air Prod & Chem | Process and apparatus for the generation of power |
US7097925B2 (en) | 2000-10-30 | 2006-08-29 | Questair Technologies Inc. | High temperature fuel cell power plant |
US6412278B1 (en) | 2000-11-10 | 2002-07-02 | Borgwarner, Inc. | Hydraulically powered exhaust gas recirculation system |
US6412559B1 (en) | 2000-11-24 | 2002-07-02 | Alberta Research Council Inc. | Process for recovering methane and/or sequestering fluids |
DE10064270A1 (de) | 2000-12-22 | 2002-07-11 | Alstom Switzerland Ltd | Verfahren zum Betrieb einer Gasturbinenanlage sowie eine diesbezügliche Gasturbinenanlage |
WO2002055851A1 (en) | 2001-01-08 | 2002-07-18 | Catalytica Energy Systems, Inc. | CATALYST PLACEMENT IN COMBUSTION CYLINDER FOR REDUCTION OF NOx AND PARTICULATE SOOT |
US6467270B2 (en) | 2001-01-31 | 2002-10-22 | Cummins Inc. | Exhaust gas recirculation air handling system for an internal combustion engine |
US6715916B2 (en) | 2001-02-08 | 2004-04-06 | General Electric Company | System and method for determining gas turbine firing and combustion reference temperatures having correction for water content in fuel |
US6606861B2 (en) | 2001-02-26 | 2003-08-19 | United Technologies Corporation | Low emissions combustor for a gas turbine engine |
US7578132B2 (en) | 2001-03-03 | 2009-08-25 | Rolls-Royce Plc | Gas turbine engine exhaust nozzle |
US6821501B2 (en) | 2001-03-05 | 2004-11-23 | Shell Oil Company | Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system |
US6412302B1 (en) | 2001-03-06 | 2002-07-02 | Abb Lummus Global, Inc. - Randall Division | LNG production using dual independent expander refrigeration cycles |
US6499990B1 (en) | 2001-03-07 | 2002-12-31 | Zeeco, Inc. | Low NOx burner apparatus and method |
GB2373299B (en) | 2001-03-12 | 2004-10-27 | Alstom Power Nv | Re-fired gas turbine engine |
ATE399928T1 (de) | 2001-03-15 | 2008-07-15 | Alexei Leonidovich Zapadinski | Verfahren zum entwickeln einer kohlenwasserstoff- lagerstätte sowie anlagenkomplex zur ausführung des verfahrens |
US6732531B2 (en) | 2001-03-16 | 2004-05-11 | Capstone Turbine Corporation | Combustion system for a gas turbine engine with variable airflow pressure actuated premix injector |
US6745573B2 (en) | 2001-03-23 | 2004-06-08 | American Air Liquide, Inc. | Integrated air separation and power generation process |
US6615576B2 (en) | 2001-03-29 | 2003-09-09 | Honeywell International Inc. | Tortuous path quiet exhaust eductor system |
US6487863B1 (en) | 2001-03-30 | 2002-12-03 | Siemens Westinghouse Power Corporation | Method and apparatus for cooling high temperature components in a gas turbine |
US7096942B1 (en) | 2001-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a relatively permeable formation while controlling pressure |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
JP3972599B2 (ja) | 2001-04-27 | 2007-09-05 | 日産自動車株式会社 | ディーゼルエンジンの制御装置 |
US6868677B2 (en) | 2001-05-24 | 2005-03-22 | Clean Energy Systems, Inc. | Combined fuel cell and fuel combustion power generation systems |
US20030005698A1 (en) | 2001-05-30 | 2003-01-09 | Conoco Inc. | LNG regassification process and system |
EP1262714A1 (de) | 2001-06-01 | 2002-12-04 | ALSTOM (Switzerland) Ltd | Brenner mit Abgasrückführung |
US6484507B1 (en) | 2001-06-05 | 2002-11-26 | Louis A. Pradt | Method and apparatus for controlling liquid droplet size and quantity in a stream of gas |
US6622645B2 (en) | 2001-06-15 | 2003-09-23 | Honeywell International Inc. | Combustion optimization with inferential sensor |
DE10131798A1 (de) | 2001-06-30 | 2003-01-16 | Daimler Chrysler Ag | Kraftfahrzeug mit Aktivkohlefilter und Verfahren zur Regeneration eines Aktivkohlefilters |
US6813889B2 (en) * | 2001-08-29 | 2004-11-09 | Hitachi, Ltd. | Gas turbine combustor and operating method thereof |
JP3984957B2 (ja) | 2001-08-30 | 2007-10-03 | ティーディーエイ リサーチ インコーポレイテッド | 燃焼フラーレンから不純物を除去する方法 |
WO2003018958A1 (en) | 2001-08-31 | 2003-03-06 | Statoil Asa | Method and plant for enhanced oil recovery and simultaneous synthesis of hydrocarbons from natural gas |
US20030221409A1 (en) | 2002-05-29 | 2003-12-04 | Mcgowan Thomas F. | Pollution reduction fuel efficient combustion turbine |
JP2003090250A (ja) | 2001-09-18 | 2003-03-28 | Nissan Motor Co Ltd | ディーゼルエンジンの制御装置 |
WO2003027461A1 (de) | 2001-09-24 | 2003-04-03 | Alstom Technology Ltd | Gasturbinenanlage für ein arbeitsmedium in form eines kohlendioxid/wasser-gemisches |
WO2003029618A1 (de) | 2001-10-01 | 2003-04-10 | Alstom Technology Ltd. | Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
DE10152803A1 (de) | 2001-10-25 | 2003-05-15 | Daimler Chrysler Ag | Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung |
GB2399600B (en) | 2001-10-26 | 2005-12-14 | Alstom Technology Ltd | Gas turbine adapted to operate with a high exhaust gas recirculation rate and a method for operation thereof |
CN1308580C (zh) | 2001-11-09 | 2007-04-04 | 川崎重工业株式会社 | 使用地下煤层构筑燃料和燃气的密封系统的燃气轮机设备 |
US6790030B2 (en) | 2001-11-20 | 2004-09-14 | The Regents Of The University Of California | Multi-stage combustion using nitrogen-enriched air |
US6505567B1 (en) | 2001-11-26 | 2003-01-14 | Alstom (Switzerland) Ltd | Oxygen fired circulating fluidized bed steam generator |
WO2003049122A2 (en) | 2001-12-03 | 2003-06-12 | Clean Energy Systems, Inc. | Coal and syngas fueled power generation systems featuring zero atmospheric emissions |
GB2382847A (en) | 2001-12-06 | 2003-06-11 | Alstom | Gas turbine wet compression |
US20030134241A1 (en) | 2002-01-14 | 2003-07-17 | Ovidiu Marin | Process and apparatus of combustion for reduction of nitrogen oxide emissions |
US6743829B2 (en) | 2002-01-18 | 2004-06-01 | Bp Corporation North America Inc. | Integrated processing of natural gas into liquid products |
US6722436B2 (en) | 2002-01-25 | 2004-04-20 | Precision Drilling Technology Services Group Inc. | Apparatus and method for operating an internal combustion engine to reduce free oxygen contained within engine exhaust gas |
US6752620B2 (en) | 2002-01-31 | 2004-06-22 | Air Products And Chemicals, Inc. | Large scale vortex devices for improved burner operation |
US6725665B2 (en) | 2002-02-04 | 2004-04-27 | Alstom Technology Ltd | Method of operation of gas turbine having multiple burners |
US6745624B2 (en) | 2002-02-05 | 2004-06-08 | Ford Global Technologies, Llc | Method and system for calibrating a tire pressure sensing system for an automotive vehicle |
US7284362B2 (en) | 2002-02-11 | 2007-10-23 | L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude | Integrated air separation and oxygen fired power generation system |
US6823852B2 (en) | 2002-02-19 | 2004-11-30 | Collier Technologies, Llc | Low-emission internal combustion engine |
US7313916B2 (en) | 2002-03-22 | 2008-01-01 | Philip Morris Usa Inc. | Method and apparatus for generating power by combustion of vaporized fuel |
US6532745B1 (en) | 2002-04-10 | 2003-03-18 | David L. Neary | Partially-open gas turbine cycle providing high thermal efficiencies and ultra-low emissions |
DE60313392T2 (de) | 2002-05-16 | 2007-08-09 | Rolls-Royce Plc | Gasturbine |
US6644041B1 (en) | 2002-06-03 | 2003-11-11 | Volker Eyermann | System in process for the vaporization of liquefied natural gas |
US7491250B2 (en) | 2002-06-25 | 2009-02-17 | Exxonmobil Research And Engineering Company | Pressure swing reforming |
GB2390150A (en) | 2002-06-26 | 2003-12-31 | Alstom | Reheat combustion system for a gas turbine including an accoustic screen |
US6702570B2 (en) | 2002-06-28 | 2004-03-09 | Praxair Technology Inc. | Firing method for a heat consuming device utilizing oxy-fuel combustion |
US6748004B2 (en) | 2002-07-25 | 2004-06-08 | Air Liquide America, L.P. | Methods and apparatus for improved energy efficient control of an electric arc furnace fume extraction system |
US6772583B2 (en) | 2002-09-11 | 2004-08-10 | Siemens Westinghouse Power Corporation | Can combustor for a gas turbine engine |
JP3975232B2 (ja) | 2002-10-22 | 2007-09-12 | 川崎重工業株式会社 | ガスタービンエンジンの制御方法および制御システム |
US6826913B2 (en) | 2002-10-31 | 2004-12-07 | Honeywell International Inc. | Airflow modulation technique for low emissions combustors |
US7143606B2 (en) | 2002-11-01 | 2006-12-05 | L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude | Combined air separation natural gas liquefaction plant |
CA2505354C (en) | 2002-11-08 | 2012-04-03 | Alstom Technology Ltd. | Gas turbine power plant and method of operating the same |
JP2006506581A (ja) | 2002-11-15 | 2006-02-23 | カタリティカ エナジー システムズ, インコーポレイテッド | 希薄燃焼エンジンからのNOx排出を低減するための装置および方法 |
US6945029B2 (en) | 2002-11-15 | 2005-09-20 | Clean Energy Systems, Inc. | Low pollution power generation system with ion transfer membrane air separation |
GB0226983D0 (en) | 2002-11-19 | 2002-12-24 | Boc Group Plc | Nitrogen rejection method and apparatus |
DE10257704A1 (de) | 2002-12-11 | 2004-07-15 | Alstom Technology Ltd | Verfahren zur Verbrennung eines Brennstoffs |
NO20026021D0 (no) | 2002-12-13 | 2002-12-13 | Statoil Asa I & K Ir Pat | Fremgangsmåte for ökt oljeutvinning |
MXPA05006314A (es) | 2002-12-13 | 2006-02-08 | Statoil Asa | Un metodo para la recuperacion de petroleo proveniente de un yacimiento petrolifero. |
US6731501B1 (en) | 2003-01-03 | 2004-05-04 | Jian-Roung Cheng | Heat dissipating device for dissipating heat generated by a disk drive module inside a computer housing |
US6851413B1 (en) | 2003-01-10 | 2005-02-08 | Ronnell Company, Inc. | Method and apparatus to increase combustion efficiency and to reduce exhaust gas pollutants from combustion of a fuel |
US6929423B2 (en) | 2003-01-16 | 2005-08-16 | Paul A. Kittle | Gas recovery from landfills using aqueous foam |
EP1592924A2 (en) | 2003-01-17 | 2005-11-09 | Catalytica Energy Systems, Inc. | Dynamic control system and method for multi-combustor catalytic gas turbine engine |
US8631657B2 (en) | 2003-01-22 | 2014-01-21 | Vast Power Portfolio, Llc | Thermodynamic cycles with thermal diluent |
US9254729B2 (en) | 2003-01-22 | 2016-02-09 | Vast Power Portfolio, Llc | Partial load combustion cycles |
JP4489756B2 (ja) | 2003-01-22 | 2010-06-23 | ヴァスト・パワー・システムズ・インコーポレーテッド | エネルギー変換システム、エネルギー伝達システム、および熱伝達を制御する方法 |
US6820428B2 (en) | 2003-01-30 | 2004-11-23 | Wylie Inventions Company, Inc. | Supercritical combined cycle for generating electric power |
GB2398863B (en) | 2003-01-31 | 2007-10-17 | Alstom | Combustion Chamber |
US6675579B1 (en) | 2003-02-06 | 2004-01-13 | Ford Global Technologies, Llc | HCCI engine intake/exhaust systems for fast inlet temperature and pressure control with intake pressure boosting |
US7618606B2 (en) | 2003-02-06 | 2009-11-17 | The Ohio State University | Separation of carbon dioxide (CO2) from gas mixtures |
US7490472B2 (en) * | 2003-02-11 | 2009-02-17 | Statoil Asa | Efficient combined cycle power plant with CO2 capture and a combustor arrangement with separate flows |
US20040170559A1 (en) | 2003-02-28 | 2004-09-02 | Frank Hershkowitz | Hydrogen manufacture using pressure swing reforming |
US7914764B2 (en) | 2003-02-28 | 2011-03-29 | Exxonmobil Research And Engineering Company | Hydrogen manufacture using pressure swing reforming |
US7045553B2 (en) | 2003-02-28 | 2006-05-16 | Exxonmobil Research And Engineering Company | Hydrocarbon synthesis process using pressure swing reforming |
US7217303B2 (en) | 2003-02-28 | 2007-05-15 | Exxonmobil Research And Engineering Company | Pressure swing reforming for fuel cell systems |
US7053128B2 (en) | 2003-02-28 | 2006-05-30 | Exxonmobil Research And Engineering Company | Hydrocarbon synthesis process using pressure swing reforming |
US7637093B2 (en) | 2003-03-18 | 2009-12-29 | Fluor Technologies Corporation | Humid air turbine cycle with carbon dioxide recovery |
US7401577B2 (en) | 2003-03-19 | 2008-07-22 | American Air Liquide, Inc. | Real time optimization and control of oxygen enhanced boilers |
US7074033B2 (en) | 2003-03-22 | 2006-07-11 | David Lloyd Neary | Partially-open fired heater cycle providing high thermal efficiencies and ultra-low emissions |
US7168265B2 (en) | 2003-03-27 | 2007-01-30 | Bp Corporation North America Inc. | Integrated processing of natural gas into liquid products |
JP2006521494A (ja) | 2003-03-28 | 2006-09-21 | シーメンス アクチエンゲゼルシヤフト | ガスタービンの高温ガスの温度測定装置および温度調整方法 |
US7614352B2 (en) | 2003-04-29 | 2009-11-10 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources | In-situ capture of carbon dioxide and sulphur dioxide in a fluidized bed combustor |
CA2460292C (en) | 2003-05-08 | 2011-08-23 | Sulzer Chemtech Ag | A static mixer |
US7503948B2 (en) | 2003-05-23 | 2009-03-17 | Exxonmobil Research And Engineering Company | Solid oxide fuel cell systems having temperature swing reforming |
DE10325111A1 (de) | 2003-06-02 | 2005-01-05 | Alstom Technology Ltd | Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassende Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens |
US7056482B2 (en) | 2003-06-12 | 2006-06-06 | Cansolv Technologies Inc. | Method for recovery of CO2 from gas streams |
US7043898B2 (en) | 2003-06-23 | 2006-05-16 | Pratt & Whitney Canada Corp. | Combined exhaust duct and mixer for a gas turbine engine |
US6923001B2 (en) * | 2003-07-14 | 2005-08-02 | Siemens Westinghouse Power Corporation | Pilotless catalytic combustor |
DE10334590B4 (de) | 2003-07-28 | 2006-10-26 | Uhde Gmbh | Verfahren zur Gewinnung von Wasserstoff aus einem methanhaltigen Gas, insbesondere Erdgas und Anlage zur Durchführung des Verfahrens |
US7007487B2 (en) | 2003-07-31 | 2006-03-07 | Mes International, Inc. | Recuperated gas turbine engine system and method employing catalytic combustion |
GB0323255D0 (en) | 2003-10-04 | 2003-11-05 | Rolls Royce Plc | Method and system for controlling fuel supply in a combustion turbine engine |
DE10350044A1 (de) | 2003-10-27 | 2005-05-25 | Basf Ag | Verfahren zur Herstellung von 1-Buten |
US6904815B2 (en) | 2003-10-28 | 2005-06-14 | General Electric Company | Configurable multi-point sampling method and system for representative gas composition measurements in a stratified gas flow stream |
NO321817B1 (no) | 2003-11-06 | 2006-07-10 | Sargas As | Renseanlegg for varmekraftverk |
US6988549B1 (en) | 2003-11-14 | 2006-01-24 | John A Babcock | SAGD-plus |
US7032388B2 (en) | 2003-11-17 | 2006-04-25 | General Electric Company | Method and system for incorporating an emission sensor into a gas turbine controller |
US6939130B2 (en) | 2003-12-05 | 2005-09-06 | Gas Technology Institute | High-heat transfer low-NOx combustion system |
US7299619B2 (en) | 2003-12-13 | 2007-11-27 | Siemens Power Generation, Inc. | Vaporization of liquefied natural gas for increased efficiency in power cycles |
US7183328B2 (en) | 2003-12-17 | 2007-02-27 | Exxonmobil Chemical Patents Inc. | Methanol manufacture using pressure swing reforming |
US7124589B2 (en) | 2003-12-22 | 2006-10-24 | David Neary | Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions |
DE10360951A1 (de) | 2003-12-23 | 2005-07-28 | Alstom Technology Ltd | Wärmekraftanlage mit sequentieller Verbrennung und reduziertem CO2-Ausstoß sowie Verfahren zum Betreiben einer derartigen Anlage |
US20050144961A1 (en) | 2003-12-24 | 2005-07-07 | General Electric Company | System and method for cogeneration of hydrogen and electricity |
DE10361823A1 (de) | 2003-12-30 | 2005-08-11 | Basf Ag | Verfahren zur Herstellung von Butadien und 1-Buten |
DE10361824A1 (de) | 2003-12-30 | 2005-07-28 | Basf Ag | Verfahren zur Herstellung von Butadien |
US7096669B2 (en) | 2004-01-13 | 2006-08-29 | Compressor Controls Corp. | Method and apparatus for the prevention of critical process variable excursions in one or more turbomachines |
CA2552644C (en) | 2004-01-20 | 2009-10-06 | Fluor Technologies Corporation | Methods and configurations for acid gas enrichment |
US7305817B2 (en) | 2004-02-09 | 2007-12-11 | General Electric Company | Sinuous chevron exhaust nozzle |
JP2005226847A (ja) | 2004-02-10 | 2005-08-25 | Ebara Corp | 燃焼装置及び燃焼方法 |
US7468173B2 (en) | 2004-02-25 | 2008-12-23 | Sunstone Corporation | Method for producing nitrogen to use in under balanced drilling, secondary recovery production operations and pipeline maintenance |
DE102004009794A1 (de) | 2004-02-28 | 2005-09-22 | Daimlerchrysler Ag | Brennkraftmaschine mit zwei Abgasturboladern |
US6971242B2 (en) | 2004-03-02 | 2005-12-06 | Caterpillar Inc. | Burner for a gas turbine engine |
US8951951B2 (en) | 2004-03-02 | 2015-02-10 | Troxler Electronic Laboratories, Inc. | Solvent compositions for removing petroleum residue from a substrate and methods of use thereof |
US7752848B2 (en) | 2004-03-29 | 2010-07-13 | General Electric Company | System and method for co-production of hydrogen and electrical energy |
CA2561255A1 (en) | 2004-03-30 | 2005-10-13 | Alstom Technology Ltd. | Device and method for flame stabilization in a burner |
WO2005095863A1 (de) | 2004-03-31 | 2005-10-13 | Alstom Technology Ltd | Brenner |
US20050241311A1 (en) | 2004-04-16 | 2005-11-03 | Pronske Keith L | Zero emissions closed rankine cycle power system |
US7302801B2 (en) | 2004-04-19 | 2007-12-04 | Hamilton Sundstrand Corporation | Lean-staged pyrospin combustor |
US7185497B2 (en) | 2004-05-04 | 2007-03-06 | Honeywell International, Inc. | Rich quick mix combustion system |
WO2005108865A1 (en) | 2004-05-06 | 2005-11-17 | New Power Concepts Llc | Gaseous fuel burner |
ITBO20040296A1 (it) | 2004-05-11 | 2004-08-11 | Itea Spa | Combustori ad alta efficienza e impatto ambientale ridotto, e procedimenti per la produzione di energia elettrica da esso derivabili |
US7438744B2 (en) | 2004-05-14 | 2008-10-21 | Eco/Technologies, Llc | Method and system for sequestering carbon emissions from a combustor/boiler |
WO2005119029A1 (en) | 2004-05-19 | 2005-12-15 | Fluor Technologies Corporation | Triple cycle power plant |
US7065972B2 (en) | 2004-05-21 | 2006-06-27 | Honeywell International, Inc. | Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions |
US7010921B2 (en) | 2004-06-01 | 2006-03-14 | General Electric Company | Method and apparatus for cooling combustor liner and transition piece of a gas turbine |
US7377114B1 (en) * | 2004-06-02 | 2008-05-27 | Kevin P Pearce | Turbine engine pulsed fuel injection utilizing stagger injector operation |
US6993916B2 (en) | 2004-06-08 | 2006-02-07 | General Electric Company | Burner tube and method for mixing air and gas in a gas turbine engine |
US7197880B2 (en) | 2004-06-10 | 2007-04-03 | United States Department Of Energy | Lean blowoff detection sensor |
WO2005124231A2 (en) | 2004-06-11 | 2005-12-29 | Vast Power Systems, Inc. | Low emissions combustion apparatus and method |
US7472550B2 (en) | 2004-06-14 | 2009-01-06 | University Of Florida Research Foundation, Inc. | Combined cooling and power plant with water extraction |
JP5202945B2 (ja) | 2004-07-14 | 2013-06-05 | フルオー・テクノロジーズ・コーポレイシヨン | Lng再ガス化と統合された発電のための構造及び方法 |
DE102004039164A1 (de) | 2004-08-11 | 2006-03-02 | Alstom Technology Ltd | Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens |
US7498009B2 (en) | 2004-08-16 | 2009-03-03 | Dana Uv, Inc. | Controlled spectrum ultraviolet radiation pollution control process |
DE102004039927A1 (de) | 2004-08-18 | 2006-02-23 | Daimlerchrysler Ag | Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführeinrichtung |
DE102004040893A1 (de) | 2004-08-24 | 2006-03-02 | Bayerische Motoren Werke Ag | Abgasturbolader |
US7137623B2 (en) | 2004-09-17 | 2006-11-21 | Spx Cooling Technologies, Inc. | Heating tower apparatus and method with isolation of outlet and inlet air |
DK1795510T3 (da) | 2004-09-29 | 2014-06-16 | Taiheiyo Cement Corp | System og fremgangsmåde til behandling af gasstøv udtaget fra cementovnsforbrændingsgas |
EP1795509B1 (en) | 2004-09-29 | 2014-06-18 | Taiheiyo Cement Corporation | System and method for treating dust in gas extracted from cement kiln combustion gas |
JP4626251B2 (ja) | 2004-10-06 | 2011-02-02 | 株式会社日立製作所 | 燃焼器及び燃焼器の燃焼方法 |
US7381393B2 (en) | 2004-10-07 | 2008-06-03 | The Regents Of The University Of California | Process for sulfur removal suitable for treating high-pressure gas streams |
US7434384B2 (en) | 2004-10-25 | 2008-10-14 | United Technologies Corporation | Fluid mixer with an integral fluid capture ducts forming auxiliary secondary chutes at the discharge end of said ducts |
US7762084B2 (en) | 2004-11-12 | 2010-07-27 | Rolls-Royce Canada, Ltd. | System and method for controlling the working line position in a gas turbine engine compressor |
US7357857B2 (en) | 2004-11-29 | 2008-04-15 | Baker Hughes Incorporated | Process for extracting bitumen |
US7389635B2 (en) | 2004-12-01 | 2008-06-24 | Honeywell International Inc. | Twisted mixer with open center body |
US7506501B2 (en) | 2004-12-01 | 2009-03-24 | Honeywell International Inc. | Compact mixer with trimmable open centerbody |
EP1666823A1 (de) | 2004-12-03 | 2006-06-07 | Linde Aktiengesellschaft | Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft |
JP2006183599A (ja) | 2004-12-28 | 2006-07-13 | Nissan Motor Co Ltd | 内燃機関の排気浄化装置 |
DE502005000780D1 (de) | 2005-01-17 | 2007-07-12 | Balcke Duerr Gmbh | Vorrichtung und Verfahren zum Mischen eines Fluidstroms in einem Strömungskanal |
CN1847766A (zh) | 2005-02-11 | 2006-10-18 | 林德股份公司 | 通过与冷却液体直接热交换而冷却气体的方法和装置 |
US20060183009A1 (en) | 2005-02-11 | 2006-08-17 | Berlowitz Paul J | Fuel cell fuel processor with hydrogen buffering |
US7875402B2 (en) | 2005-02-23 | 2011-01-25 | Exxonmobil Research And Engineering Company | Proton conducting solid oxide fuel cell systems having temperature swing reforming |
US7137256B1 (en) | 2005-02-28 | 2006-11-21 | Peter Stuttaford | Method of operating a combustion system for increased turndown capability |
US20060196812A1 (en) | 2005-03-02 | 2006-09-07 | Beetge Jan H | Zone settling aid and method for producing dry diluted bitumen with reduced losses of asphaltenes |
US7194869B2 (en) | 2005-03-08 | 2007-03-27 | Siemens Power Generation, Inc. | Turbine exhaust water recovery system |
EP1858803B1 (en) | 2005-03-14 | 2016-07-06 | Geoffrey Gerald Weedon | A process for the production of hydrogen with co-production and capture of carbon dioxide |
US7681394B2 (en) | 2005-03-25 | 2010-03-23 | The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency | Control methods for low emission internal combustion system |
CA2600363C (en) | 2005-03-30 | 2010-10-05 | Fluor Technologies Corporation | Configurations and methods for thermal integration of lng regasification and power plants |
MX2007011839A (es) | 2005-03-30 | 2007-11-22 | Fluor Tech Corp | Integrado de regasificacion de gas natural licuado con refineria y generacion de energia. |
DE102005015151A1 (de) | 2005-03-31 | 2006-10-26 | Alstom Technology Ltd. | Gasturbinenanlage |
US7906304B2 (en) | 2005-04-05 | 2011-03-15 | Geosynfuels, Llc | Method and bioreactor for producing synfuel from carbonaceous material |
JP2008534862A (ja) | 2005-04-05 | 2008-08-28 | サーガス・エーエス | 低co2火力発電プラント |
DE102005017905A1 (de) | 2005-04-18 | 2006-10-19 | Behr Gmbh & Co. Kg | Vorrichtung zur gekühlten Rückführung von Abgas einer Brennkraftmaschine eines Kraftfahrzeuges |
CA2606756C (en) | 2005-05-02 | 2013-10-08 | Vast Power Portfolio, Llc | Wet compression apparatus and method |
US7827782B2 (en) | 2005-05-19 | 2010-11-09 | Ford Global Technologies, Llc | Method for remediating emissions |
US7874350B2 (en) | 2005-05-23 | 2011-01-25 | Precision Combustion, Inc. | Reducing the energy requirements for the production of heavy oil |
US7789159B1 (en) | 2005-05-27 | 2010-09-07 | Bader Mansour S | Methods to de-sulfate saline streams |
US7980312B1 (en) | 2005-06-20 | 2011-07-19 | Hill Gilman A | Integrated in situ retorting and refining of oil shale |
JP4728176B2 (ja) * | 2005-06-24 | 2011-07-20 | 株式会社日立製作所 | バーナ、ガスタービン燃焼器及びバーナの冷却方法 |
JP5334576B2 (ja) | 2005-06-27 | 2013-11-06 | ソリッド・ガス・テクノロジーズ・リミテッド・ライアビリティ・カンパニー | クラスレートハイドレート生成および解離モジュールを用いたガス流の処理方法 |
US7966822B2 (en) | 2005-06-30 | 2011-06-28 | General Electric Company | Reverse-flow gas turbine combustion system |
US7481048B2 (en) | 2005-06-30 | 2009-01-27 | Caterpillar Inc. | Regeneration assembly |
US7752850B2 (en) | 2005-07-01 | 2010-07-13 | Siemens Energy, Inc. | Controlled pilot oxidizer for a gas turbine combustor |
US7670135B1 (en) | 2005-07-13 | 2010-03-02 | Zeeco, Inc. | Burner and method for induction of flue gas |
US20070044479A1 (en) | 2005-08-10 | 2007-03-01 | Harry Brandt | Hydrogen production from an oxyfuel combustor |
US7976803B2 (en) | 2005-08-16 | 2011-07-12 | Co2Crc Technologies Pty Ltd. | Plant and process for removing carbon dioxide from gas streams |
US7225623B2 (en) | 2005-08-23 | 2007-06-05 | General Electric Company | Trapped vortex cavity afterburner |
EP1757778B1 (de) | 2005-08-23 | 2015-12-23 | Balcke-Dürr GmbH | Abgasführung einer Gasturbine sowie Verfahren zum Vermischen des Abgases der Gasturbine |
US7562519B1 (en) | 2005-09-03 | 2009-07-21 | Florida Turbine Technologies, Inc. | Gas turbine engine with an air cooled bearing |
US7410525B1 (en) | 2005-09-12 | 2008-08-12 | Uop Llc | Mixed matrix membranes incorporating microporous polymers as fillers |
DE102005048911A1 (de) | 2005-10-10 | 2007-04-12 | Behr Gmbh & Co. Kg | Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine |
US7690204B2 (en) | 2005-10-12 | 2010-04-06 | Praxair Technology, Inc. | Method of maintaining a fuel Wobbe index in an IGCC installation |
US7513100B2 (en) | 2005-10-24 | 2009-04-07 | General Electric Company | Systems for low emission gas turbine energy generation |
US7493769B2 (en) | 2005-10-25 | 2009-02-24 | General Electric Company | Assembly and method for cooling rear bearing and exhaust frame of gas turbine |
US7827794B1 (en) | 2005-11-04 | 2010-11-09 | Clean Energy Systems, Inc. | Ultra low emissions fast starting power plant |
ATE494943T1 (de) | 2005-11-07 | 2011-01-15 | Specialist Process Technologies Ltd | Funktionelle flüssigkeit und herstellungsverfahren dafür |
US7765810B2 (en) | 2005-11-15 | 2010-08-03 | Precision Combustion, Inc. | Method for obtaining ultra-low NOx emissions from gas turbines operating at high turbine inlet temperatures |
CA2629631C (en) | 2005-11-18 | 2012-06-19 | Exxonmobil Upstream Research Company | Method of drilling and producing hydrocarbons from subsurface formations |
US20070144747A1 (en) | 2005-12-02 | 2007-06-28 | Hce, Llc | Coal bed pretreatment for enhanced carbon dioxide sequestration |
US7726114B2 (en) | 2005-12-07 | 2010-06-01 | General Electric Company | Integrated combustor-heat exchanger and systems for power generation using the same |
WO2007068682A1 (en) | 2005-12-12 | 2007-06-21 | Shell Internationale Research Maatschappij B.V. | Enhanced oil recovery process and a process for the sequestration of carbon dioxide |
US7634915B2 (en) | 2005-12-13 | 2009-12-22 | General Electric Company | Systems and methods for power generation and hydrogen production with carbon dioxide isolation |
CN101331081A (zh) | 2005-12-16 | 2008-12-24 | 国际壳牌研究有限公司 | 冷却热烟气流的方法 |
US7846401B2 (en) | 2005-12-23 | 2010-12-07 | Exxonmobil Research And Engineering Company | Controlled combustion for regenerative reactors |
US8038773B2 (en) | 2005-12-28 | 2011-10-18 | Jupiter Oxygen Corporation | Integrated capture of fossil fuel gas pollutants including CO2 with energy recovery |
US7909898B2 (en) | 2006-02-01 | 2011-03-22 | Air Products And Chemicals, Inc. | Method of treating a gaseous mixture comprising hydrogen and carbon dioxide |
EP1821035A1 (en) | 2006-02-15 | 2007-08-22 | Siemens Aktiengesellschaft | Gas turbine burner and method of mixing fuel and air in a swirling area of a gas turbine burner |
DE102006024778B3 (de) | 2006-03-02 | 2007-07-19 | J. Eberspächer GmbH & Co. KG | Statischer Mischer und Abgasbehandlungseinrichtung |
EP2040848A1 (en) | 2006-03-07 | 2009-04-01 | Marathon Oil Sands (U.S.A.) Inc. | Processing asphaltene-containing tailings |
US7650744B2 (en) | 2006-03-24 | 2010-01-26 | General Electric Company | Systems and methods of reducing NOx emissions in gas turbine systems and internal combustion engines |
JP4418442B2 (ja) | 2006-03-30 | 2010-02-17 | 三菱重工業株式会社 | ガスタービンの燃焼器及び燃焼制御方法 |
US7591866B2 (en) | 2006-03-31 | 2009-09-22 | Ranendra Bose | Methane gas recovery and usage system for coalmines, municipal land fills and oil refinery distillation tower vent stacks |
US7654320B2 (en) | 2006-04-07 | 2010-02-02 | Occidental Energy Ventures Corp. | System and method for processing a mixture of hydrocarbon and CO2 gas produced from a hydrocarbon reservoir |
US7644573B2 (en) | 2006-04-18 | 2010-01-12 | General Electric Company | Gas turbine inlet conditioning system and method |
US20070249738A1 (en) | 2006-04-25 | 2007-10-25 | Haynes Joel M | Premixed partial oxidation syngas generator |
US20070245736A1 (en) | 2006-04-25 | 2007-10-25 | Eastman Chemical Company | Process for superheated steam |
DE102006019780A1 (de) | 2006-04-28 | 2007-11-08 | Daimlerchrysler Ag | Abgasturbolader in einer Brennkraftmaschine |
US7886522B2 (en) | 2006-06-05 | 2011-02-15 | Kammel Refaat | Diesel gas turbine system and related methods |
JP4162016B2 (ja) | 2006-06-08 | 2008-10-08 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
NO325049B1 (no) | 2006-06-20 | 2008-01-21 | Statoil Asa | Fremgangsmate for a oke energi- og kostnadseffektivitet i et gasskraftverk eller kraftferk; et varmekraftverk for samme og et brennkammer for bruk i tilknytning til slike verk. |
WO2007147216A1 (en) | 2006-06-23 | 2007-12-27 | Bhp Billiton Innovation Pty Ltd | Power generation |
US7691788B2 (en) | 2006-06-26 | 2010-04-06 | Schlumberger Technology Corporation | Compositions and methods of using same in producing heavy oil and bitumen |
US20080006561A1 (en) | 2006-07-05 | 2008-01-10 | Moran Lyle E | Dearomatized asphalt |
BRPI0713299A2 (pt) | 2006-07-07 | 2012-04-17 | Shell Int Research | processo para a fabricação de dissulfeto de carbono, e, uso de uma corrente lìquida |
KR100735841B1 (ko) | 2006-07-31 | 2007-07-06 | 한국과학기술원 | 천연가스 하이드레이트로부터 메탄가스를 회수하는 방법 |
US8409307B2 (en) | 2006-08-23 | 2013-04-02 | Praxair Technology, Inc. | Gasification and steam methane reforming integrated polygeneration method and system |
US20080047280A1 (en) | 2006-08-24 | 2008-02-28 | Bhp Billiton Limited | Heat recovery system |
JP4265634B2 (ja) | 2006-09-15 | 2009-05-20 | トヨタ自動車株式会社 | 電動パーキングブレーキシステム |
WO2008034777A1 (en) | 2006-09-18 | 2008-03-27 | Shell Internationale Research Maatschappij B.V. | A process for the manufacture of carbon disulphide |
US7520134B2 (en) | 2006-09-29 | 2009-04-21 | General Electric Company | Methods and apparatus for injecting fluids into a turbine engine |
JP2008095541A (ja) | 2006-10-06 | 2008-04-24 | Toufuji Denki Kk | ターボチャージャ |
US7942008B2 (en) | 2006-10-09 | 2011-05-17 | General Electric Company | Method and system for reducing power plant emissions |
US7566394B2 (en) | 2006-10-20 | 2009-07-28 | Saudi Arabian Oil Company | Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent |
US7763163B2 (en) | 2006-10-20 | 2010-07-27 | Saudi Arabian Oil Company | Process for removal of nitrogen and poly-nuclear aromatics from hydrocracker feedstocks |
GB0620883D0 (en) | 2006-10-20 | 2006-11-29 | Johnson Matthey Plc | Exhaust system for a lean-burn internal combustion engine |
US7721543B2 (en) | 2006-10-23 | 2010-05-25 | Southwest Research Institute | System and method for cooling a combustion gas charge |
US7492054B2 (en) | 2006-10-24 | 2009-02-17 | Catlin Christopher S | River and tidal power harvester |
US7827778B2 (en) | 2006-11-07 | 2010-11-09 | General Electric Company | Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions |
US7895822B2 (en) | 2006-11-07 | 2011-03-01 | General Electric Company | Systems and methods for power generation with carbon dioxide isolation |
US7739864B2 (en) | 2006-11-07 | 2010-06-22 | General Electric Company | Systems and methods for power generation with carbon dioxide isolation |
US7947115B2 (en) | 2006-11-16 | 2011-05-24 | Siemens Energy, Inc. | System and method for generation of high pressure air in an integrated gasification combined cycle system |
US20080118310A1 (en) * | 2006-11-20 | 2008-05-22 | Graham Robert G | All-ceramic heat exchangers, systems in which they are used and processes for the use of such systems |
US7921633B2 (en) | 2006-11-21 | 2011-04-12 | Siemens Energy, Inc. | System and method employing direct gasification for power generation |
US20080127632A1 (en) | 2006-11-30 | 2008-06-05 | General Electric Company | Carbon dioxide capture systems and methods |
US7789658B2 (en) | 2006-12-14 | 2010-09-07 | Uop Llc | Fired heater |
US7856829B2 (en) | 2006-12-15 | 2010-12-28 | Praxair Technology, Inc. | Electrical power generation method |
US7815873B2 (en) | 2006-12-15 | 2010-10-19 | Exxonmobil Research And Engineering Company | Controlled combustion for regenerative reactors with mixer/flow distributor |
US7802434B2 (en) | 2006-12-18 | 2010-09-28 | General Electric Company | Systems and processes for reducing NOx emissions |
EP1944268A1 (en) | 2006-12-18 | 2008-07-16 | BP Alternative Energy Holdings Limited | Process |
US20080155984A1 (en) | 2007-01-03 | 2008-07-03 | Ke Liu | Reforming system for combined cycle plant with partial CO2 capture |
US7943097B2 (en) | 2007-01-09 | 2011-05-17 | Catalytic Solutions, Inc. | Reactor system for reducing NOx emissions from boilers |
US7819951B2 (en) | 2007-01-23 | 2010-10-26 | Air Products And Chemicals, Inc. | Purification of carbon dioxide |
FR2911667B1 (fr) | 2007-01-23 | 2009-10-02 | Snecma Sa | Systeme d'injection de carburant a double injecteur. |
WO2008090168A1 (en) | 2007-01-25 | 2008-07-31 | Shell Internationale Research Maatschappij B.V. | Process for reducing carbon dioxide emission in a power plant |
EP1950494A1 (de) | 2007-01-29 | 2008-07-30 | Siemens Aktiengesellschaft | Brennkammer für eine Gasturbine |
US20080178611A1 (en) | 2007-01-30 | 2008-07-31 | Foster Wheeler Usa Corporation | Ecological Liquefied Natural Gas (LNG) Vaporizer System |
US7841186B2 (en) | 2007-01-31 | 2010-11-30 | Power Systems Mfg., Llc | Inlet bleed heat and power augmentation for a gas turbine engine |
WO2008099312A2 (en) | 2007-02-12 | 2008-08-21 | Sasol Technology (Proprietary) Limited | Co-production of power and hydrocarbons |
EP1959143B1 (en) | 2007-02-13 | 2010-10-20 | Yamada Manufacturing Co., Ltd. | Oil pump pressure control device |
US8356485B2 (en) | 2007-02-27 | 2013-01-22 | Siemens Energy, Inc. | System and method for oxygen separation in an integrated gasification combined cycle system |
US20080250795A1 (en) | 2007-04-16 | 2008-10-16 | Conocophillips Company | Air Vaporizer and Its Use in Base-Load LNG Regasification Plant |
US20080251234A1 (en) | 2007-04-16 | 2008-10-16 | Wilson Turbopower, Inc. | Regenerator wheel apparatus |
CA2614669C (en) | 2007-05-03 | 2008-12-30 | Imperial Oil Resources Limited | An improved process for recovering solvent from asphaltene containing tailings resulting from a separation process |
US8038746B2 (en) | 2007-05-04 | 2011-10-18 | Clark Steve L | Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production |
US7654330B2 (en) | 2007-05-19 | 2010-02-02 | Pioneer Energy, Inc. | Apparatus, methods, and systems for extracting petroleum using a portable coal reformer |
US7918906B2 (en) | 2007-05-20 | 2011-04-05 | Pioneer Energy Inc. | Compact natural gas steam reformer with linear countercurrent heat exchanger |
US8616294B2 (en) | 2007-05-20 | 2013-12-31 | Pioneer Energy, Inc. | Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery |
FR2916363A1 (fr) | 2007-05-23 | 2008-11-28 | Air Liquide | Procede de purification d'un gaz par cpsa a deux paliers de regeneration et unite de purification permettant la mise en oeuvre de ce procede |
CA2686830C (en) | 2007-05-25 | 2015-09-08 | Exxonmobil Upstream Research Company | A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
US7874140B2 (en) | 2007-06-08 | 2011-01-25 | Foster Wheeler North America Corp. | Method of and power plant for generating power by oxyfuel combustion |
US8850789B2 (en) | 2007-06-13 | 2014-10-07 | General Electric Company | Systems and methods for power generation with exhaust gas recirculation |
WO2008155242A1 (de) | 2007-06-19 | 2008-12-24 | Alstom Technology Ltd | Gasturbinenanlage mit abgasrezirkulation |
US20090000762A1 (en) | 2007-06-29 | 2009-01-01 | Wilson Turbopower, Inc. | Brush-seal and matrix for regenerative heat exchanger, and method of adjusting same |
US7708804B2 (en) | 2007-07-11 | 2010-05-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the separation of a gaseous mixture |
US8061120B2 (en) | 2007-07-30 | 2011-11-22 | Herng Shinn Hwang | Catalytic EGR oxidizer for IC engines and gas turbines |
CA2638588A1 (en) | 2007-08-09 | 2009-02-09 | Tapco International Corporation | Exterior trim pieces with weather stripping and colored protective layer |
US7845406B2 (en) | 2007-08-30 | 2010-12-07 | George Nitschke | Enhanced oil recovery system for use with a geopressured-geothermal conversion system |
EP2188040A1 (en) | 2007-08-30 | 2010-05-26 | Shell Internationale Research Maatschappij B.V. | Process for removal of hydrogen sulphide and carbon dioxide from an acid gas stream |
US8127558B2 (en) | 2007-08-31 | 2012-03-06 | Siemens Energy, Inc. | Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air |
US20090056342A1 (en) | 2007-09-04 | 2009-03-05 | General Electric Company | Methods and Systems for Gas Turbine Part-Load Operating Conditions |
US9404418B2 (en) | 2007-09-28 | 2016-08-02 | General Electric Company | Low emission turbine system and method |
CA2698238C (en) | 2007-10-22 | 2014-04-01 | Osum Oil Sands Corp. | Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil |
US7861511B2 (en) | 2007-10-30 | 2011-01-04 | General Electric Company | System for recirculating the exhaust of a turbomachine |
WO2009070785A2 (en) | 2007-11-28 | 2009-06-04 | Brigham Young University | Carbon dioxide capture from flue gas |
US8220268B2 (en) | 2007-11-28 | 2012-07-17 | Caterpillar Inc. | Turbine engine having fuel-cooled air intercooling |
EP2067941A3 (de) | 2007-12-06 | 2013-06-26 | Alstom Technology Ltd | Kombikraftwerk mit Abgasrückführung und CO2-Abscheidung sowie Verfahren zum Betrieb eines solchen Kombikraftwerks |
US8133298B2 (en) | 2007-12-06 | 2012-03-13 | Air Products And Chemicals, Inc. | Blast furnace iron production with integrated power generation |
US8046986B2 (en) | 2007-12-10 | 2011-11-01 | General Electric Company | Method and system for controlling an exhaust gas recirculation system |
US7536252B1 (en) | 2007-12-10 | 2009-05-19 | General Electric Company | Method and system for controlling a flowrate of a recirculated exhaust gas |
US20090157230A1 (en) | 2007-12-14 | 2009-06-18 | General Electric Company | Method for controlling a flowrate of a recirculated exhaust gas |
JP5118496B2 (ja) | 2008-01-10 | 2013-01-16 | 三菱重工業株式会社 | ガスタービンの排気部の構造およびガスタービン |
GB0800940D0 (en) | 2008-01-18 | 2008-02-27 | Milled Carbon Ltd | Recycling carbon fibre |
US7695703B2 (en) | 2008-02-01 | 2010-04-13 | Siemens Energy, Inc. | High temperature catalyst and process for selective catalytic reduction of NOx in exhaust gases of fossil fuel combustion |
US20090193809A1 (en) | 2008-02-04 | 2009-08-06 | Mark Stewart Schroder | Method and system to facilitate combined cycle working fluid modification and combustion thereof |
CA2713536C (en) | 2008-02-06 | 2013-06-25 | Osum Oil Sands Corp. | Method of controlling a recovery and upgrading operation in a reservoir |
MX2010008819A (es) | 2008-02-12 | 2010-11-05 | Foret Plasma Labs Llc | Metodo, sistema y aparato para combustion con escaso combustible con plasma de arco electrico. |
EP2093403B1 (en) | 2008-02-19 | 2016-09-28 | C.R.F. Società Consortile per Azioni | EGR control system |
US8051638B2 (en) | 2008-02-19 | 2011-11-08 | General Electric Company | Systems and methods for exhaust gas recirculation (EGR) for turbine engines |
JP4979615B2 (ja) * | 2008-03-05 | 2012-07-18 | 株式会社日立製作所 | 燃焼器及び燃焼器の燃料供給方法 |
US20090223227A1 (en) | 2008-03-05 | 2009-09-10 | General Electric Company | Combustion cap with crown mixing holes |
US8448418B2 (en) | 2008-03-11 | 2013-05-28 | General Electric Company | Method for controlling a flowrate of a recirculated exhaust gas |
US7926292B2 (en) | 2008-03-19 | 2011-04-19 | Gas Technology Institute | Partial oxidation gas turbine cooling |
US8001789B2 (en) | 2008-03-26 | 2011-08-23 | Alstom Technologies Ltd., Llc | Utilizing inlet bleed heat to improve mixing and engine turndown |
US7985399B2 (en) | 2008-03-27 | 2011-07-26 | Praxair Technology, Inc. | Hydrogen production method and facility |
CN101981272B (zh) | 2008-03-28 | 2014-06-11 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
CN101981162B (zh) | 2008-03-28 | 2014-07-02 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
EP2107305A1 (en) | 2008-04-01 | 2009-10-07 | Siemens Aktiengesellschaft | Gas turbine system and method |
US8459017B2 (en) | 2008-04-09 | 2013-06-11 | Woodward, Inc. | Low pressure drop mixer for radial mixing of internal combustion engine exhaust flows, combustor incorporating same, and methods of mixing |
US8272777B2 (en) | 2008-04-21 | 2012-09-25 | Heinrich Gillet Gmbh (Tenneco) | Method for mixing an exhaust gas flow |
FR2930594B1 (fr) | 2008-04-29 | 2013-04-26 | Faurecia Sys Echappement | Element d'echappement comportant un moyen statique pour melanger un additif a des gaz d'echappement |
US8240153B2 (en) | 2008-05-14 | 2012-08-14 | General Electric Company | Method and system for controlling a set point for extracting air from a compressor to provide turbine cooling air in a gas turbine |
US8397482B2 (en) | 2008-05-15 | 2013-03-19 | General Electric Company | Dry 3-way catalytic reduction of gas turbine NOx |
CA2718885C (en) | 2008-05-20 | 2014-05-06 | Osum Oil Sands Corp. | Method of managing carbon reduction for hydrocarbon producers |
US20090301054A1 (en) | 2008-06-04 | 2009-12-10 | Simpson Stanley F | Turbine system having exhaust gas recirculation and reheat |
US20100003123A1 (en) | 2008-07-01 | 2010-01-07 | Smith Craig F | Inlet air heating system for a gas turbine engine |
FR2934033B1 (fr) * | 2008-07-15 | 2010-09-03 | Fives Stein | Dispositif de pilotage de bruleurs regeneratifs. |
US7955403B2 (en) | 2008-07-16 | 2011-06-07 | Kellogg Brown & Root Llc | Systems and methods for producing substitute natural gas |
US20100018218A1 (en) | 2008-07-25 | 2010-01-28 | Riley Horace E | Power plant with emissions recovery |
US8110012B2 (en) | 2008-07-31 | 2012-02-07 | Alstom Technology Ltd | System for hot solids combustion and gasification |
US7753972B2 (en) | 2008-08-17 | 2010-07-13 | Pioneer Energy, Inc | Portable apparatus for extracting low carbon petroleum and for generating low carbon electricity |
US7674443B1 (en) | 2008-08-18 | 2010-03-09 | Irvin Davis | Zero emission gasification, power generation, carbon oxides management and metallurgical reduction processes, apparatus, systems, and integration thereof |
WO2010020655A1 (en) | 2008-08-21 | 2010-02-25 | Shell Internationale Research Maatschappij B.V. | Improved process for production of elemental iron |
CN102159810B (zh) | 2008-09-19 | 2013-11-13 | 雷诺卡车公司 | 排气管中的混合装置 |
US7931888B2 (en) | 2008-09-22 | 2011-04-26 | Praxair Technology, Inc. | Hydrogen production method |
US8316784B2 (en) | 2008-09-26 | 2012-11-27 | Air Products And Chemicals, Inc. | Oxy/fuel combustion system with minimized flue gas recirculation |
JP5580320B2 (ja) | 2008-10-14 | 2014-08-27 | エクソンモービル アップストリーム リサーチ カンパニー | 燃焼生成物を制御するための方法およびシステム |
US8454350B2 (en) | 2008-10-29 | 2013-06-04 | General Electric Company | Diluent shroud for combustor |
MX2011005355A (es) | 2008-11-24 | 2011-09-01 | Ares Turbine As | Turbina de gas con combustion externa, aplicando un intercambiador de calor de regeneracion de rotacion. |
EP2192347B1 (en) | 2008-11-26 | 2014-01-01 | Siemens Aktiengesellschaft | Tubular swirling chamber |
CA2646171A1 (en) | 2008-12-10 | 2010-06-10 | Her Majesty The Queen In Right Of Canada, As Represented By The Minist Of Natural Resources Canada | High pressure direct contact oxy-fired steam generator |
CA2974504C (en) | 2008-12-12 | 2021-04-06 | Maoz Betser-Zilevitch | Steam generation process and system for enhanced oil recovery |
EP2248999A1 (en) * | 2008-12-24 | 2010-11-10 | Alstom Technology Ltd | Power plant with CO2 capture |
US20100170253A1 (en) | 2009-01-07 | 2010-07-08 | General Electric Company | Method and apparatus for fuel injection in a turbine engine |
US20100180565A1 (en) | 2009-01-16 | 2010-07-22 | General Electric Company | Methods for increasing carbon dioxide content in gas turbine exhaust and systems for achieving the same |
JP4746111B2 (ja) | 2009-02-27 | 2011-08-10 | 三菱重工業株式会社 | Co2回収装置及びその方法 |
US20100326084A1 (en) | 2009-03-04 | 2010-12-30 | Anderson Roger E | Methods of oxy-combustion power generation using low heating value fuel |
US8127937B2 (en) | 2009-03-27 | 2012-03-06 | Uop Llc | High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes |
US8127936B2 (en) | 2009-03-27 | 2012-03-06 | Uop Llc | High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes |
US8763399B2 (en) * | 2009-04-03 | 2014-07-01 | Hitachi, Ltd. | Combustor having modified spacing of air blowholes in an air blowhole plate |
US20100300102A1 (en) | 2009-05-28 | 2010-12-02 | General Electric Company | Method and apparatus for air and fuel injection in a turbine |
JP5173941B2 (ja) | 2009-06-04 | 2013-04-03 | 三菱重工業株式会社 | Co2回収装置 |
WO2010141777A1 (en) * | 2009-06-05 | 2010-12-09 | Exxonmobil Upstream Research Company | Combustor systems and methods for using same |
JP5383338B2 (ja) | 2009-06-17 | 2014-01-08 | 三菱重工業株式会社 | Co2回収装置及びco2回収方法 |
US8196395B2 (en) | 2009-06-29 | 2012-06-12 | Lightsail Energy, Inc. | Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange |
US8436489B2 (en) | 2009-06-29 | 2013-05-07 | Lightsail Energy, Inc. | Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange |
EP2284359A1 (en) | 2009-07-08 | 2011-02-16 | Bergen Teknologioverføring AS | Method of enhanced oil recovery from geological reservoirs |
US8348551B2 (en) | 2009-07-29 | 2013-01-08 | Terratherm, Inc. | Method and system for treating contaminated materials |
US8479489B2 (en) | 2009-08-27 | 2013-07-09 | General Electric Company | Turbine exhaust recirculation |
MY163113A (en) | 2009-09-01 | 2017-08-15 | Exxonmobil Upstream Res Co | Low emission power generation and hydrocarbon recovery systems and methods |
US10001272B2 (en) | 2009-09-03 | 2018-06-19 | General Electric Technology Gmbh | Apparatus and method for close coupling of heat recovery steam generators with gas turbines |
US9118048B2 (en) * | 2009-09-04 | 2015-08-25 | Lg Fuel Cell Systems Inc. | Engine systems and methods of operating an engine |
US9083020B2 (en) * | 2009-09-04 | 2015-07-14 | Lg Fuel Cell Systems Inc. | Reducing gas generators and methods for generating reducing gas |
US7937948B2 (en) | 2009-09-23 | 2011-05-10 | Pioneer Energy, Inc. | Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions |
EP2301650B1 (en) | 2009-09-24 | 2016-11-02 | Haldor Topsøe A/S | Process and catalyst system for scr of nox |
US8381525B2 (en) | 2009-09-30 | 2013-02-26 | General Electric Company | System and method using low emissions gas turbine cycle with partial air separation |
US20110088379A1 (en) | 2009-10-15 | 2011-04-21 | General Electric Company | Exhaust gas diffuser |
US8337139B2 (en) | 2009-11-10 | 2012-12-25 | General Electric Company | Method and system for reducing the impact on the performance of a turbomachine operating an extraction system |
CN102597418A (zh) | 2009-11-12 | 2012-07-18 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
US20110126512A1 (en) | 2009-11-30 | 2011-06-02 | Honeywell International Inc. | Turbofan gas turbine engine aerodynamic mixer |
US20110138766A1 (en) | 2009-12-15 | 2011-06-16 | General Electric Company | System and method of improving emission performance of a gas turbine |
US8337613B2 (en) | 2010-01-11 | 2012-12-25 | Bert Zauderer | Slagging coal combustor for cementitious slag production, metal oxide reduction, shale gas and oil recovery, enviromental remediation, emission control and CO2 sequestration |
DE102010009043B4 (de) | 2010-02-23 | 2013-11-07 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Statischer Mischer für eine Abgasanlage einer Brennkraftmaschine |
US8438852B2 (en) | 2010-04-06 | 2013-05-14 | General Electric Company | Annular ring-manifold quaternary fuel distributor |
US8635875B2 (en) | 2010-04-29 | 2014-01-28 | Pratt & Whitney Canada Corp. | Gas turbine engine exhaust mixer including circumferentially spaced-apart radial rows of tabs extending downstream on the radial walls, crests and troughs |
US8372251B2 (en) | 2010-05-21 | 2013-02-12 | General Electric Company | System for protecting gasifier surfaces from corrosion |
DE102011102720B4 (de) * | 2010-05-26 | 2021-10-28 | Ansaldo Energia Switzerland AG | Kraftwerk mit kombiniertem Zyklus und mit Abgasrückführung |
CH703218A1 (de) * | 2010-05-26 | 2011-11-30 | Alstom Technology Ltd | Verfahren zum Betreiben eines Gas-und-Dampf-Kombikraftwerk mit Rauchgasrezirkulation sowie Kraftwerk. |
CN103026031B (zh) | 2010-07-02 | 2017-02-15 | 埃克森美孚上游研究公司 | 低排放三循环动力产生系统和方法 |
MY156099A (en) | 2010-07-02 | 2016-01-15 | Exxonmobil Upstream Res Co | Systems and methods for controlling combustion of a fuel |
JP5759543B2 (ja) | 2010-07-02 | 2015-08-05 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼 |
BR112012031153A2 (pt) | 2010-07-02 | 2016-11-08 | Exxonmobil Upstream Res Co | sistemas e métodos de geração de energia de triplo-ciclo de baixa emissão |
US9732675B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
JP5906555B2 (ja) | 2010-07-02 | 2016-04-20 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式によるリッチエアの化学量論的燃焼 |
US8226912B2 (en) | 2010-07-13 | 2012-07-24 | Air Products And Chemicals, Inc. | Method of treating a gaseous mixture comprising hydrogen, carbon dioxide and hydrogen sulphide |
US8268044B2 (en) | 2010-07-13 | 2012-09-18 | Air Products And Chemicals, Inc. | Separation of a sour syngas stream |
US8206669B2 (en) | 2010-07-27 | 2012-06-26 | Air Products And Chemicals, Inc. | Method and apparatus for treating a sour gas |
US9097182B2 (en) | 2010-08-05 | 2015-08-04 | General Electric Company | Thermal control system for fault detection and mitigation within a power generation system |
US9019108B2 (en) | 2010-08-05 | 2015-04-28 | General Electric Company | Thermal measurement system for fault detection within a power generation system |
US8627643B2 (en) | 2010-08-05 | 2014-01-14 | General Electric Company | System and method for measuring temperature within a turbine system |
WO2012018458A1 (en) | 2010-08-06 | 2012-02-09 | Exxonmobil Upstream Research Company | System and method for exhaust gas extraction |
CA2805089C (en) | 2010-08-06 | 2018-04-03 | Exxonmobil Upstream Research Company | Systems and methods for optimizing stoichiometric combustion |
US8220247B2 (en) | 2010-09-13 | 2012-07-17 | Membrane Technology And Research, Inc. | Power generation process with partial recycle of carbon dioxide |
US8220248B2 (en) | 2010-09-13 | 2012-07-17 | Membrane Technology And Research, Inc | Power generation process with partial recycle of carbon dioxide |
US8166766B2 (en) | 2010-09-23 | 2012-05-01 | General Electric Company | System and method to generate electricity |
US8991187B2 (en) | 2010-10-11 | 2015-03-31 | General Electric Company | Combustor with a lean pre-nozzle fuel injection system |
US8726628B2 (en) | 2010-10-22 | 2014-05-20 | General Electric Company | Combined cycle power plant including a carbon dioxide collection system |
US9074530B2 (en) | 2011-01-13 | 2015-07-07 | General Electric Company | Stoichiometric exhaust gas recirculation and related combustion control |
CH704381A1 (de) * | 2011-01-24 | 2012-07-31 | Alstom Technology Ltd | Verfahren zum Betrieb eines Gasturbinenkraftwerks mit Abgasrezirkulation sowie Gasturbinenkraftwerk mit Abgasrezirkulation. |
RU2560099C2 (ru) | 2011-01-31 | 2015-08-20 | Дженерал Электрик Компани | Топливное сопло (варианты) |
TWI563164B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power |
TW201303143A (zh) | 2011-03-22 | 2013-01-16 | Exxonmobil Upstream Res Co | 低排放渦輪機系統中用於攫取二氧化碳及產生動力的系統與方法 |
EA201391364A1 (ru) | 2011-03-22 | 2014-01-30 | Эксонмобил Апстрим Рисерч Компани | Система и способы улавливания диоксида углерода в турбинных системах с низким уровнем выбросов загрязняющих веществ |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
US8101146B2 (en) | 2011-04-08 | 2012-01-24 | Johnson Matthey Public Limited Company | Catalysts for the reduction of ammonia emission from rich-burn exhaust |
US8910485B2 (en) | 2011-04-15 | 2014-12-16 | General Electric Company | Stoichiometric exhaust gas recirculation combustor with extraction port for cooling air |
US8281596B1 (en) | 2011-05-16 | 2012-10-09 | General Electric Company | Combustor assembly for a turbomachine |
US8397514B2 (en) | 2011-05-24 | 2013-03-19 | General Electric Company | System and method for flow control in gas turbine engine |
US8919127B2 (en) | 2011-05-24 | 2014-12-30 | General Electric Company | System and method for flow control in gas turbine engine |
CA2742565C (en) | 2011-06-10 | 2019-04-02 | Imperial Oil Resources Limited | Methods and systems for providing steam |
US8266883B2 (en) | 2011-08-25 | 2012-09-18 | General Electric Company | Power plant start-up method and method of venting the power plant |
US8347600B2 (en) | 2011-08-25 | 2013-01-08 | General Electric Company | Power plant and method of operation |
US8266913B2 (en) | 2011-08-25 | 2012-09-18 | General Electric Company | Power plant and method of use |
US8453462B2 (en) | 2011-08-25 | 2013-06-04 | General Electric Company | Method of operating a stoichiometric exhaust gas recirculation power plant |
US8453461B2 (en) | 2011-08-25 | 2013-06-04 | General Electric Company | Power plant and method of operation |
US8205455B2 (en) | 2011-08-25 | 2012-06-26 | General Electric Company | Power plant and method of operation |
US20120023954A1 (en) | 2011-08-25 | 2012-02-02 | General Electric Company | Power plant and method of operation |
US8713947B2 (en) | 2011-08-25 | 2014-05-06 | General Electric Company | Power plant with gas separation system |
US8245492B2 (en) | 2011-08-25 | 2012-08-21 | General Electric Company | Power plant and method of operation |
US8245493B2 (en) * | 2011-08-25 | 2012-08-21 | General Electric Company | Power plant and control method |
US9127598B2 (en) | 2011-08-25 | 2015-09-08 | General Electric Company | Control method for stoichiometric exhaust gas recirculation power plant |
US20130086917A1 (en) | 2011-10-06 | 2013-04-11 | Ilya Aleksandrovich Slobodyanskiy | Apparatus for head end direct air injection with enhanced mixing capabilities |
WO2013092411A1 (en) * | 2011-12-19 | 2013-06-27 | Alstom Technology Ltd | Control of the gas composition in a gas turbine power plant with flue gas recirculation |
US9097424B2 (en) | 2012-03-12 | 2015-08-04 | General Electric Company | System for supplying a fuel and working fluid mixture to a combustor |
WO2013147632A1 (en) | 2012-03-29 | 2013-10-03 | General Electric Company | Bi-directional end cover with extraction capability for gas turbine combustor |
AU2012375461B2 (en) | 2012-03-29 | 2015-10-29 | Exxonmobil Upstream Research Company | Turbomachine combustor assembly |
US20130255267A1 (en) * | 2012-03-30 | 2013-10-03 | General Electric Company | System and method of improving emission performance of a gas turbine |
US20130269361A1 (en) | 2012-04-12 | 2013-10-17 | General Electric Company | Methods relating to reheat combustion turbine engines with exhaust gas recirculation |
US9353682B2 (en) * | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US8539749B1 (en) * | 2012-04-12 | 2013-09-24 | General Electric Company | Systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation |
CN104769255B (zh) | 2012-04-12 | 2017-08-25 | 埃克森美孚上游研究公司 | 用于化学计量排气再循环燃气涡轮机系统的系统和方法 |
US20130269310A1 (en) | 2012-04-12 | 2013-10-17 | General Electric Company | Systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation |
US20130269357A1 (en) | 2012-04-12 | 2013-10-17 | General Electric Company | Method and system for controlling a secondary flow system |
US20130269358A1 (en) | 2012-04-12 | 2013-10-17 | General Electric Company | Methods, systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation |
US20130269360A1 (en) | 2012-04-12 | 2013-10-17 | General Electric Company | Method and system for controlling a powerplant during low-load operations |
US20130269356A1 (en) | 2012-04-12 | 2013-10-17 | General Electric Company | Method and system for controlling a stoichiometric egr system on a regenerative reheat system |
US20130269355A1 (en) | 2012-04-12 | 2013-10-17 | General Electric Company | Method and system for controlling an extraction pressure and temperature of a stoichiometric egr system |
CN104736817B (zh) | 2012-04-26 | 2017-10-24 | 通用电气公司 | 再循环用于燃气涡轮发动机中多个流动路径中的排气的系统和方法 |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
US20130327050A1 (en) * | 2012-06-07 | 2013-12-12 | General Electric Company | Controlling flame stability of a gas turbine generator |
TWI630021B (zh) * | 2012-06-14 | 2018-07-21 | 艾克頌美孚研究工程公司 | 用於co捕捉/利用和n製造之變壓吸附與發電廠的整合 |
US9347375B2 (en) * | 2012-06-22 | 2016-05-24 | General Electronic Company | Hot EGR driven by turbomachinery |
US20140060073A1 (en) | 2012-08-28 | 2014-03-06 | General Electric Company | Multiple point overboard extractor for gas turbine |
US10584633B2 (en) * | 2012-08-30 | 2020-03-10 | Enhanced Energy Group LLC | Semi-closed cycle turbine power system to produce saleable CO2 product |
WO2014071063A1 (en) * | 2012-11-02 | 2014-05-08 | General Electric Company | System and method for a turbine combustor |
CN105074168B (zh) * | 2012-11-02 | 2018-04-20 | 通用电气公司 | 对具有排气再循环的燃气涡轮系统的化学计量燃烧控制 |
US9631815B2 (en) * | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9803865B2 (en) * | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US20140182304A1 (en) * | 2012-12-28 | 2014-07-03 | Exxonmobil Upstream Research Company | System and method for a turbine combustor |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
WO2014071118A1 (en) | 2012-11-02 | 2014-05-08 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US10161312B2 (en) * | 2012-11-02 | 2018-12-25 | General Electric Company | System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9574496B2 (en) * | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9447732B2 (en) * | 2012-11-26 | 2016-09-20 | General Electric Company | Gas turbine anti-icing system |
US9938861B2 (en) * | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
US9885290B2 (en) * | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US9650958B2 (en) * | 2014-07-17 | 2017-05-16 | General Electric Company | Combustor cap with cooling passage |
-
2014
- 2014-07-28 US US14/444,601 patent/US9903588B2/en active Active
- 2014-07-29 JP JP2016531835A patent/JP6479003B2/ja not_active Expired - Fee Related
- 2014-07-29 WO PCT/US2014/048722 patent/WO2015017454A1/en active Application Filing
- 2014-07-29 CN CN201480053841.7A patent/CN105745419B/zh not_active Expired - Fee Related
- 2014-07-29 EP EP14750915.2A patent/EP3027867B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
US20150033749A1 (en) | 2015-02-05 |
US9903588B2 (en) | 2018-02-27 |
CN105745419A (zh) | 2016-07-06 |
WO2015017454A1 (en) | 2015-02-05 |
EP3027867A1 (en) | 2016-06-08 |
JP6479003B2 (ja) | 2019-03-06 |
EP3027867B1 (en) | 2017-10-04 |
JP2016527439A (ja) | 2016-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105745419B (zh) | 使用排气再循环控制燃气涡轮发动机中的燃烧和排放的系统和方法 | |
CN105593492B (zh) | 用于燃料喷嘴的系统和方法 | |
CN105074139B (zh) | 燃气轮机系统及其操作方法 | |
CN105765196B (zh) | 用于氧化剂加热系统的系统和方法 | |
CN104769255B (zh) | 用于化学计量排气再循环燃气涡轮机系统的系统和方法 | |
CN105008806B (zh) | 用于在化学计量的排气再循环燃气轮机系统中使用氧化剂‑稀释剂混合扩散燃烧的系统和方法 | |
CN107076033B (zh) | 用于化学计量排气再循环燃气涡轮机系统的系统和方法 | |
CN105579687B (zh) | 控制排气再循环燃气涡轮系统中排气流量的系统和方法 | |
CN105189940B (zh) | 用于保护具有排气再循环的气体涡轮发动机中的组件的系统和方法 | |
CN106414952B (zh) | 用于控制利用排气再循环操作燃气涡轮机的燃烧过程的系统和方法 | |
CN105189973B (zh) | 在化学计量的排气再循环燃气轮机系统中用扩散燃烧控制负载的系统和方法 | |
CN106062340B (zh) | 用于燃气涡轮发动机的系统和方法 | |
CN105637206B (zh) | 用于排放来自燃气涡轮发动机的燃烧气体的系统和方法 | |
CN105492728B (zh) | 用于监测具有排气再循环的燃气涡轮机系统的系统和方法 | |
CN107548433B (zh) | 用于具有排气再循环的燃气涡轮发动机中高体积氧化剂流的系统和方法 | |
US9574496B2 (en) | System and method for a turbine combustor | |
US9869279B2 (en) | System and method for a multi-wall turbine combustor | |
CN108141166A (zh) | 响应于电网过频率事件用于化学计量的排气再循环燃气涡轮的系统和方法 | |
CN108590856A (zh) | 化学计量的排气再循环燃气涡轮系统中氧化剂压缩的系统和方法 | |
CN107076023A (zh) | 用于启动具有排气再循环的燃气涡轮机系统传动系的方法和系统 | |
CN107864660A (zh) | 估计具有排气再循环的燃气涡轮的燃烧当量比的系统和方法 | |
CN107850307A (zh) | 用于在具有排气再循环的燃气涡轮系统中的氧化剂通道的系统和方法 | |
CN105074168B (zh) | 对具有排气再循环的燃气涡轮系统的化学计量燃烧控制 | |
WO2014071063A1 (en) | System and method for a turbine combustor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180330 Termination date: 20210729 |