CN1308580C - 使用地下煤层构筑燃料和燃气的密封系统的燃气轮机设备 - Google Patents

使用地下煤层构筑燃料和燃气的密封系统的燃气轮机设备 Download PDF

Info

Publication number
CN1308580C
CN1308580C CNB028221052A CN02822105A CN1308580C CN 1308580 C CN1308580 C CN 1308580C CN B028221052 A CNB028221052 A CN B028221052A CN 02822105 A CN02822105 A CN 02822105A CN 1308580 C CN1308580 C CN 1308580C
Authority
CN
China
Prior art keywords
gas
oxygen
coal seam
turbine
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028221052A
Other languages
English (en)
Other versions
CN1582366A (zh
Inventor
大冈裕二
西蒙斯.保罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001345107A external-priority patent/JP3690514B2/ja
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Publication of CN1582366A publication Critical patent/CN1582366A/zh
Application granted granted Critical
Publication of CN1308580C publication Critical patent/CN1308580C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

本发明的目的在于,提供能够将使用煤层气体产生的二氧化碳几乎全部回收,不使其排放到大气中的燃气轮机系统,特别是提供燃气轮机发电系统。为此,本发明的燃气轮机系统利用由氧气制造装置(3)从空气中分离出的氧气使甲烷气体燃烧,驱动氧气燃烧式燃气轮机(1),将从燃气轮机中排放的二氧化碳与分离氧气之后的空气成分一起压入地下的煤层(7)中,将二氧化碳固定于煤层中,同时利用压入的气体的推压作用将煤层气体回收到地面,作为燃气轮机的燃料提供给燃气轮机,并抑制二氧化碳在大气中的排放。

Description

使用地下煤层构筑燃料和燃气的密封系统的燃气轮机设备
技术领域
本发明涉及将生成的二氧化碳和氮一起压入,用氧气使从地下煤层回收的甲烷气体燃烧,以此实现密封化的燃气轮机设备。
背景技术
由于工业活动的显著活跃,人们更担心人为排放的二氧化碳带来全球规模的环境破坏。特别是由使用矿物燃料的发电设备排放的二氧化碳量大,因而寻求抑制向大气中排放二氧化碳的方法。
对抑制二氧化碳在大气中的排放的要求,在各地的研究正在取得进展,新能源产业技术综合开发机构(NED0),也将减少发电设备的二氧化碳排放量作为目标,正在研究发电效率高的封闭型燃气轮机发电系统。
在这里,正在研究的燃气轮机发电系统,是对具备甲烷氧气燃烧器的密闭循环式燃气轮机,同轴的复合蒸汽轮机的系统。在甲烷氧气燃烧器中,将高压蒸汽轮机排出的蒸汽一起加热,在高温燃气轮机作为驱动气体使用,然后抽出一部分提供给低压蒸汽轮机。
大部分由甲烷氧气燃烧器产生的二氧化碳气体在燃气轮机中循环,但是伴随引向低压蒸汽轮机的蒸汽的部分在蒸汽轮机的冷凝器分离,通过压缩机形成高压气体,然后以适当的方法贮存固定后加以回收。
利用这样将燃气轮机系统封闭化的方法,容易进行二氧化碳的回收,但是为了将其实现,还需要高技术,现在正在研发中。
又,在该新系统使用的回收二氧化碳的方法还没有掌握,但是作为不将由各火力发电厂等排放的二氧化碳排放到大气中作为温室效应气体地进行回收的有希望的方法,已知有例如液化后存储于海底的方法和压入地下含水层中的方法等。存储于海底的方法容量大,特别为人们所期望,但是考虑到数十年或数百年的长时间跨度时,不得不注意二氧化碳气体有可能再次被释放到大气中。
另一方面,随着能源需求的增加,正在开发各种各样的能源,但是煤层中所含的煤层气受到关注。从煤层在世界的分布上来说,煤炭的埋藏量是庞大的。在煤层中存在以甲烷为主成分的大量的煤层气体。然而,以往为防止在开采煤炭时煤层气体的危险,在开采煤炭前将气体充分抽出后,在开采煤炭时向坑道中输送空气以进行换气,将其排放到大气中,或作为厂内的燃料使用。
煤层气体跟煤的本质无关地以吸附在煤上的状态大量存在,已知有将煤暴露在大气中或将流体压入煤层中使煤层气体释放出来的方法。在这里,考虑以不能采掘的煤层或因不合算不能采掘的煤层等为对象,对甲烷气体进行回收利用。
又,煤层处于地下,能吸附二氧化碳加以固定,因此有可能成为有希望的二氧化碳废弃场所。
发明内容
在这里,本发明所要解决的课题是,提供能够将以煤层气体为燃料而产生的二氧化碳几乎全部回收,不使其排放到大气中的燃气轮机系统,特别是燃气轮机发电系统。又,提供一种能够尽量将作为燃料的煤层气体从煤层中大量回收的系统。
为解决上述课题,本发明的燃气轮机设备,其特征在于,将从煤层中回收的煤层气体用从空气中分离出的氧气助燃,以驱动氧气燃烧式燃气轮机,将排出的二氧化碳与分离氧气后的以氮为主要成分的空气一起压入煤层中,将二氧化碳固定在煤层中,同时利用压入气体的作用将煤层甲烷回收到地上,作为燃气轮机的燃料来提供,以此抑制二氧化碳向大气的排放。
又,本发明的燃气轮机设备,其特征在于,具备从空气中提取氧气的氧气制造装置、具备提供用氧气制造装置提取的氧气以使甲烷燃烧的甲烷氧气燃烧器的燃气轮机、从燃气轮机的燃烧气体中分离二氧化碳的排气冷凝器、对由排气冷凝器分离出的二氧化碳和由氧气制造器产生的氮气加压的气体压缩机、向地下煤层送入气体的压送管和从煤层中回收甲烷的回收管。然后,将利用气体压缩机制造的加压气体从压送管压入煤层中,由回收管回收挤压出的甲烷气体,将回收的甲烷气体提供给氧气燃烧器,这样来抑制排放的气体向外部排放。
人们都知道,由于地下的煤层具有吸附能力,一旦将二氧化碳压入,就会被固定在煤层内。另一方面,无论煤的质地如何,煤层中都含有大量的以甲烷为主要成分的煤层气体,将二氧化碳压入煤层中,以使其在煤层中流动,因此可在适当的位置设置回收管将甲烷气体回收到地面上来。
该回收的甲烷作为燃气轮机的燃料使用。
还有,一旦压入包含氧气的气体,甲烷在地下燃烧,这是危险的,且回收气体中可燃成分减少,不能作为燃料使用。从而,将二氧化碳作为压入气体使用时,如果气体量不足,有必要添加非可燃性气体,添加剩下除氧气外的氮气等非可燃性气体的空气,就不必担心燃烧了。
还有,在利用压入二氧化碳的方法回收煤层气体时,可以在长时间地回收,但回收总量不十分大。另一方面,也可以通过压入氮气的方法进行回收,在这种情况下初期会释放出大量的煤层气体,但是很快就不再释放了,所以也不能充分回收。
但是又了解到,最初加大氮气的比例,随着时间的经过,逐渐增加二氧化碳的比例,则相比之下,一开始,能够得到大量的煤层气体,而且随着时间的推移生成量并不大降低,最后的回收总量也可以达到只用二氧化碳的情况下的例如5倍左右。
在这里,由燃气轮机设备所产生的二氧化碳与分离氧气后以氮气比例增大的空气混合后压入地下煤层时,最好是操作初期加大氮气的比例,经过一段时间后,降低氮气的比例,以确保煤层气体的回收量。
本发明的燃气轮机设备,将从地层中的煤层回收的甲烷气体作为燃料,分离空气中的氧气作为助燃剂在燃烧器中使其燃烧,将由燃烧器产生的二氧化碳和从空气中分离的氮气一起压入地下的煤层中并使其固定在煤层内。从而,将所产生的二氧化碳气体大体上全部都固定在地层中,能够不向大气中排放。并且,为回收煤层中的甲烷,利用了抽取氧气后的空气和二氧化碳,因此并不浪费。
本发明的燃气轮机设备,也可以将燃气轮机旋转轴与发电机连接。还可以在所述燃气轮机的燃烧气体排出配管上具备废热回收锅炉,具备蒸汽轮机发电机,将该废热回收锅炉制造的蒸汽提供给该蒸汽轮机发电机进行发电。
这些在燃气轮机或蒸汽轮机上连接发电机的发电设备,能够把燃料燃烧产生的二氧化碳几乎全部固定在地下的煤层中,因此不会像已有的发电厂那样在发电的同时向大气排放二氧化碳,导致环境污染和地球温室化。
本发明的上述目的、附加目的、特征和优点在参照附图对最佳实施形态进行详细说明之后会更加清楚。
附图说明
图1为本发明第1实施形态中燃气轮机设备的方框图。
图2说明煤层气体回收量随时间变化的曲线图。
图3表示使用本实施例的工厂的材料平衡例。
具体实施方式
以下参照附图对本发明的实施形态进行说明。
图1为表示本发明的燃气轮机设备的实施例的方框图,图2是说明以压入气体作为参数的煤层气体回收量随时间而变化的曲线图,图3表示使用本实施例的工厂的材料平衡图。
图1所示的燃气轮机设备由燃气轮机装置1、蒸汽轮机装置2、氧气制造装置3、以及二氧化碳气体·煤层气体的处理设备构成。
燃气轮机装置1具备压缩机11、甲烷氧气燃烧器12、燃气轮机13和燃气轮机发电机14。压缩机11与燃气轮机13及燃气轮机发电机14同轴连接,利用燃气轮机13的旋转力进行发电分配给用户。
在甲烷氧气燃烧器12中,将氧气和以甲烷为主要成分的煤层气体直接喷雾使其燃烧,将燃烧气体引入燃气轮机13进行驱动。在燃气轮机13的排气中含有大量由煤层气体燃烧所产生的二氧化碳和水。
在燃气轮机13的排气配管上设有排气冷凝器15,排出气体被引入排气冷凝器15,冷凝水被回收,不冷凝的二氧化碳气体和稀释气体返回压缩机11。
这时,在燃气轮机装置1不被循环使用的剩余气体作为回收气体被输送到气体压缩舱4。由于回收气体是从排气中除去水得到的,所以与在燃气轮机中新产生的气体含有相同量的二氧化碳。
又在燃气轮机的排气配管上设置废热回收锅炉21,由回收的排气的热产生蒸汽,利用蒸汽轮机装置2发电提供给用户。
废热回收锅炉21利用排气将由供水泵28供给的水加热后输送到蒸汽轮机发电机22。发电机23附设于蒸汽轮机22上。在蒸汽轮机22中减压后的蒸汽在冷凝器24中变成水,通过冷凝水泵25、供水加热器26、脱气器27后由供水泵28提供应给废热回收锅炉21。水再成为高温蒸汽,驱动蒸汽轮机22,由发电机23发电提供给用户。
本燃气轮机设备上附设氧气制造装置3。
氧气制造装置3是从空气中分离氧气的装置,例如将空气冷却后根据沸点差分离氧气。由氧气制造装置3制造的氧气被输送到甲烷氧气燃烧器12,抽出氧气后的以氮为主要成分的空气成分被输送到气体压缩舱4。
二氧化碳气体·煤层气体处理设备由气体压缩舱4、压送管5和回收管6构成。气体压缩舱4将氧气以外的空气成分和二氧化碳一起加压,向达到地下煤层7的压送管5输送,从压送管5的在煤层7的位置上开设的开口压入煤层7。
在适当离开压送管5的位置上设置达到煤层7的回收管6。回收管6上,在抵住煤层7的位置上设有开口。煤层7中含有以甲烷为主要成分的大量的煤层气体,所以能用回收管6将流入的煤层气体回收到地面上来。又,在煤层气体压力不足的情况下,也可以利用设在地面上的抽气装置的力量将其回收到地面上来。
将含有二氧化碳和氮气的气体压入煤层7时,利用所谓的气体推压作用将煤层气体推压,使其集中到压力比周围低的回收管6的方向上。因此,在适当的位置上设置回收管6,将回收气体压入,能够高效率地将以甲烷为主成分的煤层气体回收到地面上来。
该煤层气体被提供给甲烷氧气燃烧器12作为燃气轮机的燃料使用。
还有,煤层气体的回收率因压入气体的组成而变化。
图2是在不同组成的情况下煤层气体的回收量随时间(横轴)而变化的概念性说明图。
在只使用二氧化碳的情况下,逐渐增加煤层气体的回收量,不久就保持在大致一定的回收量上,并长时期地持续保持在这个状态上。与此不同,在仅使用氮气时,在初期回收量急剧增加,不久回收量又急剧减少。
而且可以了解到,在使用适当混合的氮气和二氧化碳混合气体的时,不仅能回收的煤层气体总量显著增多,而且通过按照时间的经过控制氮气和二氧化碳的成分比例,在初期氮气的比例大,然后逐渐缩小其比例,能够较快达到一定的回收量,而且回收量增大,回收总量与仅用二氧化碳的情况相比大到例如5倍左右。
从而,在本实施例的燃气轮机设备中,最好是也具备压入气体组成调整手段,能够随着时间的经过最合适地改变氮气和二氧化碳气体的成分比。
还有,如果压入含有氧气的气体,使甲烷在地下燃烧是危险的,而且也会使回收气体中的可燃成分减少,不能作为燃料使用。因而,将二氧化碳作为压入气体使用时如果气体量不足,则有必要添加非可燃性气体,像本实施例这样,使用除去氧气后留下氮气等非可燃性气体的空气,就不担心煤层气体在地下燃烧了。
还有,地下的煤层7由于具有吸附能力,所以压入的二氧化碳不返回到地面上而是被固定在煤层内,因此如果使用本实施例的燃气轮机设备,就不向大气中排放二氧化碳。
又,利用氧气使甲烷燃烧的方式,不同于在含有氧气的空气中燃烧的情况,排出气体中不含有NOX(氮的氧化物),因此对大气污染的程度小,是很理想的。
又,煤层气体未必在优质煤层中大量地产生,在已经结束商业采掘的劣质煤层和泥碳等低品质泥炭层中也能进行回收,因而也可以将本发明的燃气轮机设备作为煤田的再生利用手段来使用。
图3表示本发明使用于公称输出功率为7MW规模的发电厂时的材料平衡例。
作为对象的发电设备具备使用16.69×106千卡/小时(kcal/hr)的天然气作为燃料,用21.5千克/秒(kg/sec)的空气,在大气温度15℃,有5670kW的输出的燃气轮机发电装置和具有2300kW功率的蒸汽轮机发电装置。总输出为7980kW。
在使用甲烷气体占100%的煤层气体时,该装置需要煤层气体为1950m3/小时。为了使该煤层气体完全燃烧,需要供应至少3900m3/小时的氧气。还有,所述燃气轮机发电装置在供给包含该数量的约3倍的氧气的空气的过量供应的状态下运行,而如果使用纯氧,能够提高效率,因此在图3中为探讨实际可行性,使用不考虑燃烧损耗的值。
由燃烧所产生的水为3136千克/小时,用于驱动蒸汽轮机装置的蒸汽的流量根据热平衡计算为11300千克/小时。
为从空气中分离氧气所需要的动力为每1m3氧气0.33kW,因此制造3900m3/小时氧气时要消耗1288kW电力。又估计除此以外设备自身消耗的电力约400kW,以此推算出能向外部供电5490kW。
又,同时制造的氮气为15600m3/小时,所需空气为27870m3/小时。
燃烧产生的二氧化碳为1950m3/小时,假设开工率为80%,一年中就达到7273吨,但是这些二氧化碳能全部固定在煤层中。
又,如果使用氮气和二氧化碳的混合气体,则甲烷的产量就会达到原来的5倍,为了得到1950m3/小时的煤层气体,估计例如在北海道空知支厅的赤平煤矿中设置的3个甲烷回收井增加到6个也能对付了。
本系统能将设备内产生的全部二氧化碳气体与氮气一起压入煤层中固定,因此不将二氧化碳排放到大气层中,利用压入气体从煤层回收的煤层气体被用来发电,其结果是,以此能向外部供应电力5500kW。发电效率为28.2%,其电力供应能力为每年38.4×106kWh。
对于本行业的普通技术人员来说,根据上述说明,可以知道本发明的很多改良及其他的实施形态。从而,上述的说明,应该只解释为例示,是为对本行业的普通技术人员说明实现本发明的最佳形态的示教的例子。在不脱离本发明的精神的情况下,可以对其构造和/或功能进行实质性变更。
产业上应用的可能性
用本发明的燃气轮机设备发电时,将使用燃气轮机所产生的二氧化碳压入地下的煤层中,将煤层气体压出使用,同时将二氧化碳固定在煤层中,因而能防止向大气中排放二氧化碳造成对环境的破坏。
又,能将从地下煤层中回收的甲烷气体作为燃气轮机的燃料来使用,因此可以将燃料的生产和排气的处理构筑为封闭系统。

Claims (5)

1.一种燃气轮机设备的运行方法,其特征在于,包括如下所述的工序:
从煤层中回收甲烷气体的工序,
从空气中分离出氧气的工序,
用分离出的氧气助燃使所述甲烷气体燃烧,以燃烧产生的燃烧气体驱动氧气燃烧式燃气轮机的工序,
将所述燃气轮机排出的二氧化碳与分离氧气后的以氮为主要成分的空气一起压入煤层中,以此将其固定,同时促进从煤层回收甲烷气体的工序,
将甲烷气体提供给所述燃气轮机的工序。
2.根据权利要求1所述的方法,其特征在于,在操作开始时使送入煤层的气体的组成中氮气成分较多,然后随着时间的经过增加二氧化碳成分,以此增加煤层气体的回收量。
3.一种燃气轮机设备,其特征在于,具备:
从空气中提取氧气的氧气制造装置、
具备提供用氧气制造装置提取的氧气以使甲烷燃烧的甲烷氧气燃烧器的氧气燃烧式燃气轮机、
从燃气轮机的燃烧气体中分离二氧化碳的排气冷凝器、
对由排气冷凝器分离出的二氧化碳和由氧气制造器产生的氮气加压的气体压缩机、
向地下煤层送入气体的压送管和从煤层中回收甲烷的回收管,
形成能够利用气体压缩机制造的加压气体从所述压送管压入煤层中,由回收管回收挤压出的甲烷气体,将该回收的甲烷气体提供给所述氧气燃烧器的结构。
4.根据权利要求3所述的燃气轮机设备,其特征在于,所述燃气轮机的旋转轴连接着进行发电的发电机。
5.根据权利要求3或4所述的燃气轮机设备,其特征在于,而且,在所述燃气轮机的燃烧气体排出配管上具备废热回收锅炉,具备使用所述废热回收锅炉制造的蒸汽进行发电用的蒸汽轮机发电机。
CNB028221052A 2001-11-09 2002-11-08 使用地下煤层构筑燃料和燃气的密封系统的燃气轮机设备 Expired - Fee Related CN1308580C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001345107A JP3690514B2 (ja) 2001-06-22 2001-11-09 地下の石炭層を用いて燃料と燃焼ガスのクローズドシステムを構築したガスタービン設備
JP345107/2001 2001-11-09

Publications (2)

Publication Number Publication Date
CN1582366A CN1582366A (zh) 2005-02-16
CN1308580C true CN1308580C (zh) 2007-04-04

Family

ID=19158506

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028221052A Expired - Fee Related CN1308580C (zh) 2001-11-09 2002-11-08 使用地下煤层构筑燃料和燃气的密封系统的燃气轮机设备

Country Status (6)

Country Link
US (1) US7143572B2 (zh)
CN (1) CN1308580C (zh)
AU (1) AU2002354393B2 (zh)
CA (1) CA2465384C (zh)
GB (1) GB2397349B (zh)
WO (1) WO2003040531A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428024A (zh) * 2009-07-13 2012-04-25 川崎重工业株式会社 氢制造方法及氢制造系统

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040226299A1 (en) * 2003-05-12 2004-11-18 Drnevich Raymond Francis Method of reducing NOX emissions of a gas turbine
UA88280C2 (ru) * 2003-09-30 2009-10-12 Биэйчпи Биллитон Инновейшн Питивай Лтд Способ выработки электроэнергии с помощью газовой турбины и паровой турбины (варианты) и устройство для него
JP4068546B2 (ja) * 2003-10-30 2008-03-26 株式会社日立製作所 ガスタービン発電設備及びその運用方法
US7363883B2 (en) * 2004-03-19 2008-04-29 Mitsubishi Heavy Industries, Ltd. Gas engine electric power generating system effectively utilizing greenhouse gas emission credit
GB0502608D0 (en) * 2005-02-09 2005-03-16 Rolls Royce Plc A fuel processor
DE102005026534B4 (de) * 2005-06-08 2012-04-19 Man Diesel & Turbo Se Dampferzeugungsanlage
GB2446998B (en) * 2005-12-21 2011-06-08 Vetco Gray Scandinavia As Method and apparatus for sub sea power generation
EP1991770A4 (en) * 2006-02-21 2013-08-21 Clean Energy Systems Inc HYBRID OXY-FUEL COMBUSTION POWER GENERATION PROCESS
WO2007147216A1 (en) * 2006-06-23 2007-12-27 Bhp Billiton Innovation Pty Ltd Power generation
AU2008227164B2 (en) 2007-03-22 2014-07-17 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
WO2008153697A1 (en) 2007-05-25 2008-12-18 Exxonmobil Upstream Research Company A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US20080314018A1 (en) * 2007-06-08 2008-12-25 Subhash Chander Operation of internal combustion (IC) engines and gas turbines with concurrently generated oxygen enriched air
MY153097A (en) 2008-03-28 2014-12-31 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
MY156350A (en) 2008-03-28 2016-02-15 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US20100024433A1 (en) * 2008-07-30 2010-02-04 John Frederick Ackermann System and method of operating a gas turbine engine with an alternative working fluid
US8806849B2 (en) * 2008-07-30 2014-08-19 The University Of Wyoming System and method of operating a power generation system with an alternative working fluid
US20100024378A1 (en) * 2008-07-30 2010-02-04 John Frederick Ackermann System and method of operating a gas turbine engine with an alternative working fluid
CN101666264A (zh) * 2008-09-07 2010-03-10 胜利油田胜利动力机械集团有限公司 活塞往复式低浓度瓦斯发电机组
EA026915B1 (ru) 2008-10-14 2017-05-31 Эксонмобил Апстрим Рисерч Компани Способы и системы для регулирования продуктов горения
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9353940B2 (en) 2009-06-05 2016-05-31 Exxonmobil Upstream Research Company Combustor systems and combustion burners for combusting a fuel
SG10201407421UA (en) * 2009-11-12 2014-12-30 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
CA2787422A1 (en) * 2010-02-08 2011-08-11 Shell Internationale Research Maatschappij B.V. Power plant with magnetohydrodynamic topping cycle
CN102959203B (zh) 2010-07-02 2018-10-09 埃克森美孚上游研究公司 通过排气再循环的浓缩空气的化学计量燃烧
MY164051A (en) 2010-07-02 2017-11-15 Exxonmobil Upstream Res Co Low emission triple-cycle power generation systems and methods
MY156099A (en) 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
SG186158A1 (en) 2010-07-02 2013-01-30 Exxonmobil Upstream Res Co Low emission power generation systems and methods
CN102959202B (zh) 2010-07-02 2016-08-03 埃克森美孚上游研究公司 集成系统、发电的方法和联合循环发电系统
CA2805089C (en) 2010-08-06 2018-04-03 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
CN102588115A (zh) * 2011-01-06 2012-07-18 胡达 煤层气余热发电系统
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
US20130036723A1 (en) * 2011-08-08 2013-02-14 Air Liquide Process And Construction Inc. Oxy-combustion gas turbine hybrid
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
CN104428490B (zh) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 提高的煤层甲烷生产
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
WO2013165711A1 (en) 2012-05-04 2013-11-07 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
WO2014047685A1 (en) * 2012-09-26 2014-04-03 Linc Energy Ltd Power production from ucg product gas with carbon capture
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
DE102013200101A1 (de) * 2013-01-07 2014-07-10 Siemens Aktiengesellschaft Gasturbinenanlage als flexibles Ausgleichskraftwerk
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
EP2964735A1 (en) 2013-03-08 2016-01-13 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
CN103352686B (zh) * 2013-07-23 2015-11-18 河南理工大学 煤层气排采井井口气水快速高效分离装置
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
CN104018813A (zh) * 2014-05-31 2014-09-03 贵州盘江煤层气开发利用有限责任公司 一种煤层气开采方法
EP3161439B1 (en) * 2014-06-25 2019-01-30 Saab Ab Optical fibre sensor system for detecting temperature changes in an aircraft
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
AU2015350481A1 (en) 2014-11-21 2017-05-25 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN104806390B (zh) * 2015-04-09 2017-12-08 煤炭工业太原设计研究院 利用矿井乏风作为燃料的内燃机发电系统
CN113871653A (zh) * 2015-11-26 2021-12-31 彭斯干 零碳排放化石燃料发电方法及装置系统
US10971971B1 (en) * 2016-01-07 2021-04-06 Jens Ole Sorensen Converting potential energy from a mixture of fluids into electric power
CA3015567A1 (en) * 2016-02-23 2017-08-31 Sigan Peng Process and equipment of fossil fuel power generation with zero carbon emission
US11280323B2 (en) 2017-12-13 2022-03-22 Kang Zhou Geothermal energy system and method of producing power using same
WO2019116104A2 (en) * 2017-12-13 2019-06-20 Zhejiang Planet Rose New Energy Co.,Ltd. Geothermal energy system and method of producing power using s
US11588332B2 (en) * 2020-08-04 2023-02-21 Glenrock Ventures II, LLC Hybrid power generation system combines renewable energy with direct-air-capture (DAC)
CN114320447A (zh) * 2022-01-07 2022-04-12 北京科技大学 一种深部难采煤层碳资源高效利用与二次封存方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831205A2 (en) * 1996-09-20 1998-03-25 Kabushiki Kaisha Toshiba Power generation system capable of separating and recovering carbon dioxide
WO1999041490A1 (en) * 1998-02-13 1999-08-19 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with co2 sequestration

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434613A (en) * 1981-09-02 1984-03-06 General Electric Company Closed cycle gas turbine for gaseous production
DE3415224A1 (de) * 1984-04-21 1985-10-24 Kraftwerk Union AG, 4330 Mülheim Gasturbinen- und dampfkraftwerk mit einer integrierten kohlevergasungsanlage
US5439054A (en) 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
US5402847A (en) 1994-07-22 1995-04-04 Conoco Inc. Coal bed methane recovery
US5724805A (en) 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
AU2001276823A1 (en) * 2000-05-12 2001-12-03 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
US6868677B2 (en) * 2001-05-24 2005-03-22 Clean Energy Systems, Inc. Combined fuel cell and fuel combustion power generation systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831205A2 (en) * 1996-09-20 1998-03-25 Kabushiki Kaisha Toshiba Power generation system capable of separating and recovering carbon dioxide
WO1999041490A1 (en) * 1998-02-13 1999-08-19 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with co2 sequestration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428024A (zh) * 2009-07-13 2012-04-25 川崎重工业株式会社 氢制造方法及氢制造系统
CN102428024B (zh) * 2009-07-13 2014-10-08 川崎重工业株式会社 氢制造方法及氢制造系统

Also Published As

Publication number Publication date
GB2397349A (en) 2004-07-21
GB0410017D0 (en) 2004-06-09
US20050011179A1 (en) 2005-01-20
CN1582366A (zh) 2005-02-16
AU2002354393B2 (en) 2005-06-23
CA2465384A1 (en) 2003-05-15
US7143572B2 (en) 2006-12-05
WO2003040531A1 (fr) 2003-05-15
GB2397349B (en) 2005-09-21
CA2465384C (en) 2008-09-09

Similar Documents

Publication Publication Date Title
CN1308580C (zh) 使用地下煤层构筑燃料和燃气的密封系统的燃气轮机设备
US7282189B2 (en) Production of hydrogen and removal and sequestration of carbon dioxide from coal-fired furnaces and boilers
CN101283220B (zh) 允许俘获产生的所有二氧化碳的氧化燃烧法
CN101187338B (zh) 具有二氧化碳隔离的发电系统和方法
US6877322B2 (en) Advanced hybrid coal gasification cycle utilizing a recycled working fluid
KR101824267B1 (ko) 특히 배출물이 없는 에너지 발생을 위한 탄소 함유 물질의 열적-화학적 이용
US8975458B2 (en) Carbon-based durable goods and renewable fuel from biomass waste dissociation
CN1097707C (zh) 地热发电系统
CN101287893B (zh) 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法
CN103442783A (zh) 用于在低排放涡轮机系统中捕获二氧化碳的系统和方法
EA012886B1 (ru) Способ повышения добычи нефти и газа
CN1539051A (zh) 整合的空气分离和发电方法
CN101506499A (zh) 动力产生
CN103080501A (zh) 能量产生系统及其方法
CN103590795A (zh) 回注co2废气提高天然气采收率和co2地质封存一体化的方法
JP3690514B2 (ja) 地下の石炭層を用いて燃料と燃焼ガスのクローズドシステムを構築したガスタービン設備
CN106014512A (zh) 一种基于超临界二氧化碳的煤基燃料纯氧燃烧发电系统及方法
CN1824934A (zh) 烧重质油改质燃料的燃气轮机系统及其运转方法
JP2016514033A (ja) 燃焼排ガスからの二酸化炭素回収プロセス
CN103534462A (zh) 气化器发电站和废物管理
CN111023121A (zh) 一种综合利用垃圾填埋气余热发电的处置系统及方法
CN114046172B (zh) 基于二氧化碳工艺和模块化设计的煤火治理利用系统及方法
US20130036748A1 (en) System and method for producing carbon dioxide for use in hydrocarbon recovery
CN106281469B (zh) 一种高压低温气体能源系统
CN107829825A (zh) 联产水的燃气轮机系统及燃气轮机联产水的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070404

Termination date: 20181108