CN106148760A - 用于3D打印的医用β钛合金粉体材料及其制备方法 - Google Patents

用于3D打印的医用β钛合金粉体材料及其制备方法 Download PDF

Info

Publication number
CN106148760A
CN106148760A CN201610513072.5A CN201610513072A CN106148760A CN 106148760 A CN106148760 A CN 106148760A CN 201610513072 A CN201610513072 A CN 201610513072A CN 106148760 A CN106148760 A CN 106148760A
Authority
CN
China
Prior art keywords
titanium alloy
powder body
body material
alloy powder
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610513072.5A
Other languages
English (en)
Other versions
CN106148760B (zh
Inventor
金霞
冒爱琴
刘平
张腾辉
龙郑易
崔良
丁洪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Yatong New Materials Co ltd
Original Assignee
Zhejiang Asia General Soldering & Brazing Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Asia General Soldering & Brazing Material Co Ltd filed Critical Zhejiang Asia General Soldering & Brazing Material Co Ltd
Priority to CN201610513072.5A priority Critical patent/CN106148760B/zh
Publication of CN106148760A publication Critical patent/CN106148760A/zh
Application granted granted Critical
Publication of CN106148760B publication Critical patent/CN106148760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种用于3D打印的医用β钛合金粉体材料及其制备方法。所述的β钛合金分子式为Ti25Nb10Ta1ZrxR,其中各自元素的重量百分比为,Nb:25%;Ta:10%;Zr:1%;R为稀土,x的取值范围为0.05~0.1;余量为Ti,其中R为Y、La、Ce和Er中的至少一种;Ta为Ti20Ta合金。钛合金粉体材料采用电极感应熔炼气雾化来制备,即将中频感应熔炼、精炼完的金属液体铸入磨具获得金属铸棒,作为电极感应气雾化的自耗式电极;然后利用电极感应雾化法制备该粉体材料。该方法制备的高强度低模量粉体材料Ti25Nb10Ta1Zr0.1R纯度高、球形度好、无毒,打印后的钛合金强度高(屈服强度800~850Mpa,抗拉强度1100~1250Mpa)、弹性模量低(35~40Gpa)。本发明所提供的制备方法适合大规模工业生产且对环境无污染,绿色环保。

Description

用于3D打印的医用β钛合金粉体材料及其制备方法
技术领域
本发明属于一种钛合金粉体材料及制备方法,特别涉及一种3D打印用高强度低模量医用钛合金粉体材料及电极感应熔炼气雾化即无坩埚熔炼制备方法。
背景技术
生物医用钛合金具有比重小、比强度高、模量低、耐腐蚀、易切削加工以及优良的生物相容性等特点,正逐渐取代不锈钢和钴基合金等传统生物医用金属材料,成为用于诊断、治疗或替代人体组织、器官或增进其功能的新型医用载体材料,已经成为人工关节、骨创伤产品、人工牙种植体等硬组织替代或修复医疗器械产品的优选材料。生物医用钛材料的发展可分为三阶段。第一阶段为α型医用钛合金,以纯钛和Ti-6Al-4V合金为代表,但是在使用过程中会析出微量的钒和铝离子,降低了其细胞适应性,有可能对人体造成危害,且V的生物毒性要超过Ni和Cr。第二阶段是α+β型医用钛合金,以Ti5Al2.5Fe和Ti6Al7Nb为代表,但这两种合金仍然含有对人体有不良反应的Al和Fe元素。这两阶段的医用钛合金模量高于骨的模量,容易造成植入材料与人体骨界面上力学性能的不匹配。第三阶段为无毒新型β型医用钛合金,该新型β医用钛合金具有更低的模量,更加优异的生物相容性以及耐蚀性能,因此受到越来越多的关注,已成为当前研究的热点。目前关于新型β型医用钛合金的研究主要集中在如何同时保持高的强度和低的模量,进一步提高其塑性和超弹性能。
3D打印技术可实现材料制备与复杂零件“近净成型”制造一体化,无需零件毛坯制备和模具加工,直接从计算机生成的零件CAD实体模型“生长”出净形零件产品。3D打印技术的发展为医用钛合金产品的制备提供了一种全新的柔性制备技术,解决了钛及钛合金在加工制备方面的困难。3D打印对钛合金粉末材料的粒度分布、松装密度、氧含量、流动性等性能有非常苛刻的要求,而且钛合金粉末的合金成分、固-液界面能、固相生长情况以及烧结金属粉末的凝固过程和致密化的机理等因素都影响着最终产品的显微组织。
目前钛合金粉体的制备主要有:元素粉末混合法、机械合金化法和预合金化制备法三种。元素混合法是将元素粉末按合金成分配比直接混合制得合金粉的一种方法,由于预混合粉末中不同种类的金属元素之间密度、熔点、比热和膨胀系数等热物理性能存在差异,组成不可能完全均一。机械合金化法是将钛合金元素粉按配比在高能球磨机中强行混熔,从而得到合金化粉末。中国专利CN105603255A通过合理的成分设计,通过烧结再合金化均匀,采用机械合金化获得合金粉末,制备出均匀的并且兼容性好的3D打印制备医用钛合金材料。该钛合金粉体的质量百分比组成为:Ni:11-18%,Al:7.3-8.9%,Cu:0.56-0.9%,Zr:1.2-1.7%,Mo:0.2-0.4%,Fe:1-2.8%,Ag:0.1-0.5%,Nd:0.6-1%,V:0.5-0.8%,Y:1-2%,CeO2:1-3%,LaB6:0.1-3.3%,余量为Ti。该方法制备钛合金粉体只适合小规模生产、制备出的粉体受环境污染严重,不仅存在夹杂物含量高、氧含量偏高等缺点,而且粒度分布范围广。预合金化法主要有旋转电极法、单棍快淬和气体雾化法等,其中旋转电极法因其动平衡问题,主要制备20目左右的粗粉;单棍快淬法制备的粉末多为不规则形状、杂质含量高;真空坩埚熔炼气体雾化法制备的粉末具有球形度好、粒度可控、冷却速度快、细粉收得率高等优点,是高品质钛及钛合金粉末的主要制备工艺,但是采用该方法生产钛合金时,多数情况下在母合金熔炼过程中都是用坩埚,从而在制备的粉体中产生富含O、A1、Si等的陶瓷类夹杂物。
综上所述,如何制备出低氧含量、杂质含量低、细粒径、高球形度的医用钛合金粉末,经过3D打印后钛合金具有高强度,高弹性模量,和好的伸长率和断裂韧性,是本领域科技人员急需解决的问题。
发明内容
本发明提供一种用于3D打印的高强度低模量医用钛合金粉体材料,采用电极感应熔炼气雾化即无坩埚熔炼系统制备,从源头上杜绝了金属液与真空感应熔炼氧化物坩埚、中间包、陶瓷导流管等的接触,避免了陶瓷等夹杂物的引入,确保钛合金粉末的纯净度。
本发明的技术方案如下:用于3D打印的医用β钛合金粉体材料,其特征在于所述的β钛合金分子式为Ti25Nb10Ta1ZrxR,其中各自元素的重量百分比为,Nb:25%;Ta:10%;Zr:1%;R为稀土,x的取值范围为0.05~0.1;余量为Ti,其中R为Y、La、Ce和Er中的至少一种;Ta为Ti20Ta合金。
作为优选,所述的β钛合金分子式为Ti25Nb10Ta1Zr0.05Er、Ti25Nb10Ta1Zr0.05La、Ti25Nb10Ta1Zr0.1Ce或Ti25Nb10Ta1Zr0.1Y。
本发明的高强度低模量β钛合金粉体的设计是以添加无毒的合金元素铌(Nb)、铊(Ta)、锆(Zr)、以及稀土元素(Ce、La、Y)等,组成为Ti25Nb10Ta1Zr0.1R(R为稀土元素Ce、La、Y中的一种),组成中添加元素Nb是β同晶元素,能与β钛无限互溶,有利于钛合金保持β相的存在,降低钛基合金的模量;Ta为β同晶元素,钛的稳定元素;Zr有利于钛合金保持β相,改善钛基合金的冷加工性能。在本发明中,由于金属Ta的溶点高达2996℃,为了降低合金的熔点,保证合金成分的均勾性,金属Ta以Ti20Ta合金的形式加入。添加少量的稀土元素是为了减少杂质的影响,提高抗腐蚀、抗氧化性能、相变超弹性、冷加工性和形状记忆性能等作用。为了降低氧及其他杂质含量,避免在3D打印过程总出现粉末熔化状态不均匀,导致制品中氧化物夹杂含量高、致密性差、强度低、结构不均匀等问题。
本发明采用电极感应熔炼气雾化即无坩埚熔炼系统制备设计的Ti25Nb10Ta1Zr0.1R钛合金粉体,具体步骤如下:
(1)母合金铸锭——自耗式电极的制备
①按照组成中Ti25Nb10Ta1ZrxR各自元素的百重量分比进行配比计算,Nb:25%;Ta:10%;Zr:1%;R为稀土,取值范围x为0.05~0.1;余量为Ti。其中R是稀土,为Y、La、Ce和Er中的至少一种;Ta以Ti20Ta合金的形式加入。
②将称量好的各原材料按熔点由低到高的顺序依次加入中频感应熔炼炉中,抽真空至5~8Pa;然后充入氩气,在氩气压力为2×10-2Pa保护熔炼,熔炼电流为80~90A,熔炼时间为20~30min;为了提高母合金铸锭的纯度,降低杂质含量,待物料完全化清后抽真空精炼,精炼时间10~15min左右。精炼完后将合金熔体铸入磨具中,获得直径为60mm,长度为50cm的金属铸棒,作为电极感应气雾化的自耗式电极。
(2)制备钛合金粉体材料
①将制备的钛合金母合金棒作为自耗式电极,封闭炉体,抽真空至0.01Pa,同时通过环形喷嘴通入氩气进行气氛保护,气流压力为5~7MPa,气流速度为400~600m/s,高速气流冲击自耗式电极产生的流液,得到不同粒度范围的钛合金粉体材料。
②雾化结束后待粉末完全冷却,在氩气为1.1个大气压的保护气氛中筛分,得到粒径在-200~600目之间的粉体,即本发明的i25Nb10Ta1ZrxR粉体材料。
作为一种优化,在步骤(1)中,所述中频感应熔炼炉的真空度为6Pa,所述熔炼电流为82~88A,熔炼时间为25min,精炼时间10min。
作为一种优化,在步骤(2)中,所述氩气的压力为6MPa,气流速度为500m/s。
与现有技术相比,本发明具有以下技术效果:
(1)原料熔炼过程中增加了精炼这道工序,使得制备的钛合金母合金铸锭,即自耗式电极纯度更高;
(2)电极感应气雾化法从源头上杜绝了来自生产过程中真空感应熔化坩埚、浇道等带入的夹杂物,确保钛合金粉末的纯净度;
(3)该方法制备的高强度低模量钛合金粉体Ti25Nb10Ta1Zr0.1R具有粒度可控、组分均一、含氧量低、球形度高、产率大、质量稳定,适合大规模工业生产。
附图说明
图1为实施例1制得的高熵合金粉体的XRD图片。
图2为实施例1制得的高熵合金粉体的SEM图片。
图3为本发明的制备过程示意图。
具体实施方式
以下结合具体实施例和附图详述本发明,但本发明不局限于下述实施例。
实施例1
首先称取50公斤Ti20Ta合金,25公斤Nb锭,1公斤Zr锭、23.95公斤海绵钛和0.05公斤稀土Er,按熔点由低到高的顺序置于中频感应熔炼炉,真空度为6Pa,并充入氩气,在氩气压力为2×10-2Pa保护气氛下熔炼,熔炼电流为85A,熔炼时间为25min;待物料完全化清后抽真空精炼,精炼10min。接着将精炼完的合金熔体铸入磨具中,获得直径为60mm,长度为50cm的金属铸棒,作为电极感应气雾化的自耗式电极。然后将制备的钛合金母合金棒作为自耗式电极,封闭炉体,抽真空至0.01Pa,同时通过环形喷嘴通入氩气,进行气氛保护,氩气压力为6MPa,氩气速度为500m/s,高速气流冲击自耗式电极产生的流液,得到粉体材料。最后待粉体冷却后,在氩气为1.1个大气压的保护气氛中筛分,得到粒径在-200~600目之间的粉体,即本发明所提供的用于3D打印的高强度低模量医用钛合金Ti25Nb10Ta1Zr0.05Er粉体材料。图1为实施例1制得的高熵合金粉体的XRD图片。图2为实施例1制得的高熵合金粉体的SEM图片。图3为本发明的制备过程示意图。
实施例2
首先称取50公斤Ti20Ta合金,25公斤Nb锭,1公斤Zr锭、23.95公斤海绵钛和0.05公斤稀土La,按熔点由低到高的顺序置于中频感应熔炼炉,真空度为6Pa,并充入氩气,在氩气压力为2×10-2Pa保护气氛下熔炼,熔炼电流为85A,熔炼时间为25min;待物料完全化清后抽真空精炼,精炼12min。接着将精炼完的合金熔体铸入磨具中,获得直径为60mm,长度为50cm的金属铸棒,作为电极感应气雾化的自耗式电极。然后将制备的钛合金母合金棒作为自耗式电极,封闭炉体,抽真空至0.01Pa,同时通过环形喷嘴通入氩气,进行气氛保护,氩气压力为6MPa,氩气速度为500m/s,高速气流冲击自耗式电极产生的流液,得到粉体材料。最后待粉体冷却后,在氩气为1.1个大气压的保护气氛中筛分,得到粒径在-200~600目之间的粉体,即本发明所提供的用于3D打印的高强度低模量医用钛合金Ti25Nb10Ta1Zr0.05La粉体材料。
实施例3
首先称取50公斤Ti20Ta合金,25公斤Nb锭,1公斤Zr锭、23.9公斤海绵钛和0.1公斤稀土Ce,按熔点由低到高的顺序置于中频感应熔炼炉,真空度为8Pa,并充入氩气,在氩气压力为2×10-2Pa保护气氛下熔炼,熔炼电流为90A,熔炼时间为30min;待物料完全化清后抽真空精炼,精炼15min。接着将精炼完的合金熔体铸入磨具中,获得直径为60mm,长度为50cm的金属铸棒,作为电极感应气雾化的自耗式电极。然后将制备的钛合金母合金棒作为自耗式电极,封闭炉体,抽真空至0.01Pa,同时通过环形喷嘴通入氩气,进行气氛保护,氩气压力为67MPa,氩气速度为600m/s,高速气流冲击自耗式电极产生的流液,得到粉体材料。最后待粉体冷却后,在氩气为1.1个大气压的保护气氛中筛分,得到粒径在-200~600目之间的粉体,即本发明所提供的用于3D打印的高强度低模量医用钛合金Ti25Nb10Ta1Zr0.1Ce粉体材料。
实施例4
首先称取50公斤Ti20Ta合金,25公斤Nb锭,1公斤Zr锭和23.9公斤海绵钛和0.1公斤稀土Y,按熔点由低到高的顺序置于中频感应熔炼炉,真空度为5Pa,并充入氩气,在氩气压力为2×10-2Pa保护气氛下熔炼,熔炼电流为80A,熔炼时间为20min;待物料完全化清后抽真空精炼,精炼10min。接着将精炼完的合金熔体铸入磨具中,获得直径为60mm,长度为50cm的金属铸棒,作为电极感应气雾化的自耗式电极。然后将制备的钛合金母合金棒作为自耗式电极,封闭炉体,抽真空至0.01Pa,同时通过环形喷嘴通入氩气,进行气氛保护,氩气压力为5MPa,氩气速度为400m/s,高速气流冲击自耗式电极产生的流液,得到粉体材料。最后待粉体冷却后,在氩气为1.1个大气压的保护气氛中筛分,得到粒径在-200~600目之间的粉体,即本发明所提供的用于3D打印的高强度低模量医用钛合金Ti25Nb10Ta1Zr0.1Y粉体材料。

Claims (8)

1.用于3D打印的医用β钛合金粉体材料,其特征在于所述的β钛合金分子式为Ti25Nb10Ta1ZrxR,其中各自元素的重量百分比为,Nb:25%;Ta:10%;Zr:1%;R为稀土,x的取值范围为0.05~0.1;余量为Ti,其中R为Y、La、Ce和Er中的至少一种;Ta为Ti20Ta合金。
2.根据权利要求1所述的用于3D打印的医用β钛合金粉体材料,其特征在于所述的β钛合金分子式为Ti25Nb10Ta1Zr0.05Er。
3.根据权利要求1所述的用于3D打印的医用β钛合金粉体材料,其特征在于所述的β钛合金分子式为Ti25Nb10Ta1Zr0.05La。
4.根据权利要求1所述的用于3D打印的医用β钛合金粉体材料,其特征在于所述的β钛合金分子式为Ti25Nb10Ta1Zr0.1Ce。
5.根据权利要求1所述的用于3D打印的医用β钛合金粉体材料,其特征在于所述的β钛合金分子式为Ti25Nb10Ta1Zr0.1Y。
6.一种权利要求1-5任一所述的用于3D打印的医用β钛合金粉体材料的制备方法,步骤如下:
(1)母合金铸锭——自耗式电极的制备
①按照组成中各自元素的百重量分比进行配比计算;
②将称量好的各原材料按熔点由低到高的顺序依次加入中频感应熔炼炉中,抽真空至5~8 Pa;然后充入惰性气体,在惰性气体压力为2×10-2 Pa保护熔炼,熔炼电流为80~90 A,熔炼时间为20~30 min;待物料完全化清后抽真空精炼,精炼完后将合金熔体铸入磨具中,获得直径为60mm,长度为50cm的金属铸棒,作为电极感应气雾化的自耗式电极。
(2)制备钛合金粉体材料
①将制备的钛合金母合金棒作为自耗式电极,封闭炉体,抽真空至0.01Pa,同时通过环形喷嘴通入惰性气体进行气氛保护,气流压力为5~7 MPa,气流速度为400~600 m/s,高速气流冲击自耗式电极产生的流液,得到不同粒度范围的钛合金粉体材料。
②雾化结束后待粉末完全冷却,在惰性气体为1.1个大气压的保护气氛中筛分,得到粒径在-200~600目之间的医用β钛合金粉体材料。
7.根据权利要求6所述的用于3D打印的医用β钛合金粉体材料的制备方法,其特征在于:在步骤(1)中,所述中频感应熔炼炉的真空度为6 Pa,所述熔炼电流为82~88A,熔炼时间为25 min,精炼时间10 min。
8.根据权利要求7所述的用于3D打印的医用β钛合金粉体材料的制备方法,其特征在于:所述的惰性气体为氩气,在步骤(2)中,所述氩气的压力为6MPa,气流速度为500m/s。
CN201610513072.5A 2016-06-28 2016-06-28 用于3D打印的医用β钛合金粉体材料及其制备方法 Active CN106148760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610513072.5A CN106148760B (zh) 2016-06-28 2016-06-28 用于3D打印的医用β钛合金粉体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610513072.5A CN106148760B (zh) 2016-06-28 2016-06-28 用于3D打印的医用β钛合金粉体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106148760A true CN106148760A (zh) 2016-11-23
CN106148760B CN106148760B (zh) 2018-08-14

Family

ID=57349733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610513072.5A Active CN106148760B (zh) 2016-06-28 2016-06-28 用于3D打印的医用β钛合金粉体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106148760B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096923A (zh) * 2017-04-28 2017-08-29 西安交通大学 基于激光增材制造的高熔点高熵合金球形粉末的制备方法
CN107470610A (zh) * 2017-09-07 2017-12-15 王明江 一种用于3d打印的钛合金粉体材料
CN108145172A (zh) * 2016-12-05 2018-06-12 无锡辛德华瑞粉末新材料科技有限公司 一种4d打印专用金属粉末的制备方法
CN108486408A (zh) * 2018-04-18 2018-09-04 王甲林 一种低弹性模量补牙用β型钛合金及其制造方法
US20180274070A1 (en) * 2017-03-23 2018-09-27 National Central University Biocompatible Ti-based metallic glass for additive manufacturing
CN109877332A (zh) * 2019-04-16 2019-06-14 上海材料研究所 一种提高钛或钛合金气雾化粉末细粉率的方法
CN110014158A (zh) * 2019-04-22 2019-07-16 西安斯瑞先进铜合金科技有限公司 一种气雾化制备球形铬粉的方法
CN110218897A (zh) * 2019-05-24 2019-09-10 陕西斯瑞新材料股份有限公司 一种航空发动机燃烧室内衬用耐高温Cu-Cr-Nb-Ce合金的制备方法
CN110499438A (zh) * 2019-09-30 2019-11-26 广东省航空航天装备技术研究所 材料组合物、钛合金制品及其制备方法
CN111318684A (zh) * 2020-03-26 2020-06-23 南方科技大学 Ti6Al4V合金粉体及其制备方法和3D打印制品
CN113732281A (zh) * 2021-09-08 2021-12-03 湖南恒基粉末科技有限责任公司 一种适用于3D打印的弹性医用β钛合金粉末及其制备方法和应用
CN113881886A (zh) * 2021-10-25 2022-01-04 上海交通大学 一种高比强度Ti-Al-Nb-Zr-Ta难熔高熵合金
CN114210987A (zh) * 2021-12-21 2022-03-22 上海交通大学 一种高体分颗粒增强钛基复合材料粉体及制备方法
CN115786769A (zh) * 2022-12-01 2023-03-14 北京科技大学 一种用于3d打印的钛合金粉料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201706715D0 (en) * 2017-04-27 2017-06-14 Renishaw Plc Manufacture of metal articles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081311A (zh) * 2007-07-05 2007-12-05 中南大学 一种生物医用β-钛合金材料
CN105642879A (zh) * 2016-01-14 2016-06-08 鞍山东大激光科技有限公司 用于激光3d打印的球形tc4钛合金粉末及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081311A (zh) * 2007-07-05 2007-12-05 中南大学 一种生物医用β-钛合金材料
CN105642879A (zh) * 2016-01-14 2016-06-08 鞍山东大激光科技有限公司 用于激光3d打印的球形tc4钛合金粉末及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔡萃丽等: ""稀土金属在钛合金中的应用"", 《稀有金属材料与工程》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108145172A (zh) * 2016-12-05 2018-06-12 无锡辛德华瑞粉末新材料科技有限公司 一种4d打印专用金属粉末的制备方法
US20180274070A1 (en) * 2017-03-23 2018-09-27 National Central University Biocompatible Ti-based metallic glass for additive manufacturing
CN107096923A (zh) * 2017-04-28 2017-08-29 西安交通大学 基于激光增材制造的高熔点高熵合金球形粉末的制备方法
CN107096923B (zh) * 2017-04-28 2019-04-12 西安交通大学 基于激光增材制造的高熔点高熵合金球形粉末的制备方法
CN107470610A (zh) * 2017-09-07 2017-12-15 王明江 一种用于3d打印的钛合金粉体材料
CN108486408A (zh) * 2018-04-18 2018-09-04 王甲林 一种低弹性模量补牙用β型钛合金及其制造方法
CN109877332A (zh) * 2019-04-16 2019-06-14 上海材料研究所 一种提高钛或钛合金气雾化粉末细粉率的方法
CN110014158A (zh) * 2019-04-22 2019-07-16 西安斯瑞先进铜合金科技有限公司 一种气雾化制备球形铬粉的方法
CN110218897A (zh) * 2019-05-24 2019-09-10 陕西斯瑞新材料股份有限公司 一种航空发动机燃烧室内衬用耐高温Cu-Cr-Nb-Ce合金的制备方法
CN110499438A (zh) * 2019-09-30 2019-11-26 广东省航空航天装备技术研究所 材料组合物、钛合金制品及其制备方法
CN111318684A (zh) * 2020-03-26 2020-06-23 南方科技大学 Ti6Al4V合金粉体及其制备方法和3D打印制品
CN113732281A (zh) * 2021-09-08 2021-12-03 湖南恒基粉末科技有限责任公司 一种适用于3D打印的弹性医用β钛合金粉末及其制备方法和应用
CN113881886A (zh) * 2021-10-25 2022-01-04 上海交通大学 一种高比强度Ti-Al-Nb-Zr-Ta难熔高熵合金
CN113881886B (zh) * 2021-10-25 2022-07-22 上海交通大学 一种高比强度Ti-Al-Nb-Zr-Ta难熔高熵合金
CN114210987A (zh) * 2021-12-21 2022-03-22 上海交通大学 一种高体分颗粒增强钛基复合材料粉体及制备方法
CN115786769A (zh) * 2022-12-01 2023-03-14 北京科技大学 一种用于3d打印的钛合金粉料及其制备方法
CN115786769B (zh) * 2022-12-01 2024-01-26 北京科技大学 一种用于3d打印的钛合金粉料及其制备方法

Also Published As

Publication number Publication date
CN106148760B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
CN106148760B (zh) 用于3D打印的医用β钛合金粉体材料及其制备方法
CN112391556B (zh) 一种双峰晶粒尺寸、双尺度纳米相强化的高强高导Cu-Cr-Nb合金
CN107363262B (zh) 一种高纯致密球形钛锆合金粉末的制备方法及应用
CN105950947B (zh) 用于3d打印的富铁高熵合金粉体材料及其制备方法
CN110218907B (zh) 一种用于3d打印的含硼钛基复合粉末及其制备方法
CN106756434B (zh) 氧化物弥散强化低活化铁素体/马氏体钢及其冶炼方法
CN108546834A (zh) 一种镍基高温合金母合金纯净化熔炼方法
TW202106893A (zh) 球形鉭-鈦合金粉末,包含彼之產品及製備彼之方法
CN109434117B (zh) 一种3d打印用球形锆铌合金粉的制备方法
CN107971499A (zh) 制备球形钛铝基合金粉末的方法
CN112846195B (zh) 一种增材制造用钛钽合金粉末及其制备方法
CN113145852B (zh) 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法
CN113618073B (zh) 一种钛铝基合金球形粉末的短流程气雾化制备方法
KR20220106184A (ko) 알루미늄 합금 함유 분말체의 제조 방법 및 이의 응용과 합금 스트립
CN114622113B (zh) 一种高含氧量的稀土杂化镍基高温合金、制备方法及应用
CN108796305B (zh) Ti基Ti-Fe-Zr-Sn-Y生物医用合金及其制备方法
CN105002395A (zh) Ti基Ti-Fe-Zr-Y生物医用合金及其制备方法
CN107952966A (zh) 球形钛铝基合金粉末的制备方法
CN111014651A (zh) 一种用于700~750℃的短纤维增强高温钛合金粉末及其制备
CN110004316B (zh) 原位纳米陶瓷颗粒增强铝基复合材料的制备方法
CN109778035B (zh) 一种可降解生物医用Mg-Bi-Zn-Ca合金及其制备方法
CN104087785A (zh) 一种Ti基Ti-Fe-Y生物医用合金及其制备方法
CN111411249B (zh) VNbMoTaW高熵合金的制备方法
CN113732281B (zh) 一种适用于3D打印的弹性医用β钛合金粉末及其制备方法和应用
CN111334683A (zh) 一种提高Cu-Fe合金综合力学性能的微合金化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 310030 No.372, Jinpeng street, Sandun Industrial Park, Xihu District, Hangzhou City, Zhejiang Province

Patentee after: Zhejiang Yatong New Materials Co.,Ltd.

Address before: 310030 No.372, Jinpeng street, Sandun Industrial Park, Xihu District, Hangzhou City, Zhejiang Province

Patentee before: ZHEJIANG ASIA GENERAL SOLDERING & BRAZING MATERIAL Co.,Ltd.