CN113145852B - 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法 - Google Patents

一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法 Download PDF

Info

Publication number
CN113145852B
CN113145852B CN202110305154.1A CN202110305154A CN113145852B CN 113145852 B CN113145852 B CN 113145852B CN 202110305154 A CN202110305154 A CN 202110305154A CN 113145852 B CN113145852 B CN 113145852B
Authority
CN
China
Prior art keywords
powder
printing
titanium
niobium
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110305154.1A
Other languages
English (en)
Other versions
CN113145852A (zh
Inventor
周立波
陈荐
牛焱
任延杰
舒京国
孙金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN202110305154.1A priority Critical patent/CN113145852B/zh
Publication of CN113145852A publication Critical patent/CN113145852A/zh
Priority to NL2029371A priority patent/NL2029371B1/en
Application granted granted Critical
Publication of CN113145852B publication Critical patent/CN113145852B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0036Tooth replica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种3D打印新型医用钛合金球形粉末的制备及3D打印方法。所述医用钛合金含有钛、铌、锆3种金属成分,具体成分按原子百分计量(包括但不限于)为:Ti 64%,Nb 13%Zr 13%,以及不可避免的微量杂质。该材料的制备方法包括熔炼;锻造;车铣;气体雾化制粉;气流分级;激光3D打印等步骤。该材料的制备方式为真空电弧熔炼技术以及气体雾化相结合的形成方法,金属板条经过捆扎,电弧熔炼然后锻造成棒材;车床加工至制粉设备要求的尺寸,最后采用高纯氩气作为雾化介质进行气体雾化制粉,将得到的粉末采用气流分级机按要求的粒度范围进行分级,最终得到适合3D打印的医用钛铌锆合金球形粉。本发明可以制得氧含量低,球形度高,流动性好,卫星球少,强度高,弹性模量低的α+β双相医用钛合金粉末,该合金粉末具有优异的生物相容性,综合力学性能良好,同时不含任何有毒元素,推广应用前景良好。

Description

一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的 方法
技术领域
本发明涉及到新型金属3D打印医用球形粉的制造方法,尤其涉及高熔点钛铌锆合金的医用球形粉的制造方法,属于稀有金属粉末冶金工业技术领域。
背景技术
生物医用材料是以医疗为目的,用来治疗修复以及替换人体组织或者增加组织功能的一种材料,目前用于制造人体骨骼或者关节的材料主要有高分子材料,金属材料以及复合材料,金属材料由于具有很高的强度,良好的韧性以及优异的加工性能常用于人工膝关节、股关节以及一些牙齿种植体义齿支架等,在外科移植手术上应用广泛。
医用金属材料常用的有医用不锈钢、钴铬钼合金以及TC4钛合金等,TC4钛合金相比于前两种合金材料由于具有高强度,低密度,耐腐蚀性能好以及更好的生物相容性等一系列的优点,在生物工程领域应用广泛。但TC4钛合金材料含有毒元素Al以及V,同时该材料弹性模量超过人体骨骼好几倍,容易引起应力遮挡,导致“骨不粘”以及植入体脱落等问题。
相比于TC4钛合金,TiNbZr合金不含有任何有毒有害元素,Nb的生物相容性非常好,并且为β相稳定剂,Zr可以无限固溶在Ti中,改善合金的强度与韧性,该合金弹性模量在65-70GPa,是目前文献报道过最低弹性模量之一,比TC4合金(110-114GPa)低了大约一半,强度相比于TC4合金并未有降低,抗拉强度在1050MPa左右。同时Zr的熔点为1850℃,Nb的熔点高达2468℃,属于难熔合金,目前并未有任何资料报道该类合金的球形粉末的制备方法。
传统的制备高性能钛合金制品的方式都为减材制造,该方法对锻造设备的要求很高,同时材料利用率低,产生大量废弃钛材,正是由于这些原因导致钛制品的成本居高不下。并且传统的制备钛合金制品的方法在生物工程上面的应用受到很大局限,基于模具很难制备出与人体贴合度很高的零部件出来。
传统的铸造方法成形的钛合金零部件,晶粒粗大,同时钛合金活性大,传统工艺成形很难控制,容易产生偏析。晶粒粗大以及偏析容易导致材料耐磨性能差,导致综合力学性能差,作为人体植入存在很大隐患。
3D打印技术通过三维扫描成型出人体骨骼的模型,然后通过电脑建模,输入设备后直接打印成型,该类方法工艺简单,能够节省大量人力资源,同时材料利用率非常高,一次成型,经过简单的后处理就可以直接使用,能够成形各种复杂的零部件。
同时3D打印属于快速加热快速冷却成型,能够抑制晶粒长大,形成的晶粒细小均匀,具有更高的强度以及更好的韧性,能够更好的作为植入材料植入人体,消除了该材料在力学上面存在的安全隐患。
由于该合金具有的高熔点,相比于普通TC4钛合金熔点高出1000多摄氏度,3D打印成型该材料的零部件并未有任何资料报道,本发明提供了一种该合金粉末的球形粉制备方法以及一种3D打印成型方法。
发明内容
本发明主要针对目前该材料球形粉末制备的研究空白,提出一种该高熔点合金的球形粉末制备方法,同时将其通过3D打印成所需要的零部件。解决了传统的减材制造或等材制造难以加工TiNbZr合金的难题,本发明中所述的激光金属3D打印能够解决TiNbZr合金难以加工的难题,将其制成个性化人体植入假体。其步骤如下:
1.将长度300-500mm,宽度5-60mm,厚度1-10mm,纯度在99.95%以上的钛,铌,锆金属板条搀和均匀并绑炸成捆;
2.将上述绑扎成捆的原料,在自耗电弧炉中真空熔炼三次,以保证合金成分均匀。熔炼炉内真空度为:10-2-10-3MPa,每次熔炼时间:10-15min
3.将上述熔炼得到的钛合金铸锭在高真空中加热锻造成的圆棒。
4.将锻造后的钛合金棒在车床上车铣到直径50mm,以适用制粉设备要求的尺寸。
5.气雾化制备球形粉末的步骤如下:
(a)将车铣到合适尺寸的钛合金棒装入设备中的连续送料器上;
(b)对设备抽真空,真空度至少应该达到:10-2-10-3MPa
(c)将钛合金棒经连续送料器通过动密封装置送至真空室,在真空室内经矫正后通过气雾化喷嘴到达高频熔炼线圈内部;
(d)高频熔炼线圈对钛合金棒材进行融化,融化后形成连续金属液流;
(e)金属液流在自由落体,离开高频熔炼线圈,随后被喷嘴喷出的高速氩气破碎成细小的金属液滴,高纯氩气气体压力:3-6MPa,高纯氩气气体流量:3-5kg/min
(f)经破碎后的金属液滴在降落过程中,经过自身的表面张力作用逐渐球化,冷却凝固成钛合金球形粉末,最后落至设备最下方的收粉罐中;
(g)制粉完毕后冷却至室温,从收粉罐中取出钛合金球形粉。
6.将步骤5中所制备得到的球形钛合金粉末通过气流分级机进行筛分,得到符合粒度要求的新型3D打印医用钛铌锆三元合金球形粉末。
7.筛分过后的符合3D打印球形钛合金粉末具有一下要求:粉末成球形或者进球形,粒度分布在-270目,氧含量380ppm左右。
8.将上述得到的细小球形粉末进行3D打印成型,成型工艺参数为:175-375W,扫描速度800-1200mm/s,扫描间距0.3mm,扫描层厚0.3mm,激光光斑大小100μm。通过有效的调节成型工艺参数,结合上述得到的球形粉末可以有效的将高熔点的金属粉末打印成型所需要的各种零部件。
本发明将电弧熔炼,锻造成型以及雾化制粉结合在一起,相比于传统的气雾化制粉有较大的颠覆,能有效的改善传统气雾化制粉不能制备高熔点球形粉末的缺陷。
该发明制粉通过电弧熔炼3次,最后采用雾化制粉,得到的球形粉末成分分布均与,有利于3D打印成型。
该发明制粉在高真空下制备,能够连续生产,因此制备得到的钛合金粉末球形度高,杂质含量很低,粒度分布可以控制。
该发明涉及的3D打印零部件能够满足市场所需的要求,同时能够大量减少人力投入。
附图说明
图1为本发明制备得到的球形钛合金粉末的SEM图片。
图2为本发明制备的到的球形钛合金粉末的EDS图片。
图3为本发明制备得到的球形钛粉的激光粒度分布。
图4为本发明3D打印制备得到的下颌骨缺损修复体。
图5为本发明3D打印制备得到的种植体牙纪念品。
图6为本发明制备到的直径50mm的圆棒钛合金图片。
具体实施方式
实例1
首先选取长度为500mm,宽度为10mm,厚度为3mm,纯度为99.99%的钛板,长度为500mm,宽度为6mm,厚度为2mm,纯度为99.99%的铌板,长度为500mm,宽度为5mm,厚度为2mm,纯度为99.98%的锆板,将三种板材相互交替绑扎成捆,将绑扎成捆的原料在自耗电弧炉中进行熔炼,熔炼炉真空度10-3MPa,熔炼时间15min,将原料按照上述熔炼要求反复熔炼三次,以达到成分均匀。将熔炼得到的合金锭在真空下锻造成棒材,锻造后的棒材尺寸直径53mm,雾化设备要求的尺寸在直径50mm,因此需要在车床上将钛合金棒车成直径50mm,通过上述绑扎成捆后电弧熔炼、锻造、车洗加工最终得到直径50mm的圆棒钛合金,如图6所示。
将得到的钛合金圆棒,装入雾化设备中的连续送料机上,对雾化设备抽真空,真空度达到:10-3MPa,将钛合金棒经连续送料器通过动密封装置送至真空室,在真空室内经矫正后通过气雾化喷嘴到达高频熔炼线圈内部,采用高频熔炼线圈对钛合金棒材进行融化,当超过融化温度200℃,钛合金棒融化成连续金属液流自由落下,自由落下的金属液流经过熔炼线圈后,被高速喷出的高纯氩气击碎,雾化压力:6MPa,高纯氩气气体流量:5kg/min,金属液流被高纯氩气击碎成一个个细小的液珠,金属液珠继续自由下落,在表面张力的作用下,逐渐球化,最终冷凝成固态球形粉末,自由落至雾化设备最下端的粉末收集装置。从收集装置中取出钛合金粉末,经过气流分机进行筛分获得符合3D打印的要求的球形粉末。最终得到的钛合金粉末经过检测,粉末氧含量380ppm,中粒径在31.3μm。
实例2:
首先选取长度为500mm,宽度为10mm,厚度为3mm,纯度为99.98%的钛板,长度为500mm,宽度为10mm,厚度为3mm,纯度为99.96%的铌板,长度为500mm,宽度为10mm,厚度为3mm,纯度为99.98%的锆板,将三种板材相互交替绑扎成捆,将绑扎成捆的原料在自耗电弧炉中进行熔炼,熔炼炉真空度:10-2MPa,熔炼时间:10min,将原料按照上述熔炼要求反复熔炼三次,以达到成分均匀。将熔炼得到的合金锭在真空下锻造成棒材,锻造后的棒材尺寸直径52mm,雾化设备要求的尺寸在直径50mm,因此需要在车床上将钛合金棒车成直径50mm,通过上述绑扎成捆后电弧熔炼、锻造、车洗加工最终得到直径50mm的圆棒钛合金。棒材图样如实例1中所示。
将得到的钛合金圆棒,装入雾化设备中的连续送料机上,对雾化设备抽真空,真空度达到:10-2MPa,将钛合金棒经连续送料器通过动密封装置送至真空室,在真空室内经矫正后通过气雾化喷嘴到达高频熔炼线圈内部,采用高频熔炼线圈对钛合金棒材进行融化,当超过融化温度230℃,钛合金棒融化成连续金属液流自由落下,自由落下的金属液流经过熔炼线圈后,被高速喷出的高纯氩气击碎,雾化压力:4MPa,高纯氩气气体流量:4kg/min,金属液流被高纯氩气击碎成一个个细小的液珠,金属液珠继续自由下落,在表面张力的作用下,快速球化,最终冷凝成固态球形粉末,自由落至雾化设备最下端的粉末收集装置。从收集装置中取出钛合金粉末,经过气流分机进行筛分以后获得符合3D打印的要求的球形粉末。最终得到的钛合金粉末经过检测,粉末氧含量470ppm,中粒径35μm。
实例3
高熔点三元Ti13Nb13Zr合金超细粉末进行3D打印成型实验方法,实验步骤如下:
按照实例1制备得到的符合3D打印要求的三元钛合金粉末,按照设计的图纸,将图纸格式转化为3D打印设备只能识别的stl格式文件,在打印设备上设计打印参数,打印激光功率325W,扫描速度1200mm/s,激光光斑直径100μm,扫描间距0.3mm,扫描层厚0.3mm,然后开机打印,即可制备符合要求的3D打印制品。本实例制备得到的工件如图4所示,为1:1大小的成人下颌骨缺损修复体,因该粉末密度较大,为了植入后有更好的舒适度,将其打印成了多孔形状,这是传统工艺无法实现的。
实例4
高熔点三元Ti13Nb13Zr合金较粗粉末进行3D打印成型实验方法,实验步骤如下:
按照实例2制备得到的符合3D打印要求的三元钛合金粉末,按照设计图纸,将图纸格式转化为3D打印设备识别的stl格式文件,在打印设备上设计打印参数,打印激光功率375W,扫描速度1000mm/s,激光光斑直径100μm,扫描间距0.3mm,扫描层厚0.3mm,然后开机打印,即可制备符合要求的3D打印制品。本实例制备得到的工件如图5所示,为放大15倍的成人种植牙,利于一个梯形平台上的一个纪念品。因该粉末密度较大,将其打印成了多孔形状,这是传统工艺无法实现的。

Claims (1)

1.一种3D打印新型医用钛铌锆合金球形粉的制备及3D打印方法,包括以下步骤:
(1)将长度300-500mm,宽度5-10mm,厚度1-3mm,纯度在99.95%以上的钛,铌,锆金属板条搀和均匀并绑扎成捆;
(2)将上述绑扎成捆的原料,在自耗电弧炉中真空熔炼三次,以保证合金成分均匀;
熔炼炉内真空度为:10-2-10-3MPa,单次熔炼时间:10-15min;
(3)将上述熔炼得到的钛合金铸锭在高真空中加热锻造成ø50-60mm的圆棒;
(4)将锻造后的钛合金棒在车床上车铣到直径50mm,以适用制粉设备要求的尺寸;
(5)气雾化制备球形粉末的步骤如下:
(a)将车铣到合适尺寸的钛铌锆合金棒装入设备中的连续送料器上;
(b)对设备抽真空,真空度至少应该达到:10-2-10-3MPa;
(c)将钛铌锆合金棒经连续送料器通过动密封装置送至真空室,在真空室内经矫正后通过气雾化喷嘴到达高频熔炼线圈内部;
(d)高频熔炼线圈对钛合金棒材进行融化,融化后形成连续金属液流;
(e)金属液流在自由落体,离开高频熔炼线圈,随后被喷嘴喷出的高速氩气破碎成细小的金属液滴,高纯氩气气体压力:6MPa,高纯氩气气体流量:3-5kg/min;
(f)经破碎后的金属液滴在降落过程中,由自身的表面张力作用快速球化,随后冷却凝固成钛铌锆合金球形粉末,最后落至设备最下方的收粉罐中;
(g)制粉完毕后冷却至室温,从收粉罐中取出钛铌锆合金球形粉;
(6)将步骤(5)中所制备得到的球形钛铌锆合金粉末通过气流分级机进行筛分,得到符合粒度要求的新型3D打印医用钛铌锆三元合金球形粉末;
(7)筛分过后的符合3D打印球形钛铌锆合金粉末具有以下要求:粉末成球形或者近球形,粒度分布在-270目,氧含量380ppm左右;
将上述得到的细小球形粉末进行3D打印成型,成型工艺参数为:175-375W,扫描速度800-1200mm/s,扫描间距0.3mm,扫描层厚0.3mm,激光光斑大小100μm;
通过有效的调节成型工艺参数,结合上述得到的球形粉末可以有效的将高熔点的钛铌锆金属粉末打印成型所需要的各种零部件。
CN202110305154.1A 2021-03-23 2021-03-23 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法 Active CN113145852B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110305154.1A CN113145852B (zh) 2021-03-23 2021-03-23 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法
NL2029371A NL2029371B1 (en) 2021-03-23 2021-10-08 Preparation method of 3d printing medical titanium-niobium-zirconium alloy spherical powder and 3d printing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110305154.1A CN113145852B (zh) 2021-03-23 2021-03-23 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法

Publications (2)

Publication Number Publication Date
CN113145852A CN113145852A (zh) 2021-07-23
CN113145852B true CN113145852B (zh) 2023-09-15

Family

ID=76887956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110305154.1A Active CN113145852B (zh) 2021-03-23 2021-03-23 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法

Country Status (2)

Country Link
CN (1) CN113145852B (zh)
NL (1) NL2029371B1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652576B (zh) * 2021-07-26 2022-04-19 广东省科学院新材料研究所 一种生物医用β钛合金及其制备方法
CN113967746B (zh) * 2021-09-30 2024-04-16 长沙理工大学 一种高抗腐蚀高强度低弹性模量钛合金粉末的3d打印方法及钛合金
CN114523114A (zh) * 2022-02-18 2022-05-24 杭州智华杰科技有限公司 一种4d打印材料的制备方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103846447A (zh) * 2012-12-06 2014-06-11 北京有色金属研究总院 一种微细球形钛或钛合金粉末的气雾化制备方法
CN105033249A (zh) * 2015-06-17 2015-11-11 宝鸡市三立有色金属有限责任公司 一种3d打印用钛及钛合金丝或粉末的制备方法
CN105642879A (zh) * 2016-01-14 2016-06-08 鞍山东大激光科技有限公司 用于激光3d打印的球形tc4钛合金粉末及其制备方法
CN106166617A (zh) * 2016-09-27 2016-11-30 中航迈特粉冶科技(北京)有限公司 一种3d打印用钛合金粉末的制备方法
WO2019118991A1 (en) * 2017-12-14 2019-06-20 Csir A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder
CN109926582A (zh) * 2017-12-15 2019-06-25 中国科学院福建物质结构研究所 一种医用钛铌合金制品的制备方法
CN110919014A (zh) * 2019-11-28 2020-03-27 安徽中体新材料科技有限公司 一种3d打印用钛合金粉末的制备方法
CN111515381A (zh) * 2020-05-18 2020-08-11 中国科学院金属研究所 一种激光增材制造用高强高韧钛合金粉末及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108103329A (zh) * 2017-12-18 2018-06-01 西安赛特思迈钛业有限公司 一种tc26钛合金熔炼用自耗电极的制备方法
TW202106893A (zh) * 2019-07-19 2021-02-16 美商環球高級金屬美國公司 球形鉭-鈦合金粉末,包含彼之產品及製備彼之方法
CN111118339B (zh) * 2020-01-06 2021-03-30 华南理工大学 一种含Si高强低模医用钛合金及其增材制造方法与应用
US11714258B2 (en) * 2020-07-30 2023-08-01 Raytheon Company Congruently melting high purity titanium alloy for optical mounts, flexures, and structural elements requiring compliance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103846447A (zh) * 2012-12-06 2014-06-11 北京有色金属研究总院 一种微细球形钛或钛合金粉末的气雾化制备方法
CN105033249A (zh) * 2015-06-17 2015-11-11 宝鸡市三立有色金属有限责任公司 一种3d打印用钛及钛合金丝或粉末的制备方法
CN105642879A (zh) * 2016-01-14 2016-06-08 鞍山东大激光科技有限公司 用于激光3d打印的球形tc4钛合金粉末及其制备方法
CN106166617A (zh) * 2016-09-27 2016-11-30 中航迈特粉冶科技(北京)有限公司 一种3d打印用钛合金粉末的制备方法
WO2019118991A1 (en) * 2017-12-14 2019-06-20 Csir A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder
CN109926582A (zh) * 2017-12-15 2019-06-25 中国科学院福建物质结构研究所 一种医用钛铌合金制品的制备方法
CN110919014A (zh) * 2019-11-28 2020-03-27 安徽中体新材料科技有限公司 一种3d打印用钛合金粉末的制备方法
CN111515381A (zh) * 2020-05-18 2020-08-11 中国科学院金属研究所 一种激光增材制造用高强高韧钛合金粉末及其制备方法

Also Published As

Publication number Publication date
CN113145852A (zh) 2021-07-23
NL2029371B1 (en) 2022-06-24

Similar Documents

Publication Publication Date Title
CN113145852B (zh) 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法
Attar et al. Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies
JP7228307B2 (ja) 球状タンタル-チタン合金粉末、それを含有する製品、及びその作製方法
CN102905822B (zh) 配合铜粉、铬粉或铁粉而成的钛合金复合粉、以其为原料的钛合金材料及其制造方法
Murr et al. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications
CN106148760A (zh) 用于3D打印的医用β钛合金粉体材料及其制备方法
US20190084048A1 (en) Titanium-tantalum powders for additive manufacturing
WO2021139334A1 (zh) 一种含Si高强低模医用钛合金及其增材制造方法与应用
CN110218907B (zh) 一种用于3d打印的含硼钛基复合粉末及其制备方法
JP7424994B2 (ja) 3d印刷用の金属粉末
US20140079583A1 (en) Titanium tungsten alloys produced by additions of tungsten nanopowder
CN112981177B (zh) 可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备
Xie et al. Preparation and properties of porous Ti–10Mo alloy by selective laser sintering
KR101863075B1 (ko) 석출 경화 제어가 가능한 3d 프린팅을 이용한 고강도 금속소재의 입체 조형방법
CN109926582B (zh) 一种医用钛铌合金制品的制备方法
Munir et al. Powder metallurgy in manufacturing of medical devices
KR20170068065A (ko) 석출 경화 제어가 가능한 3d 프린팅을 이용한 고강도 금속소재의 입체 조형방법
KR20220099107A (ko) 3차원 물체를 제조하기 위한 구형 분말
RU2492256C9 (ru) Наноструктурный композиционный материал на основе чистого титана и способ его получения
CN115572849B (zh) 一种超细晶镍钛基合金及其制备方法与应用
Subramanian et al. Effect of process parameters on the properties of β-Ti-Nb-based alloys fabricated by selective laser melting: a review
CN114682784A (zh) 一种SLM用1900MPa级超高强钢的低成本粉末制备方法与打印方法
CN113621858A (zh) 一种抗菌及抑肿瘤增殖的可降解镁合金骨钉及其制备方法
Sun Powder manipulation, microstructure, mechanical properties and bio-corrosion performance of titanium and titanium alloys additively manufactured by selective electron beam melting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant