WO2021139334A1 - 一种含Si高强低模医用钛合金及其增材制造方法与应用 - Google Patents

一种含Si高强低模医用钛合金及其增材制造方法与应用 Download PDF

Info

Publication number
WO2021139334A1
WO2021139334A1 PCT/CN2020/124598 CN2020124598W WO2021139334A1 WO 2021139334 A1 WO2021139334 A1 WO 2021139334A1 CN 2020124598 W CN2020124598 W CN 2020124598W WO 2021139334 A1 WO2021139334 A1 WO 2021139334A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium alloy
alloy
additive manufacturing
strength low
medical titanium
Prior art date
Application number
PCT/CN2020/124598
Other languages
English (en)
French (fr)
Inventor
李元元
杨超
罗炫
李冬冬
秦彦国
李宁
Original Assignee
华南理工大学
华中科技大学
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 华中科技大学, 吉林大学 filed Critical 华南理工大学
Priority to US17/768,925 priority Critical patent/US20240100598A1/en
Publication of WO2021139334A1 publication Critical patent/WO2021139334A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/38Materials or treatment for tissue regeneration for reconstruction of the spine, vertebrae or intervertebral discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • B22F2009/0808Mechanical dispersion of melt, e.g. by sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0836Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with electric or magnetic field or induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of titanium alloy materials and additive manufacturing, in particular to a method for additive manufacturing of high-strength and low-mode medical titanium alloy implants.
  • titanium alloys Compared with medical metal materials such as stainless steel and Co-Cr alloys, titanium alloys have excellent biomechanical properties and good biocompatibility, and are widely used as replacement materials and restorations for human hard tissues such as bone trauma products and artificial joints.
  • traditional titanium alloys ⁇ titanium alloys, ⁇ + ⁇ titanium alloys
  • stress shielding effect due to the mismatch of elastic modulus, which will cause the original bone tissue function to degenerate and be absorbed after long-term implantation in the human body. It causes implantation failure, and titanium alloy is a biologically inert material, which is difficult to form a strong chemical bone bond with bone.
  • ⁇ -type titanium alloys have been extensively studied because they have lower elastic modulus and higher strength, and do not contain toxic elements such as Al and V. They mainly include Ti-Mo series, Ti-Nb series, Ti-Zr series, Ti -Ta series, etc., typical representatives are Ti-15Mo, Ti-13Nb-13Zr, Ti-12Mo-6Zr-2Fe, Ti-35Nb-5Ta-7Zr and Ti-29Nb-13Ta-4.6Zr, among which Ti-Nb-Ta- Zr alloy has a lower modulus of elasticity (48-55GPa) (Materials 2014, 7, 1709-1800), which is about 50% of Ti-6Al-4V.
  • the strength of the existing Ti-Nb-Ta-Zr titanium alloys is generally low ( ⁇ 550GPa) (Materials Science and Engineering C 60 (2016) 230-238), and is comparable to the elastic modulus of human bone tissue (10-30GPa). ) There is still a certain gap (Adv.Eng.Mater.2019,1801215), and because it does not contain biologically active elements, it is difficult to form a strong chemical bone bond with bone. Therefore, it is urgent to prepare a medical titanium alloy with high strength, low modulus and good biocompatibility.
  • additive manufacturing also known as "3D printing”
  • 3D printing is directly formed through the principle of layer-by-layer accumulation, which has significant advantages such as near-net shape of complex parts and personalized customization.
  • 3D printing technology in the selective laser melting (Selective Laser Melting, SLM) and selective electron beam melting (Selective Electron Beam Melting, SEBM) fast cooling rate (10 4 ⁇ 10 5 K/s or more) characteristics ( International Materials Reviews 2016 VOL 61 NO 5 361), can obtain fine-grained or even ultra-fine-grained microstructures in a variety of alloy systems, thereby improving mechanical properties and biocompatibility (RSC Adv., 2015, 5, 101794).
  • SLM Selective Laser Melting
  • SEBM Selective Electron Beam Melting
  • the Ti-30Nb-5Ta-3Zr alloy (Materials Science & Engineering C 97 (2019) 275–284) prepared by Luo et al. using SLM has an average grain size of 17.6 ⁇ m, a tensile strength of 680 MPa, a plasticity of 15.3%, and an elastic modulus of 64.2GPa, but some of the grains are abnormally coarse, and the grain size is 100-260 ⁇ m.
  • Ti-30Nb-5Ta-3Zr alloy prepared by this technology SLM has larger grains and lower tensile strength is: SLM uses a smaller overlap rate ( ⁇ 35%) and a lower scanning speed (200 ⁇ 600mm/ s), and the martensite transformation during the forming process causes the modulus of elasticity to be higher than that of the single-phase ⁇ -Ti alloy.
  • SLM uses a smaller overlap rate ( ⁇ 35%) and a lower scanning speed (200 ⁇ 600mm/ s)
  • the martensite transformation during the forming process causes the modulus of elasticity to be higher than that of the single-phase ⁇ -Ti alloy.
  • studies have shown that the faster the scanning speed, the greater the degree of subcooling, and the finer the crystal grains (ActaMaterialia 60 (2012) 3849-3860).
  • a larger cooling rate is likely to cause large thermal stress and cause cracking.
  • Si can not only promote bone proliferation, cell adhesion, and form a strong chemical bond with bone (RSC Adv., 2015, 5, 101794), and Si element can refine crystal grains and form a second phase. It has fine-grain strengthening and second-phase strengthening effects.
  • the non-metal element Si easily forms a continuous grain boundary weakening phase with Ti, which seriously reduces the mechanical properties.
  • the thermal expansion coefficient of the ⁇ -Ti matrix and the Si-containing intermetallic compound is different, which intensifies the formation of cracks and increases the difficulty of 3D printing. Therefore, how to solve the problem of deterioration of mechanical properties and formability caused by the introduction of Si, an essential element for biological activity, is a technical problem to be solved urgently at present.
  • the primary purpose of the present invention is to provide an additive manufacturing method for Si-containing high-strength low-modulus medical titanium alloys that effectively solves the problem of deterioration of mechanical properties and formability caused by the introduction of Si, an essential element for biological activity.
  • Another object of the present invention is to provide a Si-containing high-strength low-modulus medical titanium alloy prepared by the above method.
  • Another object of the present invention is to provide the application of the above-mentioned Si-containing high-strength low-modulus medical titanium alloy in the preparation of human implants.
  • Alloy composition design Based on the low elastic modulus TiNbTaZr alloy, add 0.1-5at.% biologically active element Si, and then calculate the average bonding times of the alloy according to the d-electron theory (Bo) i is the covalent bond energy determined by the overlap of the alloy element i with the d electron cloud of the base alloy element; the average d electron orbital energy level of the alloy is (Md) i is Md average level alloying element i, i is the alloying elements Nb, Ta, X i is the atomic percent of the alloying element i; according The ⁇ -Ti area of the relationship graph makes the calculation of with Value falls on In the metastable ⁇ -Ti zone of the relationship diagram, select the alloy composition range deviating from the eutectic point and close to the maximum solid solubility of Si in Ti according to the Ti-Zr-Si ternary phase diagram, and design the Si-containing high-strength low-modulus medical titanium alloy
  • the composition is Ti
  • step (1) The elements of Ti, Nb, Zr, Ta and Si are mixed according to the content of step (1), and are smelted in a vacuum consumable arc smelting furnace to prepare alloy bars, which are atomized by electrode induction melting gas Titanium alloy powder is prepared by the method (EIGA) or plasma rotating electrode atomization powder method (PREP) and sieved to obtain spherical powder with a particle size range suitable for additive manufacturing;
  • EIGA electrode induction melting gas
  • PREP plasma rotating electrode atomization powder method
  • Model construction and substrate preheating build a three-dimensional model of the structural parts to be prepared, complete the slicing process and generate a print file, the preheating temperature of the laser selective melting of the substrate is 150°C ⁇ 650°C, and the electron beam selective melting of the substrate preheating temperature 650°C ⁇ 1200°C;
  • Additive manufacturing forming Laser selective melting or electron beam selective melting forming equipment is used for additive manufacturing forming to obtain high-strength low-mold medical titanium alloy; the key forming parameters are: 50% ⁇ melt channel overlap rate ⁇ ⁇ 80 %, 1000mm/s ⁇ scanning speed V ⁇ 10000mm/s; when using laser selective melting forming, the laser input power is P, 140W ⁇ P ⁇ 360W, the laser scanning distance h is between 20 ⁇ 80 ⁇ m, using electron beam selective melting forming with electron gun The current is I, 8mA ⁇ I ⁇ 100mA, and the electron beam scanning interval h is between 20 ⁇ 200 ⁇ m.
  • step (1) preferably, in step (1),
  • the vacuum consumable arc smelting process described in step (2) is: pressing the prepared raw material into an electrode, the electrode size is controlled to be 50-70mm smaller than the crucible; the gap between the electrode and the molten pool is controlled Between 60 ⁇ 80mm; the melting speed is 20kg/min; the ingot is obtained by two remelting, and the composition has no obvious segregation.
  • the electrode induction melting gas atomization method described in step (2) is: machine the smelted ingot into a ⁇ 45mm ⁇ 550mm bar with no obvious oxidation on the surface, and machine one end of the bar into a 45° cone ,
  • the atomization pressure is 3.5 ⁇ 4.5MPa
  • the melting power is 20 ⁇ 30KW
  • the feed speed is 35 ⁇ 45mm/min
  • the whole environment is protected by inert gas.
  • the plasma rotating electrode atomization method described in step (2) is: machine the smelted ingot into a ⁇ 60mm ⁇ 650mm bar with no obvious oxidation on the surface, the atomization power is 50-60KW, and the rotation speed is 16000 ⁇ 18000r/min, the whole environment is protected by inert gas.
  • the overlap rate described in step (4) Where w is the width of the molten pool, in ⁇ m; h is the scan pitch, in ⁇ m.
  • the size of the powder suitable for laser selective melting and forming is 15 to 53 ⁇ m; the size of powder suitable for electron beam selective melting and forming is 45 to 100 ⁇ m.
  • the laser selective melting or electron beam selective melting forming equipment for additive manufacturing of the present invention adopts EOS M290, SLMsolution 280, RENISHAW 400, Arcam Q10plus, etc.
  • a Si-containing high-strength low-modulus medical titanium alloy prepared by the above-mentioned preparation method is as follows: columnar crystals and equiaxed ⁇ -Ti as the matrix, with uniform intracrystalline spherical distribution (Ti, Zr) 2 Si grain boundary phase and a discontinuous distribution (Ti, Zr) 2 Si phase as reinforcement phase; wherein, ⁇ -Ti grain size of 1 ⁇ 13 ⁇ m, spherical (Ti, Zr) 2
  • the Si phase has a grain size of 50-300nm; the (Ti,Zr) 2 Si phase with discontinuous grain boundaries is elongated, with a width of 30-200nm and an aspect ratio of 1-6.
  • the human body implants include femoral head, hip and knee joint implants; vertebral bodies, intervertebral fusion cages; spinal implants, shoulder implants, mandibles, skull implants, and cranial implants. Maxillofacial implants, ankle joint implants, toe bone implants or sternum implants.
  • the principle of the preparation method of the present invention is: through step (1) the alloy composition design, the low elastic modulus TiNbTaZr alloy is introduced into the Si element with both biological activity and grain refinement (for TiNbTaZr alloy without silicon, through Under high-speed scanning, a larger degree of undercooling can be obtained to refine the crystal grains, and the high overlap rate can ensure the density of the sample), and then according to the formula with Calculation with Make with Satisfy
  • the metastable ⁇ -Ti range in the diagram metalastable ⁇ -Ti has a lower modulus of elasticity) (Materials Science and Engineering A243(1998) 244-249), but for traditional processes (such as casting) preparation of brittle eutectic Compound alloys have not yet considered the problem of easy cracking at higher cooling rates.
  • the alloy composition is further optimized according to the Ti-Zr-Si alloy phase diagram, so that the alloy composition satisfies the transition from the divorced eutectic reaction under the normal scanning speed to the desolventization reaction under the high-speed scanning, so as to obtain the second phase.
  • Continuous microstructure
  • step (3) the thermal stress generated in the printing process is reduced by preheating the substrate to reduce the tendency of cracking.
  • the preheating temperature should be selected to ensure that the demelting reaction has a sufficiently large degree of undercooling, while minimizing the second Thermal stress caused by the difference of thermal expansion coefficient between phase and matrix phase to avoid cracking;
  • step (4) the use of large undercooling (ie, fast cooling rate) under high-speed scanning to obtain fine grain structure, while promoting the alloy to transform from divorced eutectic reaction to demelting reaction, inhibiting (Ti, Zr)
  • the 2 Si phase is continuously distributed along the grain boundary to promote the precipitation of (Ti, Zr) 2 Si phase in the crystal, thereby improving the mechanical properties and biocompatibility of the material.
  • the high-speed scanning reduces the width of the molten pool and the formation of holes, the overlap rate is increased and the density and forming quality of the printed parts are improved.
  • this patent explores a suitable component ratio (satisfying The meta-stable ⁇ -Ti area in the relationship diagram is considered to promote the desolvation reaction by the additive manufacturing process), and the high-speed scanning and high lap ratio are used to promote the dispersion and precipitation of the (Ti,Zr) 2 Si phase in the grain and the discontinuity at the grain boundary Precipitation (for TiNbTaZr alloys that do not contain silicon, high-speed scanning can also be used to refine the grains and increase the strength), solve the alloy composition that is prone to divorced eutectic reaction in additive manufacturing, analyze the continuous grain boundary phase deterioration alloy material mechanics Common technical problems of performance and formability.
  • the present invention has the following advantages and beneficial effects:
  • the medical ⁇ -type titanium alloy prepared by the present invention has lower elastic modulus and better biocompatibility, and at the same time, due to the second The introduction of phases makes the alloy have higher strength (yield strength of 810MPa, tensile strength of 1120MPa) and lower modulus of elasticity ( ⁇ 59GPa).
  • Yield strength of 810MPa, tensile strength of 1120MPa tensile strength of 1120MPa
  • ⁇ 59GPa modulus of elasticity
  • Ti-6Al-4V ELI ASTM F136
  • the yield strength is slightly increased, and the tensile strength is increased by 260MPa.
  • the medical ⁇ -type titanium alloy Ti-13Nb-13Zr ASTM F1713
  • the yield strength is increased by 85MPa.
  • the tensile strength is increased by 260MPa, the elastic modulus is reduced by 20GPa, and the mechanical compatibility and biocompatibility are significantly better than traditional medical titanium alloys.
  • the present invention improves the guiding ideas for the design and additive manufacturing of alloy components that are prone to divorced eutectic reaction to form a continuous second phase distribution along the grain boundary.
  • the high-strength and low-modulus medical titanium alloy formed by the additive manufacturing technology of the present invention has the characteristics of rapid heating and quenching of SLM/SEBM, so the obtained structure has smaller grains than traditional casting alloys and is not easy to segregate. Therefore, it has better mechanical properties and biocompatibility.
  • the invention adopts additive manufacturing to form, compared with traditional casting and plastic deformation, it can prepare parts of various complicated shapes, meet the requirements of personalized design, and truly create customized medical implants for patients.
  • the SLM/SEBM forming technology adopted in the present invention can realize near-net forming, improve the utilization rate of materials, and save costs.
  • Figure 1 is the example 1 Relationship diagram (Scripta Materialia 158(2019)62-65).
  • the density of the sample is measured by Archimedes drainage method; the yield strength, tensile strength, and breaking strain of the sample are stretched in accordance with the international standard (Chinese GB/T 228-2002) Performance test; elastic modulus is tested according to American standard (ASTM E1876-15); biocompatibility is evaluated according to international standard (GB/T 16886.5-2003).
  • a method for additive manufacturing of Si-containing high-strength low-modulus medical titanium alloy includes the following steps:
  • each alloy can be determined by with Determined to use sponge titanium, sponge zirconium, tantalum-niobium master alloy (a solid solution of niobium and tantalum), and silicon as raw materials to prepare alloy components;
  • Figure 1 shows The relationship diagram (Scripta Materialia 158(2019) 62-65), in which the shaded part is the metastable ⁇ -Ti area.
  • Table 1 shows the Bo value and Md value of each alloying element in bcc-Ti.
  • the Bo value and Md value are calculated by researchers and belong to the inherent properties of the alloying element.
  • the average of the alloy can be calculated through each alloying element. Number of combinations And average d-orbital energy level
  • the average bonding times of the alloy i alloy elements such as Nb, Ta, X i is the atomic percent of the alloy element i
  • (Bo) i is a d electron cloud alloying elements i and alloying elements in the matrix overlap determination covalent bond energies
  • the average alloy d electron orbital energy level i is an alloying element, such as Nb, Ta, X i is the atomic percent of the alloying element i
  • (Md) i is Md average level alloying element i).
  • the relationship diagram reflects the different types of titanium alloys ( ⁇ , ⁇ + ⁇ , ⁇ + ⁇ ", ⁇ ) with The range can be used as a reference for designing meta-stable ⁇ -type titanium alloy composition.
  • Model construction and substrate preheating construct a 50 ⁇ 10 ⁇ 10 cuboid structure, input the constructed cuboid structure into Magics 15.01 to set the position and print direction, and then import the processed data into the EOSRPtools software for slicing Process and generate the print file, and then level the substrate.
  • Use a powder spreading device to evenly spread titanium alloy powder with a thickness of 50-100 ⁇ m on the Ti-6Al-4V substrate, and use a vacuum pump to pump the molding chamber to less than 0.6 mbar and fill the molding chamber with Ar gas until the oxygen content in the molding chamber drops below 0.1%.
  • the substrate preheating temperature is 180°C. The choice of preheating temperature should ensure that the desolvation reaction has a sufficiently large degree of subcooling, while minimizing the thermal stress caused by the difference between the thermal expansion coefficient of the second phase and the matrix phase to avoid cracking.
  • Laser selective melting equipment is used for additive manufacturing forming.
  • the laser selective melting processing parameters are: overlap rate 50%, laser scanning speed 2200mm/s, laser power P 250W, scanning distance 50 ⁇ m, powder spreading thickness is 30 ⁇ m, laser scanning strategy is 67°.
  • the addition of the non-metal element Si is beneficial to improve the biocompatibility, but it is easy to form a brittle phase continuously distributed along the grain boundary.
  • the large cooling rate under high-speed scanning is used to promote the transformation of the alloy composition from a divorced eutectic reaction to a desolubilization reaction.
  • the titanium alloy formed in step (4) of this embodiment has a density as high as 99.5% and is nearly completely dense. Its microstructure is composed of columnar crystal ⁇ -Ti and equiaxed crystal ⁇ -Ti and (Ti, Zr) 2 Si phases. Columnar crystal ⁇ -Ti grows epitaxially along the boundary of the molten pool, and the grain size is about 3-12 ⁇ m. The equiaxed ⁇ -Ti is mainly distributed at the boundary of the molten pool and the junction of the molten pool, and the grain size is 1 ⁇ 3 ⁇ m. The (Ti,Zr) 2 Si phase is mainly distributed in the intragranular and grain boundaries.
  • the intragranular (Ti,Zr) 2 Si phase is mainly spherical with a size of 50 ⁇ 200nm.
  • the grain boundary (Ti,Zr) 2 Si phase is mainly broken Continuously long strip with a width of 30-150nm and a length-to-diameter ratio of 1 to 4.
  • the addition of the biologically active element Si can achieve the purpose of refining crystal grains and improving biocompatibility
  • the intermetallic compound (Ti, Zr) 2 Si phase is very easy to precipitate continuously at the grain boundary, weakening the mechanical properties, and through high-speed scanning and The high lap ratio, on the one hand, can refine the grains, reduce the formation of pores and improve the mechanical properties.
  • it can inhibit the divorced eutectic reaction, promote the desolvation reaction and inhibit (Ti, Zr) 2 Si Precipitating continuously at the grain boundary achieves the effects of solid solution strengthening and second phase strengthening. Therefore, only the combination of high-speed scanning and high lap ratio can produce medical titanium alloys with excellent mechanical compatibility and biocompatibility.
  • the yield strength of the titanium alloy parts manufactured by the high scanning speed method described in this embodiment is as high as 810MPa, the tensile strength is 1120MPa, the fracture strain is 6.4%, and the elastic modulus is ⁇ 59GPa.
  • the yield strength is slightly increased, the tensile strength is increased by 260MPa, and the elastic modulus is reduced by 51GPa;
  • the yield strength is increased by 85MPa, and the tensile strength Increased by 260MPa, the elastic modulus decreased by 20GPa.
  • Example 1 has higher strength and lower elastic modulus than the existing clinically applied medical titanium alloy implants, which can effectively reduce the "stress shielding" effect caused by the mismatch of elastic modulus.
  • the cell proliferation experiment in Example 1 shows that the microplate reader detects the absorbance (OD value) at 1 day, 4 days and 7 days. The days are 0.07, 0.8, and 2.1 respectively, which have obvious advantages compared to the 0.04, 0.6 and 1.6 of Ti-6Al-4V ELI.
  • Example 1 showed that the number of cells that survived 24 hours (the staining area of live cells per unit area) was 15.3%, which was also more than Ti-6Al-4V ELI (11.3%).
  • the alloy composition of Example 1 contains the biologically active element Si and does not contain the toxic elements Al and V, which greatly promotes the proliferation of cells and exhibits lower biological toxicity. Therefore, its Mechanical compatibility and biocompatibility are better than traditional medical titanium alloys.
  • a method for additive manufacturing of Si-containing high-strength low-modulus medical titanium alloy includes the following steps:
  • the alloy components are prepared with sponge titanium, sponge zirconium, tantalum-niobium master alloy, and silicon monomer as raw materials;
  • step (2) Pulverizing: The elements of Ti, Nb, Zr, Ta and Si are blended according to the content of step (1), and are smelted in a vacuum consumable arc melting furnace at a smelting speed of 20kg/min and remelted twice. Obtain an ingot with no obvious segregation of components, machine the metal ingot into a round bar of ⁇ 60mm ⁇ 650mm, remove the surface oxide scale, and prepare the alloy powder by the plasma rotating electrode atomization powder method (PREP), the atomization power is 55KW, and the rotating The speed is 17000r/min, protected by inert gas, and then the powder prepared by atomization is classified and screened by airflow to obtain powder with a particle size in the range of 45-100 ⁇ m;
  • PREP plasma rotating electrode atomization powder method
  • Model construction and substrate warm-up construct a 50 ⁇ 10 ⁇ 10 rectangular parallelepiped structure, input the constructed rectangular parallelepiped structure into Magics 15.01 to set the position and print direction, and then import the processed data into the BuildAssembler software for slicing Process and generate the print file, then level the substrate, adjust the powder volume of the powder tanks on both sides, and then use the vacuum pump to pump the molding chamber to less than 5 ⁇ 10 -3 Pa, and preheat the substrate to 650°C.
  • the substrate preheating temperature is 180°C. The choice of preheating temperature should ensure that the desolvation reaction has a sufficiently large degree of subcooling, while minimizing the thermal stress caused by the difference between the thermal expansion coefficient of the second phase and the matrix phase to avoid cracking.
  • 3D printing molding using electron beam selective melting equipment, electron beam selective melting processing parameters are: overlap rate 80%, electron beam scanning speed is 4530mm/s, current I is 38mA, scanning distance is 20 ⁇ m, scanning strategy It is 90°, and the powder thickness is 50 ⁇ m.
  • the addition of the non-metal element Si is beneficial to improve the biocompatibility, but it is easy to form a brittle phase continuously distributed along the grain boundary.
  • the large cooling rate under high-speed scanning is used to promote the transformation of the alloy composition from a divorced eutectic reaction to a desolubilization reaction.
  • the density of the titanium alloy formed within the processing parameter range in this embodiment is as high as 99.7%, which is almost completely dense.
  • Its phase composition is based on ⁇ -Ti, and the crystal grain size is 1-9 ⁇ m.
  • Small, the (Ti,Zr) 2 Si phase is mainly precipitated in the grain and the grain boundary.
  • the intragranular (Ti,Zr) 2 Si phase is spherical and the size is 50 ⁇ 150nm.
  • the grain boundary (Ti,Zr) 2 Si phase is along the grain boundary Intermittent distribution, width 30-100nm, aspect ratio 1-3.
  • the tensile strength of the titanium alloy in this example is 1090MPa, the yield strength is 790MPa, and the elastic modulus is ⁇ 57GPa.
  • the yield strength of the medical titanium alloy prepared in this example is slightly improved.
  • the cell proliferation experiment in Example 2 showed that the absorbance (OD value) detected by the microplate reader was 0.07, 0.8, 2.0 on day 1, 4, and 7 respectively, compared with 0.04, 0.6 and 1.6 of Ti-6Al-4V ELI. Has obvious advantages.
  • Example 2 has higher strength and lower elastic modulus than the existing clinically applied medical titanium alloy implants, which can effectively reduce the "stress shielding" effect due to the mismatch of elastic modulus. , To avoid the degradation and absorption of the original bone tissue function after long-term implantation in the human body, resulting in implant failure, and its biocompatibility is significantly better than that of traditional medical titanium alloys.
  • a method for additive manufacturing of Si-containing high-strength low-modulus medical titanium alloy includes the following steps:
  • Model construction and substrate preheating construct a 50 ⁇ 10 ⁇ 10 cuboid structure, input the constructed cuboid structure into Magics 15.01 to set the position and print direction, and then import the processed data into the EOSRPtools software for slicing Process and generate the print file, and then level the substrate.
  • Use a powder spreading device to evenly spread titanium alloy powder with a thickness of 50-100 ⁇ m on the Ti-6Al-4V substrate, and use a vacuum pump to pump the molding chamber to less than 0.6 mbar and fill the molding chamber with Ar gas until the oxygen content in the molding chamber drops below 0.1%; the preheating temperature of the substrate is 180°C.
  • the choice of preheating temperature should ensure that the desolvation reaction has a sufficiently large degree of subcooling, while minimizing the thermal stress caused by the difference between the thermal expansion coefficient of the second phase and the matrix phase to avoid cracking.
  • Additive manufacturing forming Laser selective melting equipment is used for additive manufacturing forming.
  • the laser selective melting processing parameters are: the overlap rate is 70%, the laser scanning speed is 3000mm/s, the laser power P is 360W, and the scanning distance is 40 ⁇ m, spreading powder thickness is 40 ⁇ m, laser scanning strategy is 67°.
  • the effect of grain refinement can also be achieved through high lap ratio and high scanning speed, thereby improving the mechanical properties and biocompatibility of the alloy.
  • the density of the titanium alloy formed in this embodiment within the processing parameter range is as high as 99.7%, which is almost completely dense.
  • Its phase composition is based on columnar crystal ⁇ -Ti, the grain size is 2-13 ⁇ m, and the tensile strength is 932MPa , The yield strength is 896MPa, and the fracture plasticity is 19%.
  • the tensile strength of the medical titanium alloy prepared in this example is increased by 252MPa, the yield strength is increased by 232MPa, and the plasticity It is increased by 3.7%, and the elastic modulus is reduced by 12 GPa; compared with Ti-6Al-4V ELI (ASTM F136), the elastic modulus is reduced by 58 GPa.
  • the cell proliferation experiment in Example 3 shows that the absorbance (OD value) detected by the microplate reader on 1 day, 4 days and 7 days are 0.06, 0.7, 1.8, respectively, compared with the 0.04, 0.6 and 1.6 of Ti-6Al-4V ELI.
  • Example 3 Slight advantage. At the same time, the cytotoxicity experiment of Example 3 showed that the number of cells that survived 24 hours (the stained area of live cells per unit area) was 13.7%, which was also more than Ti-6Al-4V ELI (11.3%). Obviously, Example 3 has smaller crystal grains, higher strength and lower elastic modulus than the existing clinically applied medical titanium alloy implants, which can effectively reduce the mismatch of elastic modulus. Produces a "stress shielding" effect, avoiding long-term implantation in the human body that will cause the original bone tissue function to degenerate and be absorbed, resulting in plant failure. At the same time, because it does not contain biotoxic elements Al and V, it shows relatively excellent biocompatibility .
  • a method for additive manufacturing of Si-containing high-strength low-modulus medical titanium alloy includes the following steps:
  • the alloy components are prepared with sponge titanium, sponge zirconium, tantalum-niobium master alloy, and silicon monomer as raw materials;
  • step (2) Pulverizing: The elements of Ti, Nb, Zr, Ta and Si are blended according to the content of step (1), and are smelted in a vacuum consumable arc melting furnace at a smelting speed of 20kg/min and remelted twice. Obtain an ingot with no obvious segregation of components, machine the metal ingot into a round bar of ⁇ 60mm ⁇ 650mm, remove the surface oxide scale, and prepare the alloy powder by the plasma rotating electrode atomization powder method (PREP), the atomization power is 55KW, and the rotating The speed is 17000r/min, protected by inert gas, and then the powder prepared by atomization is classified and screened by airflow to obtain powder with a particle size in the range of 45-100 ⁇ m;
  • PREP plasma rotating electrode atomization powder method
  • Model construction and substrate warm-up construct a 50 ⁇ 10 ⁇ 10 rectangular parallelepiped structure, input the constructed rectangular parallelepiped structure into Magics 15.01 to set the position and print direction, and then import the processed data into the BuildAssembler software for slicing Process and generate print files, then level the substrate, adjust the amount of powder from the powder tanks on both sides, and then use a vacuum pump to pump the molding chamber to less than 5 ⁇ 10 -3 Pa, and preheat the substrate to 650°C.
  • the choice of preheating temperature should ensure that the desolvation reaction has a sufficiently large degree of subcooling, while minimizing the thermal stress caused by the difference between the thermal expansion coefficient of the second phase and the matrix phase to avoid cracking.
  • 3D printing molding using electron beam selective melting equipment, electron beam selective melting processing parameters are: overlap rate 50%, electron beam scanning speed is 8000mm/s, current I is 56mA, scanning distance is 60 ⁇ m, scanning strategy It is 90°, and the powder thickness is 50 ⁇ m.
  • the addition of the non-metal element Si is beneficial to improve the biocompatibility, but it is easy to form a brittle phase continuously distributed along the grain boundary.
  • the large cooling rate under high-speed scanning is used to promote the transformation of the alloy composition from a divorced eutectic reaction to a desolubilization reaction.
  • the density of the titanium alloy formed within the processing parameter range is as high as 99.7%, which is almost completely dense.
  • Its phase composition is based on ⁇ -Ti, and the crystal grain size is 1-8 ⁇ m.
  • the (Ti,Zr) 2 Si phase mainly precipitates in the grain and the grain boundary.
  • the intragranular (Ti,Zr) 2 Si phase is spherical with a size of 50-100nm.
  • the grain boundary (Ti,Zr) 2 Si phase is along the grain boundary. Intermittent distribution, width 30-100nm, aspect ratio 1-3.
  • the yield strength of the medical titanium alloy prepared in this example is equivalent, the tensile strength is increased by 190MPa, and the elastic modulus is reduced by 56GPa; it is comparable to the medical ⁇ -type titanium alloy Ti-13Nb- Compared with 13Zr (ASTM F1713), the yield strength is increased by 50 MPa, the tensile strength is increased by 190 MPa, and the elastic modulus is reduced by 25 GPa.
  • the cell proliferation experiment in Example 2 showed that the absorbance (OD value) detected by the microplate reader was 0.07, 0.8, and 1.9 on day 1, 4 and 7 respectively, compared with 0.04, 0.6 and 1.6 of Ti-6Al-4V ELI.
  • Example 4 has higher strength and lower elastic modulus than the existing clinically applied medical titanium alloy implants, which can effectively reduce the "stress shielding" effect caused by the mismatch of elastic modulus. , To avoid the degradation and absorption of the original bone tissue function after long-term implantation in the human body, resulting in implant failure, and the mechanical compatibility and biocompatibility are significantly better than traditional medical titanium alloys.
  • a method for additive manufacturing of Si-containing high-strength low-modulus medical titanium alloy includes the following steps:
  • Model construction and substrate preheating construct a 50 ⁇ 10 ⁇ 10 cuboid structure, input the constructed cuboid structure into Magics 15.01 to set the position and print direction, and then import the processed data into the EOSRPtools software for slicing Process and generate the print file, and then level the substrate.
  • Use a powder spreading device to evenly spread titanium alloy powder with a thickness of 50-100 ⁇ m on the Ti-6Al-4V substrate, and use a vacuum pump to pump the molding chamber to less than 0.6 mbar and fill the molding chamber with Ar gas until the oxygen content in the molding chamber drops below 0.1%; the preheating temperature of the substrate is 180°C.
  • the choice of preheating temperature should ensure that the desolvation reaction has a sufficiently large degree of subcooling, while minimizing the thermal stress caused by the difference between the thermal expansion coefficient of the second phase and the matrix phase to avoid cracking.
  • the laser selective melting equipment is used for additive manufacturing forming.
  • the laser selective melting processing parameters are: the overlap rate is 60%, the laser scanning speed is 2200mm/s, the laser power P is 250W, and the scanning distance is 40 ⁇ m, powder spreading thickness is 30 ⁇ m, laser scanning strategy is 67°.
  • the addition of the non-metal element Si is beneficial to improve the biocompatibility, but it is easy to form a brittle phase continuously distributed along the grain boundary.
  • the large cooling rate under high-speed scanning is used to promote the transformation of the alloy composition from a divorced eutectic reaction to a desolubilization reaction.
  • the density of the titanium alloy formed within the processing parameter range is as high as 99.6%, which is almost completely dense.
  • Its phase composition is based on ⁇ -Ti, and the crystal grain size is 1-8 ⁇ m.
  • the (Ti,Zr) 2 Si phase is mainly precipitated in the grain and the grain boundary.
  • the intragranular (Ti,Zr) 2 Si phase is spherical with a size of 50 ⁇ 300nm.
  • the grain boundary (Ti,Zr) 2 Si phase is along the grain boundary. Intermittent distribution, width 50-200nm, aspect ratio 1-3.
  • the yield strength of the medical titanium alloy prepared in this example is increased by 30 MPa, the tensile strength is increased by 290 MPa, and the elastic modulus is reduced by 46 GPa; compared with the medical ⁇ -type titanium alloy Ti- Compared with 13Nb-13Zr (ASTM F1713), the yield strength is increased by 105MPa, the tensile strength is increased by 290MPa, and the elastic modulus is reduced by 15GPa.
  • Example 5 shows that the absorbance (OD value) detected by the microplate reader on 1 day, 4 days and 7 days are 0.07, 0.9, 2.3, respectively, compared with the 0.04, 0.6 and 1.6 of Ti-6Al-4V ELI.
  • OD value absorbance
  • Example 5 showed that the number of cells that survived 24 hours (the stained area of live cells per unit area) was 15.6%, which was also more than Ti-6Al-4V ELI (11.3%).
  • Example 5 has higher strength and lower elastic modulus than the existing clinically applied medical titanium alloy implants, which can effectively reduce the "stress shielding" effect caused by the mismatch of elastic modulus.
  • the mechanical compatibility and biocompatibility are significantly better than traditional medical titanium alloys.
  • a method for additive manufacturing of Si-containing high-strength low-modulus medical titanium alloy includes the following steps:
  • the alloy components are prepared with sponge titanium, sponge zirconium, tantalum-niobium master alloy, and silicon monomer as raw materials;
  • step (2) Pulverizing: The elements of Ti, Nb, Zr, Ta and Si are blended according to the content of step (1), and are smelted in a vacuum consumable arc melting furnace at a smelting speed of 20kg/min and remelted twice. Obtain an ingot with no obvious segregation of components, machine the metal ingot into a round bar of ⁇ 60mm ⁇ 650mm, remove the surface oxide scale, and prepare the alloy powder by the plasma rotating electrode atomization powder method (PREP), the atomization power is 55KW, and the rotating The speed is 17000r/min, protected by inert gas, and then the powder prepared by atomization is classified and screened by airflow to obtain powder with a particle size in the range of 45-100 ⁇ m;
  • PREP plasma rotating electrode atomization powder method
  • Model construction and substrate warm-up construct a 50 ⁇ 10 ⁇ 10 rectangular parallelepiped structure, input the constructed rectangular parallelepiped structure into Magics 15.01 to set the position and print direction, and then import the processed data into the BuildAssembler software for slicing Process and generate the print file, then level the substrate, adjust the powder volume of the powder tanks on both sides, and then use the vacuum pump to pump the molding chamber to less than 5 ⁇ 10 -3 Pa, and preheat the substrate to 1200°C.
  • the choice of preheating temperature should ensure that the desolvation reaction has a sufficiently large degree of subcooling, while minimizing the thermal stress caused by the difference between the thermal expansion coefficient of the second phase and the matrix phase to avoid cracking.
  • 3D printing molding using electron beam selective melting equipment, electron beam selective melting processing parameters are: overlap rate 70%, electron beam scanning speed is 10000mm/s, current I is 64mA, scanning distance is 40 ⁇ m, scanning strategy It is 90°, and the powder thickness is 50 ⁇ m.
  • the addition of the non-metal element Si is beneficial to improve the biocompatibility, but it is easy to form a brittle phase continuously distributed along the grain boundary.
  • the large cooling rate under high-speed scanning is used to promote the transformation of the alloy composition from a divorced eutectic reaction to a desolubilization reaction.
  • the density of the titanium alloy formed within the processing parameter range is as high as 99.7%, which is almost completely dense.
  • Its phase composition is based on ⁇ -Ti, and the crystal grain size is 1-7 ⁇ m.
  • the (Ti,Zr) 2 Si phase is mainly precipitated in the grain and the grain boundary.
  • the intragranular (Ti,Zr) 2 Si phase is spherical with a size of 50 ⁇ 200nm.
  • the grain boundary (Ti,Zr) 2 Si phase is along the grain boundary. Discontinuous distribution, width is 30 ⁇ 150nm, aspect ratio is 1-6.
  • the yield strength of the medical titanium alloy prepared in this example is increased by 45 MPa, the tensile strength is increased by 320 MPa, and the elastic modulus is reduced by 41 GPa; compared with the medical ⁇ -type titanium alloy Ti- Compared with 13Nb-13Zr (ASTM F1713), the yield strength of the medical titanium alloy prepared in this example is increased by 120 MPa, the tensile strength is increased by 320 MPa, and the elastic modulus is reduced by 10 GPa.
  • Example 2 shows that the absorbance (OD value) detected by the microplate reader on 1 day, 4 days and 7 days are 0.07, 0.9, 2.3, respectively, compared with the 0.04, 0.6 and 1.6 of Ti-6Al-4V ELI.
  • OD value absorbance
  • Example 6 showed that the number of cells that survived 24 hours (the stained area of live cells per unit area) was 16.7%, which was also more than Ti-6Al-4V ELI (11.3%).
  • Example 6 has higher strength and lower elastic modulus than the existing clinically applied medical titanium alloy implants, which can effectively reduce the "stress shielding" effect caused by the mismatch of elastic modulus. , To avoid the degradation and absorption of the original bone tissue function after long-term implantation in the human body, resulting in implant failure, and the mechanical compatibility and biocompatibility are significantly better than traditional medical titanium alloys.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种含Si高强低模医用钛合金及其增材制造方法与应用;该制备方法包括合金成分设计、制粉、模型构建与基板预热和增材制造成形;其中设计含Si高强低模医用钛合金成分组成为Ti 60~70at.%,Nb 16~24at.%,Zr 4~14at.%,Ta 1~8at.%,Si 0.1~5at.%;本发明原理为通过d电子理论设计出高强低模、生物相容性好的医用β-型钛合金,通过预热降低硅化物与β-Ti相之间的热胀差值,同时确保增材制造过程中有足够的冷却度促使合金由离异共晶向脱溶反应转变,解决含Si相沿晶界连续分布恶化力学性能和不同相热膨胀系数差异导致易开裂等共性难题。

Description

一种含Si高强低模医用钛合金及其增材制造方法与应用 技术领域
本发明涉及钛合金材料与增材制造技术领域,具体涉及一种高强低模医用钛合金植入物的增材制造方法。
背景技术
相比于不锈钢、Co-Cr合金等医用金属材料,钛合金具有优异的生物力学性能和良好的生物相容性,被广泛用做骨创伤产品和人工关节等人体硬组织替代材料和修复物。然而临床研究发现:传统钛合金(α钛合金,α+β钛合金)由于弹性模量不匹配而产生“应力遮挡”效应,长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,并且钛合金属于生物惰性材料,很难与骨形成强有力的化学骨结合,长期植入人体还存在金属腐蚀导致的Al、V等毒性离子溶出等潜在问题。因此,制备良好力学相容性、生物活性的新一代医用钛合金材料是保证其长期稳定并达到理想治疗效果的前提和关键。
β型钛合金因具有更低的弹性模量和更高的强度,且不含Al、V等毒性元素而得到广泛研究,主要有Ti-Mo系、Ti-Nb系、Ti-Zr系、Ti-Ta系等,典型代表有Ti-15Mo,Ti-13Nb-13Zr,Ti-12Mo-6Zr-2Fe,Ti-35Nb-5Ta-7Zr和Ti-29Nb-13Ta-4.6Zr,其中Ti-Nb-Ta-Zr合金拥有更低的弹性模量(48-55GPa)(Materials2014,7,1709-1800),约为Ti-6Al-4V的50%。然而,目前现有的Ti-Nb-Ta-Zr系钛合金强度普遍偏低(~550GPa)(Materials Science and Engineering C 60(2016)230-238),且与人骨组织弹性模量(10-30GPa)还有一定的差距(Adv.Eng.Mater.2019,1801215),且因不含生物活性元素很难与骨形成强有力的化学骨结合。因此,亟需制备出一种高强低模、生物相容性好的医用钛合金。
作为一项制造领域正迅猛发展的新兴技术,增材制造(也称“3D打印”)通过逐层堆积的原理直接成形,具有复杂零件近净成形、个性化定制等显著优势。尤其,利用3D打印技术中的选择性激光熔化(Selective Laser Melting,SLM)和选择性电子束熔化(Selective Electron Beam Melting,SEBM)冷却速率快(10 4~10 5K/s以上)的特点(International Materials Reviews 2016 VOL 61 NO 5 361),可在多种合金体系中获得细晶甚至超细晶的微观结构,从而提高力学性能和生物相容性(RSC Adv.,2015,5,101794)。Luo等利用SLM制备的Ti-30Nb-5Ta-3Zr合金(Materials Science&Engineering C 97(2019)275–284),其平均晶粒尺 寸为17.6μm,拉伸强度680MPa、塑性为15.3%,弹性模量为64.2GPa,但有部分晶粒异常粗大、晶粒尺寸为100~260μm。该技术SLM制备的Ti-30Nb-5Ta-3Zr合金晶粒较大、拉伸强度较低的原因为:SLM使用的搭接率较小(~35%)、扫描速度较低(200~600mm/s),且成形过程中马氏体相变致使弹性模量高于单相的β-Ti合金。另外,研究表明扫描速度越快,过冷度越大,晶粒越细小(ActaMaterialia 60(2012)3849-3860),然而较大的冷却速度易造成大热应力从而导致开裂。并且,扫描速度越大熔池越不稳定(Journal of Materials Processing Technology 210(2010)1624-1631),容易造成孔洞形成降低致密度(ActaMaterialia 108(2016)36-45)。因此,如何解决增大扫描速度细化晶粒与裂纹和孔洞增加这一矛盾已是当前增材制造面临的共性技术难题。
Si作为一种生物活性元素,不但可以促进骨增殖、细胞黏附,与骨形成有力的化学结合(RSC Adv.,2015,5,101794),而且Si元素可以细化晶粒和形成第二相,具有细晶强化和第二相强化作用。但是,非金属元素Si易与Ti形成连续的晶界弱化相,严重降低力学性能。另外,在较大的温度梯度下,由于β-Ti基体与含Si的金属间化合物的热膨胀系数不一样,加剧了裂纹的形成,增加了3D打印成形难度。因此,如何解决生物活性必需元素Si的引入造成的力学性能和成形性的恶化问题是目前亟待解决的技术难题。
发明内容
本发明的首要目的在于提供一种有效解决生物活性必需元素Si的引入造成的力学性能和成形性的恶化问题的含Si高强低模医用钛合金的增材制造方法。
本发明的另一目的在于提供一种通过上述方法制备得到的含Si高强低模医用钛合金。
本发明的再一目的在于提供上述含Si高强低模医用钛合金在人体植入物制备中的应用。
本发明目的通过以下技术方案实现:
一种含Si高强低模医用钛合金的增材制造方法,其特征在于包括如下步骤:
(1)合金成分设计:基于低弹性模量TiNbTaZr系合金,添加0.1~5at.%生物活性元素Si,再根据d电子理论,计算合金的平均结合次数
Figure PCTCN2020124598-appb-000001
(Bo) i为合金元素i与基体合金元素的d电子云重迭确定的共价键能;合金平均d电子轨道能级为
Figure PCTCN2020124598-appb-000002
Figure PCTCN2020124598-appb-000003
(Md) i为合金元素i的M-d能级的平均值,i为合金元素Nb、Ta,X i为合金元素i的原子百分比;根据
Figure PCTCN2020124598-appb-000004
关系图的β-Ti区,使计算的
Figure PCTCN2020124598-appb-000005
Figure PCTCN2020124598-appb-000006
值落在
Figure PCTCN2020124598-appb-000007
关系图的亚稳β-Ti区,再根据Ti-Zr-Si三元相图选取偏离共晶点并靠近Si在Ti中最大固溶度 的合金成分范围,设计含Si高强低模医用钛合金成分组成为Ti 60~70at.%,Nb 16~24at.%,Zr 4~14at.%,Ta 1~8at.%,Si 0.1~5at.%,按照成分组成以海绵钛、海绵锆、钽铌中间合金、硅单质为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,制备合金棒材,通过电极感应熔炼气体雾化法(EIGA)或等离子旋转电极雾化制粉法(PREP)制备钛合金粉末并进行筛分处理,获得适用于增材制造的颗粒尺寸范围的球形粉末;
(3)模型构建与基板预热:构建所需制备结构零件的三维模型,完成切片处理并生成打印文件,激光选区熔化基板预热温度为150℃~650℃,电子束选区熔化基板预热温度为650℃~1200℃;
(4)增材制造成形:采用激光选区熔化或电子束选区熔化成形设备进行增材制造成形,得到高强低模医用钛合金;关键的成形参数为:50%≤熔道搭接率μ≤80%,1000mm/s≤扫描速度V≤10000mm/s;采用激光选区熔化成形时激光器输入功率为P,140W≤P≤360W、激光扫描间距h介于20~80μm,采用电子束选区熔化成形时电子枪电流为I,8mA≤I≤100mA、电子束扫描间距h介于20~200μm。
为进一步实现本发明目的,优选地,步骤(1)中,
Figure PCTCN2020124598-appb-000008
优选地,步骤(2)所述的真空自耗电弧熔炼的过程为:将配制好的原材料压制成电极,电极大小控制在比坩埚小50~70mm之间;电极与熔池之间的间隙控制在60~80mm之间;熔炼速度为20kg/min;两次重熔获得铸锭,成分无明显偏析。
优选地,步骤(2)所述的电极感应熔炼气体雾化法为:将熔炼好的铸锭机加工成φ45mm×550mm的棒材,表面无明显氧化,将棒材一端机加工成45°圆锥,雾化压力为3.5~4.5MPa,熔炼功率为20~30KW,进给速度为35~45mm/min,整个环境处于惰性气体保护。
优选地,步骤(2)所述的等离子旋转电极雾化法为:将熔炼好的铸锭机加工成φ60mm×650mm的棒材,表面无明显氧化,雾化功率为50~60KW,旋转速度为16000~18000r/min,整个环境处于惰性气体保护。
优选地,步骤(4)所述的搭接率
Figure PCTCN2020124598-appb-000009
其中w是熔池宽度,单位μm;h是扫描间距,单位为μm。
优选地,步骤(4)中,适合激光选区熔化成形的粉末尺寸为15~53μm;适合电子束选区熔化成形的粉末尺寸为45~100μm。
本发明进行增材制造成形的激光选区熔化或电子束选区熔化成形设备采用EOS M290,SLMsolution 280,RENISHAW 400,Arcam Q10plus等。
一种含Si高强低模医用钛合金,由上述的制备方法制得,所得的高强低模医用钛合金的组织特征为:以柱状晶和等轴晶的β-Ti为基体,以晶内均匀分布的球状(Ti,Zr) 2Si相和晶界不连续分布的(Ti,Zr) 2Si相为增强相;其中,β-Ti晶粒大小为1~13μm,球状(Ti,Zr) 2Si相晶粒大小为50~300nm;晶界不连续分布的(Ti,Zr) 2Si相为长条状,宽度为30~200nm,长径比为1~6。
所述的含Si高强低模医用钛合金在人体植入物制备中的应用。
优选地,所述的人体植入物包括股骨头,髋、膝关节植入物;椎体、椎间融合器;脊柱植入物、肩部植入物,下颌骨、颅骨植入物,颅颌面植入物,足踝关节植入物,脚趾骨植入物或胸骨植入物。
本发明制备方法的原理为:通过步骤(1)合金成分设计,在低弹性模量TiNbTaZr系合金中引入同时具有生物活性和晶粒细化作用的Si元素(对于不含硅的TiNbTaZr合金,通过高速扫描下获得较大的过冷度从而细化晶粒,高搭接率保证试样致密度),再根据公式
Figure PCTCN2020124598-appb-000010
Figure PCTCN2020124598-appb-000011
计算
Figure PCTCN2020124598-appb-000012
Figure PCTCN2020124598-appb-000013
使得
Figure PCTCN2020124598-appb-000014
Figure PCTCN2020124598-appb-000015
满足
Figure PCTCN2020124598-appb-000016
关系图中亚稳β-Ti范围(亚稳β-Ti具有更低的弹性模量)(Materials Science and Engineering A243(1998)244–249),然而对于传统工艺(如铸造)制备含脆性共晶化合物的合金,尚未考虑较大的冷却速度下易开裂问题,因此,对于具有急热急冷特点的增材制造工艺,还需考虑具体加工工艺,在满足
Figure PCTCN2020124598-appb-000017
关系图的前提下,根据Ti-Zr-Si合金相图进一步优选合金成分,使得合金成分满足由常规扫描速度下的离异共晶反应向高速扫描下的脱溶反应转变,从而获得第二相不连续的微观组织;
通过步骤(2)制备满足3D打印粉末尺寸要求的粉末;
在步骤(3)中通过基板预热降低打印过程中产生的热应力从而减少开从裂倾向,预热温度的选择应保证脱熔反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂;
在步骤(4)中,利用高速扫描下较大的过冷度(即冷却速率快)获得晶粒细小的组织,同时促进合金由离异共晶反应向脱熔反应转变,抑制(Ti,Zr) 2Si相沿晶界连续分布,促进(Ti, Zr) 2Si相在晶内析出,进而提高材料的力学性能和生物相容性。同时,由于高速扫描使得熔池宽度减小以及孔洞形成,因此,提高搭接率进而提高打印件的致密度和成形质量。因此,本专利通过探索合适的成分配比(满足
Figure PCTCN2020124598-appb-000018
关系图中亚稳定β-Ti区域的同时考虑增材制造工艺促进脱溶反应),利用高速扫描和高搭接率促进(Ti,Zr) 2Si相在晶内弥散析出以及在晶界不连续析出(对于不含硅的TiNbTaZr合金,同样可利用高速扫描达到细化晶粒提高强度的效果),解决增材制造中易发生离异共晶反应的合金成分析出连续晶界相恶化合金材料力学性能和成形性能的共性技术难题。
本发明与现有技术相比,具有如下优点和有益效果:
1.与传统的α-型和α+β-型医用钛合金相比,本发明制备的医用β-型钛合金具有更低的弹性模量和更好的生物相容性,同时由于第二相的引入,使合金具有更高的强度(屈服强度为810MPa,抗拉强度为1120MPa),更低的弹性模量(~59GPa)。相比Ti-6Al-4V ELI(ASTM F136),屈服强度略微提高,抗拉强度提高了260MPa,与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了85MPa,抗拉强度提高了260MPa,弹性模量降低了20GPa,力学相容性和生物相容性明显优于传统医用钛合金。
2.本发明为易发生离异共晶反应生成沿晶界连续第二相分布的合金成分设计与增材制造提高指导思路。
3.本发明采用增材制造技术成形的高强低模医用钛合金,由于SLM/SEBM具有急热急冷的特点,因此获得的组织相对于传统铸造合金具有更细小的晶粒,且不易成分偏析,因此具有更好的力学性能和生物相容性。
4.本发明采用增材制造成形,相比于传统的铸造和塑性变形,可制备各种复杂形状的零件,满足个性化设计要求,真正做到为患者打造量身定制的医用植入件。
5.本发明中采用的SLM/SEBM成形技术,可实现近净成形,提高了材料的利用率,从而节约了成本。
附图说明
图1为实施例1中的
Figure PCTCN2020124598-appb-000019
关系图(Scripta Materialia 158(2019)62-65)。
具体实施方式
为更好地理解本发明,下面结合实施例及附图对本发明作进一步的描述,但本发明的实施方式不限于此。
以下实施例的具体测试方法如下:试样致密度由阿基米德排水法测得;试样的屈服强 度、抗拉强度、断裂应变按照国际标准(Chinese GB/T 228-2002)进行拉伸性能测试;弹性模量按照美国标准(ASTM E1876-15)进行测试;生物相容性按照国际标准(GB/T 16886.5-2003)评价。
实施例1:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti68.3at.%,Nb23.3at.%,Zr4.7at.%,Ta1.7at.%,Si2at.%的合金成分配比,其中,Bo=2.88,Md=2.46,满足
Figure PCTCN2020124598-appb-000020
关系图中亚稳定β-Ti区(附图1中箭头位置,由Bo=2.88,Md=2.46确定),各合金的原子百分含量可由
Figure PCTCN2020124598-appb-000021
Figure PCTCN2020124598-appb-000022
确定,以海绵钛、海绵锆、钽铌中间合金(铌和钽的固溶体)、硅单质为原材料配制合金组分;图1为
Figure PCTCN2020124598-appb-000023
关系图(Scripta Materialia 158(2019)62-65),其中阴影部分为亚稳定β-Ti区。
表1 bcc-Ti中不同合金元素的Bo,Md值
Figure PCTCN2020124598-appb-000024
表1为各合金元素在bcc-Ti中的Bo值和Md值,Bo值和Md值是研究者们通过计算得来的,属于合金元素本身的固有属性,通过各合金元素可计算合金的平均结合次数
Figure PCTCN2020124598-appb-000025
和平均d轨道能级
Figure PCTCN2020124598-appb-000026
其中,合金的平均结合次数
Figure PCTCN2020124598-appb-000027
(i为合金元素,如Nb,Ta,X i为合金元素i的原子百分比,(Bo) i为合金元素i与基体合金元素的d电子云重迭确定的共价键能),合金的平均d电子轨道能级
Figure PCTCN2020124598-appb-000028
(i为合金元素,如Nb,Ta,X i为合金元素i的原子百分比,(Md) i为合金元素i的M-d能级的平均值)。
Figure PCTCN2020124598-appb-000029
关系图反映不同钛合金类型(α,α+β,β+α",β)的
Figure PCTCN2020124598-appb-000030
Figure PCTCN2020124598-appb-000031
范围,可作为设计亚稳定β-型钛合金成分的参照。具体设计方法为:根据Ti-Zr-Si相图,选取远离共晶成分点靠近Si在Ti中最大固溶度的含量,Si 的原子百分比取2%,再由Bo=2.88,Md=2.46确定其他合金元素含量,其中实施例1成分位于箭头位置处。
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ45mm×550mm的圆棒,去掉表面氧化皮,采用电极感应熔炼气体雾化法(EIGA)制备合金粉末,雾化压力为4.0MPa,熔炼功率为25KW,进给速度为40mm/min,惰性气体保护,然后对气雾化制备的粉末进行气流分级和筛选处理,获取粒径在15~53μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入EOSRPtools软件中进行切片处理并生成打印文件,然后对基板进行调平,用铺粉装置在Ti-6Al-4V基板上预先均匀铺置厚度范围为50~100μm的钛合金粉末,用真空泵将成型室内抽至低于0.6mbar并往成型室内充入Ar气,直至成型室内氧含量降至0.1%以下。基板预热温度为180℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)增材制造成形:采用激光选区熔化设备进行增材制造成形,激光选区熔化加工参数为:搭接率为50%,激光扫描速度为2200mm/s,激光功率P为250W,扫描间距为50μm,铺粉厚度为30μm,激光扫描策略为67°。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例步骤(4)所成形的钛合金致密度高达99.5%,近全致密,其微观组织为柱状晶β-Ti和等轴晶β-Ti以及(Ti,Zr) 2Si相组成,其中柱状晶β-Ti沿着熔池边界呈外延生长,晶粒大小在3~12μm左右,等轴晶β-Ti主要分布在熔池边界和熔池交界处,晶粒大小为1~3μm。(Ti,Zr) 2Si相主要分布在晶内和晶界,晶内(Ti,Zr) 2Si相主要呈球状,大小为50~200nm,晶界(Ti,Zr) 2Si相主要呈断续长条状,宽度为30~150nm,长径比为1~4。
生物活性元素Si的加入虽然能达到细化晶粒、改善生物相容性的目的,但金属间化合物(Ti,Zr) 2Si相极易在晶界连续析出,弱化力学性能,通过高速扫描和高的搭接率,一方面可以起到细化晶粒、减少孔洞形成进而提高力学性能的作用,另一方面又可以抑制离异共 晶反应,促进脱溶反应进而抑制(Ti,Zr) 2Si在晶界连续析出,达到固溶强化和第二相强化的效果。因此,只有高速扫描和高搭接率结合才能制备出力学相容性和生物相容性优异的医用钛合金。
采用本实施例所述高的扫描速度方法制造的钛合金零件屈服强度高达810MPa,抗拉强度为1120MPa,断裂应变达6.4%,弹性模量为~59GPa,相比Ti-6Al-4V ELI(ASTM F136),屈服强度略微提高,抗拉强度提高了260MPa,弹性模量降低了51GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了85MPa,抗拉强度提高了260MPa,弹性模量降低了20GPa。显然,实施例1相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败;另外,实施例1的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.07、0.8、2.1,相比Ti-6Al-4V ELI的0.04、0.6和1.6具有明显优势。同时,同时,实施例1的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为15.3%,也多于Ti-6Al-4V ELI(11.3%)。相比于Ti-6Al-4V ELI,实施例1的合金成分中包含生物活性元素Si以及不含毒性元素Al和V,大大地促进了细胞的增殖和表现出更低的生物毒性,因此,其力学相容性和生物相容性优于传统医用钛合金。
实施例2:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti68.3at.%,Nb23.3at.%,Zr4.7at.%,Ta1.7at.%,Si2at.%的合金成分配比,其中,Bo=2.88,Md=2.46,满足
Figure PCTCN2020124598-appb-000032
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金、硅单体为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ60mm×650mm的圆棒,去掉表面氧化皮,采用等离子旋转电极雾化制粉法(PREP)制备合金粉末,雾化功率为55KW,旋转速度为17000r/min,惰性气体保护,然后对雾化制备的粉末进行气流分级和筛选处理,获取粒径在45~100μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入BuildAssembler软件中进行切片处理并生成打印文件,然后对基板进行调平,调整两侧粉箱取粉量,然后 用真空泵将成型室内抽至低于5×10 -3Pa,基板预热到650℃。基板预热温度为180℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)3D打印成型:采用电子束选区熔化设备,电子束选区熔化加工参数为:搭接率为80%,电子束扫描速度为4530mm/s,电流I为38mA,扫描间距为20μm,扫描策略为90°,铺粉厚度为50μm。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.7%,近乎全致密,其相组成以β-Ti为基体,晶粒大小为1-9μm,晶粒要比实施案例1小,(Ti,Zr) 2Si相主要在晶内和晶界析出,晶内(Ti,Zr) 2Si相呈球状,大小为50~150nm,晶界(Ti,Zr) 2Si相沿晶界断续分布,宽度为30~100nm,长径比为1-3。该实施例钛合金抗拉强度为1090MPa,屈服强度为790MPa,弹性模量为~57GPa,相比Ti-6Al-4V ELI(ASTM F136),本实施例制备的医用钛合金屈服强度略微提高,抗拉强度提高了230MPa,弹性模量降低了53GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了65MPa,抗拉强度提高了230MPa,弹性模量降低了22GPa。另外,实施例2的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.07,0.8,2.0,相比Ti-6Al-4V ELI的0.04,0.6和1.6具有明显优势。同时,实施例2的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为15.1%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例2相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,同时其生物相容性明显优于传统医用钛合金。
实施例3:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti69.6at.%,Nb23.7at.%,Zr4.8at.%,Ta1.7at.%,Si0.1at.%的合金成分配比,其中,Bo=2.88,Md=2.47,满足
Figure PCTCN2020124598-appb-000033
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ45mm×550mm的圆棒,去掉表面氧化皮,采用电极感应熔炼气体雾化法(EIGA)制备合金粉末,雾化压力为4.0MPa,熔炼功率为25KW,进给速度为40mm/min,惰性气体保护,然后对气雾化制备的粉末进行气流分级和筛选处理,获取粒径在15~53μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入EOSRPtools软件中进行切片处理并生成打印文件,然后对基板进行调平,用铺粉装置在Ti-6Al-4V基板上预先均匀铺置厚度范围为50~100μm的钛合金粉末,用真空泵将成型室内抽至低于0.6mbar并往成型室内充入Ar气,直至成型室内氧含量降至0.1%以下;基板预热温度为180℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)增材制造成形:采用激光选区熔化设备进行增材制造成形,激光选区熔化加工参数为:搭接率为70%,激光扫描速度为3000mm/s,激光功率P为360W,扫描间距为40μm,铺粉厚度为40μm,激光扫描策略为67°。本实施3例虽然没有Si元素的添加,但通过高的搭接率和高的扫描速度也能达到细化晶粒的作用,从而提高合金的力学性能和生物相容性。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.7%,近乎全致密,其相组成以柱状晶β-Ti为基体,晶粒大小为2-13μm,抗拉强度为932MPa,屈服强度为896MPa,断裂塑性为19%。与对比文件1中SLM制备的Ti-30Nb-5Ta-3Zr合金相比,由于高速扫描下晶粒更加细小,本实施例制备的医用钛合金抗拉强度提高了252MPa,屈服强度提高了232MPa,塑性提高了3.7%,弹性模量降低了12GPa;与Ti-6Al-4V ELI(ASTM F136)相比,弹性模量降低了58GPa。另外,实施例3的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.06,0.7,1.8,相比Ti-6Al-4V ELI的0.04,0.6和1.6稍有优势。同时,实施例3的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为13.7%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例3相比于现有的临床应用的医用钛合金植入件具有更小的晶粒,更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,同时因不含生物毒性元素Al、V,表现出相对较优异的生物相容性。
实施例4:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti 67at.%,Nb 21.8at.%,Zr 6at.%,Ta 4.2at.%,Si 1at.%的合金成分配比,其中,Bo=2.86,Md=2.45,满足
Figure PCTCN2020124598-appb-000034
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金、硅单体为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ60mm×650mm的圆棒,去掉表面氧化皮,采用等离子旋转电极雾化制粉法(PREP)制备合金粉末,雾化功率为55KW,旋转速度为17000r/min,惰性气体保护,然后对雾化制备的粉末进行气流分级和筛选处理,获取粒径在45~100μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入BuildAssembler软件中进行切片处理并生成打印文件然后对基板进行调平,调整两侧粉箱取粉量,然后用真空泵将成型室内抽至低于5×10 -3Pa,基板预热到650℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)3D打印成型:采用电子束选区熔化设备,电子束选区熔化加工参数为:搭接率为50%,电子束扫描速度为8000mm/s,电流I为56mA,扫描间距为60μm,扫描策略为90°,铺粉厚度为50μm。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.7%,近乎全致密,其相组成以β-Ti为基体,晶粒大小为1-8μm,晶粒要比实施案例1小,(Ti,Zr) 2Si相主要在晶内和晶界析出,晶内(Ti,Zr) 2Si相呈球状,大小为50~100nm,晶界(Ti,Zr) 2Si相沿晶界断续分布,宽度为30~100nm,长径比为1-3。相比Ti-6Al-4V ELI(ASTM F136),本实施例制备的医用钛合金屈服强度相当,抗拉强度提高了190MPa,弹性模量降低了56GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了50MPa,抗拉强度提高了190MPa,弹性模量降低了25GPa。另外,实施例2的细胞增殖实验表明酶标仪检测吸光度(OD值)在 1天,4天和7天分别为0.07,0.8,1.9,相比Ti-6Al-4V ELI的0.04,0.6和1.6具有明显优势。同时,实施例4的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为14.2%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例4相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,力学相容性和生物相容性明显优于传统医用钛合金。
实施例5:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti67.6at.%,Nb23at.%,Zr 4.7at.%,Ta1.7at.%,Si3at.%的合金成分配比,其中,Bo=2.88,Md=2.46,满足
Figure PCTCN2020124598-appb-000035
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金、硅单体为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ45mm×550mm的圆棒,去掉表面氧化皮,采用电极感应熔炼气体雾化法(EIGA)制备合金粉末,雾化压力为4.0MPa,熔炼功率为25KW,进给速度为40mm/min,惰性气体保护,然后对气雾化制备的粉末进行气流分级和筛选处理,获取粒径在15~53μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入EOSRPtools软件中进行切片处理并生成打印文件,然后对基板进行调平,用铺粉装置在Ti-6Al-4V基板上预先均匀铺置厚度范围为50~100μm的钛合金粉末,用真空泵将成型室内抽至低于0.6mbar并往成型室内充入Ar气,直至成型室内氧含量降至0.1%以下;基板预热温度为180℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)增材制造成形:采用激光选区熔化设备进行增材制造成形,激光选区熔化加工参数为:搭接率为60%,激光扫描速度为2200mm/s,激光功率P为250W,扫描间距为40μm,铺粉厚度为30μm,激光扫描策略为67°。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二 相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.6%,近乎全致密,其相组成以β-Ti为基体,晶粒大小为1-8μm,晶粒要比实施案例1小,(Ti,Zr) 2Si相主要在晶内和晶界析出,晶内(Ti,Zr) 2Si相呈球状,大小为50~300nm,晶界(Ti,Zr) 2Si相沿晶界断续分布,宽度为50~200nm,长径比为1-3。相比Ti-6Al-4V ELI(ASTM F136),本实施例制备的医用钛合金屈服强度提高了30MPa,抗拉强度提高了290MPa,弹性模量降低了46GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了105MPa,抗拉强度提高了290MPa,弹性模量降低了15GPa。另外,实施例2的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.07,0.9,2.3,相比Ti-6Al-4V ELI的0.04,0.6和1.6具有明显优势。同时,实施例5的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为15.6%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例5相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,力学相容性和生物相容性明显优于传统医用钛合金。
实施例6:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti 60at.%,Nb 20.6at.%,Zr 5at.%,Ta 9.4at.%,Si 5at.%的合金成分配比,其中,Bo=2.9,Md=2.47,满足
Figure PCTCN2020124598-appb-000036
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金、硅单体为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ60mm×650mm的圆棒,去掉表面氧化皮,采用等离子旋转电极雾化制粉法(PREP)制备合金粉末,雾化功率为55KW,旋转速度为17000r/min,惰性气体保护,然后对雾化制备的粉末进行气流分级和筛选处理,获取粒径在45~100μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入BuildAssembler软件中进行切片处理并生成打印文件,然后对基板进行调平,调整两侧粉箱取粉量,然后用真空泵将成型室内抽至低于5×10 -3Pa,基板预热到1200℃。预热温度的选择应保证脱溶 反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)3D打印成型:采用电子束选区熔化设备,电子束选区熔化加工参数为:搭接率为70%,电子束扫描速度为10000mm/s,电流I为64mA,扫描间距为40μm,扫描策略为90°,铺粉厚度为50μm。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.7%,近乎全致密,其相组成以β-Ti为基体,晶粒大小为1-7μm,晶粒要比实施案例1小,(Ti,Zr) 2Si相主要在晶内和晶界析出,晶内(Ti,Zr) 2Si相呈球状,大小为50~200nm,晶界(Ti,Zr) 2Si相沿晶界断续分布,宽度为30~150nm,长径比为1-6。相比Ti-6Al-4V ELI(ASTM F136),本实施例制备的医用钛合金屈服强度提高了45MPa,抗拉强度提高了320MPa,弹性模量降低了41GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,本实施例制备的医用钛合金屈服强度提高了120MPa,抗拉强度提高了320MPa,弹性模量降低了10GPa。另外,实施例2的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.07,0.9,2.3,相比Ti-6Al-4V ELI的0.04,0.6和1.6具有明显优势。同时,实施例6的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为16.7%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例6相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,力学相容性和生物相容性明显优于传统医用钛合金。
需要说明的是,实施例并不构成对本发明保护范围的限制,根据本发明技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (10)

  1. 一种含Si高强低模医用钛合金的增材制造方法,其特征在于包括如下步骤:
    (1)合金成分设计:基于低弹性模量TiNbTaZr系合金,添加0.1~5at.%生物活性元素Si,再根据d电子理论,计算合金的平均结合次数
    Figure PCTCN2020124598-appb-100001
    (Bo) i为合金元素i与基体合金元素的d电子云重迭确定的共价键能;合金平均d电子轨道能级为
    Figure PCTCN2020124598-appb-100002
    (Md) i为合金元素i的M-d能级的平均值,i为合金元素Nb、Ta,X i为合金元素i的原子百分比;根据
    Figure PCTCN2020124598-appb-100003
    关系图的β-Ti区,使计算的
    Figure PCTCN2020124598-appb-100004
    Figure PCTCN2020124598-appb-100005
    值落在
    Figure PCTCN2020124598-appb-100006
    关系图的亚稳β-Ti区,再根据Ti-Zr-Si三元相图选取偏离共晶点并靠近Si在Ti中最大固溶度的合金成分范围,设计含Si高强低模医用钛合金成分组成为Ti 60~70at.%,Nb 16~24at.%,Zr 4~14at.%,Ta 1~8at.%,Si 0.1~5at.%,按照成分组成以海绵钛、海绵锆、钽铌中间合金、硅单质为原材料配制合金组分;
    (2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,制备合金棒材,通过电极感应熔炼气体雾化法(EIGA)或等离子旋转电极雾化制粉法(PREP)制备钛合金粉末并进行筛分处理,获得适用于增材制造的颗粒尺寸范围的球形粉末;
    (3)模型构建与基板预热:构建所需制备结构零件的三维模型,完成切片处理并生成打印文件,激光选区熔化基板预热温度为150℃~650℃,电子束选区熔化基板预热温度为650℃~1200℃;
    (4)增材制造成形:采用激光选区熔化或电子束选区熔化成形设备进行增材制造成形,得到高强低模医用钛合金;关键的成形参数为:50%≤熔道搭接率μ≤80%,1000mm/s≤扫描速度V≤10000mm/s;采用激光选区熔化成形时激光器输入功率为P,140W≤P≤360W、激光扫描间距h介于20~80μm,采用电子束选区熔化成形时电子枪电流为I,8mA≤I≤100mA、电子束扫描间距h介于20~200μm。
  2. 根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(1)中,
    Figure PCTCN2020124598-appb-100007
  3. 根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(2)所述的真空自耗电弧熔炼的过程为:将配制好的原材料压制成电极,电极大小控制在比坩埚小 50~70mm之间;电极与熔池之间的间隙控制在60~80mm之间;熔炼速度为20kg/min;两次重熔获得铸锭,成分无明显偏析。
  4. 根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(2)所述的电极感应熔炼气体雾化法为:将熔炼好的铸锭机加工成φ45mm×550mm的棒材,表面无明显氧化,将棒材一端机加工成45°圆锥,雾化压力为3.5~4.5MPa,熔炼功率为20~30KW,进给速度为35~45mm/min,整个环境处于惰性气体保护。
  5. 根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(2)所述的等离子旋转电极雾化法为:将熔炼好的铸锭机加工成φ60mm×650mm的棒材,表面无明显氧化,雾化功率为50~60KW,旋转速度为16000~18000r/min,整个环境处于惰性气体保护。
  6. 根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(4)所述的搭接率
    Figure PCTCN2020124598-appb-100008
    其中w是熔池宽度,单位μm;h是扫描间距,单位为μm。
  7. 根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(4)中,适合激光选区熔化成形的粉末尺寸为15~53μm;适合电子束选区熔化成形的粉末尺寸为45~100μm。
  8. 一种含Si高强低模医用钛合金,其特征在于:其由权利要求1-7任一项所述的制备方法制得,所得的高强低模医用钛合金的组织特征为:以柱状晶和等轴晶的β-Ti为基体,以晶内均匀分布的球状(Ti,Zr) 2Si相和晶界不连续分布的(Ti,Zr) 2Si相为增强相;其中,β-Ti晶粒大小为1~13μm,球状(Ti,Zr) 2Si相晶粒大小为50~300nm;晶界不连续分布的(Ti,Zr) 2Si相为长条状,宽度为30~200nm,长径比为1~6。
  9. 权利要求8所述的含Si高强低模医用钛合金在人体植入物制备中的应用。
  10. 根据权利要求9所述的含Si高强低模医用钛合金在人体植入物制备中的应用,其特征在于:所述的人体植入物包括股骨头,髋、膝关节植入物;椎体、椎间融合器;脊柱植入物、肩部植入物,下颌骨、颅骨植入物,颅颌面植入物,足踝关节植入物,脚趾骨植入物或胸骨植入物。
PCT/CN2020/124598 2020-01-06 2020-10-29 一种含Si高强低模医用钛合金及其增材制造方法与应用 WO2021139334A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/768,925 US20240100598A1 (en) 2020-01-06 2020-10-29 Si-containing high-strength and low-modulus medical titanium alloy, and additive manufacturing method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010009147.2A CN111118339B (zh) 2020-01-06 2020-01-06 一种含Si高强低模医用钛合金及其增材制造方法与应用
CN202010009147.2 2020-01-06

Publications (1)

Publication Number Publication Date
WO2021139334A1 true WO2021139334A1 (zh) 2021-07-15

Family

ID=70487117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124598 WO2021139334A1 (zh) 2020-01-06 2020-10-29 一种含Si高强低模医用钛合金及其增材制造方法与应用

Country Status (3)

Country Link
US (1) US20240100598A1 (zh)
CN (1) CN111118339B (zh)
WO (1) WO2021139334A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118339B (zh) * 2020-01-06 2021-03-30 华南理工大学 一种含Si高强低模医用钛合金及其增材制造方法与应用
CN111797502B (zh) * 2020-06-04 2022-04-05 上海工程技术大学 一种基于电子合金理论进行高熵合金成分设计的方法
CN112222409B (zh) * 2020-09-23 2021-08-10 华南理工大学 医用钛合金植入件弹性模量定制化的增材制造方法及应用
CN112296342B (zh) * 2020-10-30 2023-03-10 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法
CN113145852B (zh) * 2021-03-23 2023-09-15 长沙理工大学 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法
CN113073235B (zh) * 2021-03-31 2022-03-18 华中科技大学 一种无裂纹镍基高温合金及其成分设计方法和制备方法
CN113732281B (zh) * 2021-09-08 2023-05-12 湖南恒基粉末科技有限责任公司 一种适用于3D打印的弹性医用β钛合金粉末及其制备方法和应用
CN114101704B (zh) * 2021-11-23 2023-11-28 中北大学 含等轴晶与柱状晶混合组织的高强度tc4-bn合金及其制备方法
CN116121589A (zh) * 2022-12-02 2023-05-16 大连理工大学 一种增材制造用高温超高强钛合金、制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899592A (zh) * 2010-08-03 2010-12-01 华中科技大学 一种原位合成任意形状NiTi形状记忆合金的方法
WO2017048199A1 (en) * 2015-09-17 2017-03-23 Nanyang Technological University Titanium-tantalum alloy and method of forming thereof
CN107034383A (zh) * 2017-03-27 2017-08-11 华南理工大学 一种含Si高强低模β‑型钛合金及其制备方法与应用
CN109332698A (zh) * 2018-12-04 2019-02-15 湖南顶立科技有限公司 一种口腔种植体的3d打印方法及口腔种植体
CN109926582A (zh) * 2017-12-15 2019-06-25 中国科学院福建物质结构研究所 一种医用钛铌合金制品的制备方法
CN111118339A (zh) * 2020-01-06 2020-05-08 华南理工大学 一种含Si高强低模医用钛合金及其增材制造方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106312060B (zh) * 2015-06-29 2019-02-26 中国科学院金属研究所 一种高性能低模量医用钛合金三维金属零件的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899592A (zh) * 2010-08-03 2010-12-01 华中科技大学 一种原位合成任意形状NiTi形状记忆合金的方法
WO2017048199A1 (en) * 2015-09-17 2017-03-23 Nanyang Technological University Titanium-tantalum alloy and method of forming thereof
CN107034383A (zh) * 2017-03-27 2017-08-11 华南理工大学 一种含Si高强低模β‑型钛合金及其制备方法与应用
CN109926582A (zh) * 2017-12-15 2019-06-25 中国科学院福建物质结构研究所 一种医用钛铌合金制品的制备方法
CN109332698A (zh) * 2018-12-04 2019-02-15 湖南顶立科技有限公司 一种口腔种植体的3d打印方法及口腔种植体
CN111118339A (zh) * 2020-01-06 2020-05-08 华南理工大学 一种含Si高强低模医用钛合金及其增材制造方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, YUHUA: "Composition Design, Formation Mechanism and Microstructure and Property of Biomedical Ultrafine Grained Titanium Alloys with High Performance", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY I) (MONTHLY), 15 February 2017 (2017-02-15), pages 1 - 189, XP055827181 *

Also Published As

Publication number Publication date
US20240100598A1 (en) 2024-03-28
CN111118339A (zh) 2020-05-08
CN111118339B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2021139334A1 (zh) 一种含Si高强低模医用钛合金及其增材制造方法与应用
Sing et al. Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum
CN109648082B (zh) 一种钛镍形状记忆合金的4d打印方法及应用
Alshammari et al. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications
Ma et al. Research progress of titanium-based high entropy alloy: methods, properties, and applications
Zhang et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy
Attar et al. Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies
US20190084048A1 (en) Titanium-tantalum powders for additive manufacturing
Sahu et al. A review on recent advancements in biodegradable Mg-Ca alloys
CN101003868A (zh) 一种具有梯度孔隙率镍钛形状记忆合金的制备方法
CN111187943A (zh) 一种生物医用Zn-Cu-Mg系合金及其制备方法
CN104263996A (zh) 一种超高塑性、高强低模医用超细晶钛合金及其制备方法
CN113145852B (zh) 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法
US20230023628A1 (en) Biomedical beta titanium alloy and preparation method thereof
Fu et al. Research perspective and prospective of additive manufacturing of biodegradable magnesium-based materials
Gao et al. Advances in biocermets for bone implant applications
Pilliar Manufacturing processes of metals: the processing and properties of metal implants
Walke et al. Effects of alloying element on the mechanical behavior of Mg-MMCs: a review
Xie et al. Ti-10Mo/Hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity
Mohanasundaram et al. Mg-based metal matrix composite in biomedical applications: a review
Bolzoni et al. Development and characterisation of low-cost powder metallurgy Ti–Cu–Fe alloys
Mani et al. Is there a future for additive manufactured titanium bioglass composites in biomedical application? A perspective
JP2024513622A (ja) 希土類元素フリー生分解性マグネシウム合金、その製造方法及び使用
CN113249602B (zh) 一种耐腐蚀的铸造镁合金及其制备方法
Xue et al. Strengthening Mechanisms of Ti–Mg Composite for Biomaterials: A Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17768925

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20912841

Country of ref document: EP

Kind code of ref document: A1