CN111118339A - 一种含Si高强低模医用钛合金及其增材制造方法与应用 - Google Patents

一种含Si高强低模医用钛合金及其增材制造方法与应用 Download PDF

Info

Publication number
CN111118339A
CN111118339A CN202010009147.2A CN202010009147A CN111118339A CN 111118339 A CN111118339 A CN 111118339A CN 202010009147 A CN202010009147 A CN 202010009147A CN 111118339 A CN111118339 A CN 111118339A
Authority
CN
China
Prior art keywords
titanium alloy
alloy
additive manufacturing
strength low
medical titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010009147.2A
Other languages
English (en)
Other versions
CN111118339B (zh
Inventor
李元元
杨超
罗炫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010009147.2A priority Critical patent/CN111118339B/zh
Publication of CN111118339A publication Critical patent/CN111118339A/zh
Priority to US17/768,925 priority patent/US20240100598A1/en
Priority to PCT/CN2020/124598 priority patent/WO2021139334A1/zh
Application granted granted Critical
Publication of CN111118339B publication Critical patent/CN111118339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/38Materials or treatment for tissue regeneration for reconstruction of the spine, vertebrae or intervertebral discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • B22F2009/0808Mechanical dispersion of melt, e.g. by sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0836Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with electric or magnetic field or induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种含Si高强低模医用钛合金及其增材制造方法与应用;该制备方法包括合金成分设计、制粉、模型构建与基板预热和增材制造成形;其中设计含Si高强低模医用钛合金成分组成为Ti 60~70at.%,Nb 16~24at.%,Zr 4~14at.%,Ta 1~8at.%,Si 0.1~5at.%;本发明原理为通过d电子理论设计出高强低模、生物相容性好的医用β‑型钛合金,通过预热降低硅化物与β‑Ti相之间的热胀差值,同时确保增材制造过程中有足够的冷却度促使合金由离异共晶向脱溶反应转变,解决含Si相沿晶界连续分布恶化力学性能和不同相热膨胀系数差异导致易开裂等共性难题。

Description

一种含Si高强低模医用钛合金及其增材制造方法与应用
技术领域
本发明涉及钛合金材料与增材制造技术领域,具体涉及一种高强低模医用钛合金植入物的增材制造方法。
背景技术
相比于不锈钢、Co-Cr合金等医用金属材料,钛合金具有优异的生物力学性能和良好的生物相容性,被广泛用做骨创伤产品和人工关节等人体硬组织替代材料和修复物。然而临床研究发现:传统钛合金(α钛合金,α+β钛合金)由于弹性模量不匹配而产生“应力遮挡”效应,长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,并且钛合金属于生物惰性材料,很难与骨形成强有力的化学骨结合,长期植入人体还存在金属腐蚀导致的Al、V等毒性离子溶出等潜在问题。因此,制备良好力学相容性、生物活性的新一代医用钛合金材料是保证其长期稳定并达到理想治疗效果的前提和关键。
β型钛合金因具有更低的弹性模量和更高的强度,且不含Al、V等毒性元素而得到广泛研究,主要有Ti-Mo系、Ti-Nb系、Ti-Zr系、Ti-Ta系等,典型代表有Ti-15Mo,Ti-13Nb-13Zr,Ti-12Mo-6Zr-2Fe,Ti-35Nb-5Ta-7Zr和Ti-29Nb-13Ta-4.6Zr,其中Ti-Nb-Ta-Zr合金拥有更低的弹性模量(48-55GPa)(Materials2014,7,1709-1800),约为Ti-6Al-4V的50%。然而,目前现有的Ti-Nb-Ta-Zr系钛合金强度普遍偏低(~550GPa)(Materials Scienceand Engineering C 60(2016)230-238),且与人骨组织弹性模量(10-30GPa)还有一定的差距(Adv.Eng.Mater.2019,1801215),且因不含生物活性元素很难与骨形成强有力的化学骨结合。因此,亟需制备出一种高强低模、生物相容性好的医用钛合金。
作为一项制造领域正迅猛发展的新兴技术,增材制造(也称“3D打印”)通过逐层堆积的原理直接成形,具有复杂零件近净成形、个性化定制等显著优势。尤其,利用3D打印技术中的选择性激光熔化(Selective Laser Melting,SLM)和选择性电子束熔化(SelectiveElectron Beam Melting,SEBM)冷却速率快(104~105K/s以上)的特点(InternationalMaterials Reviews 2016 VOL 61 NO 5 361),可在多种合金体系中获得细晶甚至超细晶的微观结构,从而提高力学性能和生物相容性(RSC Adv.,2015,5,101794)。Luo等利用SLM制备的Ti-30Nb-5Ta-3Zr合金(Materials Science&Engineering C 97(2019)275–284),其平均晶粒尺寸为17.6μm,拉伸强度680MPa、塑性为15.3%,弹性模量为64.2GPa,但有部分晶粒异常粗大、晶粒尺寸为100~260μm。该技术SLM制备的Ti-30Nb-5Ta-3Zr合金晶粒较大、拉伸强度较低的原因为:SLM使用的搭接率较小(~35%)、扫描速度较低(200~600mm/s),且成形过程中马氏体相变致使弹性模量高于单相的β-Ti合金。另外,研究表明扫描速度越快,过冷度越大,晶粒越细小(ActaMaterialia 60(2012)3849-3860),然而较大的冷却速度易造成大热应力从而导致开裂。并且,扫描速度越大熔池越不稳定(Journal of MaterialsProcessing Technology 210(2010)1624-1631),容易造成孔洞形成降低致密度(ActaMaterialia 108(2016)36-45)。因此,如何解决增大扫描速度细化晶粒与裂纹和孔洞增加这一矛盾已是当前增材制造面临的共性技术难题。
Si作为一种生物活性元素,不但可以促进骨增殖、细胞黏附,与骨形成有力的化学结合(RSC Adv.,2015,5,101794),而且Si元素可以细化晶粒和形成第二相,具有细晶强化和第二相强化作用。但是,非金属元素Si易与Ti形成连续的晶界弱化相,严重降低力学性能。另外,在较大的温度梯度下,由于β-Ti基体与含Si的金属间化合物的热膨胀系数不一样,加剧了裂纹的形成,增加了3D打印成形难度。因此,如何解决生物活性必需元素Si的引入造成的力学性能和成形性的恶化问题是目前亟待解决的技术难题。
发明内容
本发明的首要目的在于提供一种有效解决生物活性必需元素Si的引入造成的力学性能和成形性的恶化问题的含Si高强低模医用钛合金的增材制造方法。
本发明的另一目的在于提供一种通过上述方法制备得到的含Si高强低模医用钛合金。
本发明的再一目的在于提供上述含Si高强低模医用钛合金在人体植入物制备中的应用。
本发明目的通过以下技术方案实现:
一种含Si高强低模医用钛合金的增材制造方法,其特征在于包括如下步骤:
(1)合金成分设计:基于低弹性模量TiNbTaZr系合金,添加0.1~5at.%生物活性元素Si,再根据d电子理论,计算合金的平均结合次数
Figure BDA0002356477410000021
(Bo)i为合金元素i与基体合金元素的d电子云重迭确定的共价键能;合金平均d电子轨道能级为
Figure BDA0002356477410000022
Figure BDA0002356477410000023
(Md)i为合金元素i的M-d能级的平均值,i为合金元素Nb、Ta,Xi为合金元素i的原子百分比;根据
Figure BDA0002356477410000024
关系图的β-Ti区,使计算的
Figure BDA0002356477410000025
Figure BDA0002356477410000026
值落在
Figure BDA0002356477410000027
关系图的亚稳β-Ti区,再根据Ti-Zr-Si三元相图选取偏离共晶点并靠近Si在Ti中最大固溶度的合金成分范围,设计含Si高强低模医用钛合金成分组成为Ti 60~70at.%,Nb 16~24at.%,Zr 4~14at.%,Ta 1~8at.%,Si 0.1~5at.%,按照成分组成以海绵钛、海绵锆、钽铌中间合金、硅单质为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,制备合金棒材,通过电极感应熔炼气体雾化法(EIGA)或等离子旋转电极雾化制粉法(PREP)制备钛合金粉末并进行筛分处理,获得适用于增材制造的颗粒尺寸范围的球形粉末;
(3)模型构建与基板预热:构建所需制备结构零件的三维模型,完成切片处理并生成打印文件,激光选区熔化基板预热温度为150℃~650℃,电子束选区熔化基板预热温度为650℃~1200℃;
(4)增材制造成形:采用激光选区熔化或电子束选区熔化成形设备进行增材制造成形,得到高强低模医用钛合金;关键的成形参数为:50%≤熔道搭接率μ≤80%,1000mm/s≤扫描速度V≤10000mm/s;采用激光选区熔化成形时激光器输入功率为P,140W≤P≤360W、激光扫描间距h介于20~80μm,采用电子束选区熔化成形时电子枪电流为I,8mA≤I≤100mA、电子束扫描间距h介于20~200μm。
为进一步实现本发明目的,优选地,步骤(1)中,
Figure BDA0002356477410000031
优选地,步骤(2)所述的真空自耗电弧熔炼的过程为:将配制好的原材料压制成电极,电极大小控制在比坩埚小50~70mm之间;电极与熔池之间的间隙控制在60~80mm之间;熔炼速度为20kg/min;两次重熔获得铸锭,成分无明显偏析。
优选地,步骤(2)所述的电极感应熔炼气体雾化法为:将熔炼好的铸锭机加工成φ45mm×550mm的棒材,表面无明显氧化,将棒材一端机加工成45°圆锥,雾化压力为3.5~4.5MPa,熔炼功率为20~30KW,进给速度为35~45mm/min,整个环境处于惰性气体保护。
优选地,步骤(2)所述的等离子旋转电极雾化法为:将熔炼好的铸锭机加工成φ60mm×650mm的棒材,表面无明显氧化,雾化功率为50~60KW,旋转速度为16000~18000r/min,整个环境处于惰性气体保护。
优选地,步骤(4)所述的搭接率
Figure BDA0002356477410000032
其中w是熔池宽度,单位μm;h是扫描间距,单位为μm。
优选地,步骤(4)中,适合激光选区熔化成形的粉末尺寸为15~53μm;适合电子束选区熔化成形的粉末尺寸为45~100μm。
本发明进行增材制造成形的激光选区熔化或电子束选区熔化成形设备采用EOSM290,SLMsolution 280,RENISHAW 400,Arcam Q10plus等。
一种含Si高强低模医用钛合金,由上述的制备方法制得,所得的高强低模医用钛合金的组织特征为:以柱状晶和等轴晶的β-Ti为基体,以晶内均匀分布的球状(Ti,Zr)2Si相和晶界不连续分布的(Ti,Zr)2Si相为增强相;其中,β-Ti晶粒大小为1~13μm,球状(Ti,Zr)2Si相晶粒大小为50~300nm;晶界不连续分布的(Ti,Zr)2Si相为长条状,宽度为30~200nm,长径比为1~6。
所述的含Si高强低模医用钛合金在人体植入物制备中的应用。
优选地,所述的人体植入物包括股骨头,髋、膝关节植入物;椎体、椎间融合器;脊柱植入物、肩部植入物,下颌骨、颅骨植入物,颅颌面植入物,足踝关节植入物,脚趾骨植入物或胸骨植入物。
本发明制备方法的原理为:通过步骤(1)合金成分设计,在低弹性模量TiNbTaZr系合金中引入同时具有生物活性和晶粒细化作用的Si元素(对于不含硅的TiNbTaZr合金,通过高速扫描下获得较大的过冷度从而细化晶粒,高搭接率保证试样致密度),再根据公式
Figure BDA0002356477410000041
Figure BDA0002356477410000042
计算
Figure BDA0002356477410000043
Figure BDA0002356477410000044
使得
Figure BDA0002356477410000045
Figure BDA0002356477410000046
满足
Figure BDA0002356477410000047
关系图中亚稳β-Ti范围(亚稳β-Ti具有更低的弹性模量)(Materials Science and Engineering A243(1998)244–249),然而对于传统工艺(如铸造)制备含脆性共晶化合物的合金,尚未考虑较大的冷却速度下易开裂问题,因此,对于具有急热急冷特点的增材制造工艺,还需考虑具体加工工艺,在满足
Figure BDA0002356477410000048
关系图的前提下,根据Ti-Zr-Si合金相图进一步优选合金成分,使得合金成分满足由常规扫描速度下的离异共晶反应向高速扫描下的脱溶反应转变,从而获得第二相不连续的微观组织;
通过步骤(2)制备满足3D打印粉末尺寸要求的粉末;
在步骤(3)中通过基板预热降低打印过程中产生的热应力从而减少开从裂倾向,预热温度的选择应保证脱熔反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂;
在步骤(4)中,利用高速扫描下较大的过冷度(即冷却速率快)获得晶粒细小的组织,同时促进合金由离异共晶反应向脱熔反应转变,抑制(Ti,Zr)2Si相沿晶界连续分布,促进(Ti,Zr)2Si相在晶内析出,进而提高材料的力学性能和生物相容性。同时,由于高速扫描使得熔池宽度减小以及孔洞形成,因此,提高搭接率进而提高打印件的致密度和成形质量。因此,本专利通过探索合适的成分配比(满足
Figure BDA0002356477410000051
关系图中亚稳定β-Ti区域的同时考虑增材制造工艺促进脱溶反应),利用高速扫描和高搭接率促进(Ti,Zr)2Si相在晶内弥散析出以及在晶界不连续析出(对于不含硅的TiNbTaZr合金,同样可利用高速扫描达到细化晶粒提高强度的效果),解决增材制造中易发生离异共晶反应的合金成分析出连续晶界相恶化合金材料力学性能和成形性能的共性技术难题。
本发明与现有技术相比,具有如下优点和有益效果:
1.与传统的α-型和α+β-型医用钛合金相比,本发明制备的医用β-型钛合金具有更低的弹性模量和更好的生物相容性,同时由于第二相的引入,使合金具有更高的强度(屈服强度为810MPa,抗拉强度为1120MPa),更低的弹性模量(~59GPa)。相比Ti-6Al-4V ELI(ASTM F136),屈服强度略微提高,抗拉强度提高了260MPa,与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了85MPa,抗拉强度提高了260MPa,弹性模量降低了20GPa,力学相容性和生物相容性明显优于传统医用钛合金。
2.本发明为易发生离异共晶反应生成沿晶界连续第二相分布的合金成分设计与增材制造提高指导思路。
3.本发明采用增材制造技术成形的高强低模医用钛合金,由于SLM/SEBM具有急热急冷的特点,因此获得的组织相对于传统铸造合金具有更细小的晶粒,且不易成分偏析,因此具有更好的力学性能和生物相容性。
4.本发明采用增材制造成形,相比于传统的铸造和塑性变形,可制备各种复杂形状的零件,满足个性化设计要求,真正做到为患者打造量身定制的医用植入件。
5.本发明中采用的SLM/SEBM成形技术,可实现近净成形,提高了材料的利用率,从而节约了成本。
附图说明
图1为实施例1中的
Figure BDA0002356477410000052
关系图(Scripta Materialia 158(2019)62-65)。
具体实施方式
为更好地理解本发明,下面结合实施例及附图对本发明作进一步的描述,但本发明的实施方式不限于此。
以下实施例的具体测试方法如下:试样致密度由阿基米德排水法测得;试样的屈服强度、抗拉强度、断裂应变按照国际标准(Chinese GB/T 228-2002)进行拉伸性能测试;弹性模量按照美国标准(ASTM E1876-15)进行测试;生物相容性按照国际标准(GB/T16886.5-2003)评价。
实施例1:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti68.3at.%,Nb23.3at.%,Zr4.7at.%,Ta1.7at.%,Si2at.%的合金成分配比,其中,Bo=2.88,Md=2.46,满足
Figure BDA0002356477410000061
关系图中亚稳定β-Ti区(附图1中箭头位置,由Bo=2.88,Md=2.46确定),各合金的原子百分含量可由
Figure BDA0002356477410000062
Figure BDA0002356477410000063
确定,以海绵钛、海绵锆、钽铌中间合金(铌和钽的固溶体)、硅单质为原材料配制合金组分;图1为
Figure BDA0002356477410000064
关系图(Scripta Materialia 158(2019)62-65),其中阴影部分为亚稳定β-Ti区。
表1 bcc-Ti中不同合金元素的Bo,Md值
Figure BDA0002356477410000065
表1为各合金元素在bcc-Ti中的Bo值和Md值,Bo值和Md值是研究者们通过计算得来的,属于合金元素本身的固有属性,通过各合金元素可计算合金的平均结合次数
Figure BDA0002356477410000066
和平均d轨道能级
Figure BDA0002356477410000067
其中,合金的平均结合次数
Figure BDA0002356477410000068
(i为合金元素,如Nb,Ta,Xi为合金元素i的原子百分比,(Bo)i为合金元素i与基体合金元素的d电子云重迭确定的共价键能),合金的平均d电子轨道能级
Figure BDA0002356477410000069
(i为合金元素,如Nb,Ta,Xi为合金元素i的原子百分比,(Md)i为合金元素i的M-d能级的平均值)。
Figure BDA00023564774100000610
关系图反映不同钛合金类型(α,α+β,β+α",β)的
Figure BDA00023564774100000611
Figure BDA00023564774100000612
范围,可作为设计亚稳定β-型钛合金成分的参照。具体设计方法为:根据Ti-Zr-Si相图,选取远离共晶成分点靠近Si在Ti中最大固溶度的含量,Si的原子百分比取2%,再由Bo=2.88,Md=2.46确定其他合金元素含量,其中实施例1成分位于箭头位置处。
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ45mm×550mm的圆棒,去掉表面氧化皮,采用电极感应熔炼气体雾化法(EIGA)制备合金粉末,雾化压力为4.0MPa,熔炼功率为25KW,进给速度为40mm/min,惰性气体保护,然后对气雾化制备的粉末进行气流分级和筛选处理,获取粒径在15~53μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入EOSRPtools软件中进行切片处理并生成打印文件,然后对基板进行调平,用铺粉装置在Ti-6Al-4V基板上预先均匀铺置厚度范围为50~100μm的钛合金粉末,用真空泵将成型室内抽至低于0.6mbar并往成型室内充入Ar气,直至成型室内氧含量降至0.1%以下。基板预热温度为180℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)增材制造成形:采用激光选区熔化设备进行增材制造成形,激光选区熔化加工参数为:搭接率为50%,激光扫描速度为2200mm/s,激光功率P为250W,扫描间距为50μm,铺粉厚度为30μm,激光扫描策略为67°。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例步骤(4)所成形的钛合金致密度高达99.5%,近全致密,其微观组织为柱状晶β-Ti和等轴晶β-Ti以及(Ti,Zr)2Si相组成,其中柱状晶β-Ti沿着熔池边界呈外延生长,晶粒大小在3~12μm左右,等轴晶β-Ti主要分布在熔池边界和熔池交界处,晶粒大小为1~3μm。(Ti,Zr)2Si相主要分布在晶内和晶界,晶内(Ti,Zr)2Si相主要呈球状,大小为50~200nm,晶界(Ti,Zr)2Si相主要呈断续长条状,宽度为30~150nm,长径比为1~4。
生物活性元素Si的加入虽然能达到细化晶粒、改善生物相容性的目的,但金属间化合物(Ti,Zr)2Si相极易在晶界连续析出,弱化力学性能,通过高速扫描和高的搭接率,一方面可以起到细化晶粒、减少孔洞形成进而提高力学性能的作用,另一方面又可以抑制离异共晶反应,促进脱溶反应进而抑制(Ti,Zr)2Si在晶界连续析出,达到固溶强化和第二相强化的效果。因此,只有高速扫描和高搭接率结合才能制备出力学相容性和生物相容性优异的医用钛合金。
采用本实施例所述高的扫描速度方法制造的钛合金零件屈服强度高达810MPa,抗拉强度为1120MPa,断裂应变达6.4%,弹性模量为~59GPa,相比Ti-6Al-4V ELI(ASTMF136),屈服强度略微提高,抗拉强度提高了260MPa,弹性模量降低了51GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了85MPa,抗拉强度提高了260MPa,弹性模量降低了20GPa。显然,实施例1相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败;另外,实施例1的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.07、0.8、2.1,相比Ti-6Al-4V ELI的0.04、0.6和1.6具有明显优势。同时,同时,实施例1的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为15.3%,也多于Ti-6Al-4V ELI(11.3%)。相比于Ti-6Al-4V ELI,实施例1的合金成分中包含生物活性元素Si以及不含毒性元素Al和V,大大地促进了细胞的增殖和表现出更低的生物毒性,因此,其力学相容性和生物相容性优于传统医用钛合金。
实施例2:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti68.3at.%,Nb23.3at.%,Zr4.7at.%,Ta1.7at.%,Si2at.%的合金成分配比,其中,Bo=2.88,Md=2.46,满足
Figure BDA0002356477410000081
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金、硅单体为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ60mm×650mm的圆棒,去掉表面氧化皮,采用等离子旋转电极雾化制粉法(PREP)制备合金粉末,雾化功率为55KW,旋转速度为17000r/min,惰性气体保护,然后对雾化制备的粉末进行气流分级和筛选处理,获取粒径在45~100μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入BuildAssembler软件中进行切片处理并生成打印文件,然后对基板进行调平,调整两侧粉箱取粉量,然后用真空泵将成型室内抽至低于5×10-3Pa,基板预热到650℃。基板预热温度为180℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)3D打印成型:采用电子束选区熔化设备,电子束选区熔化加工参数为:搭接率为80%,电子束扫描速度为4530mm/s,电流I为38mA,扫描间距为20μm,扫描策略为90°,铺粉厚度为50μm。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.7%,近乎全致密,其相组成以β-Ti为基体,晶粒大小为1-9μm,晶粒要比实施案例1小,(Ti,Zr)2Si相主要在晶内和晶界析出,晶内(Ti,Zr)2Si相呈球状,大小为50~150nm,晶界(Ti,Zr)2Si相沿晶界断续分布,宽度为30~100nm,长径比为1-3。该实施例钛合金抗拉强度为1090MPa,屈服强度为790MPa,弹性模量为~57GPa,相比Ti-6Al-4V ELI(ASTM F136),本实施例制备的医用钛合金屈服强度略微提高,抗拉强度提高了230MPa,弹性模量降低了53GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了65MPa,抗拉强度提高了230MPa,弹性模量降低了22GPa。另外,实施例2的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.07,0.8,2.0,相比Ti-6Al-4V ELI的0.04,0.6和1.6具有明显优势。同时,实施例2的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为15.1%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例2相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,同时其生物相容性明显优于传统医用钛合金。
实施例3:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti69.6at.%,Nb23.7at.%,Zr4.8at.%,Ta1.7at.%,Si0.1at.%的合金成分配比,其中,Bo=2.88,Md=2.47,满足
Figure BDA0002356477410000091
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ45mm×550mm的圆棒,去掉表面氧化皮,采用电极感应熔炼气体雾化法(EIGA)制备合金粉末,雾化压力为4.0MPa,熔炼功率为25KW,进给速度为40mm/min,惰性气体保护,然后对气雾化制备的粉末进行气流分级和筛选处理,获取粒径在15~53μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入EOSRPtools软件中进行切片处理并生成打印文件,然后对基板进行调平,用铺粉装置在Ti-6Al-4V基板上预先均匀铺置厚度范围为50~100μm的钛合金粉末,用真空泵将成型室内抽至低于0.6mbar并往成型室内充入Ar气,直至成型室内氧含量降至0.1%以下;基板预热温度为180℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)增材制造成形:采用激光选区熔化设备进行增材制造成形,激光选区熔化加工参数为:搭接率为70%,激光扫描速度为3000mm/s,激光功率P为360W,扫描间距为40μm,铺粉厚度为40μm,激光扫描策略为67°。本实施3例虽然没有Si元素的添加,但通过高的搭接率和高的扫描速度也能达到细化晶粒的作用,从而提高合金的力学性能和生物相容性。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.7%,近乎全致密,其相组成以柱状晶β-Ti为基体,晶粒大小为2-13μm,抗拉强度为932MPa,屈服强度为896MPa,断裂塑性为19%。与对比文件1中SLM制备的Ti-30Nb-5Ta-3Zr合金相比,由于高速扫描下晶粒更加细小,本实施例制备的医用钛合金抗拉强度提高了252MPa,屈服强度提高了232MPa,塑性提高了3.7%,弹性模量降低了12GPa;与Ti-6Al-4V ELI(ASTM F136)相比,弹性模量降低了58GPa。另外,实施例3的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.06,0.7,1.8,相比Ti-6Al-4V ELI的0.04,0.6和1.6稍有优势。同时,实施例3的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为13.7%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例3相比于现有的临床应用的医用钛合金植入件具有更小的晶粒,更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,同时因不含生物毒性元素Al、V,表现出相对较优异的生物相容性。
实施例4:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti 67at.%,Nb 21.8at.%,Zr 6at.%,Ta 4.2at.%,Si1at.%的合金成分配比,其中,Bo=2.86,Md=2.45,满足
Figure BDA0002356477410000111
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金、硅单体为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ60mm×650mm的圆棒,去掉表面氧化皮,采用等离子旋转电极雾化制粉法(PREP)制备合金粉末,雾化功率为55KW,旋转速度为17000r/min,惰性气体保护,然后对雾化制备的粉末进行气流分级和筛选处理,获取粒径在45~100μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入BuildAssembler软件中进行切片处理并生成打印文件然后对基板进行调平,调整两侧粉箱取粉量,然后用真空泵将成型室内抽至低于5×10-3Pa,基板预热到650℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)3D打印成型:采用电子束选区熔化设备,电子束选区熔化加工参数为:搭接率为50%,电子束扫描速度为8000mm/s,电流I为56mA,扫描间距为60μm,扫描策略为90°,铺粉厚度为50μm。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.7%,近乎全致密,其相组成以β-Ti为基体,晶粒大小为1-8μm,晶粒要比实施案例1小,(Ti,Zr)2Si相主要在晶内和晶界析出,晶内(Ti,Zr)2Si相呈球状,大小为50~100nm,晶界(Ti,Zr)2Si相沿晶界断续分布,宽度为30~100nm,长径比为1-3。相比Ti-6Al-4V ELI(ASTM F136),本实施例制备的医用钛合金屈服强度相当,抗拉强度提高了190MPa,弹性模量降低了56GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了50MPa,抗拉强度提高了190MPa,弹性模量降低了25GPa。另外,实施例2的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.07,0.8,1.9,相比Ti-6Al-4V ELI的0.04,0.6和1.6具有明显优势。同时,实施例4的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为14.2%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例4相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,力学相容性和生物相容性明显优于传统医用钛合金。
实施例5:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti67.6at.%,Nb23at.%,Zr 4.7at.%,Ta1.7at.%,Si3at.%的合金成分配比,其中,Bo=2.88,Md=2.46,满足
Figure BDA0002356477410000121
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金、硅单体为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ45mm×550mm的圆棒,去掉表面氧化皮,采用电极感应熔炼气体雾化法(EIGA)制备合金粉末,雾化压力为4.0MPa,熔炼功率为25KW,进给速度为40mm/min,惰性气体保护,然后对气雾化制备的粉末进行气流分级和筛选处理,获取粒径在15~53μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入EOSRPtools软件中进行切片处理并生成打印文件,然后对基板进行调平,用铺粉装置在Ti-6Al-4V基板上预先均匀铺置厚度范围为50~100μm的钛合金粉末,用真空泵将成型室内抽至低于0.6mbar并往成型室内充入Ar气,直至成型室内氧含量降至0.1%以下;基板预热温度为180℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)增材制造成形:采用激光选区熔化设备进行增材制造成形,激光选区熔化加工参数为:搭接率为60%,激光扫描速度为2200mm/s,激光功率P为250W,扫描间距为40μm,铺粉厚度为30μm,激光扫描策略为67°。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.6%,近乎全致密,其相组成以β-Ti为基体,晶粒大小为1-8μm,晶粒要比实施案例1小,(Ti,Zr)2Si相主要在晶内和晶界析出,晶内(Ti,Zr)2Si相呈球状,大小为50~300nm,晶界(Ti,Zr)2Si相沿晶界断续分布,宽度为50~200nm,长径比为1-3。相比Ti-6Al-4V ELI(ASTM F136),本实施例制备的医用钛合金屈服强度提高了30MPa,抗拉强度提高了290MPa,弹性模量降低了46GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,屈服强度提高了105MPa,抗拉强度提高了290MPa,弹性模量降低了15GPa。另外,实施例2的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.07,0.9,2.3,相比Ti-6Al-4V ELI的0.04,0.6和1.6具有明显优势。同时,实施例5的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为15.6%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例5相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,力学相容性和生物相容性明显优于传统医用钛合金。
实施例6:
一种含Si高强低模医用钛合金的增材制造方法,包括以下步骤:
(1)合金成分设计:以Ti 60at.%,Nb 20.6at.%,Zr 5at.%,Ta 9.4at.%,Si5at.%的合金成分配比,其中,Bo=2.9,Md=2.47,满足
Figure BDA0002356477410000131
关系图中亚稳定β-Ti区,以海绵钛、海绵锆、钽铌中间合金、硅单体为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,熔炼速度为20kg/min,重熔两次,获得成分无明显偏析的铸锭,将金属锭机加工成φ60mm×650mm的圆棒,去掉表面氧化皮,采用等离子旋转电极雾化制粉法(PREP)制备合金粉末,雾化功率为55KW,旋转速度为17000r/min,惰性气体保护,然后对雾化制备的粉末进行气流分级和筛选处理,获取粒径在45~100μm范围内的粉末;
(3)模型构建与基板预热:构建50×10×10的长方体结构,将构建的长方体结构输入Magics 15.01进行位置摆放与打印方向的设置,然后将处理后的数据导入BuildAssembler软件中进行切片处理并生成打印文件,然后对基板进行调平,调整两侧粉箱取粉量,然后用真空泵将成型室内抽至低于5×10-3Pa,基板预热到1200℃。预热温度的选择应保证脱溶反应具有足够大的过冷度的同时,尽量减小第二相与基体相热膨胀系数差异产生的热应力,避免开裂。
(4)3D打印成型:采用电子束选区熔化设备,电子束选区熔化加工参数为:搭接率为70%,电子束扫描速度为10000mm/s,电流I为64mA,扫描间距为40μm,扫描策略为90°,铺粉厚度为50μm。非金属元素Si的添加有利于提高生物相容性,但极易形成沿晶界连续分布的脆性相,利用高速扫描下大的冷却速率促进合金成分由离异共晶反应向脱溶反应转变,进而抑制沿晶界连续分布的脆性相的形成和裂纹产生,促进第二相在晶内弥散析出,同时利用高的搭接率弥补了因高速扫描易出现孔洞的缺陷,从而制备出具有细晶甚至超细晶结构的钛合金试样。
本实施例在所述加工参数范围内成形的钛合金的致密度高达99.7%,近乎全致密,其相组成以β-Ti为基体,晶粒大小为1-7μm,晶粒要比实施案例1小,(Ti,Zr)2Si相主要在晶内和晶界析出,晶内(Ti,Zr)2Si相呈球状,大小为50~200nm,晶界(Ti,Zr)2Si相沿晶界断续分布,宽度为30~150nm,长径比为1-6。相比Ti-6Al-4V ELI(ASTM F136),本实施例制备的医用钛合金屈服强度提高了45MPa,抗拉强度提高了320MPa,弹性模量降低了41GPa;与医用β-型钛合金Ti-13Nb-13Zr(ASTM F1713)相比,本实施例制备的医用钛合金屈服强度提高了120MPa,抗拉强度提高了320MPa,弹性模量降低了10GPa。另外,实施例2的细胞增殖实验表明酶标仪检测吸光度(OD值)在1天,4天和7天分别为0.07,0.9,2.3,相比Ti-6Al-4VELI的0.04,0.6和1.6具有明显优势。同时,实施例6的细胞毒性实验表明24h后细胞存活的数量(单位面积活细胞染色面积)为16.7%,也多于Ti-6Al-4V ELI(11.3%)。显然,实施例6相比于现有的临床应用的医用钛合金植入件具有更高的强度和更低的弹性模量,可以有效地减少由于弹性模量不匹配而产生“应力遮挡”效应,避免长期植入人体后会造成原有骨组织功能退化、被吸收,导致种植失败,力学相容性和生物相容性明显优于传统医用钛合金。
需要说明的是,实施例并不构成对本发明保护范围的限制,根据本发明技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (10)

1.一种含Si高强低模医用钛合金的增材制造方法,其特征在于包括如下步骤:
(1)合金成分设计:基于低弹性模量TiNbTaZr系合金,添加0.1~5at.%生物活性元素Si,再根据d电子理论,计算合金的平均结合次数
Figure FDA0002356477400000019
Figure FDA0002356477400000011
(Bo)i为合金元素i与基体合金元素的d电子云重迭确定的共价键能;合金平均d电子轨道能级为
Figure FDA0002356477400000018
Figure FDA0002356477400000012
(Md)i为合金元素i的M-d能级的平均值,i为合金元素Nb、Ta,Xi为合金元素i的原子百分比;根据
Figure FDA0002356477400000013
关系图的β-Ti区,使计算的
Figure FDA0002356477400000014
Figure FDA0002356477400000015
值落在
Figure FDA0002356477400000016
关系图的亚稳β-Ti区,再根据Ti-Zr-Si三元相图选取偏离共晶点并靠近Si在Ti中最大固溶度的合金成分范围,设计含Si高强低模医用钛合金成分组成为Ti 60~70at.%,Nb 16~24at.%,Zr 4~14at.%,Ta 1~8at.%,Si 0.1~5at.%,按照成分组成以海绵钛、海绵锆、钽铌中间合金、硅单质为原材料配制合金组分;
(2)制粉:把Ti、Nb、Zr、Ta和Si各元素按步骤(1)含量进行配料,采用真空自耗电弧熔炼炉进行熔炼,制备合金棒材,通过电极感应熔炼气体雾化法(EIGA)或等离子旋转电极雾化制粉法(PREP)制备钛合金粉末并进行筛分处理,获得适用于增材制造的颗粒尺寸范围的球形粉末;
(3)模型构建与基板预热:构建所需制备结构零件的三维模型,完成切片处理并生成打印文件,激光选区熔化基板预热温度为150℃~650℃,电子束选区熔化基板预热温度为650℃~1200℃;
(4)增材制造成形:采用激光选区熔化或电子束选区熔化成形设备进行增材制造成形,得到高强低模医用钛合金;关键的成形参数为:50%≤熔道搭接率μ≤80%,1000mm/s≤扫描速度V≤10000mm/s;采用激光选区熔化成形时激光器输入功率为P,140W≤P≤360W、激光扫描间距h介于20~80μm,采用电子束选区熔化成形时电子枪电流为I,8mA≤I≤100mA、电子束扫描间距h介于20~200μm。
2.根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(1)中,
Figure FDA0002356477400000017
3.根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(2)所述的真空自耗电弧熔炼的过程为:将配制好的原材料压制成电极,电极大小控制在比坩埚小50~70mm之间;电极与熔池之间的间隙控制在60~80mm之间;熔炼速度为20kg/min;两次重熔获得铸锭,成分无明显偏析。
4.根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(2)所述的电极感应熔炼气体雾化法为:将熔炼好的铸锭机加工成φ45mm×550mm的棒材,表面无明显氧化,将棒材一端机加工成45°圆锥,雾化压力为3.5~4.5MPa,熔炼功率为20~30KW,进给速度为35~45mm/min,整个环境处于惰性气体保护。
5.根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(2)所述的等离子旋转电极雾化法为:将熔炼好的铸锭机加工成φ60mm×650mm的棒材,表面无明显氧化,雾化功率为50~60KW,旋转速度为16000~18000r/min,整个环境处于惰性气体保护。
6.根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(4)所述的搭接率
Figure FDA0002356477400000021
其中w是熔池宽度,单位μm;h是扫描间距,单位为μm。
7.根据权利要求1所述的含Si高强低模医用钛合金的增材制造方法,其特征在于:步骤(4)中,适合激光选区熔化成形的粉末尺寸为15~53μm;适合电子束选区熔化成形的粉末尺寸为45~100μm。
8.一种含Si高强低模医用钛合金,其特征在于:其由权利要求1-7任一项所述的制备方法制得,所得的高强低模医用钛合金的组织特征为:以柱状晶和等轴晶的β-Ti为基体,以晶内均匀分布的球状(Ti,Zr)2Si相和晶界不连续分布的(Ti,Zr)2Si相为增强相;其中,β-Ti晶粒大小为1~13μm,球状(Ti,Zr)2Si相晶粒大小为50~300nm;晶界不连续分布的(Ti,Zr)2Si相为长条状,宽度为30~200nm,长径比为1~6。
9.权利要求8所述的含Si高强低模医用钛合金在人体植入物制备中的应用。
10.根据权利要求9所述的含Si高强低模医用钛合金在人体植入物制备中的应用,其特征在于:所述的人体植入物包括股骨头,髋、膝关节植入物;椎体、椎间融合器;脊柱植入物、肩部植入物,下颌骨、颅骨植入物,颅颌面植入物,足踝关节植入物,脚趾骨植入物或胸骨植入物。
CN202010009147.2A 2020-01-06 2020-01-06 一种含Si高强低模医用钛合金及其增材制造方法与应用 Active CN111118339B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010009147.2A CN111118339B (zh) 2020-01-06 2020-01-06 一种含Si高强低模医用钛合金及其增材制造方法与应用
US17/768,925 US20240100598A1 (en) 2020-01-06 2020-10-29 Si-containing high-strength and low-modulus medical titanium alloy, and additive manufacturing method and use thereof
PCT/CN2020/124598 WO2021139334A1 (zh) 2020-01-06 2020-10-29 一种含Si高强低模医用钛合金及其增材制造方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010009147.2A CN111118339B (zh) 2020-01-06 2020-01-06 一种含Si高强低模医用钛合金及其增材制造方法与应用

Publications (2)

Publication Number Publication Date
CN111118339A true CN111118339A (zh) 2020-05-08
CN111118339B CN111118339B (zh) 2021-03-30

Family

ID=70487117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010009147.2A Active CN111118339B (zh) 2020-01-06 2020-01-06 一种含Si高强低模医用钛合金及其增材制造方法与应用

Country Status (3)

Country Link
US (1) US20240100598A1 (zh)
CN (1) CN111118339B (zh)
WO (1) WO2021139334A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111797502A (zh) * 2020-06-04 2020-10-20 上海工程技术大学 一种基于电子合金理论进行高熵合金成分设计的方法
CN112222409A (zh) * 2020-09-23 2021-01-15 华南理工大学 医用钛合金植入件弹性模量定制化的增材制造方法及应用
CN112296342A (zh) * 2020-10-30 2021-02-02 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法
CN113073235A (zh) * 2021-03-31 2021-07-06 华中科技大学 一种无裂纹镍基高温合金及其成分设计方法和制备方法
WO2021139334A1 (zh) * 2020-01-06 2021-07-15 华南理工大学 一种含Si高强低模医用钛合金及其增材制造方法与应用
CN113732281A (zh) * 2021-09-08 2021-12-03 湖南恒基粉末科技有限责任公司 一种适用于3D打印的弹性医用β钛合金粉末及其制备方法和应用
CN114101704A (zh) * 2021-11-23 2022-03-01 中北大学 含等轴晶与柱状晶混合组织的高强度tc4-bn合金及其制备方法
NL2029371B1 (en) * 2021-03-23 2022-06-24 Univ Changsha Science & Tech Preparation method of 3d printing medical titanium-niobium-zirconium alloy spherical powder and 3d printing method thereof
CN116121589A (zh) * 2022-12-02 2023-05-16 大连理工大学 一种增材制造用高温超高强钛合金、制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106312060A (zh) * 2015-06-29 2017-01-11 中国科学院金属研究所 一种高性能低模量医用钛合金三维金属零件的制备方法
WO2017048199A1 (en) * 2015-09-17 2017-03-23 Nanyang Technological University Titanium-tantalum alloy and method of forming thereof
CN107034383A (zh) * 2017-03-27 2017-08-11 华南理工大学 一种含Si高强低模β‑型钛合金及其制备方法与应用
CN109332698A (zh) * 2018-12-04 2019-02-15 湖南顶立科技有限公司 一种口腔种植体的3d打印方法及口腔种植体
CN109926582A (zh) * 2017-12-15 2019-06-25 中国科学院福建物质结构研究所 一种医用钛铌合金制品的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899592B (zh) * 2010-08-03 2011-08-24 华中科技大学 一种原位合成任意形状NiTi形状记忆合金的方法
CN111118339B (zh) * 2020-01-06 2021-03-30 华南理工大学 一种含Si高强低模医用钛合金及其增材制造方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106312060A (zh) * 2015-06-29 2017-01-11 中国科学院金属研究所 一种高性能低模量医用钛合金三维金属零件的制备方法
WO2017048199A1 (en) * 2015-09-17 2017-03-23 Nanyang Technological University Titanium-tantalum alloy and method of forming thereof
CN107034383A (zh) * 2017-03-27 2017-08-11 华南理工大学 一种含Si高强低模β‑型钛合金及其制备方法与应用
CN109926582A (zh) * 2017-12-15 2019-06-25 中国科学院福建物质结构研究所 一种医用钛铌合金制品的制备方法
CN109332698A (zh) * 2018-12-04 2019-02-15 湖南顶立科技有限公司 一种口腔种植体的3d打印方法及口腔种植体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李玉华: "高性能医用超细晶钦合金的成分设计、形成机理及其组织性能硏究", 《中国博士学位论文全文数据库 工程科技I辑(月刊)》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021139334A1 (zh) * 2020-01-06 2021-07-15 华南理工大学 一种含Si高强低模医用钛合金及其增材制造方法与应用
CN111797502B (zh) * 2020-06-04 2022-04-05 上海工程技术大学 一种基于电子合金理论进行高熵合金成分设计的方法
CN111797502A (zh) * 2020-06-04 2020-10-20 上海工程技术大学 一种基于电子合金理论进行高熵合金成分设计的方法
CN112222409A (zh) * 2020-09-23 2021-01-15 华南理工大学 医用钛合金植入件弹性模量定制化的增材制造方法及应用
CN112296342A (zh) * 2020-10-30 2021-02-02 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法
CN112296342B (zh) * 2020-10-30 2023-03-10 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法
NL2029371B1 (en) * 2021-03-23 2022-06-24 Univ Changsha Science & Tech Preparation method of 3d printing medical titanium-niobium-zirconium alloy spherical powder and 3d printing method thereof
CN113073235A (zh) * 2021-03-31 2021-07-06 华中科技大学 一种无裂纹镍基高温合金及其成分设计方法和制备方法
CN113073235B (zh) * 2021-03-31 2022-03-18 华中科技大学 一种无裂纹镍基高温合金及其成分设计方法和制备方法
CN113732281A (zh) * 2021-09-08 2021-12-03 湖南恒基粉末科技有限责任公司 一种适用于3D打印的弹性医用β钛合金粉末及其制备方法和应用
CN114101704A (zh) * 2021-11-23 2022-03-01 中北大学 含等轴晶与柱状晶混合组织的高强度tc4-bn合金及其制备方法
CN114101704B (zh) * 2021-11-23 2023-11-28 中北大学 含等轴晶与柱状晶混合组织的高强度tc4-bn合金及其制备方法
CN116121589A (zh) * 2022-12-02 2023-05-16 大连理工大学 一种增材制造用高温超高强钛合金、制备方法及其应用

Also Published As

Publication number Publication date
US20240100598A1 (en) 2024-03-28
WO2021139334A1 (zh) 2021-07-15
CN111118339B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN111118339B (zh) 一种含Si高强低模医用钛合金及其增材制造方法与应用
Sing et al. Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum
CN109648082B (zh) 一种钛镍形状记忆合金的4d打印方法及应用
Zhang et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy
Attar et al. Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies
Ma et al. Research progress of titanium-based high entropy alloy: methods, properties, and applications
US20190084048A1 (en) Titanium-tantalum powders for additive manufacturing
Xu et al. Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion
Wang et al. Ti–Nb–Sn–hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering
CN111187943A (zh) 一种生物医用Zn-Cu-Mg系合金及其制备方法
CN113145852B (zh) 一种新型3D打印医用TiNbZr球形合金粉的制备及3D打印的方法
Schmidt et al. Powder metallurgical processing of low modulus β-type Ti-45Nb to bulk and macro-porous compacts
Niespodziana et al. The synthesis of titanium alloys for biomedical applications
Peng et al. Facile fabrication of boronized Ti6Al4V/HA composites for load-bearing applications
Walke et al. Effects of alloying element on the mechanical behavior of Mg-MMCs: A review
CN112296342A (zh) 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法
Zhang et al. Effects of YSZ and nano-ZrO2 contents on the properties of Ti2448-ZrO2 biomedical composites fabricated by SPS
Xie et al. Ti-10Mo/Hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity
Li et al. Current developments of biomedical porous Ti–Mo alloys
Schaal et al. Design of a low Young’s modulus Ti-Zr-Nb-Sn biocompatible alloy by in situ laser powder bed fusion additive manufacturing process
Liu et al. Development of low elastic modulus Titanium alloys as implant biomaterials
CN113136503B (zh) 一种生物医用TiNb基钛合金及其制备方法
de Castro et al. Mg-based composites for biomedical applications
Xue et al. Strengthening Mechanisms of Ti–Mg Composite for Biomaterials: A Review
CN104087785A (zh) 一种Ti基Ti-Fe-Y生物医用合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant