CN106139922B - 超高通量纳滤膜及其制备方法 - Google Patents

超高通量纳滤膜及其制备方法 Download PDF

Info

Publication number
CN106139922B
CN106139922B CN201510174211.1A CN201510174211A CN106139922B CN 106139922 B CN106139922 B CN 106139922B CN 201510174211 A CN201510174211 A CN 201510174211A CN 106139922 B CN106139922 B CN 106139922B
Authority
CN
China
Prior art keywords
nanofiltration membrane
solution
membrane
sodium hydroxide
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510174211.1A
Other languages
English (en)
Other versions
CN106139922A (zh
Inventor
许振良
汤永健
杨虎
魏永明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201510174211.1A priority Critical patent/CN106139922B/zh
Publication of CN106139922A publication Critical patent/CN106139922A/zh
Application granted granted Critical
Publication of CN106139922B publication Critical patent/CN106139922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种新型的超高通量纳滤膜及其制备方法。本发明是通过在哌嗪和含氟单体的混合单体的基础上,通过添加次氯酸钠和氢氧化钠对水相溶液进行氧化预处理,以及对界面聚合之后得到的初生态的纳滤膜进行氧化后处理,在保证硫酸钠脱盐率>90%的前提下,得到了超高通量的纳滤膜。利用这种方法得到的纳滤膜,在操作压力0.6MPa下,纳滤膜的纯水通量可以达到132L/(m2·h)(即22L/(m2·h·bar)),硫酸钠脱盐率为90.7%,该纳滤膜且具有一定耐氯性的纳滤膜。本发明优点在于,通过常见普通廉价的化学试剂对膜的制备工艺进行改进,即可得到超高通量纳滤膜,易于工艺放大,具有显著的工业实际应用价值。

Description

超高通量纳滤膜及其制备方法
【技术领域】
本发明涉及纳滤膜技术领域,具体地说,是一种采用次氯酸钠和氢氧化钠处理得到的超高通量纳滤膜及其制备方法。
【背景技术】
纳滤通常被定义为介于超滤和反渗透之间的一种以压力为驱动力的新型技术,从二十世纪八十年代起,其相关的研究就一直是分离膜领域的研究热点。通常来说纳滤膜的截留分子量为200-1000Da,膜的孔径为0.5nm-2nm,其具有对二价离子截留率远远高于一价离子,并且对于有机小分子也具有很高的截留性能,因此纳滤膜特别适合应用于家庭饮用水的纯化和市政供水的深度处理。在膜的实际应用过程中,在保证一定的截留率的情况下,膜通量越高,则膜效率越高,相应的运行费用和能耗越低。
高通量纳滤膜一直以来是纳滤膜的发展方向,但是在实际生产中,纳滤膜通量还是有进一步提升的空间。为了提高纳滤膜的通量,通常的方法有:1、添加纳米材料(如:分子筛、纳米碳管、纳米粒子溶胶、其它纳米粒子等),来提高膜的表面粗糙度和亲水性,从而达到提高通量的效果;2、降低聚酰胺层的厚度,厚度越低,传质阻力越低,通常在水相或者油相中添加共溶剂(如:丙酮、二甲基亚砜、环醚等)或者添加相转移催化剂(如:各类季铵盐、多元冠醚等);3、降低聚酰胺的交联度,交联度越低,膜孔越大,通量越大,如在水相中添加小分子醇类等。
已经开发商业化的低压高通量的纳滤膜,其通量和截留性能如下表所示:
CN201410778554.4(2014.12.17)“采用混合二胺单体的耐氯纳滤膜及其制备方法”公开了一种采用混合二胺单体的耐氯纳滤膜的制备方法,其包括了将含六氟异丙醇基团纳滤膜的单体2,2’-二(1-羟基-1-三氟甲基-2,2,2,-三氟乙基)-4,4’-亚甲基双苯胺和哌嗪混合配制成水相溶液,通过在超滤膜的底膜上界面聚合,并经过热处理和氧化处理,得到了高通量、高截留、高耐氯性的纳滤膜。但是为了进一步拓宽膜的使用范围,进一步提高膜的通量,仍然需要进一步的努力。
【发明内容】
本发明的目的在于克服现有技术的不足,提供一种超高通量纳滤膜及其制备方法。
本发明的目的是通过以下技术方案来实现的:
一种超高通量纳滤膜,在操作压力0.6MPa下,纳滤膜的纯水通量可以达到132L(m2·h)(即22L/(m2·h·bar)),硫酸钠脱盐率为90.7%,该纳滤膜且具有一定耐氯性的纳滤膜。
一种超高通量纳滤膜的制备方法,包括了次氯酸钠和氢氧化钠对于水相混合二胺单体水溶液的预处理和界面聚合成膜后的后处理,其具体步骤为:
(1)配制水相混合单体溶液,通过超声振荡混合均匀;其中,水相中的2,2’-二(1-羟基-1-三氟甲基-2,2,2,-三氟乙基)-4,4’-亚甲基双苯胺含量为0.1-3%w/v,水相中的哌嗪含量为0.1-3%w/v;水相中的氢氧化钠的含量为0.01~0.2%w/v;
(2)配制用于前处理的次氯酸钠和氢氧化钠的混合水溶液,其中,次氯酸钠的含量为0~2%w/v,氢氧化钠的含量为0~8%w/v;
如实施例11并未添加次氯酸钠,也就是可以认为其实际的含量为0的活性氯;如实施例7并未添加氢氧化钠,也就是可以认为其实际的含量为0的氢氧化钠;
(3)对于水相混合单体溶液的预处理,将配制好的次氯酸钠和氢氧化钠的混合水溶液滴加到水相混合单体溶液,超声振荡均匀;
(4)配制有机相溶液;
其中,有机相为0.05~0.3%w/v的均苯三甲酰氯有机溶液;
有机溶剂为环己烷、甲苯、正己烷和氯仿中的一种或者几种混合物。
(5)界面聚合反应,现将底膜浸入预处理好的水相溶液中1~10分钟后移除溶液,去除膜表面多余的水相溶液与有机相溶液进行界面聚合反应,在空气中放置1~5分钟,随后放入40~100℃的烘箱中进行热处理2~15分钟,热处理好后将膜取出备用;
(6)配制用于后处理的次氯酸钠和氢氧化钠的混合溶液,其中次氯酸钠的含量为0.01~2%w/v,氢氧化钠的含量为0.01~8%w/v;
(7)将制得的初生态的纳滤膜浸入次氯酸钠和氢氧化钠的混合溶液中,进行后处理,处理时间为0~5小时;处理结束后用去离子水进行漂洗1~2次,得到最终的超高通量纳滤膜;
与现有技术相比,本发明的积极效果是:本发明的积极意义在于,通过廉价的次氯酸钠和氢氧化钠对水相溶液进行预处理以及对界面聚合后制得的纳滤膜进行后处理,即可制备得到超高通量的纳滤膜,并且整个制备流程简单,反应条件温和,性能稳定,具有很好的工业应用前景。
【附图说明】
图1为本发明制备方法的工艺流程图。
【具体实施方式】
以下提供本发明一种超高通量纳滤膜及其制备方法的具体实施方式。
一种采用次氯酸钠和氢氧化钠处理得到的超高通量纳滤膜及其制备方法,其具体为:本发明所制备的纳滤复合膜均是在0.6MPa下用纯水预压半个小时,并分别以纯水测试膜的纯水通量,以2000ppm的Na2SO4溶液测试膜的截留性能。膜通量的计算公式如(1)所示。
其中J为膜的通量(L/(m2·h)),V为收集到的透过液的体积(L),A为膜的有效面积(m2),T为收集到V体积的透过液所需要的时间(h)。
膜的截留性能计算方法如(2)所示。
其中R为膜的截留率,Cp为透过侧的浓度,Cf为进料侧的浓度。
电解质溶液的浓度首先采用电导率仪测定透过侧和进料侧的电导率,然后通过电解质溶液的标准曲线来进行拟合从而计算其浓度,进而求出其截留率。所有膜均测量3次,取平均值得到结果。
实施例1
初生态的纳滤膜的制备:将聚砜超滤底膜浸入水相溶液中3分钟(水相溶液组成为:0.5%w/v的2,2’-二(1-羟基-1-三氟甲基-2,2,2,-三氟乙基)-4,4’-亚甲基双苯胺,0.5%w/v的哌嗪,0.48%w/v的氢氧化钠,0.083%w/v的次氯酸钠)后移除多余的溶液,将膜通过气体吹扫或者自然晾干,与有机相溶液进行界面聚合反应15秒(有机相溶液组成为:0.15%%w/v的均苯三甲酰氯的正己烷溶液),在空气中干燥1分钟,随后放入80℃的烘箱中进行热处理5分钟。热处理好后取出,用去离子水在常温下漂洗1-2次,得到初生态的纳滤膜。
在操作温度为15℃,操作压力0.6MPa的条件下,用2000ppm的硫酸钠水溶液测试其截留性能。纳滤膜的纯水通量为78.1L/(m2·h)硫酸钠脱盐率为92.3%。
实施例2
超高通量的纳滤膜的制备:如同实施例1,按照上述方法,制得初生态的纳滤膜。将制备得到的初生态的纳滤膜浸入次氯酸钠和氢氧化钠的混合溶液中1小时,随后用纯水对制得的纳滤膜进行漂洗,即可得到超高通量的纳滤膜。次氯酸钠和氢氧化钠的混合溶液的组成为:0.276%w/v的氢氧化钠,0.0478%w/v的次氯酸钠。在操作温度为15℃,操作压力0.6MPa的条件下,用2000ppm的硫酸钠水溶液测试其截留性能。纳滤膜的纯水通量为132L/(m2·h),硫酸钠脱盐率为90.7%。
实施例3~4
如同实施例1,采用水相溶液含有0.5%w/v的2,2’-二(1-羟基-1-三氟甲基-2,2,2,-三氟乙基)-4,4’-亚甲基双苯胺,0.5%w/v的哌嗪,(实施例3中的氢氧化钠和次氯酸钠的含量分别为0.24%w/v和0.0416%w/v;实施例4中的氢氧化钠和次氯酸钠的含量分别为0.048%w/v和0.00832%w/v);有机相溶液含有0.15%w/v的均苯三甲酰氯。界面聚合时间为15秒,在80℃下热处理5分钟。热处理好后取出,用去离子水在常温下漂洗1-2次,得到初生态的纳滤膜。在操作温度为15℃,操作压力0.6MPa的条件下,用2000ppm的硫酸钠水溶液测试其截留性能。测试结果见表1。
表1
实施例5~6
如同实施例3、4,按照上述方法,制得初生态的纳滤膜。将制备得到的初生态的纳滤膜浸入次氯酸钠和氢氧化钠的混合溶液中1小时,随后用纯水对制得的纳滤膜进行漂洗,即可得到超高通量的纳滤膜。次氯酸钠和氢氧化钠的混合溶液的组成为:0.28%w/v的氢氧化钠,0.048%w/v的次氯酸钠。在操作温度为15℃,操作压力0.6MPa的条件下,用2000ppm的硫酸钠水溶液测试其截留性能。测试结果见表2。
表2
实施例7~10
如同实施例1,按照上述方法,采用水相溶液含有0.5%w/v的2,2’-二(1-羟基-1-三氟甲基-2,2,2,-三氟乙基)-4,4’-亚甲基双苯胺,0.5%w/v的哌嗪,0.083%w/v的次氯酸钠,氢氧化钠的含量分别为0、0.24%w/v、0.36%w/v、0.6%w/v;有机相溶液含有0.15%w/v的均苯三甲酰氯。界面聚合时间为15秒,在80℃下热处理5分钟。热处理好后取出,用去离子水在常温下漂洗1-2次,得到初生态的纳滤膜。在操作温度为15℃,操作压力0.6MPa的条件下,用2000ppm的硫酸钠水溶液测试其截留性能。测试结果见表3。
表3
实施例11~13
如同实施例1,按照上述方法,采用水相溶液含有0.5%w/v的2,2’-二(1-羟基-1-三氟甲基-2,2,2,-三氟乙基)-4,4’-亚甲基双苯胺,0.5%w/v的哌嗪,0.48%w/v的氢氧化钠,次氯酸钠的含量分别为0、0.052%w/v、0.104%w/v;有机相溶液含有0.15%w/v的均苯三甲酰氯。界面聚合时间为15秒,在80℃下热处理5分钟。热处理好后取出,用去离子水在常温下漂洗1-2次,得到初生态的纳滤膜。在操作温度为15℃,操作压力0.6MPa的条件下,用2000ppm的硫酸钠水溶液测试其截留性能。测试结果见表4。
表4
本发明通过在哌嗪和含氟单体的混合单体的基础上,通过添加次氯酸钠和氢氧化钠对水相溶液进行预处理,以及对界面聚合之后得到的初生态的纳滤膜进行后处理,在保证脱盐率>90%的前提下,得到了超高通量,并且具有一定耐氯性的纳滤膜。本发明通过常见普通廉价的化学试剂对膜的制备工艺进行改进,即可得到超高通量纳滤膜,易于工艺放大,具有显著的工业实际应用价值。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明的构思的前提下,还可以对本发明进行进一步的润饰和改进,这些改进和润饰也应该视为本发明的保护范围内。

Claims (4)

1.一种超高通量纳滤膜的制备方法,其特征在于,包括了次氯酸钠和氢氧化钠对于水相混合二胺单体水溶液的预处理和界面聚合成膜后的后处理,其具体步骤为:
(1)配制水相混合单体溶液,水相中的2,2’–二(1–羟基-1-三氟甲基-2,2,2,-三氟乙基)-4,4’-亚甲基双苯胺含量为0.1-3%w/v,水相中的哌嗪含量为0.1-3%w/v;水相中的氢氧化钠的含量为0.01~0.2%w/v,通过超声振荡混合均匀;
(2)配制用于前处理的次氯酸钠和氢氧化钠的混合水溶液;次氯酸钠的含量为0~2%w/v,但不含0%w/v,氢氧化钠的含量为0~8%w/v,但不含0%w/v;
(3)对于水相混合单体溶液的预处理,将配制好的次氯酸钠和氢氧化钠的混合水溶液滴加到水相混合单体溶液,超声振荡均匀;
(4)配制有机相溶液;
(5)界面聚合反应,现将底膜浸入预处理好的水相溶液中1~10分钟后移除溶液,去除膜表面多余的水相溶液与有机相溶液进行界面聚合反应,在空气中放置1~5分钟,随后放入40~100℃的烘箱中进行热处理2~15分钟,热处理好后将膜取出备用;
(6)配制用于后处理的次氯酸钠和氢氧化钠的混合溶液;
(7)将制得的初生态的纳滤膜浸入次氯酸钠和氢氧化钠的混合溶液中,进行后处理,处理时间为0~5小时,但不含0小时;处理结束后用去离子水进行漂洗1~2次,得到最终的超高通量纳滤膜。
2.如权利要求1所述的一种超高通量纳滤膜的制备方法,其特征在于,在所述的步骤(4)中,有机相为0.05~0.3%w/v的均苯三甲酰氯有机溶液;
有机溶剂为环己烷、甲苯、正己烷和氯仿中的一种或者几种混合物。
3.如权利要求1所述的一种超高通量纳滤膜的制备方法,其特征在于,在所述的步骤(6)中,次氯酸钠的含量为0.01~2%w/v,氢氧化钠的含量为0.01~8%w/v。
4.如权利要求1所述的一种超高通量纳滤膜的制备方法,其特征在于,在操作压力0.6MPa下,纳滤膜的纯水通量能够达到132L/(m2·h),硫酸钠脱盐率为90.7%。
CN201510174211.1A 2015-04-14 2015-04-14 超高通量纳滤膜及其制备方法 Active CN106139922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510174211.1A CN106139922B (zh) 2015-04-14 2015-04-14 超高通量纳滤膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510174211.1A CN106139922B (zh) 2015-04-14 2015-04-14 超高通量纳滤膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106139922A CN106139922A (zh) 2016-11-23
CN106139922B true CN106139922B (zh) 2019-12-24

Family

ID=57336923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510174211.1A Active CN106139922B (zh) 2015-04-14 2015-04-14 超高通量纳滤膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106139922B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899436A (zh) * 2017-11-24 2018-04-13 贵阳时代沃顿科技有限公司 一种高性能耐碱纳滤膜的制备方法
CN113457466B (zh) * 2021-07-14 2023-03-07 中国科学院宁波材料技术与工程研究所 一种氧化超支化聚乙烯亚胺纳滤膜、制备方法及应用
CN114832638A (zh) * 2022-05-16 2022-08-02 山东威高血液净化制品股份有限公司 利用次氯酸钠对聚合物膜进行后处理以调控其孔径大小的方法及其装置
CN116236904A (zh) * 2023-03-30 2023-06-09 中国科学院长春应用化学研究所 一种高性能复合纳滤膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288776A (zh) * 2000-09-21 2001-03-28 华东理工大学 磺化聚醚砜纳滤膜的制备方法
CN101068612A (zh) * 2004-10-13 2007-11-07 3M创新有限公司 制备亲水性聚醚砜膜的方法
CN101979132A (zh) * 2010-11-05 2011-02-23 天津森诺过滤技术有限公司 聚醚砜和磺化聚砜类高聚物共混非对称纳滤膜制备方法
CN102527265A (zh) * 2010-12-15 2012-07-04 华东理工大学 含六氟异丙醇基团的膜功能单体及其纳滤膜制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102624A (ja) * 2004-10-05 2006-04-20 Nitto Denko Corp 逆浸透膜及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288776A (zh) * 2000-09-21 2001-03-28 华东理工大学 磺化聚醚砜纳滤膜的制备方法
CN101068612A (zh) * 2004-10-13 2007-11-07 3M创新有限公司 制备亲水性聚醚砜膜的方法
CN101979132A (zh) * 2010-11-05 2011-02-23 天津森诺过滤技术有限公司 聚醚砜和磺化聚砜类高聚物共混非对称纳滤膜制备方法
CN102527265A (zh) * 2010-12-15 2012-07-04 华东理工大学 含六氟异丙醇基团的膜功能单体及其纳滤膜制备方法

Also Published As

Publication number Publication date
CN106139922A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
Huang et al. Microwave heating assistant preparation of high permselectivity polypiperazine-amide nanofiltration membrane during the interfacial polymerization process with low monomer concentration
CN106139922B (zh) 超高通量纳滤膜及其制备方法
CN103877872B (zh) 一种纳米材料改性聚哌嗪酰胺纳滤膜的制备方法
CN103394295B (zh) 一种亲水性pvdf复合超滤膜及其制备方法
CN105107393B (zh) 一种基于模板法的单价离子选择性复合膜的制备方法
CN110038438B (zh) 一种有机无机复合陶瓷纳滤膜的制备方法
CN104524984A (zh) 一种层层自组装正渗透膜的制备方法以及其所制备的层层自组装正渗透膜
CN110201544B (zh) 一种高通量高选择性纳滤膜及其制备方法
CN104028120A (zh) 羧甲基纤维素钠复合物填充聚酰胺纳滤膜的制备方法
CN104028126A (zh) 磺酸型两性聚电解质纳米粒子杂化聚酰胺纳滤膜的制备方法
CN112426894A (zh) 一种聚酰胺复合反渗透膜的制备方法及所得反渗透膜
CN107617342B (zh) 一种用于海水淡化的双金属氢氧化物陶瓷膜及其制备方法
Han et al. Thin and defect-free ZIF-8 layer assisted enhancement of the monovalent perm-selectivity for cation exchange membrane
CN113731190A (zh) 一种纳米纤维素层层自组装膜及其制备方法
CN111644082A (zh) 一种新型抗污染两性复合纳滤膜的制备方法
CN111467981A (zh) 一种高倍截留强化纳米结构复合膜的制备方法
CN108211794B (zh) 一种高选择性中空纤维脱盐膜及其制备方法
CN115055061B (zh) 一种具有高渗透选择性的聚酰胺复合纳滤膜的制备方法
KR101421103B1 (ko) 압력지연식 막증류를 이용한 발전 겸용 정수화 장치
KR102041657B1 (ko) 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막 및 수처리 분리막을 포함하는 수처리 모듈
Zhang et al. Preparation polyamide nanofiltration membrane by interfacial polymerization
Fu et al. Study on High-Performance Pervaporation Desalination Membranes Prepared by Interfacial Reactions between Two Aqueous Monomers
CN112058096A (zh) 一种纳滤膜及其制备方法
CN114016285A (zh) 一种用于海水淡化的功能纳米纤维膜的制备方法
CN114713052A (zh) 一种抗污染改性聚偏氟乙烯膜及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant