CN106058202A - 一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用 - Google Patents

一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用 Download PDF

Info

Publication number
CN106058202A
CN106058202A CN201610617682.XA CN201610617682A CN106058202A CN 106058202 A CN106058202 A CN 106058202A CN 201610617682 A CN201610617682 A CN 201610617682A CN 106058202 A CN106058202 A CN 106058202A
Authority
CN
China
Prior art keywords
sodium
metal ion
carbon
phosphate
vanadium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610617682.XA
Other languages
English (en)
Inventor
王素清
方峻祺
王海辉
卫孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610617682.XA priority Critical patent/CN106058202A/zh
Publication of CN106058202A publication Critical patent/CN106058202A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用。制备过程包括:1)将钒源、钠源、磷酸盐、柠檬酸和金属离子源完全溶解在去离子水中,搅拌均匀后冷冻成冰;2)将冷冻好的冰块放入冷冻干燥机中冷冻干燥,得到干燥产物;3)将干燥产物在空气中热处理,得到磷酸钒钠前驱体粉末;4)将粉体研磨均匀后,在保护气体气氛下热处理后冷却,得到所述材料。该材料应用于钠离子电池正极材料,材料多孔的结构提高了材料的电化学性能,离子掺杂能有效提高磷酸钒钠材料的导电性和结构稳定性。本发明制备的材料与未掺杂的磷酸钒钠及未采用冷冻干燥法的相比,拥有更高的充放电比容量和更好的循环稳定性。

Description

一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复 合正极材料及其制备方法与应用
技术领域
本发明涉及二次电池电极材料技术领域,具体涉及一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠(Na3V2(PO4)3)复合正极材料及其制备方法与应用。
背景技术
锂离子电池由于能量密度高,无记忆效率,循环寿命长,环保等多重优点,已经成为目前应用最为广泛的二次电池。然而锂资源不但价格昂贵,在地球上的分布还十分不均匀,这对于能源的可持续发展非常不利,因此找到一种锂的替代品显得愈发重要。钠与锂在同一主族,并且钠资源与锂资源相比,不但具有更高的储量,而且分布广泛,是一种极佳的替代选择。近年来,钠离子电池发展如火如荼。但是,由于钠离子的半径大于锂离子,使得钠离子电池电极材料在钠离子的嵌入/脱出过程中要能经受更严重的破坏,因此与锂离子电池电极材料相比,性能优越的钠离子电池电极材料更加难求。作为钠离子电池正极材料的一种,磷酸钒钠由于其钠超离子导体NASICON结构以及热稳定性好等优点,引起了广泛的研究。但是磷酸钒钠导电性差的特点,使得其倍率性能很差,因此有必要对磷酸钒钠进行改性提高其导电性,以改善它的电化学性能。
碳包覆作为一种简单经济的改性手段,可以显著提高材料的导电性,这也是目前研究最多的一种改性手段。除此之外,另外一种常见的改性手段就是离子掺杂,离子掺杂可以提高材料的内部导电性以及离子传导速率,这也是目前认为最有工业化前景的手段。但在现有的研究中,离子掺杂的方法非常有限,大多数研究者掺杂的方法为固相法和溶胶凝胶法,虽然这两种方法可以一定程度上改善磷酸钒钠性能,但是这两种方法仍存在不足。
例如,有人公开了一种固相掺杂金属离子的方法,所述方法工艺简单,产量高。但是其原料混合均匀度很难保证,并且固相法所需的烧结温度高,反应时间长,所以固相反应法的能耗很高,并且产物性能不佳。
还有人公开了一种溶胶凝胶掺杂金属离子的方法。溶胶凝胶法的优点是:均匀性好,处理温度于固相法相比有所降低。但是溶胶凝胶法制备的流程长,一般需要几天甚至几周的时间,并且反应过程有大量废液产生,这些对于工业化都是非常不利的。
因此,寻找到一种新的离子掺杂的方法并应用于钠离子电池正极材料磷酸钒钠体系,对于提高钠离子电池的电化学性能有重要的意义。
发明内容
本发明的目的在于克服现有技术的缺点,创新地提供了一种利用冷冻干燥法制备碳包覆金属离子掺杂磷酸钒钠复合正极材料的方法。本方法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料具有较大的比表面积和丰富的孔隙结构,有利于电极材料与电解液的浸润和接触,作为钠离子电池正极材料时候,材料表现出很好的电化学性能。同时,碳包覆和离子掺杂能有效提高磷酸钒钠材料的导电性和结构稳定性。本发明与未掺杂的磷酸钒钠相比,有更高的充放电比容量和更好的循环稳定性。
本发明目的通过以下技术方案来实现:
(1) 将钒源、钠源、磷酸盐、柠檬酸以及金属离子源完全溶解在去离子水中得到混合溶液;
(2) 将步骤(1)得到溶液放入冷冻柜中或液氮中冷冻成冰;
(3) 用冷冻干燥机将步骤(2)所得的冷冻好的冰块进行冷冻干燥,得到干燥产物;
(4) 收集步骤(3)所得的干燥产物并在空气中热处理,得到磷酸钒钠前驱体粉末;
(5) 将步骤(4)中得到的粉末研磨均匀后,在保护气体气氛下热处理后冷却,得到碳包覆金属离子掺杂磷酸钒钠复合正极材料。
进一步地,步骤(1)中,根据金属离子掺杂位置的不同,选定不同的原子摩尔比:金属离子掺杂在Na位时,(钠原子+金属离子之和):钒原子=3:2 mol/mol;金属离子掺杂在V位时,钠原子:(钒原子+金属离子之和)=3:2mol/mol;掺杂的金属离子在Na位或者V位的原子百分比控制在1 at.%-25 at.%。
进一步地,步骤(1)中,所述钒源为偏钒酸铵、五氧化二钒、钒酸钠和偏钒酸钠中的一种以上;所述钠源为碳酸钠、氢氧化钠,磷酸二氢钠、磷酸氢二钠和磷酸钠中的一种以上;所述磷酸盐选自磷酸二氢钠、磷酸氢二钠,磷酸钠和磷酸二氢铵中的一种;所述的柠檬酸作为钒盐助溶剂和碳源;所述金属离子源为Mg2+、Al3+、K+、Ti3+、Zr4+、Nb5+、Ta5+、Cr3+、Fe2+、Fe3+、Co2+、Co3+、Ni2+、Mn2+和Mn3+中的一种以上。
进一步地,步骤(1)中,制备钒源、钠源、磷酸盐、柠檬酸和金属离子源的混合溶液时,所述完全溶解的条件包括:在20-100℃ 下搅拌0.5-5h。
进一步地,步骤(3)中,冷冻干燥的温度为-64~-12℃,压力为0.01-1.0MPa。
进一步地,步骤(4)中,所述热处理的温度在300-500℃,热处理气氛为空气,升温速率为1-3℃/分钟,热处理的时间为2-8小时。
进一步地,步骤(5)中,所述热处理的温度在700-900℃,热处理气氛为保护气体,升温速率为2-5℃/分钟,热处理的时间为4-10小时。
进一步地,步骤(5)中,所述保护气体为氩气、氮气、氦气、氩氢混合气中的一种以上;所述氩氢混合气中氢气的体积浓度为1-10%。
进一步地,所得的碳包覆金属离子掺杂磷酸钒钠复合正极材料中,碳含量在5-20wt.%。
由上述制备方法制得的碳包覆金属离子掺杂磷酸钒钠复合正极材料。
制得的碳包覆金属离子掺杂磷酸钒钠复合正极材料应用于高倍率长循环寿命钠离子电池正极活性材料。
与现有技术相比,本发明具有以下优点和技术效果:
本发明制得的碳包覆金属离子掺杂磷酸钒钠复合正极材料,以金属钠为负极制备成纽扣电池,在30C的电流密度下容量可达78.9mAh/g,在30C大电流下循环200次仍然有98.6%的容量保持率。
本发明方法同时改善了磷酸钒钠的表面电导和体相电导,极大地增加了磷酸钒钠的导电性,可应用于高功率电池领域。
附图说明
图1 为实施例1制得的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料的XRD图;
图2 为实施例1制得的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料的SEM图;
图3 为实施例1制得的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料的TEM图;
图4 为实施例1制得的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料的BET图以及孔径分布图;
图5 为实施例1制备的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料在30C的循环性能图。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
1)取2.475mmol偏钒酸铵,3.75mmol磷酸二氢钠,9.375mmol柠檬酸以及0.025mmol硝酸铁溶解在去离子水中,并在100℃ 下搅拌0.5h;
2)将步骤1)所得的溶液放到冷冻柜中冷冻成冰;
3)用冷冻干燥机将步骤2)所得的冷冻后的冰块进行冷冻干燥,冷冻干燥的温度为-64℃,压力为0.01MPa,得到干燥产物;
4)收集步骤3)所得的干燥产物并在300℃空气气氛下煅烧8 h,升温速率为2℃/分钟,得到磷酸钒钠前驱体粉末;
5)将步骤4)中得到的粉末研磨均匀后,在700℃氮气气氛下煅烧10 h,升温速率为2℃/分钟,得到碳包覆金属离子掺杂磷酸钒钠复合正极材料。
图1 为制得的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料的XRD图。
图2 为制得的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料的SEM图。
图3 为制得的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料的TEM图。
图4 为制得的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料的BET图以及孔径分布图。如图4所示,制备的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料具有较大的比表面积,多孔的结构有利于材料与电解液的接触,因此本方法制备的材料具有很好的电化学性能。
图5 为制备的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料在30C的循环性能图。制得的碳包覆金属离子铁掺杂磷酸钒钠复合正极材料充放电性能稳定,在200次循环后容量为77.8mAh/g,容量保持率高达98.6%。
实施例2
1)取1.125mmol五氧化二钒,4.5mmol磷酸二氢钠,12mmol柠檬酸以及0.75mmol硝酸铬溶解在去离子水中,并在50℃ 下搅拌3h;
2)将步骤1)所得的溶液放到冷冻柜中冷冻成冰;
3)用冷冻干燥机将步骤2)所得的冷冻后的冰块进行冷冻干燥,冷冻干燥的温度为-46℃,压力为0.37MPa,得到干燥产物;
4)收集步骤3)所得的干燥产物并在400℃空气气氛下煅烧5 h,升温速率为3℃/分钟,得到磷酸钒钠前驱体粉末;
5)将步骤4)中得到的粉末研磨均匀后,在800℃氩气气氛下煅烧6h,升温速率为3℃/分钟,得到碳包覆金属离子掺杂磷酸钒钠复合正极材料。
制备的碳包覆金属离子铬掺杂磷酸钒钠复合正极材料在30C的性能图参照图5,该实施例的碳包覆金属离子铬掺杂磷酸钒钠复合正极材料倍率性能很好,30C时容量为78.9mAh/g,可应用于高功率电池领域。
实施例3
1)取4mmol偏钒酸铵,6mmol磷酸二氢铵,5.4mmol 氢氧化钠,15mmol柠檬酸以及0.6mmol硝酸钾溶解在去离子水中,并在20℃ 下搅拌5h;
2)将步骤1)所得的溶液放到冷冻柜中冷冻成冰;
3)用冷冻干燥机将步骤2)所得的冷冻后的冰块冷冻干燥,冷冻干燥的温度为-12℃,压力为1.0MPa,得到干燥产物;
4)收集步骤3)所得的干燥产物并在500℃空气气氛下煅烧2 h,升温速率为1℃/分钟,得到磷酸钒钠前驱体粉末;
5)将步骤4)中得到的粉末研磨均匀后,在900℃氦气气氛下煅烧4 h,升温速率为5℃/分钟,得到碳包覆金属离子掺杂磷酸钒钠复合正极材料。
所制备的碳包覆金属离子钾掺杂磷酸钒钠复合电极材料在30C倍率下的循环性能图参照图5,制得的碳包覆金属离子钾掺杂磷酸钒钠复合电极材料充放电的库伦效率非常稳定,在200次循环后仍然保持在100%左右。

Claims (10)

1.一种利用冷冻干燥法制备碳包覆金属离子掺杂磷酸钒钠复合正极材料的方法,其特征在于,包括以下步骤:
(1) 将钒源、钠源、磷酸盐、柠檬酸以及金属离子源完全溶解在去离子水中得到混合溶液;
(2)将步骤(1)得到的溶液放入冷冻柜中或者液氮中冷冻成冰;
(3)用冷冻干燥机将步骤(2)冷冻好的冰块进行冷冻干燥,得到干燥产物;
(4)收集步骤(3)得到的干燥产物并在空气中热处理,得到磷酸钒钠前驱体粉末;
(5)将步骤(4)中得到的粉末研磨均匀后,在保护气体气氛下热处理后冷却,得到碳包覆金属离子掺杂磷酸钒钠复合正极材料。
2.根据权利要求1所述的一种利用冷冻干燥法制备碳包覆金属离子掺杂磷酸钒钠复合正极材料的方法,其特征在于,步骤(1)中,根据金属离子掺杂位置的不同,选定不同的原子摩尔比:金属离子掺杂在Na位时,(钠原子+金属离子之和):钒原子=3:2 mol/mol;金属离子掺杂在V位时,钠原子:(钒原子+金属离子之和)=3:2mol/mol;掺杂的金属离子在Na位或者V位的原子百分比控制在1 at.%-25 at.%。
3.根据权利要求1所述的一种利用冷冻干燥法制备碳包覆金属离子掺杂磷酸钒钠复合正极材料的方法,其特征在于,步骤(1)中,所述钒源为偏钒酸铵、五氧化二钒、钒酸钠和偏钒酸钠中的一种以上;所述钠源为碳酸钠、氢氧化钠、磷酸二氢钠、磷酸氢二钠和磷酸钠中的一种以上;所述磷酸盐为磷酸二氢钠、磷酸氢二钠、磷酸钠和磷酸二氢铵中的一种;所述柠檬酸作为钒盐助溶剂和碳源;所述金属离子源为Mg2+、Al3+、K+、Ti3+、Zr4+、Nb5+、Ta5+、Cr3+、Fe2+、Fe3+、Co2+、Co3+、Ni2+、Mn2+和Mn3+中的一种以上。
4.根据权利要求1所述的一种利用冷冻干燥法制备碳包覆金属离子掺杂磷酸钒钠复合正极材料的方法,其特征在于,在步骤(1)中,制备钒源、钠源、磷酸盐、柠檬酸和金属离子源的混合溶液时,所述完全溶解的条件包括:在20-100℃ 下搅拌0.5-5h。
5.根据权利要求1所述的一种利用冷冻干燥法制备碳包覆金属离子掺杂磷酸钒钠复合正极材料的方法,其特征在于,在步骤(3)中,冷冻干燥的温度为-64~-12°C,压力为0.01-1.0MPa。
6.根据权利要求1所述的一种利用冷冻干燥法制备碳包覆金属离子掺杂磷酸钒钠复合正极材料的方法,其特征在于,在步骤(4)中,所述热处理的温度在300-500℃,热处理的气氛为空气,升温速率为1-3℃/分钟,热处理的时间为2-8小时。
7.根据权利要求1所述的一种利用冷冻干燥法制备碳包覆金属离子掺杂磷酸钒钠复合正极材料的方法,其特征在于,在步骤(5)中,所述热处理的温度在700-900℃,热处理的气氛为保护气体,升温速率为2-5℃/分钟,热处理的时间为4-10小时;所述保护气体为氩气、氮气、氦气和氩氢混合气中的一种以上;所述氩氢混合气中氢气的体积浓度为1-10%。
8.根据权利要求1所述的一种利用冷冻干燥法制备碳包覆金属离子掺杂磷酸钒钠复合正极材料的方法,其特征在于:所述碳包覆金属离子掺杂磷酸钒钠复合正极材料中,碳含量为5-20 wt.%。
9.由权利要求1~10任一项所述制备方法制得的碳包覆金属离子掺杂磷酸钒钠复合正极材料。
10.制得的碳包覆金属离子掺杂磷酸钒钠复合正极材料应用于高倍率长循环寿命钠离子电池正极活性材料。
CN201610617682.XA 2016-07-29 2016-07-29 一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用 Pending CN106058202A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610617682.XA CN106058202A (zh) 2016-07-29 2016-07-29 一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610617682.XA CN106058202A (zh) 2016-07-29 2016-07-29 一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN106058202A true CN106058202A (zh) 2016-10-26

Family

ID=57196817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610617682.XA Pending CN106058202A (zh) 2016-07-29 2016-07-29 一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106058202A (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784669A (zh) * 2016-12-15 2017-05-31 三峡大学 一种导电高分子聚苯胺改性磷酸钒钠正极材料及其制备方法
CN106946238A (zh) * 2017-05-19 2017-07-14 西南大学 一种磷酸钒锰钠电极材料及其制备方法和应用
CN106992298A (zh) * 2017-05-22 2017-07-28 中南大学 一种磷酸钒锰钠@3d多孔石墨烯复合材料及其制备方法和在钠离子电池中的应用
CN107611429A (zh) * 2017-08-10 2018-01-19 中南大学 一种富钠磷酸钒铁钠材料及其制备方法和在钠离子电池中的应用
CN108269988A (zh) * 2018-02-01 2018-07-10 桂林理工大学 钠离子电池正极材料钙钾共掺杂磷酸钒钠/碳的制备方法
CN108417792A (zh) * 2018-02-01 2018-08-17 桂林理工大学 高性能铝钾共掺杂氟磷酸钒钠/碳复合材料的制备方法
CN108511704A (zh) * 2018-03-06 2018-09-07 上海应用技术大学 一种钠离子电池用的镁取代磷酸钒钠/碳复合正极材料及其制备方法
CN108682856A (zh) * 2018-06-08 2018-10-19 浙江大学 香蒲碳负载的磷酸钒钠纳米复合材料及其制备方法和应用
CN108899505A (zh) * 2018-07-02 2018-11-27 中南大学 掺杂改性的氟磷酸钒钠正极材料及其制备方法
CN109755565A (zh) * 2017-11-08 2019-05-14 中国科学院大连化学物理研究所 过渡金属掺杂的钠离子电池用正极材料及其制备和应用
CN109755489A (zh) * 2017-11-08 2019-05-14 中国科学院大连化学物理研究所 一种氟磷酸钒钠/碳复合物的制备及复合物的应用
CN109841801A (zh) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 一种碳包覆NaxRyM2(PO4)3材料及其制备和应用
CN111106335A (zh) * 2019-12-20 2020-05-05 三峡大学 一种锂离子电池复合负极材料的制备方法
CN111490239A (zh) * 2020-04-15 2020-08-04 安徽师范大学 磷酸钒钠/氮掺杂碳复合钠离子电池正极材料及其制备方法、正极极片以及钠离子电池
CN111564605A (zh) * 2020-05-07 2020-08-21 中国科学院化学研究所 层状氧化物正极及制备方法和应用及含其的钠离子电池
KR20200138198A (ko) 2019-02-28 2020-12-09 인터내셔날 애드밴스드 리서치 센터 폴 파우더 메탈러지 앤드 뉴 머테리얼스 (에이알씨아이) 인시튜 탄소 코팅된 전극재를 제조하기 위한 마이크로파 보조 졸-겔 방법 및 그 생성물
CN112978702A (zh) * 2019-12-12 2021-06-18 中国科学院大连化学物理研究所 一种碳包覆磷酸矾钠的制备方法及其应用
CN113659139A (zh) * 2021-07-12 2021-11-16 中北大学 一种钒位铜掺杂复合碳纳米管的磷酸钒钠电极材料及其制备方法和应用
CN113809293A (zh) * 2021-08-27 2021-12-17 上海电力大学 全气候储能片层状聚阴离子化合物正极材料及其制备方法
CN114597381A (zh) * 2022-03-28 2022-06-07 湖北云翔聚能新能源科技有限公司 钒位铬掺杂复合石墨烯的磷酸钒钠电极材料的制备方法及该电极材料
CN114824191A (zh) * 2022-03-11 2022-07-29 江苏理工学院 一种NaMnO2@NaV2O5复合材料及其制备方法与应用
CN114864907A (zh) * 2022-05-31 2022-08-05 华南理工大学 一种含锌正极材料及其制备方法和由其制备的锌离子电池
CN114975992A (zh) * 2022-05-31 2022-08-30 西安交通大学 一种过渡金属离子掺杂磷酸钒钠正极材料的制备方法
CN115744865A (zh) * 2022-12-09 2023-03-07 山西大学 一种基于铁掺杂和碳包覆的磷酸钒钠正极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306771A (zh) * 2011-08-17 2012-01-04 中南大学 一种混合离子电池氟磷酸钒钠正极材料的制备方法
CN102569797A (zh) * 2012-01-20 2012-07-11 中国科学院宁波材料技术与工程研究所 一种新型磷酸盐基正极复合材料及其制备方法和用途
CN103000884A (zh) * 2011-09-16 2013-03-27 中国科学院物理研究所 一种磷酸钒钠复合材料及其制备方法和用途
CN105375008A (zh) * 2015-11-13 2016-03-02 武汉理工大学 层状Na3V2(PO4)3@rGO纳米复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306771A (zh) * 2011-08-17 2012-01-04 中南大学 一种混合离子电池氟磷酸钒钠正极材料的制备方法
CN103000884A (zh) * 2011-09-16 2013-03-27 中国科学院物理研究所 一种磷酸钒钠复合材料及其制备方法和用途
CN102569797A (zh) * 2012-01-20 2012-07-11 中国科学院宁波材料技术与工程研究所 一种新型磷酸盐基正极复合材料及其制备方法和用途
CN105375008A (zh) * 2015-11-13 2016-03-02 武汉理工大学 层状Na3V2(PO4)3@rGO纳米复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNQI FANG等: ""Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries"", 《J. MATER. CHEM. A》 *
WEI SHEN ET.AL.: ""Towards Highly Stable Storage of Sodium Ions: A Porous Na3V2(PO4)3/C Cathode Material for Sodium-Ion Batteries"", 《CHEMISTRY-A EUROPEAN JOURNAL》 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784669A (zh) * 2016-12-15 2017-05-31 三峡大学 一种导电高分子聚苯胺改性磷酸钒钠正极材料及其制备方法
CN106946238B (zh) * 2017-05-19 2018-12-28 西南大学 一种磷酸钒锰钠电极材料及其制备方法和应用
CN106946238A (zh) * 2017-05-19 2017-07-14 西南大学 一种磷酸钒锰钠电极材料及其制备方法和应用
CN106992298A (zh) * 2017-05-22 2017-07-28 中南大学 一种磷酸钒锰钠@3d多孔石墨烯复合材料及其制备方法和在钠离子电池中的应用
CN107611429A (zh) * 2017-08-10 2018-01-19 中南大学 一种富钠磷酸钒铁钠材料及其制备方法和在钠离子电池中的应用
CN107611429B (zh) * 2017-08-10 2020-10-16 中南大学 一种富钠磷酸钒铁钠材料及其制备方法和在钠离子电池中的应用
CN109755489A (zh) * 2017-11-08 2019-05-14 中国科学院大连化学物理研究所 一种氟磷酸钒钠/碳复合物的制备及复合物的应用
CN109755565A (zh) * 2017-11-08 2019-05-14 中国科学院大连化学物理研究所 过渡金属掺杂的钠离子电池用正极材料及其制备和应用
CN109841801A (zh) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 一种碳包覆NaxRyM2(PO4)3材料及其制备和应用
CN108269988A (zh) * 2018-02-01 2018-07-10 桂林理工大学 钠离子电池正极材料钙钾共掺杂磷酸钒钠/碳的制备方法
CN108417792A (zh) * 2018-02-01 2018-08-17 桂林理工大学 高性能铝钾共掺杂氟磷酸钒钠/碳复合材料的制备方法
CN108511704A (zh) * 2018-03-06 2018-09-07 上海应用技术大学 一种钠离子电池用的镁取代磷酸钒钠/碳复合正极材料及其制备方法
CN108682856A (zh) * 2018-06-08 2018-10-19 浙江大学 香蒲碳负载的磷酸钒钠纳米复合材料及其制备方法和应用
CN108899505A (zh) * 2018-07-02 2018-11-27 中南大学 掺杂改性的氟磷酸钒钠正极材料及其制备方法
KR20200138198A (ko) 2019-02-28 2020-12-09 인터내셔날 애드밴스드 리서치 센터 폴 파우더 메탈러지 앤드 뉴 머테리얼스 (에이알씨아이) 인시튜 탄소 코팅된 전극재를 제조하기 위한 마이크로파 보조 졸-겔 방법 및 그 생성물
CN112978702A (zh) * 2019-12-12 2021-06-18 中国科学院大连化学物理研究所 一种碳包覆磷酸矾钠的制备方法及其应用
CN111106335A (zh) * 2019-12-20 2020-05-05 三峡大学 一种锂离子电池复合负极材料的制备方法
CN111106335B (zh) * 2019-12-20 2022-05-03 三峡大学 一种锂离子电池复合负极材料的制备方法
CN111490239A (zh) * 2020-04-15 2020-08-04 安徽师范大学 磷酸钒钠/氮掺杂碳复合钠离子电池正极材料及其制备方法、正极极片以及钠离子电池
CN111564605B (zh) * 2020-05-07 2021-08-17 中国科学院化学研究所 层状氧化物正极及制备方法和应用及含其的钠离子电池
CN111564605A (zh) * 2020-05-07 2020-08-21 中国科学院化学研究所 层状氧化物正极及制备方法和应用及含其的钠离子电池
CN113659139A (zh) * 2021-07-12 2021-11-16 中北大学 一种钒位铜掺杂复合碳纳米管的磷酸钒钠电极材料及其制备方法和应用
CN113809293A (zh) * 2021-08-27 2021-12-17 上海电力大学 全气候储能片层状聚阴离子化合物正极材料及其制备方法
CN114824191A (zh) * 2022-03-11 2022-07-29 江苏理工学院 一种NaMnO2@NaV2O5复合材料及其制备方法与应用
CN114824191B (zh) * 2022-03-11 2023-07-11 江苏理工学院 一种NaMnO2@NaV2O5复合材料及其制备方法与应用
CN114597381A (zh) * 2022-03-28 2022-06-07 湖北云翔聚能新能源科技有限公司 钒位铬掺杂复合石墨烯的磷酸钒钠电极材料的制备方法及该电极材料
CN114597381B (zh) * 2022-03-28 2023-07-14 湖北云翔聚能新能源科技有限公司 钒位铬掺杂复合石墨烯的磷酸钒钠电极材料的制备方法及该电极材料
CN114864907A (zh) * 2022-05-31 2022-08-05 华南理工大学 一种含锌正极材料及其制备方法和由其制备的锌离子电池
CN114975992A (zh) * 2022-05-31 2022-08-30 西安交通大学 一种过渡金属离子掺杂磷酸钒钠正极材料的制备方法
CN115744865A (zh) * 2022-12-09 2023-03-07 山西大学 一种基于铁掺杂和碳包覆的磷酸钒钠正极材料的制备方法
CN115744865B (zh) * 2022-12-09 2024-03-12 山西大学 一种基于铁掺杂和碳包覆的磷酸钒钠正极材料的制备方法

Similar Documents

Publication Publication Date Title
CN106058202A (zh) 一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用
CN101964411B (zh) LiFePO4复合型正极材料的制备方法
CN101504979A (zh) LiFePO4/C复合正极材料一种新型制备方法
CN106654192B (zh) 一种硫化锡/石墨烯钠离子电池复合负极材料及其制备方法
CN103985854A (zh) 一种纳米级镍锰酸锂正极材料制备方法
CN103078113A (zh) 钒、钛离子共掺杂磷酸铁锂材料及其制备方法
CN102306772A (zh) 一种混合离子电池氟磷酸亚铁钠正极材料的制备方法
CN104934574A (zh) 一种用于锂离子电池的超高密度四氧化三钴/多孔石墨烯纳米复合负极材料的制备方法
CN102244244B (zh) 一种提高锂离子电池复合正极材料xLiFePO4·yLi3V2(PO4)3振实密度的方法
CN106602044A (zh) 制备掺杂改性LiVPO4F锂离子电池正极材料的方法
CN102034971A (zh) 锂离子电池磷酸铁锂/聚并吡啶复合正极材料及其制备方法
CN111682195A (zh) 一种Li2O-V2O5-B2O3-Fe2O3非晶态锂离子电池正极材料及其制备方法
CN104577072A (zh) 一种氧化石墨烯基MoO2高性能锂/钠离子电池电极材料的制备方法
CN111056544B (zh) 一种磷酸铁钠复合材料及其制备方法、应用
CN103413918B (zh) 一种锂离子电池用正极材料磷酸钴锂的合成方法
CN103996823B (zh) 一种动力锂离子电池用三元聚阴离子磷酸盐/碳正极材料的快速微波反应制备方法
CN103159201B (zh) 一种制备碳包覆磷酸铁锂锂离子电池正极复合材料的高压、低温方法
CN102945953A (zh) 高温型长寿命锂离子电池正极材料LiMn2-x-yMIxMIIyO4的制备方法
Lin et al. Electrochemical properties of carbon-coated LiFePO 4 and LiFe 0.98 Mn 0.02 PO 4 cathode materials synthesized by solid-state reaction
CN103956491A (zh) 一种锂离子电池正极材料磷酸铁锰锂及其制备方法
CN102569791B (zh) 一种具有花状结构的磷酸铁锂及其制备方法
Xu et al. The effect of NiO as graphitization catalyst on the structure and electrochemical performance of LiFePO4/C cathode materials
CN105789621A (zh) 一种降低熔融态锂源表面张力从而改善锂离子电池正极材料高温固相烧结过程的方法
CN100457608C (zh) 以溶胶凝胶法制备用于钠离子电池的氟磷酸亚铁钠的方法
CN103117388B (zh) 碳包覆四氧化三铁及其制备方法和在锂离子电池中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161026