CN105702444A - 包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品 - Google Patents

包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品 Download PDF

Info

Publication number
CN105702444A
CN105702444A CN201510650401.6A CN201510650401A CN105702444A CN 105702444 A CN105702444 A CN 105702444A CN 201510650401 A CN201510650401 A CN 201510650401A CN 105702444 A CN105702444 A CN 105702444A
Authority
CN
China
Prior art keywords
mnbi
magnetic phase
sintered magnet
base band
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510650401.6A
Other languages
English (en)
Other versions
CN105702444B (zh
Inventor
金真培
边良禹
曹相根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN105702444A publication Critical patent/CN105702444A/zh
Application granted granted Critical
Publication of CN105702444B publication Critical patent/CN105702444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/087Compacting only using high energy impulses, e.g. magnetic field impulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1054Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/45Rare earth metals, i.e. Sc, Y, Lanthanides (57-71)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/01Main component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品。所述方法包括:(a)通过快速凝固工艺(RSP)制备非磁性相MnBi基带;(b)对所述非磁性相MnBi基带进行热处理以将非磁性相MnBi基带转变为磁性相MnBi基带;(c)研磨所述磁性相MnBi基带以形成MnBi硬磁性相粉末;(d)将MnBi硬磁性相粉末与稀土硬磁性相粉末进行混合;(e)通过施加外部磁场对在步骤(d)中获得的混合物进行磁场成型以形成成型制品;以及(f)烧结所述成型制品。所述各向异性复合烧结磁体具有优异的磁性能。

Description

包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品
技术领域
本发明涉及一种具有改良的磁性能的含MnBi的各向异性复合烧结磁体以及其制备方法。
背景技术
钕磁体是一种具有优异磁性能的成型烧结制品,包含钕(Nd)、铁氧化物(Fe)和硼(B)作为主要成分。目前对于这些高性能钕(Nd)基大块磁体的需求越来越大,但稀土元素资源供应的短缺已经成为为下一代产业提供所需高性能电动机的大障碍。
铁氧体磁体价格低廉且磁性能稳定。铁氧体磁体用于不需要强磁力的场合,且通常为黑色。铁氧体磁体可用于多种产品,例如直流电动机,压缩机,电话机,转速表,扬声器,速度计,电视机,簧片开关,以及时钟机芯。铁氧体磁体的优势在于轻质和廉价。铁氧体磁体的问题在于其不具有优异的磁性能,不能替代昂贵的钕(Nd)基大块磁体。因此,开发一种可替代稀土基磁体的、具有高磁性能的新型磁性材料是目前的新需求。
MnBi是一种由不含稀土的材料制成的永磁体。MnBi在150℃或更高的温度下具有比Nd2Fe14B永磁体更大的矫顽力,因为MnBi的矫顽力在-123℃至277℃的温度下具有正温度系数。因此,MnBi为适合用于在高温下(100℃~200℃)驱动的电机的材料。当使用(BH)max值进行比较时,LTPMnBi具有出比常规铁氧体永磁体更好的性能。LTPMnBi具有与稀土Nd2Fe14B粘结磁体相当或更好的性能。因此,LTPMnBi为可以替代这些磁体的材料。
与稀土永磁体相比,常规MnBi永磁体具有较低的饱和磁化强度值(理论上为80emu/g以下)的问题。如果MnBi和稀土硬磁性相复合形成复合烧结磁体,则能够改善其低饱和磁化强度值,其中稀土硬磁性相例如为SmFeN或NdFeB。此外,通过将关于矫顽力具有正温度系数的MnBi和具有负温度系数的硬磁性相进行复合,可以确保温度稳定性。同时,稀土硬磁性相,例如SmFeN,不能用做烧结磁体,因为该相在高温下分解(大约600℃以上)。
发明内容
本发明人发现,如果将通过快速凝固工艺(RSP)形成MnBi的微晶相而制备的MnBi带和稀土硬磁性相一起进行烧结,则通过将MnBi粉末和稀土硬磁性相粉末进行复合可以获得各向异性烧结磁体。另外,本发明人发现获得的各向异性复合烧结磁体具有优异的磁性能。
因此,本发明的一个目的为提供一种制备包含MnBi的各向异性复合烧结磁体的方法,该方法包括:通过快速凝固工艺(RSP)制备MnBi带。
本发明的另一个目的为提供一种各向异性复合烧结磁体,其通过包括快速凝固工艺(RSP)的各向异性复合烧结磁体的制备方法而制备。
本发明的另一个目的还为提供一种包含制备的各向异性复合烧结磁体的最终产品。
为了实现上述目的和其他优点且根据本发明的目的,如在此呈现和广泛描述地,本发明提供一种制备包含MnBi的各向异性复合烧结磁体的方法,该方法包括:(a)通过快速凝固工艺(RSP)制备非磁性相MnBi带;(b)对所述非磁性相MnBi基带进行热处理,以将非磁性相MnBi基带转变为磁性相MnBi基带;(c)研磨所述磁性相MnBi基带以形成MnBi硬磁性相粉末;(d)将MnBi硬磁性相粉末与稀土硬磁性相粉末进行混合;(e)通过施加外加磁场使在步骤(d)中获得的混合物磁场成型;和(f)烧结所述成型制品。
本申请的其他适用范围通过下面提供的详细说明将会更加清楚。然而,应当理解,所述详细说明和具体实施例尽管表明了本发明的优选实施方式,但仅以说明的方式给出,因为根据所述详细说明,在本发明的主旨和范围内的各种变化和修改对于本领域技术人员来说将会变得很明显。
附图说明
包含附图以提供对本发明进一步的理解,且附图被并入并构成说明书的一部分,说明例示性实施方式并且与说明书一起用于以解释本发明的原理。
图1说明制备各向异性复合烧结磁体的工艺的示意图。
图2说明通过扫描电镜(SEM)进行的MnBi/SmFeN(20重量%)复合烧结磁体中的MnBi和SmFeN的分布分析。
图3说明MnBi和MnBi/SmFeN(15,20和35重量%)烧结磁体的磁性能(25℃)。
图4说明MnBi和MnBi/SmFeN(15,20和35重量%)烧结磁体的磁性能(150℃)。
具体实施方式
(a)通过快速凝固工艺(RSP)制备MnBi带的工艺
快速凝固工艺(RSP)为从1984年开始广泛使用的工艺。(RSP)是一种在从高温下的液态到常温或室温下的固态的过渡阶段期间通过包含过热和潜热的热能的快速抽取形成凝固微结构的过程。目前,已经发展和使用了各种快速凝固工艺,包括真空感应熔炼方法,挤压铸造法,冷板淬火(splatquenching)法,熔融纺丝法,平板流铸(planerflowcasting)法,激光或电子束凝固法。所述方法全部通过快速抽取热量获得凝固微结构。
在凝固发生前,热量的快速抽取导致在100℃以上的高温下的过冷,并且与伴随着每秒1℃以下的温度变化的常规铸造方法进行比较。冷却速度可以为5~10K/s以上,10~102K/s以上,103~104K/s以上或104~105K/s以上,且以所述快速凝固工艺形成凝固微结构。
将具有MnBi合金成分的材料加热并熔化,通过喷嘴喷射所述熔体并使其与冷却轮接触,所述冷却轮相对于喷嘴旋转以快速冷却并凝固熔液,由此连续制备MnBi带。
在本发明的方法中,当合成烧结磁体以形成MnBi硬磁性相和稀土硬磁性相的混合结构时,为了与稀土硬磁性相一起烧结,通过快速凝固工艺(RSP)制备MnBi带以确保MnBi带具有微晶相是非常重要的,所述稀土硬磁性相在300℃以下很难烧结。在一个示例性实施方式中,当通过本发明的快速凝固工艺(RSP)制备的MnBi带的晶粒具有50~100nm的晶粒尺寸时,在磁性相的形成过程中获得了高磁性能。
当在快速凝固工艺(RSP)过程中,通过使用冷却轮进行快速冷却过程时,轮转速可能会影响快速冷却的合金的性能。在使用冷却轮的快速凝固工艺(RSP)中,轮的圆周速度越快,对于与轮接触的材料而言,获得的冷却效果可能越大。根据示例性实施方式,在本发明的快速凝固工艺中,轮的圆周速度可以为10~300m/s或30~100m/s,优选60~70m/s。
作为通过本发明的快速凝固工艺(RSP)制备的非磁性相的MnBi带可能具有由MnXBi100-X表示的成分,其中X为45~55。优选地,MnBi的成分可以为Mn50Bi50、Mn51Bi49、Mn52Bi48、Mn53Bi47、Mn54Bi46或Mn55Bi45
(b)将非磁性相MnBi基带转变为磁性相MnBi基带的步骤
下一步骤赋予制备的非磁性相MnBi基带磁性能。根据示例性实施方式,为了赋予磁性能,可以实施低温热处理,且通过实施例如在真空和惰性气氛中的280~340℃下的低温热处理形成磁性相MnBi基带材。可以将热处理进行3~24小时以引起包含在非磁性相MnBi基带中的Mn扩散,通过这样,可以制备MnBi基磁体。通过热处理步骤,当磁性相的量为90%以上,更优选95%以上时,可以形成MnBi低温相(LTP)。当包含约90%或更多量的MnBi低温相时,MnBi基磁体可以具有优异的磁性能。
(c)制备硬磁性相粉末的步骤
在下一步骤中,通过研磨MnBi低温相MnBi合金制备MnBi硬磁性相粉末。
在研磨MnBi硬磁性相粉末的工艺中,优选通过使用分散剂的工艺,可以提高研磨效率,且可以改善可分散性。分散剂可以选自:油酸(C18H34O2)、油胺(C18H37N)、聚乙烯吡咯烷酮和聚山梨酸酯。然而,本发明并不限制于此,基于粉末的重量,分散剂可以包含1~10重量%的量的油酸。
在研磨MnBi硬磁性相粉末的工艺中,可以使用球磨。在该实施方式中,磁性相粉末、球、溶剂和分散剂的比例大约为1∶20∶6∶0.12(以质量计),且可以通过将所述球设定为Φ3~Φ5实施所述球磨。
根据本发明的示例性实施方式,可以将使用MnBi硬磁性相粉末的分散剂的研磨工艺进行3~8小时,完整地经受了LTP热处理和研磨工艺的MnBi硬磁性相粉末的尺寸可以具有0.5~5μm的直径。当直径超过5μm时,矫顽力可能会劣化。
同时,除了制备MnBi硬磁性相粉末的过程外,还单独地制备稀土硬磁性相粉末。
在示例性实施方式中,稀土硬磁性相可以由R-Co或R-Fe-B表示,并且优选为SmFeN、NdFeB或SmCo,其中R为选自如下的稀土元素:Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu。
经受了研磨工艺的稀土硬磁性相粉末的尺寸可以为1~5μm。当直径超过5μm,矫顽力可能会显著劣化。
(d)将MnBi硬磁性相粉末和稀土硬磁性相粉末混合的步骤
在将MnBi硬磁性相和稀土硬磁性相混合的过程中,通过使用润滑剂还可以制备磁场成型制品。润滑剂可以选自丁酸乙酯、辛酸甲酯、月桂酸乙酯或硬脂酸,并且优选为丁酸乙酯、辛酸甲酯、月桂酸甲酯或硬脂酸锌,且可以使用类似物。特别的,在一种更优选的实施方式中,基于粉末的重量,包含的辛酸甲酯的量为1~10重量%、3~7重量%或5重量%
根据示例性实施方式,优选在1分钟至1小时内快速进行MnBi硬磁性相粉末和稀土硬磁性相粉末的混合过程,使得粉末不被研磨。在尽量没有任何研磨的情况下混合硬磁性相是非常重要的。
(e)通过施加外加磁场进行磁场成型的步骤
在本步骤中,通过经磁场成型工艺将合金粉末的磁场方向调整为平行于粉末的C轴方向而确保各向异性。与各向同性磁体相比,如上所述的各向异性磁体具有优异的磁性能,所述各向异性磁体通过磁场成型确保在单轴方向上的各向异性。
可以通过使用磁场注射成型机、磁场成型压机等进行磁场成型,且可以通过轴向模压方法(axialdiepressing)(ADP)、横向模压方法(transversediepressing)(TDP)等进行,但本发明不限于此。
可以在0.1~5.0T、0.5~3.0T或1.0~2.0T的磁场强度下进行磁场成型步骤。
(f)成型制品的烧结步骤
当制备压实磁体时,可以使用作为用于抑制颗粒生长和氧化的低温下的选择性热处理的任何烧结方法,包括热压烧结、热等静压烧结、放电等离子体烧结、炉烧结(furnacesintering)、微波烧结等,但本发明并不限于此。
本发明的另一种实施方式提供一种包含MnBi和稀土硬磁性相的各向异性复合烧结磁体,其通过本发明的上述方法而制备。在该实施方式中,当制备具有50~100nm的晶粒尺寸的MnBi合金时,通过使用快速凝固工艺获得MnBi带。
对于本发明的包含MnBi的各向异性复合烧结磁体,可以对稀土硬磁性相的含量进行控制,使得可以在包含MnBi的各向异性复合烧结磁体中对矫顽力强度和磁化强度大小进行调节。
特别地,本发明的包含MnBi的各向异性复合烧结磁体在以下方面是有利地:通过单轴磁场成型和烧结工艺制备具有单轴各向异性的高性能磁体。
在示例性实施方式中,本发明的磁体包含55~99重量%的作为无稀土的硬磁性相的MnBi,并可以包含1~45重量%的稀土硬磁性相。如果稀土硬磁性相的含量超过45重量%,则变得不利于烧结。
在优选的示例性实施方式中,当将SmFeN用作稀土硬磁性相时,其含量可以为5~35重量%。
本发明的包含MnBi的各向异性复合烧结磁体具有优异的磁性能,在25℃和150℃的最大磁能积(BHmax)为5~15MGOe。
如前所述,由于其优异的磁性能,本发明的包含MnBi的各向异性复合烧结磁体可以广泛用于冰箱马达,空调压缩机,洗衣机驱动马达,手机振动马达,扬声器,音圈马达,用于使用线性马达的计算机的硬盘磁头位置的确定,相机的变焦器(zoom)、可变光圈(irisdiaphragm)和快门,精密机器的执行器,汽车电器部件如双离合变速器(DCT)、防抱死制动系统(ABS)、电动助力转向(EPS)马达的电机以及燃油泵等。
本发明的包含MnBi的各向异性复合烧结磁体可以替代常规的稀土粘结磁体,因为其改善了MnBi的低饱和磁化强度值,具有高的温度稳定性,且具有优异的磁性能。
参照附图,现在将以详细的示例性实施方式给出说明。为了简化对于附图的说明,相同或相当的部件将给出相同的附图标记,其将不再重复其说明。
下面,将通过实施例对本发明进行更详细的说明。这些实施例仅用于更具体地描述本发明而提供,对于本领域普通技术人员而言显而易见的是本发明的范围并不限于这些实施例。
实施例
包含MnBi的各向异性复合烧结磁体的制备
根据图1中说明的流程图,制备各向异性复合烧结磁体。首先,通过将用于制备MnBi带的快速凝固工艺(RSP)中的轮转速设定为60~70m/s而制备了MnBi带。使用了晶粒尺寸为50~100nm的Bi相。
为了赋予非磁性相MnBi带磁性能,在280~340℃的温度下、真空和惰性气氛中进行了低温热处理。通过实施3~24小时的热处理以引起包含在非磁性相MnBi带中的Mn扩散而形成了磁性相MnBi基带,并且通过这一制备获得了MnBi基磁体。
接着,实施了使用球磨的复合工艺。研磨工艺进行了大约5小时,且将磁性相粉末、球、熔剂和分散剂的比例设定为大约1∶20∶6∶0.12(以质量计),将球的直径设定为Φ3~Φ5。
随后,在尽量没有任何研磨的情况下将SmFeN硬磁体粉末(15,20,或35重量%)和通过球磨制备的磁性粉末(85,80,或65重量%)进行混合。在大约1.6T的磁场下实施成型,然后通过使用热压机在真空和惰性气氛中于250~320℃下进行1~10分钟的快速烧结而制备了烧结磁体。
在由此制备的烧结磁体中,通过扫描电镜(SEM)对具有MnBi/SmFeN重量比为80∶20的复合烧结磁体的横截面状态进行了观察,并示于图2中。在图2中,可以确认,无稀土的MnBi硬磁性相和稀土SmFeN硬磁性相均匀分布。
各向异性复合烧结磁体在25℃下的磁性能
通过使用振动样品磁强计(VSM,LakeShore#7300,美国,最大值25kOe)在常温(25℃)下对MnBi和MnBi/SmFeN(15,20,和35重量%)烧结磁体的剩余磁通密度(Br)、诱导矫顽力(HCB)和最大磁能积[(BH)max]进行了测量。将B-H曲线示于图3中,且将值示于下表1中。
表1
参照表1和图3,可以确认本发明的MnBi/SmFeN(35重量%)各向异性复合烧结磁体在常温(25℃)下具有15.4MGOe的最大磁能积,并且如由剩余磁通密度(Br)、诱导矫顽力(HCB)和最大磁能积[(BH)max]所示,其比具有MnBi单相的烧结磁体具有更优异的磁性能。
各向异性复合烧结磁体在150℃下的磁性能
通过使用振动样品磁强计(VSM,LakeShore#7300,美国,最大值25kOe)在高温(150℃)下对MnBi和MnBi/SmFeN(15,20,和35重量%)烧结磁体的剩余磁通密度(Br)、诱导矫顽力(HCB)和最大磁能积[(BH)max]进行了测量。将B-H曲线示于图4中,且将值示于下表2中。
表2
参照表2和图4,可以确认本发明的MnBi/SmFeN(35重量%)各向异性复合烧结磁体在高温(150℃)下具有11.4MGOe的最大磁能积,并且如由最大磁能积[(BH)max]所示,其具有优异的磁性能,因为于具有MnBi单相的烧结磁体相比,其诱导矫顽力(HCB)降低。然而,由于SmFeN的复合,其剩余磁通密度(Br)增加。该MnBi/SmFeN(35重量%)烧结磁体在高温(150℃)下具有增加的剩余磁通密度(Br)。
前述实施方式及其优点仅仅是示例性的,并不应认为是限制本发明。本教导可容易地应用于其他类型的设备。本说明是为了进行解释说明,并不是为了限制权利要求的范围。许多替代、修改和变化对于本领域技术人员而言将会是显而易见的。在此说明的示例性实施方式的特征、结构、方法和其他特性可以各种方式进行结合以获得附加的和/或替代的示例性实施方式。
在不背离其特征的情况下可以若干种形式实现本特征,应理解的是,上述实施方式不受前面描述的任何细节的限制,除非另有规定,否则应在附属权利要求中限定的范围内进行广泛的考虑,并且因此所述权利要求旨在涵盖落入权利要求的范围和界限内或者与该范围和界限等同物内的所有变化和变型。

Claims (20)

1.一种制备包含MnBi的各向异性复合烧结磁体的方法,该方法包括:
(a)通过快速凝固工艺(RSP)制备非磁性相MnBi基带;
(b)对非磁性相MnBi基带进行热处理以将所述非磁性相MnBi基带转变为磁性相MnBi基带;
(c)研磨所述磁性相MnBi基带以形成MnBi硬磁性相粉末;
(d)将所述MnBi硬磁性相粉末与稀土硬磁性相粉末进行混合;
(e)通过施加外部磁场对在步骤(d)中获得的混合物进行磁场成型以形成成型制品;以及
(f)烧结所述成型制品。
2.根据权利要求1所述的方法,其中在步骤(a)中制备的所述MnBi基带的晶粒尺寸为50nm~100nm。
3.根据权利要求1所述的方法,其中在快速凝固工艺过程中使用冷却轮进一步制备MnBi基带,且其中所述冷却轮的圆周速度为10m/s~300m/s。
4.根据权利要求3所述的方法,其中所述冷却轮的圆周速度为30m/s~100m/s。
5.根据权利要求3所述的方法,其中所述冷却轮的圆周速度为60m/s~70m/s。
6.根据权利要求1所述的方法,其中步骤(a)中的MnBi基带由MnXBi100-X表示,其中X为50~55。
7.根据权利要求1所述的方法,其中在280℃~340℃的温度下进行步骤(b)的热处理。
8.根据权利要求1所述的方法,其中所述MnBi硬磁性相粉末的直径为0.5μm~5μm,且所述稀土硬磁性相粉末的直径为1μm~5μm。
9.根据权利要求1所述的方法,其中所述稀土硬磁性相由R-Co或R-Fe-B表示,其中R为选自如下的稀土元素:Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu。
10.根据权利要求1所述的方法,其中所述稀土硬磁性相为SmFeN、NdFeB或SmCo。
11.根据权利要求1所述的方法,其中在步骤(c)的研磨所述磁性相MnBi基带的过程中添加分散剂,其中所述分散剂选自:油酸(C18H34O2),油胺(C18H37N),聚乙烯吡咯烷酮和聚山梨酸酯。
12.根据权利要求1所述的方法,其中在步骤(d)的混合过程中添加润滑剂,其中所述润滑剂选自:丁酸乙酯、辛酸甲酯、月桂酸乙酯和硬脂酸。
13.根据权利要求1所述的方法,其中将步骤(c)的研磨所述磁性相MnBi基带进行3小时~8小时。
14.根据权利要求1所述的方法,其中在1分钟至1小时内快速实施步骤(d)的混合以防止粉末被压碎。
15.根据权利要求1所述的方法,其中通过选自如下的工艺进行步骤(f)的烧结:热压烧结、热等静压烧结、放电等离子体烧结、炉烧结和微波烧结。
16.根据权利要求1所述的方法,其中在0.1T~5.0T的磁场中进行所述磁场成型。
17.一种通过权利要求1的方法制备的各向异性复合烧结磁体,包含:
MnBi;和
稀土硬磁性相,
其中在步骤(a)中制备的MnBi基带的晶粒尺寸为50nm~100nm。
18.根据权利要求17所述的各向异性复合烧结磁体,其中所述各向异性复合烧结磁体包含55重量%~99重量%的MnBi和1重量%~45重量%的稀土硬磁性相。
19.根据权利要求17所述的各向异性复合烧结磁体,其中所述各向异性复合烧结磁体在25℃~150℃的温度下的最大磁能积(BHmax)为5MGOe~15MGOe。
20.一种包含权利要求17的各向异性复合烧结磁体的产品,其中所述产品选自:冰箱或空调的压缩机马达,洗衣机驱动马达,手机振动马达;扬声器,音圈马达,线性马达,相机的变焦器、可变光圈和快门,精密机器的执行器,双离合变速器(DCT),防抱死制动系统(ABS),电动助力转向(EPS)马达和燃油泵。
CN201510650401.6A 2014-12-15 2015-09-15 包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品 Active CN105702444B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140180552A KR101585478B1 (ko) 2014-12-15 2014-12-15 자기적 특성이 향상된 MnBi를 포함한 이방성 복합 소결 자석 및 이의 제조방법
KR10-2014-0180552 2014-12-15

Publications (2)

Publication Number Publication Date
CN105702444A true CN105702444A (zh) 2016-06-22
CN105702444B CN105702444B (zh) 2018-02-16

Family

ID=53886993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510650401.6A Active CN105702444B (zh) 2014-12-15 2015-09-15 包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品

Country Status (5)

Country Link
US (2) US20160168660A1 (zh)
EP (1) EP3041005A1 (zh)
JP (1) JP6204434B2 (zh)
KR (1) KR101585478B1 (zh)
CN (1) CN105702444B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537525A (zh) * 2015-04-20 2017-03-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体和用于制备其的常压烧结工艺
CN106971803A (zh) * 2017-04-19 2017-07-21 重庆科技学院 一种全致密各向异性NdFeB/MnBi混合永磁的制备方法
CN107297493A (zh) * 2017-06-13 2017-10-27 同济大学 一种高矫顽力MnBi纳米颗粒及其制备方法
CN108754240A (zh) * 2018-05-31 2018-11-06 江苏大学 一种磁性铝基复合材料及其制备方法
CN109448946A (zh) * 2018-12-21 2019-03-08 中国计量大学 一种各向异性SmCo/MnBi复合磁体及其制备方法
CN111564305A (zh) * 2020-06-11 2020-08-21 泮敏翔 一种高性能复合磁体的制备方法
CN113517124A (zh) * 2021-04-22 2021-10-19 中国计量大学 一种高性能各向异性无稀土永磁体的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9818516B2 (en) * 2014-09-25 2017-11-14 Ford Global Technologies, Llc High temperature hybrid permanent magnet
EP4039392A1 (en) * 2017-04-21 2022-08-10 Raytheon Technologies Corporation Systems, devices and methods for spark plasma sintering
CN111014677B (zh) * 2019-10-18 2021-10-22 南京钛陶智能系统有限责任公司 一种基于磁力搅拌的三维打印锻造方法
EP3862110A1 (en) * 2020-02-07 2021-08-11 EPoS S.r.L. Composite magnetic materials and method of manufacturing the same
CN112652433A (zh) * 2021-01-13 2021-04-13 泮敏翔 一种各向异性复合磁体及其制备方法
CN113782331B (zh) * 2021-09-18 2023-10-20 中国计量大学 一种高性能双硬磁相纳米复合磁体的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328710A1 (en) * 2013-05-03 2014-11-06 Battelle Memorial Institute System and process for friction consolidation fabrication of permanent magnets and other extrusion and non-extrusion structures

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US425A (en) * 1837-10-12 James bogardus
US5648160A (en) 1994-04-14 1997-07-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and use of the same
JPH1072603A (ja) * 1996-09-02 1998-03-17 Toyota Central Res & Dev Lab Inc 磁性材料の製造方法
JP4968519B2 (ja) * 2007-04-06 2012-07-04 Necトーキン株式会社 永久磁石およびその製造方法
JP2008282959A (ja) * 2007-05-10 2008-11-20 Toyota Motor Corp 磁性ナノ粒子の製造方法
US8287661B2 (en) * 2009-01-16 2012-10-16 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
US20140132376A1 (en) * 2011-05-18 2014-05-15 The Regents Of The University Of California Nanostructured high-strength permanent magnets
KR101535487B1 (ko) * 2014-07-29 2015-07-09 엘지전자 주식회사 Mn-Bi계 자성체, 이의 제조방법, Mn-Bi계 소결자석 및 이의 제조방법
KR101585479B1 (ko) * 2015-04-20 2016-01-15 엘지전자 주식회사 MnBi를 포함한 이방성 복합 소결 자석 및 이의 상압소결 방법
KR101585483B1 (ko) * 2015-04-29 2016-01-15 엘지전자 주식회사 열적 안정성이 향상된 MnBi계 소결자석 및 이들의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328710A1 (en) * 2013-05-03 2014-11-06 Battelle Memorial Institute System and process for friction consolidation fabrication of permanent magnets and other extrusion and non-extrusion structures

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N. V. RAMA RAO等: "Anisotropic MnBi/Sm2Fe17Nx Hybrid Magnets Fabricated by Hot Compaction", 《IEEE TRANSACTIONS ON MAGNETICS》 *
S. CAO等: "Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets", 《JOURNAL OF APPLIED PHYSICS》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537525A (zh) * 2015-04-20 2017-03-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体和用于制备其的常压烧结工艺
CN106537525B (zh) * 2015-04-20 2019-10-11 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体和用于制备其的常压烧结工艺
US10741314B2 (en) 2015-04-20 2020-08-11 Lg Electronics Inc. Anisotropic complex sintered magnet comprising MnBi and atmospheric sintering process for preparing the same
CN106971803A (zh) * 2017-04-19 2017-07-21 重庆科技学院 一种全致密各向异性NdFeB/MnBi混合永磁的制备方法
CN106971803B (zh) * 2017-04-19 2019-03-19 重庆科技学院 一种全致密各向异性NdFeB/MnBi混合永磁的制备方法
CN107297493A (zh) * 2017-06-13 2017-10-27 同济大学 一种高矫顽力MnBi纳米颗粒及其制备方法
CN108754240A (zh) * 2018-05-31 2018-11-06 江苏大学 一种磁性铝基复合材料及其制备方法
CN109448946A (zh) * 2018-12-21 2019-03-08 中国计量大学 一种各向异性SmCo/MnBi复合磁体及其制备方法
CN109448946B (zh) * 2018-12-21 2020-05-26 中国计量大学 一种各向异性SmCo/MnBi复合磁体及其制备方法
CN111564305A (zh) * 2020-06-11 2020-08-21 泮敏翔 一种高性能复合磁体的制备方法
CN111564305B (zh) * 2020-06-11 2021-08-10 中国计量大学 一种高性能复合磁体的制备方法
CN113517124A (zh) * 2021-04-22 2021-10-19 中国计量大学 一种高性能各向异性无稀土永磁体的制备方法

Also Published As

Publication number Publication date
US20190153565A1 (en) 2019-05-23
JP2016115923A (ja) 2016-06-23
CN105702444B (zh) 2018-02-16
EP3041005A1 (en) 2016-07-06
KR101585478B1 (ko) 2016-01-15
US20160168660A1 (en) 2016-06-16
JP6204434B2 (ja) 2017-09-27

Similar Documents

Publication Publication Date Title
CN105702444B (zh) 包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品
KR101585483B1 (ko) 열적 안정성이 향상된 MnBi계 소결자석 및 이들의 제조 방법
EP3288043B1 (en) Pressureless sintering method for anisotropic complex sintered magnet containing manganese bismuth
KR101535487B1 (ko) Mn-Bi계 자성체, 이의 제조방법, Mn-Bi계 소결자석 및 이의 제조방법
JP5754232B2 (ja) 高保磁力NdFeB磁石の製法
WO2016133071A1 (ja) R-t-b系焼結磁石の製造方法
JPS63232301A (ja) 磁気異方性ボンド磁石、それに用いる磁粉及びその製造方法
CN104752049A (zh) 用于制备稀土磁体的方法
CN104952607A (zh) 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法
US9601979B2 (en) Alloy material for R-T-B system rare earth permanent magnet, method for producing R-T-B system rare earth permanent magnet, and motor
WO2012029527A1 (ja) R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター
KR102632582B1 (ko) 소결 자석의 제조 방법
KR102399418B1 (ko) 소결 자석 제조 방법 및 이에 따라 제조된 소결 자석
JP6438713B2 (ja) 希土類鉄系磁石粉体およびそれを用いたボンド磁石
JPH04143221A (ja) 永久磁石の製造方法
JP2004052066A (ja) R−Fe−B系磁石およびその製造方法
JP2005019714A (ja) 異方性ボンド磁石の製造方法
JPH0574617A (ja) 希土類−鉄−ホウ素系異方性ボンド磁石
JPH04324907A (ja) 永久磁石の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant