CN106971803A - 一种全致密各向异性NdFeB/MnBi混合永磁的制备方法 - Google Patents

一种全致密各向异性NdFeB/MnBi混合永磁的制备方法 Download PDF

Info

Publication number
CN106971803A
CN106971803A CN201710257116.7A CN201710257116A CN106971803A CN 106971803 A CN106971803 A CN 106971803A CN 201710257116 A CN201710257116 A CN 201710257116A CN 106971803 A CN106971803 A CN 106971803A
Authority
CN
China
Prior art keywords
mnbi
ndfeb
powders
permanent magnets
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710257116.7A
Other languages
English (en)
Other versions
CN106971803B (zh
Inventor
马毅龙
银学国
郑强
李兵兵
邵斌
郭东林
李春红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Wentong electromechanical Co.,Ltd.
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201710257116.7A priority Critical patent/CN106971803B/zh
Publication of CN106971803A publication Critical patent/CN106971803A/zh
Application granted granted Critical
Publication of CN106971803B publication Critical patent/CN106971803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,首先制备MnBi合金粉末,按质量比计算,将20‑30%的MnBi合金粉末和70‑80%的NdFeB粉末混合后得到NdFeB/MnBi混合粉末,将该NdFeB/MnBi混合粉末放入磁场中取向成型,然后将成型后的NdFeB/MnBi混合粉末烧结即得NdFeB/MnBi混合永磁,采用本发明所制备的各向异性NdFeB/MnBi混合永磁,密度可达到7.75‑7.95g/cm3,样品中两种硬磁相都具有较好取向,且退磁曲线表现出单相退磁特征,适量MnBi的加入可保证磁体磁性能的同时,改善NdFeB磁体在高温下的矫顽力。

Description

一种全致密各向异性NdFeB/MnBi混合永磁的制备方法
技术领域
本发明涉及大块永磁技术领域,具体涉及一种全致密各向异性NdFeB/MnBi混合永磁的制备方法。
背景技术
钕铁硼永磁合金是当今磁能积最高的永磁,且生产工艺成熟、成本较低,被广泛应用,然而钕铁硼永磁的居里温度较低,磁性能随温度增加会大幅下降,不适宜应用在高温工作环境领域。
近年来一种不含稀土的永磁锰铋合金引起人们的注意,锰铋合金虽然磁能积远小于钕铁硼永磁,但也具有独特的优势:不含稀土元素,矫顽力较高,且矫顽力随温度升高而升高。由以前的公开报道可知,已有人将MnBi和NdFeB制作为混合磁体,如将MnBi和NdFeB磁粉混合制作成各向同性粘结磁体,或利用烧结法将混合粉末烧结为各向异性块体。前者,磁体密度较低且为各向同性,磁体磁性能较低;而后者,尽管磁体为各向异性,但由于采用的烧结法,磁体无法实现全致密,密度较低,造成磁体磁性能较低。因此,为利用MnBi磁粉的优势,改善NdFeB磁体的综合磁性能,如何制得全致密各向异性NdFeB/MnBi混合永磁具有重要的意义。
发明内容
为解决以上技术问题,本发明提供一种全致密各向异性NdFeB/MnBi混合永磁的制备方法。
技术方案如下:一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,其关键在于:制备MnBi合金粉末,按质量比计算,将20-30%的MnBi合金粉末和70-80%的NdFeB粉末混合后得到NdFeB/MnBi混合粉末,将该NdFeB/MnBi混合粉末放入磁场中取向成型,然后将成型后的NdFeB/MnBi混合粉末烧结即得NdFeB/MnBi混合永磁。
制备MnBi合金粉末的步骤如下:配置MnBi合金原料,然后采用真空电弧熔炼将MnBi合金原料制成合金铸锭,接着将合金铸锭破碎并真空甩带制成MnBi合金薄带,最后将MnBi合金薄带进行真空热处理并破碎即得所述MnBi合金粉末。
制备所述NdFeB/MnBi混合粉末的方法为首先将MnBi合金粉末放入球磨罐中进行首次滚动球磨,然后再加入NdFeB粉末进行二次滚动球磨即得所述NdFeB/MnBi混合粉末。
上述首次滚动球磨是在正庚烷的保护下进行,按质量比计算,球料比为10:1球磨120min;所述二次滚动球磨的时间为60min。
上述磁场为脉冲磁场,磁场强度为2.5T,所述取向成型过程中在氩气氛围下进行。
上述真空热处理的条件为真空度10-2Pa,温度300℃,保温处理8h。
上述烧结条件为在3min内将温度升温至300℃,然后保温5min,接着在1min内将温度升温至600℃,最后在60min内快速降温至50℃即可,整个烧结过程中施加1GPa压力。
上述MnBi合金原料中按摩尔比计算Mn:Bi的摩尔比为1:1;所述NdFeB粉末为经HDDR处理后的各向异性NdFeB磁性粉末;所述MnBi合金粉末为80目。
有益效果:采用本发明所制备的各向异性NdFeB/MnBi混合永磁,密度可达到7.75-7.95g/cm3,混合永磁中两种硬磁相都具有较好取向(各向异性),且退磁曲线表现出单相退磁特征,适量MnBi的加入可保证磁体磁性能的同时,改善NdFeB磁体在高温下的矫顽力。
附图说明
图1为实施例1的退磁曲线;
图2为实施例1的垂直于磁化方向平面的XRD图;
图3为实施例2的退磁曲线;
图4为实施例2的垂直于磁化方向平面的XRD图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
实施例1,步骤一、首先制备MnBi合金粉末
配制摩尔比为1:1的MnBi的合金原料,利用真空电弧熔炼反复熔炼三次,从而得到成分均匀的合金铸锭,接着将合金铸锭破碎并以30m/s的甩带速度进行真空甩带,得到MnBi合金薄带,将MnBi合金薄带在真空热处理炉中进行真空热处理,真空热处理条件为:真空度为10-2Pa、加热温度为300℃,保温时间8h,然后将经真空热处理后的MnBi薄带放入手套箱中并破碎至80目,获得所述MnBi合金粉末;
步骤二、制备NdFeB/MnBi混合粉末
按质量比计算,将20%的MnBi合金粉末和80%的经HDDR处理后的市售各向异性NdFeB粉末混合均匀得到NdFeB/MnBi混合粉末。为获得混合均匀的NdFeB/MnBi混合粉末,采用两步球磨法,即:将所述MnBi合金粉末放入球磨罐中,并在正庚烷保护下进行首次滚动球磨,首次滚动球磨的球料比为10:1;球磨120min后放入NdFeB粉末进行二次滚动球磨,二次滚动球磨时间为60min,然后将球磨后的混合粉末真空干燥去除正庚烷液体即得所述NdFeB/MnBi混合粉末;
步骤三、制备NdFeB/MnBi混合永磁
在手套箱中将步骤二中制得的NdFeB/MnBi混合粉末放入硬质合金无磁模具中,然后将该无磁模具放入磁场强度为2.5T的脉冲磁场成型机中在氩气氛围下对NdFeB/MnBi混合粉末取向成型,将成型后的NdFeB/MnBi混合粉末连同无磁模具一起放入放电等离子烧结炉中进行真空热压烧结,烧结工艺为:在1GPa压力下,3min内温度由室温升至300℃,然后保温5min,接着在1min内快速升温至600℃,之后在60min内快速降温至50℃,即制得各向异性的NdFeB/MnBi混合永磁,该NdFeB/MnBi混合永磁的密度为7.75g/cm3,如图1所示,制得的NdFeB/MnBi混合永磁在室温(25℃)及高温(100℃)下均具有较好磁性能,如图2所示,NdFeB/MnBi混合永磁还具有较好的取向。
实施例2,步骤一、首先制备MnBi合金粉末
配制摩尔比为1:1的MnBi的合金原料,利用真空电弧熔炼反复熔炼三次,从而得到成分均匀的合金铸锭,接着将合金铸锭破碎并以30m/s的甩带速度进行真空甩带,得到MnBi合金薄带,将MnBi合金薄带在真空热处理炉中进行真空热处理,真空热处理条件为:真空度为10-2Pa、加热温度为300℃,保温时间8h,然后将经真空热处理后的MnBi薄带放入手套箱中并破碎至80目,获得所述MnBi合金粉末;
步骤二、制备NdFeB/MnBi混合粉末
按质量比计算,将30%的MnBi合金粉末和70%的经HDDR处理后的市售各向异性NdFeB粉末混合均匀得到NdFeB/MnBi混合粉末。为获得混合均匀的NdFeB/MnBi混合粉末,采用两步球磨法,即:将所述MnBi合金粉末放入球磨罐中,并在正庚烷保护下进行首次滚动球磨,首次滚动球磨的球料比为10:1;球磨120min后放入NdFeB粉末进行二次滚动球磨,二次滚动球磨时间为60min,然后将球磨后的混合粉末真空干燥去除正庚烷液体即得所述NdFeB/MnBi混合粉末;
步骤三、制备NdFeB/MnBi混合永磁
在手套箱中将步骤二中制得的NdFeB/MnBi混合粉末放入硬质合金无磁模具中,然后将该无磁模具放入磁场强度为3T的脉冲磁场成型机中在氩气氛围下对NdFeB/MnBi混合粉末取向成型,将成型后的NdFeB/MnBi混合粉末连同无磁模具一起放入放电等离子烧结炉中进行真空热压烧结,烧结工艺为:在1GPa压力下,3min内温度由室温升至300℃,然后保温5min,接着在1min内快速升温至600℃,之后在60min内快速降温至30℃,即制得各向异性的NdFeB/MnBi混合永磁,该NdFeB/MnBi混合永磁的密度为7.95g/cm3,如图3所示,制得的NdFeB/MnBi混合永磁在室温(25℃)及高温(100℃)下均具有较好磁性能,如图4所示,NdFeB/MnBi混合永磁还具有较好的取向。
对比例1,将经HDDR处理后的市售各向异性的NdFeB粉末直接制备成致密各向异性磁体,具体步骤为:在手套箱中将NdFeB粉末放入硬质合金无磁模具中,然后将该无磁模具放入磁场强度为2.5T的脉冲磁场成型机中在氩气氛围下对NdFeB粉末取向成型,将成型后的样品连同无磁模具一起放入放电等离子烧结炉中进行真空热压烧结,烧结工艺为:在1GPa压力下,3min内温度由室温升至300℃,然后保温5min,接着在1min内快速升温至600℃,之后在60min内快速降温至50℃,即制得各向异性的NdFeB永磁,该NdFeB永磁的密度为7.53g/cm3
在100℃下,分别测定实施例1、2中制得的NdFeB/MnBi混合永磁和对比例1中制得NdFeB永磁的磁性能,测试结果见表1。
表1
组别 剩磁(kGs) 矫顽力(kOe)
实施例1 7.4 8.4
实施例2 8.2 8.1
对比例1 9.1 7.2
从表1可以看出,添加了MnBi粉末的实施例1和实施例2制得的NdFeB/MnBi混合永磁的矫顽力显著高于未添加MnBi粉末的对比实施例1的矫顽力,结合图1-4可知实施例1和实施例2制得的NdFeB/MnBi混合永磁还具有较好的取向,且其退磁曲线表现出单向退磁特性,因此采用本发明提供的方法可显著改善NdFeB磁体的磁性能。
最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

Claims (8)

1.一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,其特征在于:制备MnBi合金粉末,按质量比计算,将20-30%的MnBi合金粉末和70-80%的NdFeB粉末混合后得到NdFeB/MnBi混合粉末,将该NdFeB/MnBi混合粉末放入磁场中取向成型,然后将成型后的NdFeB/MnBi混合粉末烧结即得NdFeB/MnBi混合永磁。
2.根据权利要求1所述的一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,其特征在于制备MnBi合金粉末的步骤如下:配置MnBi合金原料,然后采用真空电弧熔炼将MnBi合金原料制成合金铸锭,接着将合金铸锭破碎并真空甩带制成MnBi合金薄带,最后将MnBi合金薄带进行真空热处理并破碎即得所述MnBi合金粉末。
3.根据权利要求1或2所述的一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,其特征在于:制备所述NdFeB/MnBi混合粉末的方法为首先将MnBi合金粉末放入球磨罐中进行首次滚动球磨,然后再加入NdFeB粉末进行二次滚动球磨即得所述NdFeB/MnBi混合粉末。
4.根据权利要求3所述的一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,其特征在于:所述首次滚动球磨是在正庚烷的保护下进行,按质量比计算,球料比为10:1球磨120min;所述二次滚动球磨的时间为60min。
5.根据权利要求1所述的一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,其特征在于:所述磁场为脉冲磁场,磁场强度为2.5T,所述取向成型过程中在氩气氛围下进行。
6.根据权利要求2所述的一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,其特征在于:所述真空热处理的条件为真空度10-2Pa,温度300℃,保温处理8h。
7.根据权利要求1、2、5或6所述的一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,其特征在于:所述烧结条件为在3min内将温度升温至300℃,然后保温5min,接着在1min内将温度升温至600℃,最后在60min内快速降温至50℃即可,整个烧结过程中施加1GPa压力。
8.根据权利要求2所述的一种全致密各向异性NdFeB/MnBi混合永磁的制备方法,其特征在于:所述MnBi合金原料中按摩尔比计算Mn:Bi的摩尔比为1:1;所述NdFeB粉末为经HDDR处理后的各向异性NdFeB磁性粉末;所述MnBi合金粉末为80目。
CN201710257116.7A 2017-04-19 2017-04-19 一种全致密各向异性NdFeB/MnBi混合永磁的制备方法 Active CN106971803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710257116.7A CN106971803B (zh) 2017-04-19 2017-04-19 一种全致密各向异性NdFeB/MnBi混合永磁的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710257116.7A CN106971803B (zh) 2017-04-19 2017-04-19 一种全致密各向异性NdFeB/MnBi混合永磁的制备方法

Publications (2)

Publication Number Publication Date
CN106971803A true CN106971803A (zh) 2017-07-21
CN106971803B CN106971803B (zh) 2019-03-19

Family

ID=59332440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710257116.7A Active CN106971803B (zh) 2017-04-19 2017-04-19 一种全致密各向异性NdFeB/MnBi混合永磁的制备方法

Country Status (1)

Country Link
CN (1) CN106971803B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564305A (zh) * 2020-06-11 2020-08-21 泮敏翔 一种高性能复合磁体的制备方法
CN116334664A (zh) * 2023-05-30 2023-06-27 中石油深圳新能源研究院有限公司 用于电解水的非晶体纳米粉末及其制备方法、制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140072470A1 (en) * 2012-09-10 2014-03-13 Advanced Materials Corporation Consolidation of exchange-coupled magnets using equal channel angle extrusion
KR20150033426A (ko) * 2013-09-24 2015-04-01 엘지전자 주식회사 층구조를 갖는 경연자성 복합 자석 및 이의 제조방법
CN105336488A (zh) * 2015-11-20 2016-02-17 中国计量学院 提高Fe3B/Nd2Fe14B系磁性合金内禀矫顽力的制备方法
CN105702444A (zh) * 2014-12-15 2016-06-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140072470A1 (en) * 2012-09-10 2014-03-13 Advanced Materials Corporation Consolidation of exchange-coupled magnets using equal channel angle extrusion
KR20150033426A (ko) * 2013-09-24 2015-04-01 엘지전자 주식회사 층구조를 갖는 경연자성 복합 자석 및 이의 제조방법
CN105702444A (zh) * 2014-12-15 2016-06-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品
CN105336488A (zh) * 2015-11-20 2016-02-17 中国计量学院 提高Fe3B/Nd2Fe14B系磁性合金内禀矫顽力的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TRUONG XUAN NGUYEN: "Enhancement of exchange coupling interaction of NdFeB/MnBi hybrid", 《PHYSICA B》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564305A (zh) * 2020-06-11 2020-08-21 泮敏翔 一种高性能复合磁体的制备方法
CN111564305B (zh) * 2020-06-11 2021-08-10 中国计量大学 一种高性能复合磁体的制备方法
CN116334664A (zh) * 2023-05-30 2023-06-27 中石油深圳新能源研究院有限公司 用于电解水的非晶体纳米粉末及其制备方法、制备装置
CN116334664B (zh) * 2023-05-30 2023-09-22 中石油深圳新能源研究院有限公司 用于电解水的非晶体纳米粉末及其制备方法、制备装置

Also Published As

Publication number Publication date
CN106971803B (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
US9427804B2 (en) Method for producing a high-performance neodymium—iron—boron rare earth permanent magnetic material
CN106128672B (zh) 一种扩散烧结连续化RE‑Fe‑B磁体及其制备方法
CN100365745C (zh) 稀土铁系双相纳米晶复合永磁材料的制备方法
JP6419812B2 (ja) 熱的安定性が向上したマンガンビスマス系焼結磁石及びそれらの製造方法
WO2016201944A1 (zh) 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法
CN104575920B (zh) 稀土永磁体及其制备方法
CN110931197B (zh) 一种用于高丰度稀土永磁体的扩散源
CN103928204A (zh) 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法
CN103506626B (zh) 一种提高烧结钕铁硼磁体矫顽力的制造方法
CN106158339B (zh) 烧结钕铁硼回收废料经扩渗处理制备高性能永磁体的方法
CN107424701A (zh) 烧结钕铁硼材料的超细粉再利用方法
CN103985533A (zh) 共晶合金氢化物掺杂提高烧结钕铁硼磁体矫顽力的方法
CN107316727A (zh) 一种烧结钕铁硼制备方法
CN106971803B (zh) 一种全致密各向异性NdFeB/MnBi混合永磁的制备方法
CN101673605B (zh) 各向异性纳米/非晶复相块体永磁材料及其制备方法
CN104599803A (zh) 一种由高氢含量粉末制备的钕铁硼永磁体及其制备工艺
CN104766717B (zh) 一种提高烧结钕铁硼永磁体磁性能的方法
CN103971919A (zh) 一种钕铁硼磁体的烧结方法
CN104103414A (zh) 一种制备高矫顽力各向异性纳米晶钕铁硼永磁体的方法
CN111354524B (zh) 一种钕铁硼各向异性粘结磁粉的制备方法
CN103268798B (zh) 二氧化碳保护成型的烧结钕铁硼永磁材料的制备方法
CN105931781B (zh) 一种烧结钕铁硼回收废料的再生利用方法
CN113539664B (zh) 一种Sm基各向异性复合磁体的制备方法
US11222738B2 (en) Method for manufacturing rare earth magnet
CN106011566A (zh) 一种高饱和磁化强度MnAlB永磁合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210106

Address after: 401121 3-2-2, building 1, 224 Wuling Road, Yubei District, Chongqing

Patentee after: Chongqing Wentong electromechanical Co.,Ltd.

Address before: No. 20, East Road, University City, Chongqing, Shapingba District, Chongqing

Patentee before: Chongqing University of Science & Technology

TR01 Transfer of patent right