CN113517124A - 一种高性能各向异性无稀土永磁体的制备方法 - Google Patents

一种高性能各向异性无稀土永磁体的制备方法 Download PDF

Info

Publication number
CN113517124A
CN113517124A CN202110436941.XA CN202110436941A CN113517124A CN 113517124 A CN113517124 A CN 113517124A CN 202110436941 A CN202110436941 A CN 202110436941A CN 113517124 A CN113517124 A CN 113517124A
Authority
CN
China
Prior art keywords
ball milling
alloy
coarse powder
ball
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110436941.XA
Other languages
English (en)
Inventor
吴琼
涂元浩
泮敏翔
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202110436941.XA priority Critical patent/CN113517124A/zh
Publication of CN113517124A publication Critical patent/CN113517124A/zh
Priority to US17/537,487 priority patent/US20220344096A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种高性能各向异性无稀土永磁体的制备方法,包括以下步骤:按照名义成分MnxBi100‑x(45≤x≤55))熔炼合金铸锭,对合金铸锭进行粗破碎,并100目过筛,得到粗粉;将所得MnxBi100‑x合金粗粉取适量放入球磨罐中,并同时放入无磁性钢球,球料比为10:1,加入适量乙醇做溶剂,然后加入粉料质量5‑15%的非离子表面活性剂聚乙烯吡咯烷酮(PVP)辅助进行低能球磨;设置球磨时间1‑6小时,球磨转速256转/分钟,顺时针/逆时针旋转交替时间为6分钟,将所得浆料在无水乙醇中清洗后,通过加入粘结剂并磁场固化取向最终获得高性能各向异性MnBi合金磁体。本工艺简单,易操作,有效地抑制球磨过程中LTP‑MnBi的分解,提高MnBi无稀土永磁合金的磁性能。

Description

一种高性能各向异性无稀土永磁体的制备方法
技术领域
本发明涉及一种高性能各向异性无稀土永磁体的制备方法,尤其是采用表面活性剂辅助低能球磨获得,属于材料科学技术领域。
背景技术
随着科学技术的飞速发展,特别是在汽车、航空航天等领域,各种极端环境条件下,对于各种材料有着更严格的要求。永磁体作为最重要功能的材料,在国民经济和科技领域应用越来越广。目前Nd-Fe-B系稀土永磁体因其优良的磁性能,备受人们的关注。但由于Nd-Fe-B系稀土永磁体的居里温度仅为318 ℃,工作温度大都低于100 ℃。MnBi永磁合金居里温度可达360℃,而且具有正的矫顽力温度系数特性,其内禀矫顽力在280℃仍高达25.8kOe,尤其适用于高温环境下使用,且不含价格昂贵的稀土元素,因此受到人们广泛的研究和关注。目前低能球磨是能有效生产MnBi合金粉末的工艺,机械球磨使得MnBi低温相(LTP-MnBi)晶粒细化,从而增强其内禀矫顽力,但是由于MnBi合金在球磨过程中,其LTP-MnBi会因为机械能过高而发生部分分解,球磨时间越长,分解越严重,这直接影响了其饱和磁化强度,因此在球磨过程中抑制LTP-MnBi相的分解尤为重要。
发明内容
针对现有技术中存在的上述技术问题,本发明提出了一种采用表面活性剂辅助低能球磨制备高性能各向异性MnBi合金磁体的方法。在球磨过程中,MnBi合金与无磁性钢球之间会发生高强度碰撞,所以加入表面活性剂在球磨工艺中有着十分重要的作用。超细粉末在球磨过程中,由于有较大的比表面积和比表面能, 颗粒有相互聚集、自动降低表面能的趋势。根据DLVO理论和空间位阻稳定理论,球磨介质中加入表面活性剂并吸附于颗粒表面,降低了体系的表面能;同时吸附导致颗粒表面带相同电荷,有利于粒子之间的静电排斥阻止团聚发生。表面活性剂的加入,可以改变料浆的流变特性,减小料浆的粘度,使球磨机保持较高的球磨效率,进而降低球磨物料的粒度和提高产品中的细粒级含量。另外,某些高分子长链表面活性剂在粉末表面形成较厚的吸附层也可以起到空间稳定作用,产生一种新的排斥位能——空间斥力位能,防止超细粉末的二次团聚, 提高超细粉末在球磨介质中的分散性。而聚乙烯吡咯烷酮(PVP)是一种非离子型水溶性长链高分子化合物,是由N-乙烯基吡咯烷酮在一定条件下聚合而成,具有许多优良的物理化学性能,极易溶于乙醇,安全无毒;能与多种高分子、低分子物质互溶或复合;具有优良的吸附性、成膜性、粘接性,而且热稳定性良好。PVP 结构中,形成其链以及吡咯烷酮环上的亚甲基是非极性集团—亲油性分子中的内酰胺是强极性集团,具有亲水和极性基团的作用。
本发明的目的在于提供一种表面活性剂辅助低能球磨制备高性能各向异性MnBi合金粉末制备方法, 包括如下步骤:
1)配料:按照名义成分MnxBi100-x(45≤x≤55),采用纯度为99.99%以上 的Mn、Bi合金进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到MnxBi100-x合金铸锭;
3)粗破碎:将步骤2)制得的MnxBi100-x合金铸锭进行制备粗粉,并100目过筛,得到粗粉;
4)球磨配料:将步骤3)制得的MnxBi100-x合金粗粉取适量放入球磨罐,放入无磁性钢球,加入适量乙醇做溶剂,加入粉料质量10-50%的非离子表面活性剂聚乙烯吡咯烷酮(PVP)辅助球磨,球料比为10:1;
5)低能球磨:将步骤4)将配料好的球磨罐放入低能球磨机中,设置球磨时间1-6小时,球磨机转速为256转/分钟,顺时针/逆时针旋转交替时间6分钟,球磨结束后将所得浆料在无水乙醇中清洗;
6)磁场取向成型:在清洗后的磁粉中加入一定量的粘结剂,并在磁场取向固化成型,最终获得高性能各向异性MnBi合金磁体。
进一步的,步骤4)中非离子表面活性剂为聚乙烯吡咯烷酮(PVP),加入量为粉料质量的5-15%;球料比为10:1。
进一步的,步骤5)球磨时间1-6小时,球磨机转速为256转/分钟。
进一步的,步骤6)所述取向磁场大小为3~5T。
与现有的技术相比,本发明具有如下优点:
(1)添加非离子型表面活性剂聚乙烯吡咯烷酮能明显而有效地降低LTP-MnBi相的分解,相对于阳离子型或者阴离子型表面活性剂,其支链上多种官能团能更加有效地保护LTP-MnBi相,从而降低分解;
(2)与一般的高能球磨工艺相比,本发明工艺过程简单,易操作,有效地提高了MnBi的磁性能,且降低了生产成本。
附图说明
图1是实施例1制备的MnBi合金磁体的磁滞回线图;
图2是比较例1制备的MnBi合金磁体的磁滞回线图;
图3是实施例2制备的MnBi合金磁体的磁滞回线图;
图4是实施例3制备的MnBi合金磁体的磁滞回线图。
具体实施方式
下面结合附图对本发明作进一步说明。
实施例1
1)配料:按照名义成分Mn45Bi55,以纯度为99.99%以上的Mn、Bi为原料,进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到Mn45Bi55合金
3)粗破碎:将步骤2)制得的Mn45Bi55合金铸锭进行制备粗粉,并100目过筛,得到粗粉;
4)球磨配料:将步骤3)制得的Mn45Bi55合金粗粉取适量放入球磨罐,放入无磁性钢球,加入适量乙醇做溶剂,加入粉料质量5%的聚乙烯吡咯烷酮(PVP)辅助球磨;
5)低能球磨:将步骤4)将配料好的球磨罐放入低能球磨机中,设置球磨时间1小时,球磨机转速为256转/分钟,顺时针/逆时针旋转交替时间6分钟,将所得浆料在无水乙醇中清洗;
6)磁场取向成型:在清洗后的磁粉中加入一定量的粘结剂,并在3T磁场取向固化成型,最终获得高性能各向异性MnBi合金磁体;
7)采用振动样品磁强计对其磁性能进行测试,其磁滞回线图见图1,测试结果见表1。
比较例1
1)配料:按照名义成分Mn45Bi55,采用纯度为99.99%以上 的Mn、Bi合金进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到Mn45Bi55合金铸锭;
3)制备:将步骤2)制得的Mn45Bi55合金铸锭进行制备粗粉,并通过100目筛子筛选,得到粗粉;
4)球磨配料:将步骤3)制得的Mn45Bi55合金粗粉取适量放入球磨罐,放入无磁性钢球,加入适量乙醇做溶剂,无添加表面活性剂进行辅助球磨,球料比为10:1,装配好球磨罐放入行低能磨机中;
5)低能球磨:将步骤4)将配料好的球磨罐放入低能球磨机中,设置球磨时间1小时,球磨机转速为256转/分钟,顺时针/逆时针旋转交替时间6分钟,将所得浆料在无水乙醇中清洗;
6)磁场取向成型:在清洗后的磁粉中加入一定量的粘结剂,并在3T磁场取向固化成型,最终获得MnBi合金磁体;
7)采用振动样品磁强计对其磁性能进行测试,其磁滞回线图见图1,测试结果见表1。
实施例2
1)配料:按照名义成分Mn50Bi50,以纯度为99.99%以上的Mn、Bi为原料,进行称重配料;2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到Mn50Bi50合金
3)粗破碎:将步骤2)制得的Mn50Bi50合金铸锭进行制备粗粉,并100目过筛,得到粗粉;
4)球磨配料:将步骤3)制得的Mn45Bi55合金粗粉取适量放入球磨罐,放入无磁性钢球,加入适量乙醇做溶剂,加入粉料质量10%的聚乙烯吡咯烷酮(PVP)辅助球磨;
5)低能球磨:将步骤4)将配料好的球磨罐放入低能球磨机中,设置球磨时间3小时,球磨机转速为256转/分钟,顺时针/逆时针旋转交替时间6分钟,将所得浆料在无水乙醇中清洗;
6)磁场取向成型:在清洗后的磁粉中加入一定量的粘结剂,并在4T磁场取向固化成型,最终获得高性能各向异性MnBi合金磁体;
7)采用振动样品磁强计对其磁性能进行测试,其磁滞回线图见图2,测试结果见表1。
实施例3
1)配料:按照名义成分Mn55Bi45,以纯度为99.99%以上的Mn、Bi为原料,进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到Mn55Bi45合金
3)制备粗粉:将步骤2)制得的Mn55Bi45合金铸锭进行制备粗粉,并100目过筛,得到粗粉;
4)装配球磨罐:将步骤3)制得的MnxBi100-x合金粗粉取适量放入球磨罐,放入无磁性钢球,加入适量乙醇做溶剂,加入粉料质量15%的聚乙烯吡咯烷酮(PVP)辅助球磨,球料比为10:1,装配好球磨罐放入行低能磨机中;
5)低能球磨:将步骤4)将装配好的球磨罐放入低能球磨机中,设置球磨时间6小时,球磨机转速为256转/分钟,顺时针/逆时针旋转交替时间6分钟,将所得浆料在无水乙醇中清洗;
6)磁场取向成型:在清洗后的磁粉中加入一定量的粘结剂,并在5T磁场取向固化成型,最终获得高性能各向异性MnBi合金磁体;
7)采用振动样品磁强计对其磁性能进行测试,其磁滞回线图见图3,测试结果见下表:
序号 表面活性剂类别 饱和磁化强度<i>M</i><sub>s</sub>(emu/g) 内禀矫顽力<i>H</i><sub>ic</sub>(kOe)
比较例1 不添加表面活性剂 27.85 12.6
实施例1 添加5% PVP 37.90 13.7
实施例2 添加10% PVP 48.34 11.9
实施例3 添加15% PVP 57.50 14.1

Claims (4)

1.一种高性能各向异性无稀土永磁体的制备方法,其特征在于,包括以下步骤:
1)配料:按照名义成分MnxBi100-x(45≤x≤55),采用纯度为99.99%以上 的Mn、Bi合金进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到MnxBi100-x合金铸锭;
3)粗破碎:将步骤2)制得的MnxBi100-x合金铸锭进行制备粗粉,并100目过筛,得到粗粉;
4)球磨配料:将步骤3)制得的MnxBi100-x合金粗粉取适量放入球磨罐,放入无磁性钢球,加入适量乙醇做溶剂,加入一定质量的非离子表面活性剂;
5)低能球磨:将步骤4)将配料好的球磨罐放入低能球磨机中,设置球磨时间,球磨机转速,顺时针/逆时针旋转交替时间6分钟,球磨结束后将所得浆料在无水乙醇中清洗;
6)磁场取向成型:在清洗后的磁粉中加入一定量的粘结剂,并在磁场取向固化成型,最终获得高性能各向异性MnBi合金磁体。
2.如权利要求1所述的一种高性能各向异性无稀土永磁体的制备方法,其特征在于:
步骤4)中非离子表面活性剂为聚乙烯吡咯烷酮(PVP),加入量为粉料质量的5-15%;球料比为10:1。
3.如权利要求1所述的一种高性能各向异性无稀土永磁体的制备方法,其特征在于:
步骤5)球磨时间1-6小时,球磨机转速为256转/分钟。
4.如权利要求1所述的一种高性能各向异性无稀土永磁体的制备方法,其特征在于:
步骤6)所述取向磁场大小为3~5T。
CN202110436941.XA 2021-04-22 2021-04-22 一种高性能各向异性无稀土永磁体的制备方法 Pending CN113517124A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110436941.XA CN113517124A (zh) 2021-04-22 2021-04-22 一种高性能各向异性无稀土永磁体的制备方法
US17/537,487 US20220344096A1 (en) 2021-04-22 2021-11-30 Method for preparing high-performance anisotropic rare-earth-free permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110436941.XA CN113517124A (zh) 2021-04-22 2021-04-22 一种高性能各向异性无稀土永磁体的制备方法

Publications (1)

Publication Number Publication Date
CN113517124A true CN113517124A (zh) 2021-10-19

Family

ID=78062392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110436941.XA Pending CN113517124A (zh) 2021-04-22 2021-04-22 一种高性能各向异性无稀土永磁体的制备方法

Country Status (2)

Country Link
US (1) US20220344096A1 (zh)
CN (1) CN113517124A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597012A (zh) * 2021-12-14 2022-06-07 杭州永磁集团有限公司 一种高低温相含量的MnBi合金磁性粉末的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646677A (zh) * 2015-01-05 2015-05-27 中国科学院物理研究所 一种磁性粉体的制备方法
CN105702444A (zh) * 2014-12-15 2016-06-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品
CN105689726A (zh) * 2016-01-21 2016-06-22 中国计量学院 一种掺稀土高矫顽力锰铋合金磁粉的制备方法
CN106537525A (zh) * 2015-04-20 2017-03-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体和用于制备其的常压烧结工艺
CN110858508A (zh) * 2018-08-24 2020-03-03 中国科学院宁波材料技术与工程研究所 一种高性能各向异性纳米晶双相磁粉及其制备方法
CN111230127A (zh) * 2020-02-25 2020-06-05 中国计量大学 一种复合磁性粉末的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335120A (ja) * 1992-06-01 1993-12-17 Mitsubishi Materials Corp 異方性ボンド磁石製造用固体樹脂バインダー被覆磁石粉末およびその製造法
GB0821302D0 (en) * 2008-11-21 2008-12-31 Johnson Matthey Plc Method for making an alloy
CN104001928B (zh) * 2014-05-23 2017-03-29 中国科学院宁波材料技术与工程研究所 一种具有高剩磁比的稀土‑钴永磁颗粒的制备方法
CN108480626B (zh) * 2018-03-13 2019-10-18 淮阴工学院 高抗菌性可控降解镁基复合材料骨植入体及其成形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702444A (zh) * 2014-12-15 2016-06-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体、其制备方法和含其的产品
CN104646677A (zh) * 2015-01-05 2015-05-27 中国科学院物理研究所 一种磁性粉体的制备方法
CN106537525A (zh) * 2015-04-20 2017-03-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体和用于制备其的常压烧结工艺
CN105689726A (zh) * 2016-01-21 2016-06-22 中国计量学院 一种掺稀土高矫顽力锰铋合金磁粉的制备方法
CN110858508A (zh) * 2018-08-24 2020-03-03 中国科学院宁波材料技术与工程研究所 一种高性能各向异性纳米晶双相磁粉及其制备方法
CN111230127A (zh) * 2020-02-25 2020-06-05 中国计量大学 一种复合磁性粉末的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597012A (zh) * 2021-12-14 2022-06-07 杭州永磁集团有限公司 一种高低温相含量的MnBi合金磁性粉末的制备方法

Also Published As

Publication number Publication date
US20220344096A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
Strnat The recent development of permanent magnet materials containing rare earth metals
CA1106648A (en) Permanent-magnet alloy
EP0542529B1 (en) Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder
CN111230127B (zh) 一种复合磁性粉末的制备方法
CN100454449C (zh) 退化稀土永磁材料再生高性能永磁体的方法
CN105336488B (zh) 提高Fe3B/Nd2Fe14B系磁性合金内禀矫顽力的制备方法
JP2002038245A (ja) 希土類永久磁石用合金粉末および希土類永久磁石の製造方法
JPH0447024B2 (zh)
US4994109A (en) Method for producing permanent magnet alloy particles for use in producing bonded permanent magnets
CN113517124A (zh) 一种高性能各向异性无稀土永磁体的制备方法
JP3470032B2 (ja) 希土類永久磁石材料およびその製造方法
JPS6393841A (ja) 希土類永久磁石合金用組成物
US20210304933A1 (en) Synthesis of high purity manganese bismuth powder and fabrication of bulk permanent magnet
JPH06338407A (ja) 希土類永久磁石原料
JP2587617B2 (ja) 希土類永久磁石の製造方法
JPS5945745B2 (ja) 永久磁石材料およびその製造方法
CN112466651B (zh) 一种无稀土高性能复合磁体的制备方法
JPH0547533A (ja) 焼結永久磁石およびその製造方法
JP2999648B2 (ja) 希土類磁石並びに希土類磁石合金粉末とその製造方法
JPS62101004A (ja) 希土類−鉄系永久磁石
JPH03162546A (ja) 耐酸化性の優れた永久磁石合金の製造方法
JPH10270224A (ja) 異方性磁石粉末の製造方法および異方性ボンド磁石の製造方法
JPH07211570A (ja) 希土類永久磁石の製造方法
JP3238779B2 (ja) 希土類磁石合金粉末とその製造方法
JP2660917B2 (ja) 希土類磁石の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211019