CN112652433A - 一种各向异性复合磁体及其制备方法 - Google Patents

一种各向异性复合磁体及其制备方法 Download PDF

Info

Publication number
CN112652433A
CN112652433A CN202110043991.1A CN202110043991A CN112652433A CN 112652433 A CN112652433 A CN 112652433A CN 202110043991 A CN202110043991 A CN 202110043991A CN 112652433 A CN112652433 A CN 112652433A
Authority
CN
China
Prior art keywords
magnetic powder
mnbi
smfen
composite magnet
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110043991.1A
Other languages
English (en)
Inventor
泮敏翔
杨杭福
俞能君
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110043991.1A priority Critical patent/CN112652433A/zh
Publication of CN112652433A publication Critical patent/CN112652433A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种各向异性复合磁体及其制备方法,属于磁性材料技术领域。该制备方法包括:按照MnBi合金成分称重配料并通过真空感应熔炼获得合金铸锭,并通过高能球磨机在高纯氩气气氛中制得MnBi基微米级磁粉;采用真空感应熔炼和熔体快淬技术制备SmFe基快淬带,并通过高能球磨机在高纯氮气气氛中将快淬带破碎制得SmFe基纳米级磁粉,随后将磁粉在高纯氮气中进行氮化处理,获得SmFeN纳米晶磁粉;按比例将MnBi基微米级磁粉和SmFeN纳米晶磁粉混合均匀后,采用磁场温压成型技术制备压坯,并通过强磁场辅助氮气保护烧结技术对压坯进行二次氮化烧结处理,最终获得各向异性MnBi/SmFeN复合磁体。本发明工艺过程简单,易操作,有利于各向异性MnBi/SmFeN复合磁体在更多永磁器件中的应用,以满足市场需求。

Description

一种各向异性复合磁体及其制备方法
技术领域
本发明涉及磁性材料技术领域,尤其涉及一种各向异性复合磁体及其制备方法。
背景技术
Mn-Bi永磁合金居里温度可达360 ℃,而且具有正的矫顽力温度系数特性,其内禀矫顽力在280 ℃仍高达25.8 kOe,将尤其适用于高温环境下使用,因此受到人们广泛的研究和关注。但是由于MnBi合金在719 K发生包晶反应时Mn原子很容易从MnBi液相偏析,很难得到纯的单相MnBi,直接影响了其饱和磁化强度。同时,SmFeN系永磁材料自问世以来以其优异的磁性能和良好的温度稳定性受到人们的重视,作为唯一可以在性能上超越NdFeB的永磁体,成为国内外稀土永磁材料的研究热点之一。
为此,本发明创造性的将MnBi基微米级磁粉和SmFeN纳米晶磁粉进行混合,通过不同粒度磁粉的组合和磁场温压成型技术制备压坯,提升了磁体的致密度及晶粒取向的一致性,并配以强磁场辅助氮气保护烧结技术对压坯进行二次氮化烧结处理;同时,在复合磁粉中加入Sm2(Fe1-aTma)17合金,相当于在MnBi合金中有规律地多元复合添加Sm2(Fe1-aTma)17合金组成元素,促使MnBi合金磁性能得到有效提升。
发明内容
针对现有技术中存在的问题,本发明目的在于提供一种各向异性复合磁体及其制备方法。
本发明的各向异性复合磁体及其制备方法,包括如下步骤:
(1)MnBi基磁粉制备:按照原子百分比MnxBi100-x进行称重配料并通过真空感应熔炼获得合金铸锭,其中35≤x≤65,然后通过高能球磨机在高纯氩气气氛中将铸锭破碎至50~150 μm制得MnBi基微米级磁粉,球磨时间为0.5~1.5 h;
(2)SmFeN基磁粉制备:采用真空感应熔炼和熔体快淬技术制备SmFe基快淬带,辊速为10~30 m/s;然后通过高能球磨机在高纯氮气气氛中将快淬带破碎至50~500 nm制得SmFe基纳米级磁粉,球磨时间为1~5 h;随后将磁粉在高纯氮气中进行氮化处理,获得SmFeN纳米晶磁粉,氮化温度为300~600℃,氮化时间为4~8 h;
(3)按比例将MnBi基微米级磁粉和SmFeN纳米晶磁粉混合均匀后,采用磁场温压成型技术制备压坯,压制温度为100~300 ℃,压力为200~400 MPa,磁场强度为2~4 T;
(4)采用强磁场辅助氮气保护烧结技术对压坯进行二次氮化烧结处理,磁场强度为5~15 T,烧结温度为400~600 ℃,烧结时间为0.5~5 h,最终获得各向异性MnBi/SmFeN复合磁体。
步骤(2)中所述的SmFe基磁粉的化学式为Sm2(Fe1-aTma)17,式中0.02≤a≤0.1,其余TM,TM为Ga、Ti、Co、Mn,Nb,Cr中的一种或几种。
步骤(3)中所述的SmFeN纳米晶磁粉占总重量比例为1~10 wt.%。
与现有的技术相比,本发明具有如下优点和有益效果:本发明创造性的将MnBi基微米级磁粉和SmFeN纳米晶磁粉进行混合,通过不同粒度磁粉的组合和磁场温压成型技术制备压坯,一定程度上使SmFeN纳米晶磁粉可以有效地包覆在MnBi基微米级磁粉的表面,提升了磁体的致密度及晶粒取向的一致性;同时,本发明通过强磁场辅助氮气保护烧结技术对压坯进行二次氮化烧结处理,并在复合磁粉中加入Sm2(Fe1-aTma)17合金,相当于在MnBi合金中有规律地多元复合添加Sm2(Fe1-aTma)17合金组成元素,促使MnBi合金磁性能得到有效提升,最终获得了高性能的各向异性复合磁体。
具体实施方式
下面将结合实施例对本发明做进一步的详细说明,但本发明并不仅仅局限于以下实施例。
实施例1
(1)MnBi基磁粉制备:按照原子百分比Mn40Bi60进行称重配料并通过真空感应熔炼获得合金铸锭,然后通过高能球磨机在高纯氩气气氛中将铸锭破碎至50 μm制得Mn40Bi60基微米级磁粉,球磨时间为1.5 h;
(2)SmFeN基磁粉制备:采用真空感应熔炼和熔体快淬技术制备Sm2(Fe0.9Ga0.05Co0.05)17快淬带,辊速为30 m/s;然后通过高能球磨机在高纯氮气气氛中将快淬带破碎至50 nm制得SmFe基纳米级磁粉,球磨时间为5 h;随后将磁粉在高纯氮气中进行氮化处理,获得SmFeN纳米晶磁粉,氮化温度为600℃,氮化时间为5 h;
(3)按比例将MnBi基微米级磁粉和SmFeN纳米晶磁粉混合均匀后,其中SmFeN纳米晶磁粉占总重量比例为9 wt.%,采用磁场温压成型技术制备压坯,压制温度为300 ℃,压力为400 MPa,磁场强度为4 T;
(4)采用强磁场辅助氮气保护烧结技术对压坯进行二次氮化烧结处理,磁场强度为15 T,烧结温度为600 ℃,烧结时间为5 h,最终获得各向异性MnBi/SmFeN复合磁体。
采用本发明制备的各向异性复合磁体经磁性能和密度测试,矫顽力为17.88 kOe,密度为7.89 g/cm3
实施例2
(1)MnBi基磁粉制备:按照原子百分比Mn50Bi50进行称重配料并通过真空感应熔炼获得合金铸锭,然后通过高能球磨机在高纯氩气气氛中将铸锭破碎至100 μm制得Mn50Bi50基微米级磁粉,球磨时间为1.0 h;
(2)SmFeN基磁粉制备:采用真空感应熔炼和熔体快淬技术制备Sm2(Fe0.92Ti0.04Nb0.04)17快淬带,辊速为20 m/s;然后通过高能球磨机在高纯氮气气氛中将快淬带破碎至200 nm制得SmFe基纳米级磁粉,球磨时间为3 h;随后将磁粉在高纯氮气中进行氮化处理,获得SmFeN纳米晶磁粉,氮化温度为500℃,氮化时间为6 h;
(3)按比例将MnBi基微米级磁粉和SmFeN纳米晶磁粉混合均匀后,其中SmFeN纳米晶磁粉占总重量比例为6 wt.%,采用磁场温压成型技术制备压坯,压制温度为200 ℃,压力为300 MPa,磁场强度为3 T;
(4)采用强磁场辅助氮气保护烧结技术对压坯进行二次氮化烧结处理,磁场强度为10 T,烧结温度为500 ℃,烧结时间为3 h,最终获得各向异性MnBi/SmFeN复合磁体。
采用本发明制备的各向异性复合磁体经磁性能和密度测试,矫顽力为16.79 kOe,密度为7.81 g/cm3
实施例3
(1)MnBi基磁粉制备:按照原子百分比Mn60Bi40进行称重配料并通过真空感应熔炼获得合金铸锭,然后通过高能球磨机在高纯氩气气氛中将铸锭破碎至150 μm制得Mn60Bi40基微米级磁粉,球磨时间为0.5 h;
(2)SmFeN基磁粉制备:采用真空感应熔炼和熔体快淬技术制备Sm2(Fe0.94Cr0.06)17快淬带,辊速为10 m/s;然后通过高能球磨机在高纯氮气气氛中将快淬带破碎至400 nm制得SmFe基纳米级磁粉,球磨时间为1 h;随后将磁粉在高纯氮气中进行氮化处理,获得SmFeN纳米晶磁粉,氮化温度为300℃,氮化时间为8 h;
(3)按比例将MnBi基微米级磁粉和SmFeN纳米晶磁粉混合均匀后,其中SmFeN纳米晶磁粉占总重量比例为3 wt.%,采用磁场温压成型技术制备压坯,压制温度为100 ℃,压力为200 MPa,磁场强度为2 T;
(4)采用强磁场辅助氮气保护烧结技术对压坯进行二次氮化烧结处理,磁场强度为5 T,烧结温度为400 ℃,烧结时间为1 h,最终获得各向异性MnBi/SmFeN复合磁体。
采用本发明制备的各向异性复合磁体经磁性能和密度测试,矫顽力为15.95 kOe,密度为7.78 g/cm3

Claims (3)

1.一种各向异性复合磁体及其制备方法,其特征在于包括如下步骤:
(1)MnBi基磁粉制备:按照原子百分比MnxBi100-x进行称重配料并通过真空感应熔炼获得合金铸锭,其中35≤x≤65,然后通过高能球磨机在高纯氩气气氛中将铸锭破碎至50~150μm制得MnBi基微米级磁粉,球磨时间为0.5~1.5 h;
(2)SmFeN基磁粉制备:采用真空感应熔炼和熔体快淬技术制备SmFe基快淬带,辊速为10~30 m/s;然后通过高能球磨机在高纯氮气气氛中将快淬带破碎至50~500 nm制得SmFe基纳米级磁粉,球磨时间为1~5 h;随后将磁粉在高纯氮气中进行氮化处理,获得SmFeN纳米晶磁粉,氮化温度为300~600℃,氮化时间为4~8 h;
(3)按比例将MnBi基微米级磁粉和SmFeN纳米晶磁粉混合均匀后,采用磁场温压成型技术制备压坯,压制温度为100~300 ℃,压力为200~400 MPa,磁场强度为2~4 T;
(4)采用强磁场辅助氮气保护烧结技术对压坯进行二次氮化烧结处理,磁场强度为5~15 T,烧结温度为400~600 ℃,烧结时间为0.5~5 h,最终获得各向异性MnBi/SmFeN复合磁体。
2.根据权利要求1 所述的一种各向异性复合磁体及其制备方法,其特征在于:步骤(2)中所述的SmFe基磁粉的化学式为Sm2(Fe1-aTma)17,式中0.02≤a≤0.1,其余TM,TM为Ga、Ti、Co、Mn,Nb,Cr中的一种或几种。
3.根据权利要求1 所述的一种各向异性复合磁体及其制备方法,其特征在于:步骤(3)中所述的SmFeN纳米晶磁粉占总重量比例为1~10 wt.%。
CN202110043991.1A 2021-01-13 2021-01-13 一种各向异性复合磁体及其制备方法 Pending CN112652433A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110043991.1A CN112652433A (zh) 2021-01-13 2021-01-13 一种各向异性复合磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110043991.1A CN112652433A (zh) 2021-01-13 2021-01-13 一种各向异性复合磁体及其制备方法

Publications (1)

Publication Number Publication Date
CN112652433A true CN112652433A (zh) 2021-04-13

Family

ID=75368324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110043991.1A Pending CN112652433A (zh) 2021-01-13 2021-01-13 一种各向异性复合磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN112652433A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113421762A (zh) * 2021-07-02 2021-09-21 泮敏翔 一种高性能钐铁氮磁体的制备方法
CN113421763A (zh) * 2021-07-02 2021-09-21 泮敏翔 一种高性能纳米晶磁体的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255436A (ja) * 2007-04-06 2008-10-23 Nec Tokin Corp 永久磁石およびその製造方法
CN102737801A (zh) * 2012-07-11 2012-10-17 北京科技大学 一种Sm-Fe-N各向异性磁粉的制备方法
US20140072470A1 (en) * 2012-09-10 2014-03-13 Advanced Materials Corporation Consolidation of exchange-coupled magnets using equal channel angle extrusion
US20160168660A1 (en) * 2014-12-15 2016-06-16 Lg Electronics Inc. ANISOTROPIC COMPLEX SINTERED MAGNET COMPRISING MnBi WHICH HAS IMPROVED MAGNETIC PROPERTIES AND METHOD OF PREPARING THE SAME
CN106158203A (zh) * 2016-05-20 2016-11-23 浙江凯文磁业有限公司 一种高矫顽力高稳定性钕铁硼磁体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255436A (ja) * 2007-04-06 2008-10-23 Nec Tokin Corp 永久磁石およびその製造方法
CN102737801A (zh) * 2012-07-11 2012-10-17 北京科技大学 一种Sm-Fe-N各向异性磁粉的制备方法
US20140072470A1 (en) * 2012-09-10 2014-03-13 Advanced Materials Corporation Consolidation of exchange-coupled magnets using equal channel angle extrusion
US20160168660A1 (en) * 2014-12-15 2016-06-16 Lg Electronics Inc. ANISOTROPIC COMPLEX SINTERED MAGNET COMPRISING MnBi WHICH HAS IMPROVED MAGNETIC PROPERTIES AND METHOD OF PREPARING THE SAME
CN106158203A (zh) * 2016-05-20 2016-11-23 浙江凯文磁业有限公司 一种高矫顽力高稳定性钕铁硼磁体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIWOONG MOON, ETC..: "Magnetic properties of MnBi/Sm2Fe17N3 hybrid sintered magnets using hot compaction process", PROCEEDINGS OF THE KOREAN MAGNESTICS SOCIETY CONFERENCE, pages 6 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113421762A (zh) * 2021-07-02 2021-09-21 泮敏翔 一种高性能钐铁氮磁体的制备方法
CN113421763A (zh) * 2021-07-02 2021-09-21 泮敏翔 一种高性能纳米晶磁体的制备方法
CN113421762B (zh) * 2021-07-02 2022-12-16 中国计量大学 一种高性能钐铁氮磁体的制备方法

Similar Documents

Publication Publication Date Title
US11195645B2 (en) Ce-containing sintered rare-earth permanent magnet with having high toughness and high coercivity, and preparation method therefor
US4601875A (en) Process for producing magnetic materials
EP3827916A1 (en) A manufacturing method of sintered nd-fe-b permanent magnet
CN106158203B (zh) 一种高矫顽力高稳定性钕铁硼磁体的制备方法
Coey et al. Sm-Fe-N revisited; remanence enhancement in melt-spun Nitroquench material
CN106710768A (zh) 一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法
CN107134360A (zh) 一种晶界改性制备高性能y基稀土永磁体的方法
CN112652433A (zh) 一种各向异性复合磁体及其制备方法
CN102650004A (zh) 一种钐钴系烧结材料的制备方法
JPWO2020015389A5 (zh)
CN112086255A (zh) 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
JPH01219143A (ja) 焼結永久磁石材料とその製造方法
CN110033914B (zh) 提高烧结钕铁硼磁体的矫顽力的方法
WO2023280259A1 (zh) 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途
CN116612956A (zh) 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用
CN113539664B (zh) 一种Sm基各向异性复合磁体的制备方法
EP4307325A1 (en) Main and auxiliary alloy-based neodymium-iron-boron magnet material and preparation method therefor
CN113921218B (zh) 一种高剩磁钕铁硼磁体及其制备方法和应用
CN114038641A (zh) 一种含银的混合稀土铁硼烧结永磁体及其制备方法
CN113782291B (zh) 由多个永磁主相功能基元组装的复合磁体及其制备方法
CN112466651B (zh) 一种无稀土高性能复合磁体的制备方法
CN113782290B (zh) 一种高Ce含量双主相高磁能积磁体及其制备方法
CN105448513B (zh) 一种多相复合永磁体的制备方法
CN106298131B (zh) 一种热变形法制备掺杂PrCu合金的PrCo5永磁体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination