CN114038641A - 一种含银的混合稀土铁硼烧结永磁体及其制备方法 - Google Patents

一种含银的混合稀土铁硼烧结永磁体及其制备方法 Download PDF

Info

Publication number
CN114038641A
CN114038641A CN202111360675.3A CN202111360675A CN114038641A CN 114038641 A CN114038641 A CN 114038641A CN 202111360675 A CN202111360675 A CN 202111360675A CN 114038641 A CN114038641 A CN 114038641A
Authority
CN
China
Prior art keywords
permanent magnet
rare earth
alloy
powder
main phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111360675.3A
Other languages
English (en)
Inventor
刘飞
高中
康俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Yucheng New Material Technology Co ltd
Original Assignee
Shanxi Yucheng New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Yucheng New Material Technology Co ltd filed Critical Shanxi Yucheng New Material Technology Co ltd
Priority to CN202111360675.3A priority Critical patent/CN114038641A/zh
Publication of CN114038641A publication Critical patent/CN114038641A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明提供了一种含银的混合稀土铁硼烧结永磁体及其制备方法,涉及烧结永磁体技术领域。本发明首先对MM‑Fe‑B速凝片在氢破碎工艺吸氢脱氢过程中进行扩散RE‑Ag处理,在MM‑Fe‑B粉末颗粒表面包覆一层RE‑Ag化合物,利用Pr2Fe14B、Nd2Fe14B等较高的內禀性能提高磁体磁性能,且脱氢过程中较高的温度以及机械搅动可以使RE‑Ag粉末均匀分散,改善了RE‑Ag粉末分散性差,易形成团聚大颗粒的缺陷,为后期烧结工艺时RE‑Ag粉末发挥良好的液相烧结作用,制备优异磁性能的混合稀土磁体奠定基础,避免了双主相晶粒互扩散破坏磁体元素非均质的特性,获得满足市场需求的磁体,实现了稀土资源的综合利用。

Description

一种含银的混合稀土铁硼烧结永磁体及其制备方法
技术领域
本发明属于烧结永磁体技术领域,具体涉及一种含银的混合稀土铁硼烧结永磁体及其制备方法。
背景技术
稀土永磁材料在国家安全、信息、能源、环保等领域发挥着不可替代的作用,中低档钕铁硼永磁体在传统应用(扬声器、磁选、永磁电机、VCM、MRI等)市场渗透率达50%以上,需求处于稳定增长期,年增长率在5%-10%。包头白云鄂博矿稀土含量居世界首位,该矿是世界罕见的多金属共伴生矿床,矿石中镨、钕、镧、铈以共伴生形态与铁共存,其混合稀土(MM=Misch-metal)中各稀土元素的含量为:La=26~29wt%,Ce=49~53wt%,Pr=4~6wt%,Nd=15~17wt%。传统的稀土永磁体消耗了大量的低丰度、资源紧缺镨、钕、钐、镝、铽稀土元素,高丰度镧、铈元素未得到有效利用而大量积压,造成稀土资源的利用不平衡。资源节约型和环境友好型社会的发展要求对低丰度稀土元素节约利用,对高丰度La、Ce元素能高效平衡利用,降低稀土产业对资源和环境产生的负面影响。
2.混合稀土永磁材料的性能虽然低于传统镨钕铁硼材料,但其造价低廉,有利于稀土资源的平衡利用和减少磁体生产过程所带来的环境污染,是一类具有商业应用价值的永磁材料。近年来,MM部分替代Pr Nd生产低成本钕铁硼磁体的工作取得的成果表明,多主相稀土铁硼合金可以保持较高的磁性能,从而为低成本磁体的生产带来了希望。
3.当混合稀土添加量达到40%以上时,磁体的原材料成本大幅下降,但磁体的磁性能、耐蚀性和热稳定性也随着大幅降低。但如果合理改进制备工艺,例如采用双主相法,晶界添加低熔点合金的方法,也可在混合稀土添加达到40%,甚至50%时,磁体仍保持良好的性能,具有一定的使用价值。
发明内容
有鉴于此,本发明的目的在于提供一种含银的混合稀土铁硼烧结永磁体及其制备方法,在烧结阶段免于热处理,从而获得综合磁性能较高的含银的烧结混合稀土铁硼永磁体,降低了永磁体的原材料成本以及制造能耗,使稀土资源得到综合利用。
一种含银的混合稀土铁硼烧结永磁体,所述永磁体的制备原料为双主相,其中主相A的名义成分Nda(Fe100-y,My)100-a-bBb(wt.%),主相B的名义成分MMa(Fe100-y,My)100-a-bBb(wt.%),其中:0.5≤y≤5,29≤a≤33,0.9≤b≤1.0;为提高磁体性能,在主相B合金粉末中添加改性合金RE100-cAgc
MM为混合稀土,包括:La、Ce、Pr和Nd;
M选自Ga、V、Cr、Mo、Zr、Ta、Au、Pb、Si、Ti、Mn、Ni、Sn、Co、Cu、Al和Nb中的一种或几种金属元素;
所述改性合金RE100-cAgc,RE为Nd、Pr、Dy、Ho、Gd、Tb中的一种或多种。
优选的,所述MM中各稀土元素的质量百分含量为:La=26~29wt%,Ce=49~53wt%,Pr=4~6wt%,Nd=15~17wt%。
优选的,所述主相A为Nd2Fe14B相,主相B为MM2Fe14B相。
优选的,所述主相A和主相B的质量比例为9:1~5:5。
优选的,所述RE1-cAgc与主相B的质量比为α,0<α≤3。
优选的,所述RE1-cAgc包括Nd50Ag50、Dy78Ag22或Tb80Ag20
本发明还提供了上述永磁体的制备方法,包括以下步骤:(1)根据主相A和主相B的名义成分将合金混合,真空下烘料完毕后充入氩气进行熔炼,然后浇到旋转的水冷铜辊上,铜辊转速1-4m/s,浇注温度为1340℃~1440℃,分别得到A、B两种成分的速凝薄带;
(2)将RE1-cAgc放入熔体快淬炉石英管中,真空下充入氩气,烘料后进行熔炼,然后浇到旋转的水冷铜辊上,铜辊转速20-40m/s,得到RE1-cAgc快淬薄带;
(3)将步骤(1)得到的B速凝薄带混入质量比α的RE1-cAgc快淬薄带,在氮气保护下混合0.5小时后,混合均匀后将薄带置于氢破碎旋转热处理炉内进行氢破碎,破碎成粗粉后再以1-10r/min的转速和500-700℃下进行脱氢及扩散热处理3-6h,得到扩散粗粉;
(4)将第一步得到的A速凝薄带,进行氢破碎,脱氢后得到粗破碎的粗粉;
(5)步骤(3)和(4)中制得的两种氢破碎粉末按质量比例为1:9~5:5混合1-3小时后,采用气流磨无氧工艺将混合粉末制成细粉;
(6)将步骤(5)所得的细粉在3T的磁场压机中取向成型,再进行冷等静压制成生坯;
(7)将步骤(6)所得的生坯置于真空度≤1×10-2Pa的烧结炉中进行烧结获得烧结磁体,烧结温度为900~1060℃,保温时间2~5h。
优选的,步骤(1)所述速凝薄带的厚度均为150-350μm。
优选的,步骤(2)所述RE1-cAgc快淬薄带的厚度为30-60μm。
优选的,步骤(5)所述细粉的平均粒度约2.8um、粒度分布为d[9,0]/d[1,0]<3.5。
有益效果:本发明所述含银的混合稀土铁硼烧结永磁体的制备方法,包括原料准备、速凝铸片、熔体快淬、氢碎、气流磨、取向成型、等静压、烧结工序。本发明通过调整配方,采用双主相法按比例添加NdFeB和MMFeB两种磁性粉末,同时在MMFeB速凝片氢碎过程中添加一定含量的RE1-cAgc纳米晶薄带,通过扩散法改善混合稀土磁体铸片的晶界成分及导热性,并在烧结阶段免于热处理,从而获得综合磁性能较高的含银的烧结混合稀土铁硼永磁体,降低了永磁体的原材料成本以及制造能耗,使稀土资源得到综合利用。
本发明首先对MM-Fe-B速凝片在氢破碎工艺吸氢脱氢过程中进行扩散RE-Ag处理,在MM-Fe-B粉末颗粒表面包覆一层RE-Ag化合物,利用Pr2Fe14B、Nd2Fe14B等较高的內禀性能提高磁体磁性能,且脱氢过程中较高的温度以及机械搅动可以使RE-Ag粉末均匀分散,改善了RE-Ag粉末分散性差,易形成团聚大颗粒的缺陷,为后期烧结工艺时RE-Ag粉末发挥良好的液相烧结作用,制备优异磁性能的混合稀土磁体奠定基础。高温烧结后,不采取传统二级热处理回火工艺,避免了双主相晶粒互扩散破坏磁体元素非均质的特性,获得满足市场需求的磁体,大幅降低了磁体生产的成本,实现了稀土资源的综合利用。
说明书附图
图1为。
具体实施方式
一种含银的混合稀土铁硼烧结永磁体及其制备方法,主相A为Nd2Fe14B相,主相B为MM2Fe14B相。主相B在氢破制粗粉过程中经旋转加热扩散添加改性合金薄带RE1-cAgc处理,再与主相A氢破碎粗粉混合均匀,主相A和主相B(添加RE1-cAgc合金后)的质量比例为9:1~5:5,两者之和为10;
主相A的名义成分Nda(Fe100-y,My)100-a-bBb(wt.%),主相B的名义成分MMa(Fe100-y,My)100-a-bBb(wt.%),其中:0.5≤y≤5,29≤a≤33,0.9≤b≤1.0,MM(Misch-metal,混合稀土)中各稀土元素的含量为:La=26~29wt%,Ce=49~53wt%,Pr=4~6wt%,Nd=15~17wt%。M为Ga、V、Cr、Mo、Zr、Ta、Au、Pb、Si、Ti、Mn、Ni、Sn、Co、Cu、Al、Nb中的一种或几种金属元素。
RE1-cAgc改性合金中RE为Nd、Pr、Dy、Ho、Gd、Tb中的一种或多种。具体可以为Nd50Ag50、Dy78Ag22、Tb80Ag20等,改性粉末质量百分比0<α≤3。若添加太多改性粉末,会降低磁体主相比例,导致剩磁下降。
步骤1:根据主相A合金的名义成分为Nda(Fe100-y,My)100-a-bBb(wt.%)、主相B合金的名义成分MMa(Fe100-y,My)100-a-bBb(wt.%),选择金属Nd、混合稀土金属MM、其他金属M、铁、铁硼合金放入坩埚中,真空下烘料完毕后充入氩气进行熔炼,然后浇到旋转的水冷铜辊上,铜辊转速1-4m/s,浇注温度为1340℃~1440℃,分别得到厚度为150-350μm的A、B两种合金成分的速凝铸片;
步骤2:根据添加改性合金的名义成分RE1-cAgc,选择稀土金属RE、金属Ag放入熔体快淬炉石英管中,真空下充入氩气,烘料后进行熔炼,然后浇到旋转的水冷铜辊上,铜辊转速20-40m/s,分别得到厚度为30-60μm的RE1-cAgc快淬薄带;
步骤3:将第一步得到的B合金速凝铸片混入质量比α的RE1-cAgc快淬薄带,在氮气保护下混合0.5小时后,混合均匀后将薄带置于氢破碎旋转热处理炉内进行氢破碎,破碎成粗粉后再以一定转速(1-10r/min)和500-700℃下进行脱氢及扩散热处理3-6h,得到扩散粗粉;旋转可确保粉末混合均匀,加热能促进添加合金RE1-cAgc的扩散及防止RE1-cAgc纳米晶粉末的团聚。
步骤4:将第一步得到的A速凝薄带,进行氢破碎,脱氢后得到粗破碎的粗粉;
步骤5:步骤3和4中制得的两种氢破碎粉末按质量比例为1:9~5:5混合1-3小时后,采用气流磨无氧工艺将混合粉末制成平均粒度约2.8um、粒度分布为d[9,0]/d[1,0]<3.5的细粉;
步骤6:将步骤5所得的细粉在3T的磁场压机中取向成型,再进行冷等静压制成生坯;
步骤7:将步骤6所得的生坯置于真空度≤1×10-2Pa的烧结炉中进行烧结获得烧结磁体,烧结温度为900~1060℃,保温时间2~5h。
下面结合实施例对本发明提供的一种含银的混合稀土铁硼烧结永磁体及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
一种烧结混合稀土铁硼永磁体,其质量百分比化学式通式为:(MM19.3Nd80.7)30.6[Fe96.6(Co17Ag13Cu9Ga17Al44)3.4]68.4B1,且Ag占M含量的13%。
上述含银的烧结混合稀土铁硼永磁体的制备方法按如下步骤进行:
(1)原料准备:分别按合金A、合金B和改性合金C的名义成分Nd30.5[Fe97(Co20Cu10Ga20Al50)3]68.5B1(wt.%)、MM30.5[Fe97(Co20Cu10Ga20Al50)3]68.5B1(wt.%)和Nd50Ag50配制原料。
(2)速凝铸片:在充氩压力≤3×104Pa的速凝铸片炉中进行铸片,合金A的浇铸温度为1420℃,合金B的浇铸温度为1380℃,速凝铜辊转速4m/s,获得厚度为0.15-0.3mm的铸片。
(3)快淬薄带:在充氩压力≤2×104Pa的熔体快淬炉中进行甩带,铜辊转速22m/s,获得厚度为30-60μm的薄带。
(4)氢碎:将步骤(2)中得到的B铸片混入质量比3%的Nd50Ag50快淬薄带,在氮气保护下混合0.5小时后,混合均匀后将薄带置于氢破碎旋转热处理炉内进行氢破碎,破碎成粗粉后再以转速5r/min和600℃下进行脱氢及扩散热处理5h,得到扩散粗粉。采用氢碎工艺将步骤(2)中制得的A铸片制备成粗粉。
(5)气流磨:采用气流磨无氧工艺将步骤(4)中制得的粗粉A和B按8:2的比例混粉后制成平均粒度约2.8um、粒度分布为d[9,0]/d[1,0]=3.5的细粉。
(6)取向成型:将步骤(5)所得的细粉在3T的磁场压机中取向成型,再进行冷等静压制成生坯,其密度为4.2g/cm3
(7)烧结:将步骤(6)所得的生坯置于真空度≤5×10-3Pa的烧结炉中进行烧结获得烧结磁体,烧结温度为1020℃,保温时间3h。充氩冷却至60℃以下,取出烧结磁体,获得N45高性能MM磁体。
将上述所得的混合稀土铁硼永磁体在20℃进行
Figure BDA0003358886870000061
圆柱测试,测量剩磁(Br)、内禀矫顽力(Hcj)、磁能积((BH)max)、方形度(Hk/Hcj),得到如表1所示数据:
表1混合稀土铁硼永磁体性质
Figure BDA0003358886870000062
实施例2
一种烧结混合稀土铁硼永磁体,其质量百分比化学式通式为:(MM19.3Nd80.7)30.6[Fe96.6(Co17Ag13Cu9Ga17 Zr17Al27)3.4]68.4B1,且Ag占M含量的13%。
上述烧结含银的混合稀土铁硼永磁体的制备方法与实施例1完全相同。获得的永磁体在20℃进行
Figure BDA0003358886870000063
圆柱测试,测量剩磁(Br)、内禀矫顽力(Hcj)、磁能积((BH)max)、方形度(Hk/Hcj),得到如表2所示数据:
表2烧结含银的混合稀土铁硼永磁体的性质
Figure BDA0003358886870000071
实施例3
一种烧结混合稀土铁硼永磁体,其质量百分比化学式通式为:(MM19.3Nd80.7)30.6[Fe96.6(Co17Ag13Cu9Ga17 Zr17Nb9Al18)3.4]68.4B1,且Ag占M含量的13%。
上述烧结含银的混合稀土铁硼永磁体的制备方法与实施例1完全相同。获得的永磁体在20℃进行
Figure BDA0003358886870000072
圆柱测试,测量剩磁(Br)、内禀矫顽力(Hcj)、磁能积((BH)max)、方形度(Hk/Hcj),得到表3所示数据:
表3烧结含银的混合稀土铁硼永磁体的性质
Figure BDA0003358886870000073
实施例4
一种烧结混合稀土铁硼永磁体,其质量百分比化学式通式为:(MM19.4Nd80.6)30.6[Fe96.6(Co17Ag15Cu8Ga17 Al43)3.4]68.4B1,且Ag占M含量的15%。
上述烧结含银的混合稀土铁硼永磁体的制备方法与实施例1除合金C名义成分不同外,其他制备过程完全相同。本实施例中合金C的名义成分为Nd40Ag60。获得的永磁体在20℃进行
Figure BDA0003358886870000081
圆柱测试,测量剩磁(Br)、内禀矫顽力(Hcj)、磁能积((BH)max)、方形度(Hk/Hcj),得到表4所示数据:
表4烧结含银的混合稀土铁硼永磁体的性质
Figure BDA0003358886870000082
实施例5
一种烧结混合稀土铁硼永磁体,其质量百分比化学式通式为:(MM19.3Nd80.7)30.7[Fe96.7(Co18Ag10Cu9Ga18 Al45)3.3]68.3B1,且Ag占M含量的10%。
上述烧结含银的混合稀土铁硼永磁体的制备方法与实施例1除合金C名义成分不同外,其他制备过程完全相同。本实施例中合金C的名义成分为Nd60Ag40。获得的永磁体在20℃进行
Figure BDA0003358886870000083
圆柱测试,测量剩磁(Br)、内禀矫顽力(Hcj)、磁能积((BH)max)、方形度(Hk/Hcj),得到表5所示数据:
表5烧结含银的混合稀土铁硼永磁体的性质
Figure BDA0003358886870000084
Figure BDA0003358886870000091
实施例6
一种烧结混合稀土铁硼永磁体,其质量百分比化学式通式为:(MM19.4Nd80.6)30.4[Fe96.3(Co16Ag20Cu8Ga16 Al40)3.7]68.6B1,且Ag占M含量的20%。
上述烧结含银的混合稀土铁硼永磁体的制备方法与实施例1除合金C名义成分不同外,其他制备过程完全相同。本实施例中合金C的名义成分为Nd20Ag80。获得的永磁体在20℃进行
Figure BDA0003358886870000092
圆柱测试,测量剩磁(Br)、内禀矫顽力(Hcj)、磁能积((BH)max)、方形度(Hk/Hcj),得到表6所示数据:
表6烧结含银的混合稀土铁硼永磁体的性质
Figure BDA0003358886870000093
对比例1
一种烧结混合稀土铁硼永磁体,其质量百分比化学式通式为:(MM20Nd80)30.5[Fe97(Co20Cu10Ga20 Al50)3]68.5B1,且成分中不含Ag。
上述烧结混合稀土铁硼永磁体的制备方法与实施例1的区别在于未添加改性合金C。获得的永磁体在20℃进行
Figure BDA0003358886870000094
圆柱测试,测量剩磁(Br)、内禀矫顽力(Hcj)、磁能积((BH)max)、方形度(Hk/Hcj),得到如表7所示数据:
表7烧结混合稀土铁硼永磁体的性质
Figure BDA0003358886870000095
Figure BDA0003358886870000101
对比例2
一种烧结混合稀土铁硼永磁体,其质量百分比化学式通式为:(MM19.3Nd80.7)30.6[Fe96.6(Co17Ag13Cu9Ga17Al44)3.4]68.4B1,且Ag占M含量的13%。上述烧结混合稀土铁硼永磁体的制备方法与实施例1唯一的区别在于步骤(4)中未添加步骤(3)所得的改性快淬带C,而是在步骤(5)按与实例1相同的比例添加改性快淬带后进行气流磨处理。所获得的永磁体在20℃进行
Figure BDA0003358886870000102
圆柱测试,测量剩磁(Br)、内禀矫顽力(Hcj)、磁能积((BH)max)、方形度(Hk/Hcj),得到如表8所示数据:
表8烧结混合稀土铁硼永磁体的性质
Figure BDA0003358886870000103
对比例3
一种烧结混合稀土铁硼永磁体,其质量百分比化学式通式为:(MM19.3Nd80.7)30.6[Fe96.6(Co17Ag13Cu9Ga17Al44)3.4]68.4B1,且Ag占M含量的13%。
上述烧结混合稀土铁硼永磁体的制备方法与实施例1唯一的区别在于步骤(7)后增加了步骤(8)。(8)热处理:将步骤(7)所得的烧结磁体进行一级回火和二级回火热处理,最终得到烧结含银的混合稀土铁硼永磁体。一级回火温度为880℃,一级回火时间为3h;二级回火温度为480℃,二级回火时间为3h。充氩冷却至60℃以下,取出烧结磁体。
所获得的永磁体在20℃进行
Figure BDA0003358886870000111
圆柱测试,测量剩磁(Br)、内禀矫顽力(Hcj)、磁能积((BH)max)、方形度(Hk/Hcj),得到表9所示数据:
表9烧结混合稀土铁硼永磁体性质
Figure BDA0003358886870000112
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种含银的混合稀土铁硼烧结永磁体,其特征在于,所述永磁体的制备原料为双主相合金,其中主相A合金的名义成分Nda(Fe100-y,My)100-a-bBb(wt.%),主相B合金的名义成分MMa(Fe100-y,My)100-a-bBb(wt.%),其中:0.5≤y≤5,29≤a≤33,0.9≤b≤1.0;为提高磁体性能,在主相B合金粉末中添加改性合金RE100-cAgc
MM为混合稀土,包括:La、Ce、Pr和Nd;
M选自Ga、V、Cr、Mo、Zr、Ta、Au、Pb、Si、Ti、Mn、Ni、Sn、Co、Cu、Al和Nb中的一种或几种金属元素;
所述改性合金RE100-cAgc,RE为Nd、Pr、Dy、Ho、Gd、Tb中的一种或多种。
2.根据权利要求1所述永磁体,其特征在于,所述MM中各稀土元素的质量百分含量为:La=26~29wt%,Ce=49~53wt%,Pr=4~6wt%,Nd=15~17wt%。
3.根据权利要求1所述永磁体,其特征在于,所述主相A为Nd2Fe14B相,主相B为MM2Fe14B相。
4.根据权利要求1或3所述永磁体,其特征在于,所述主相A和主相B的质量比例为9:1~5:5。
5.根据权利要求1所述永磁体,其特征在于,所述RE1-cAgc与主相B的质量比为α,0<α≤3。
6.根据权利要求1或5所述永磁体,其特征在于,所述RE1-cAgc包括Nd50Ag50、Dy78Ag22或Tb80Ag20
7.权利要求1~6任一项所述永磁体的制备方法,其特征在于,包括以下步骤:(1)根据主相A和主相B的名义成分将合金混合,真空下烘料完毕后充入氩气进行熔炼,然后浇到旋转的水冷铜辊上,铜辊转速1-4m/s,浇注温度为1340℃~1440℃,分别得到A、B两种成分的速凝薄带;
(2)将RE1-cAgc放入熔体快淬炉石英管中,真空下充入氩气,烘料后进行熔炼,然后浇到旋转的水冷铜辊上,铜辊转速20-40m/s,得到RE1-cAgc快淬薄带;
(3)将步骤(1)得到的B速凝薄带混入质量比α的RE1-cAgc快淬薄带,在氮气保护下混合0.5小时后,混合均匀后将薄带置于氢破碎旋转热处理炉内进行氢破碎,破碎成粗粉后再以1-10r/min的转速和500-700℃下进行脱氢及扩散热处理3-6h,得到扩散粗粉;
(4)将第一步得到的A速凝薄带,进行氢破碎,脱氢后得到粗破碎的粗粉;
(5)步骤(3)和(4)中制得的两种氢破碎粉末按质量比例为1:9~5:5混合1-3小时后,采用气流磨无氧工艺将混合粉末制成细粉;
(6)将步骤(5)所得的细粉在3T的磁场压机中取向成型,再进行冷等静压制成生坯;
(7)将步骤(6)所得的生坯置于真空度≤1×10-2Pa的烧结炉中进行烧结获得烧结磁体,烧结温度为900~1060℃,保温时间2~5h。
8.根据权利要求7所述制备方法,其特征在于,步骤(1)所述速凝薄带的厚度均为150-350μm。
9.根据权利要求7所述制备方法,其特征在于,步骤(2)所述RE1-cAgc快淬薄带的厚度为30-60μm。
10.根据权利要求7所述制备方法,其特征在于,步骤(5)所述细粉的平均粒度约2.8um、粒度分布为d[9,0]/d[1,0]<3.5。
CN202111360675.3A 2021-11-17 2021-11-17 一种含银的混合稀土铁硼烧结永磁体及其制备方法 Pending CN114038641A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111360675.3A CN114038641A (zh) 2021-11-17 2021-11-17 一种含银的混合稀土铁硼烧结永磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111360675.3A CN114038641A (zh) 2021-11-17 2021-11-17 一种含银的混合稀土铁硼烧结永磁体及其制备方法

Publications (1)

Publication Number Publication Date
CN114038641A true CN114038641A (zh) 2022-02-11

Family

ID=80138002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111360675.3A Pending CN114038641A (zh) 2021-11-17 2021-11-17 一种含银的混合稀土铁硼烧结永磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN114038641A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220059262A1 (en) * 2019-11-13 2022-02-24 Beijing University Of Technology Two-step diffusion method for preparing high-performance dual-main-phase sintered mischmetal-iron-boron magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220059262A1 (en) * 2019-11-13 2022-02-24 Beijing University Of Technology Two-step diffusion method for preparing high-performance dual-main-phase sintered mischmetal-iron-boron magnet
US11742120B2 (en) * 2019-11-13 2023-08-29 Beijing University Of Technology Two-step diffusion method for preparing high-performance dual-main-phase sintered mischmetal-iron-boron magnet

Similar Documents

Publication Publication Date Title
JP7170833B2 (ja) 高い耐久性および高い保磁力を有するCe含有焼結希土類永久磁石、およびその調製方法
CN112863848B (zh) 高矫顽力烧结钕铁硼磁体的制备方法
CN108154986B (zh) 一种含y高丰度稀土永磁体及其制备方法
WO2019196200A1 (zh) 一种添加钇的稀土永磁材料及其制备方法
CN109585113A (zh) 一种烧结钕铁硼磁体的制备方法
CN110853854A (zh) 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法
CN109859922B (zh) 一种低重稀土含量的R-Fe-B类磁体的制备方法
CN103646742A (zh) 一种钕铁硼磁体及其制备方法
CN107134360A (zh) 一种晶界改性制备高性能y基稀土永磁体的方法
CN109087768B (zh) 用于磁悬浮系统的钕铁硼永磁材料及其制备方法
CN108517455B (zh) 一种具有双主相结构的纳米晶稀土永磁材料及其制备方法
WO2023124688A1 (zh) 钕铁硼磁体及其制备方法和应用
CN112086255A (zh) 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法
CN114823027A (zh) 一种高硼钕铁硼永磁材料及其制备方法
JP7146029B1 (ja) ネオジム鉄ホウ素永久磁石及びその製造方法と使用
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN114171275A (zh) 一种多元合金钕铁硼磁性材料及其制备方法
CN114038641A (zh) 一种含银的混合稀土铁硼烧结永磁体及其制备方法
CN112652433A (zh) 一种各向异性复合磁体及其制备方法
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
CN116612956A (zh) 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用
CN108597707B (zh) 一种含Ce烧结磁体及制备方法
CN108666064B (zh) 一种添加vc的烧结稀土永磁材料及其制备方法
CN112103068B (zh) 一种高磁性能1:5纯钐钴永磁体的制备方法
CN103489556B (zh) 极异方环状烧结铁氧体转子磁石及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination