CN105349517B - 源于人多能干细胞的胰腺细胞的包封 - Google Patents
源于人多能干细胞的胰腺细胞的包封 Download PDFInfo
- Publication number
- CN105349517B CN105349517B CN201510760059.5A CN201510760059A CN105349517B CN 105349517 B CN105349517 B CN 105349517B CN 201510760059 A CN201510760059 A CN 201510760059A CN 105349517 B CN105349517 B CN 105349517B
- Authority
- CN
- China
- Prior art keywords
- cells
- cell
- pancreatic
- human
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/02—Preservation of living parts
- A01N1/0205—Chemical aspects
- A01N1/021—Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
- A01N1/0221—Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/022—Artificial gland structures using bioreactors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/37—Digestive system
- A61K35/39—Pancreas; Islets of Langerhans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M31/00—Devices for introducing or retaining media, e.g. remedies, in cavities of the body
- A61M31/002—Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0676—Pancreatic cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0676—Pancreatic cells
- C12N5/0678—Stem cells; Progenitor cells; Precursor cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K2035/126—Immunoprotecting barriers, e.g. jackets, diffusion chambers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/252—Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/62—Encapsulated active agents, e.g. emulsified droplets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/64—Animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/07—Proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/04—General characteristics of the apparatus implanted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M31/00—Devices for introducing or retaining media, e.g. remedies, in cavities of the body
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/117—Keratinocyte growth factors (KGF-1, i.e. FGF-7; KGF-2, i.e. FGF-12)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/119—Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/16—Activin; Inhibin; Mullerian inhibiting substance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/19—Growth and differentiation factors [GDF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/385—Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/41—Hedgehog proteins; Cyclopamine (inhibitor)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/415—Wnt; Frizzeled
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/02—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Epidemiology (AREA)
- Transplantation (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cell Biology (AREA)
- Dermatology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Diabetes (AREA)
- Genetics & Genomics (AREA)
- Pharmacology & Pharmacy (AREA)
- Heart & Thoracic Surgery (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Endocrinology (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Microbiology (AREA)
- Developmental Biology & Embryology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Anesthesiology (AREA)
- Botany (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cardiology (AREA)
Abstract
本发明涉及用于在生物相容性半渗透包封装置中包封胰腺祖细胞的方法。本发明还涉及在哺乳动物中响应葡萄糖刺激生成人胰岛素。
Description
相关申请的交叉引用
本申请为非临时申请,其依据35U.S.C.§119(e)要求2008年11月14日提交的题为“源于HES细胞的胰腺祖细胞的包封”的美国临时专利申请No.61/114,857和2008年12月9日提交的题为“胰腺内胚层细胞的包封”的美国临时专利申请No.61/121,084的优先权。上文列出的各优先权申请的公开内容通过引用将其全文并入本文。
发明领域
本发明涉及医药和细胞生物学领域。具体地,本发明涉及源于人胚胎干细胞和其它人多能细胞的细胞的包封。本申请所涉及的人胚胎干细胞、人多能细胞、人胰腺祖细胞、或者来源于人胚胎干细胞、人多能细胞或人胰腺祖细胞的细胞都不是从经过体内发育的人类胚胎以及受精14天后的人类胚胎获得的。
发明背景
人胚胎干(hES)细胞和从成人分化的细胞诱导的多能干(iPS)细胞特别适合于细胞治疗应用,这是因为它们是多能的且可自我更新。基于在分化多能干细胞培养物中能够出现极为多样的细胞类型,成功实现有效的、定向分化对于人多能干细胞的治疗应用是有用的。使用不同生长和信号传导因子以及小分子对于使人多能干细胞有效的定向分化成各种中间细胞类型,包括胰腺细胞系是必要的。
发明概述
本文所述的实施方案涉及在哺乳动物中生成胰岛素的方法,所述方法通过下述步骤进行:向宿主哺乳动物中提供可植入的腔室(chamber),向所述腔室提供源于人多能干细胞(例如hES或iPS细胞)的胰腺祖细胞,使所述胰腺祖细胞成熟成为成熟的胰腺激素分泌细胞,其中所述胰腺激素分泌细胞为响应体内葡萄糖刺激生成胰岛素的胰岛素分泌细胞,从而在所述哺乳动物中体内生成胰岛素。在一些实施方案中,所述腔室在引入胰腺祖细胞之前植入到哺乳动物中。在其它实施方案中,在引入胰腺祖细胞之前使所述腔室血管化。还在其它实施方案中,在植入之前将细胞引入所述腔室。
一个实施方案涉及在哺乳动物中生成胰岛素的方法,所述方法包括:(a)向可植入的可半渗透装置中提供人PDX-1阳性的胰腺祖细胞群;(b)使该细胞群在所述装置中成熟为胰岛,其中所述胰岛包含内分泌细胞和腺泡细胞,并且其中所述内分泌细胞至少为响应体内葡萄糖刺激生成胰岛素的胰岛素分泌细胞,从而体内为所述哺乳动物生成胰岛素。
另一个实施方案涉及用于将细胞群植入到哺乳动物宿主中的细胞包封组件。一方面,该组件包含限定用于包封活细胞的至少一个腔室的密封外缘。另一方面,该组件包含具有外周边缘的壁机构,其中该组件包含在所述壁机构的外周边缘的第一密封件(seal),从而形成该包封组件。在一些方面,该组件包含有效降低腔室容积的第二密封件。
另一个实施方案涉及冷冻保存的人胰腺祖细胞群。在该实施方案的一个方面,所述细胞群适合移植到哺乳动物中。
另一个实施方案涉及获得适于移植的细胞群的方法。在该实施方案的一个方面,通过包括下述步骤的方法获得适于移植的细胞:a)人胰腺祖细胞群接触冷冻保存溶液,从而获得用于冷冻保存的细胞群;b)降低用于冷冻保存的祖细胞的温度至大约-196℃,以获得冷冻保存的细胞;和c)提高所述冷冻保存的细胞的温度,从而获得适于移植的胰腺祖细胞群。在一些实施方案中,用于冷冻保存的祖细胞的温度降低至低于0℃、-10℃、-20℃、-30℃、-40℃、-50℃、-60℃、-70℃、-80℃、-90℃、-100℃、-110℃、-120℃、-130℃、-140℃、-150℃、-160℃、-170℃、-180℃、-190℃、-200℃、-210℃、-220℃、-230℃、-240℃、-250℃或-260℃。
附图简述
图1为双开口包封装置的透视图,该包封装置具有内部超声焊接部分(weld)以分隔主腔。
图2为图1所示的包封装置的顶截面视图。
图3为图1所示的包封装置的侧视图,其具有沿着内部超声焊接区通过该装置中心获取的横截面。
图4为图1所示的包封装置的侧视图,其具有沿着开口的轴并通过被分隔的腔的中心获取的横截面。
图5为图1所示的包封装置的端视图,其具有通过被分隔的腔获取的横截面。
图6为包封装置的透视图,其没有装载口且包含定期超声点焊部分以分隔内腔。
图7为图6所示的包封装置的顶部横截面视图。
图8为图6所示的包封装置的侧视图,其具有通过被分隔的腔中心获取的横截面。
图9为图6所示的包封装置的端视图,其具有通过被分隔的腔的横截面。
图10为包封装置的透视图,其没有装载口且包含定期超声点焊部分以分隔内腔。每个点焊部分都去除了中心以促进血管化。
图11为图10所示的包封装置的放大视图。
优选实施方案的详述
本文所述的实施方案涉及通过在哺乳动物中植入处在包封装置中的源于人胚胎干细胞的人胰腺祖细胞,从而体内生成胰岛素的方法,所述包封装置包括生物可相容的基于聚乙二醇的装置和机械/医学装置。
除非另有说明,本文使用的术语为相关领域普通技术人员根据常规用法所理解的。除了下文提供的术语定义以外,分子生物学中的常用术语的定义还可见于Rieger等人,1991Glossary of genetics:classical and molecular,5th Ed.,Berlin:Springer-Verlag;和见于Current Protocols in Molecular Biology,F.M.Ausubel等人,Eds.,Current Protocol,a joint venture between Greene Publishing Associates,Inc,andJohn Wiley&Sons,Inc.,(1998增刊)。应该理解,在本说明书和权利要求书中使用的“a”或“an”可以表示一个或多个,取决于其使用的上下文。因此,例如,述及“细胞”可以表示可以使用至少一个细胞。
此外,出于本说明书和所附权利要求书的目的,除非另有说明,所有表示成分的数量的数字、材料的百分比或比例、反应条件和在本说明书和权利要求书中使用的其它数值在所有情况下都将被理解为通过术语“约”修饰。相应地,除非相反指出,在以下说明书和所附权利要求书中提出的数值参数为可以依据本发明想要获得的期望性质而改变的近似值。6每个数值参数都应该至少根据报道的有效数字和通过应用常规舍入技术来理解,丝毫不想将等同原则的应用限制于权利要求书的范围。
在一个实施方案中,使用生物可相容的聚乙二醇(PEG)包封源于hES的细胞。基于PEG的包封更详细地描述于题为“用于治疗疾病的包封生物材料的植入”的美国专利No.7,427,415;题为“用于包封生物材料的凝胶”的美国专利No.6,911,227;以及题为“用于包封生物材料的凝胶”的美国专利No.6,911,227、5,529,914、5,801,033、6,258,870中,它们通过引用以其全文并入本文。
在另一个实施方案中,包封装置为TheraCyte装置(Irvine,California)。TheraCyte细胞包封装置进一步描述于美国专利No.6,773,458;6,156,305;6,060,640;5,964,804;5,964,261;5,882,354;5,807,406;5,800,529;5,782,912;5,741,330;5,733,336;5,713,888;5,653,756;5,593,440;5,569,462;5,549,675;5,545,223;5,453,278;5,421,923;5,344,454;5,314,471;5,324,518;5,219,361;5,100,392;和5,011,494中,上述所有专利通过全文引用以其全文并入本文。
在一个实施方案中,描述了用于从多能干细胞培养物或源于hES的细胞培养物的单细胞悬液制备hES细胞团块悬液的方法。所述多能干细胞培养物可以最初在成纤维细胞饲养层(feeder)上培养,或者它们可以不使用饲养层。分离hESC和在人饲养层细胞上培养hESC的方法描述于题为“用于在人饲养层细胞上培养人胚胎干细胞的方法”的美国专利No.7,432,104中,其通过引用以其全文并入本文。用于制备hES细胞团块悬液培养物和/或源于hES的细胞团块悬液培养物的多种方法详细描述于2008年10月4日提交的题为“干细胞团块悬液组合物及其分化方法”的美国申请No.12/264,760中,其通过引用以其全文并入本文。
本文所述的分化培养条件和源于hES的细胞类型基本上类似于上文的D’Amour等人2006年所述的,或描述于美国专利No.7,534,608;2007年3月2日提交的美国专利申请No.11/681,687;和2007年7月5日提交的美国专利申请No.11/773,944中的那些,它们的公开内容通过引用以其全文并入本文。D’Amour等人描述了5步分化方案:阶段1(主要结果为定形内胚层产生),阶段2(主要使PDX1阴性的前肠内胚层产生),阶段3(主要使PDX1阳性的前肠内胚层产生),阶段4(主要使胰腺内胚层或胰腺内分泌祖细胞产生)和阶段5(主要使表达激素的内分泌细胞产生)。
本文所用的“定形内胚层(DE)”是指能够分化成为肠管细胞或源于肠管的器官的多能内胚层细胞系。根据某些实施方案,定形内胚层细胞为哺乳动物细胞,且在优选实施方案中,定形内胚层细胞为人细胞。在一些实施方案中,定形内胚层细胞表达或未能显著表达某些标志物。在一些实施方案中,在定形内胚层细胞中表达一种或多种选自CER、FOZA2、SOX17、CXCR4、MIXL1、GATA4、HNF3-β、GSC、FGF17、VWF、CALCR、FOXQ1、CMKOR1和CRIP1的标志物。在其它实施方案中,选自OCT 4、α-胎蛋白(AFP)、血栓调节蛋白(TM)、SPARC、SOX7和HNF4-α中的一种或多种标志物不在定形内胚层细胞中显著表达。为了清楚起见,将定形内胚层细胞区别于其它内胚层谱系的细胞,例如前肠内胚层或肠内胚层或PDX1阴性的前肠内胚层细胞,这些细胞相比定形内胚层都可识别地表达HNF4-α。定形内胚层细胞群及其制备方法还描述于题为“定形内胚层”的美国专利No.7,510,876,其以其全文并入本文。
其它实施方案还涉及名为“PDX1阴性的前肠内胚层细胞”或“前肠内胚层细胞”或“肠内胚层”或其等同物的细胞培养物。在一些实施方案中,前肠内胚层细胞表达SOX17、HNF1-β、HNF4-α和FOXA1标志物,但不实质上表达PDX1、AFP、SOX7、SOX1。PDX1阴性的前肠内胚层细胞群及其制备方法还描述于2006年10月27日提交的题为“表达PDX1的背部和腹部前肠内胚层”的美国申请No.11/588,693,其通过引用以其全文并入本文。并且,与定形内胚层细胞或阶段1的细胞相比,肠内胚层可识别地表达HNF4-α;参见下文实施例。
本文所述的其它实施方案涉及“PDX1阳性的偏向背部的前肠内胚层细胞”、“PDX1阳性的前肠内胚层细胞”或“PDX1阳性的内胚层”或其等同物的细胞培养物。在一些实施方案中,PDX1阳性的前肠内胚层细胞表达PDX1、HNF6、SOX9和PROX 1标志物,但不实质上表达NKX6.1、PTF1A、CPA、cMYC、SOX17、HNF1B或HNF4alpa。PDX1阳性的前肠内胚层细胞群及其制备方法还描述于2006年10月27日提交的题为“表达PDX1的背部和腹部前肠内胚层”的美国申请No.11/588,693,其通过引用以其全文并入本文。
本文所述的其它实施方案涉及“胰腺祖细胞”、“PDX1阳性的胰腺内胚层细胞”、“PDX1阳性的胰腺祖细胞”、“胰腺上皮”、“PE”或其等同物的细胞培养物。PDX1阳性的胰腺祖细胞是多能的,且可以在胰腺中产生多种细胞,包括但不限于腺泡细胞、导管细胞和内分泌细胞。在一些实施方案中,与不会可识别地表达PDX1和NKX6.1的非前胰腺内胚层细胞相比,该PDX1阳性的胰腺祖细胞表达高水平的这些标志物。PDX1阳性的胰腺祖细胞还表达低水平的PTF1A、CPA、cMYC、NGN3、PAX4、ARX和NKX2.2、INS、GCG、GHRL、SST和PP,甚至不表达。
可选择地,其它实施方案涉及“PDX1阳性的胰腺内胚层端细胞”或其等同物的细胞培养物。在一些实施方案中,类似于PDX1阳性的胰腺祖细胞,PDX1阳性的胰腺内胚层端细胞表达高水平的PDX1和NKX6.1,但是不同于PDX1阳性的胰腺祖细胞,PDX1阳性的胰腺内胚层端细胞额外地表达高水平的PTF1A、CPA和cMYC。PDX1阳性的胰腺内胚层端细胞还表达低水平的NGN3、PAX4、ARX和NKX2.2、INS、GCG、GHRL、SST和PP,甚至不表达。
其它实施方案涉及“胰腺内分泌前体细胞”、“胰腺内分泌祖细胞”或其等同物的细胞培养物。胰腺内分泌祖细胞是多能的,且产生成熟的内分泌细胞,包括α、β、δ和PP细胞。在一些实施方案中,相比其它非内分泌祖细胞类型,胰腺内分泌祖细胞表达高水平的NGN3、PAX4、ARX和NKX2.2。胰腺祖细胞还表达低水平的INS、GCG、GHRL、SST和PP,甚至不表达。
其它实施方案还涉及“胰腺内分泌细胞”、“胰腺激素分泌细胞”、“胰腺胰岛激素表达细胞”或其等同物的细胞培养物,所述等同物是指体外源于例如α、β、δ和/或PP细胞或其组合的多能细胞的细胞。该内分泌细胞可以是多激素的或单激素的,例如表达胰岛素、胰高血糖素、胃饥饿素、生长激素抑制素和胰腺多肽或其组合。因此,该内分泌细胞可以表达一种或多种胰腺激素,其具有人胰岛细胞的至少部分功能。胰岛激素表达细胞可以是成熟的或不成熟的。基于某些标志物的差别表达,或者基于它们的功能,例如体外或体内葡萄糖响应,可以将不成熟的胰岛激素表达细胞与成熟的胰岛激素表达细胞相区分。胰腺内分泌细胞还可以表达低水平的NGN3、PAX 4、ARX和NKX2.2,甚至不表达。
相比间质的定形内胚层细胞,上文细胞类型中的绝大多数为上皮化的。在一些实施方案中,胰腺内胚层细胞表达选自表3的一种或多种标志物和/或相关的下述美国申请的表4中的一种或多种标志物:2006年10月27日提交的题为“表达PDX1的背部和腹部前肠内胚层”的美国申请11/588,693,以及2005年4月26日提交的题为“表达PDX1的内胚层”的美国申请No.11/115,868,这些申请通过引用以其全文并入本文。
在某些实施方案中,术语“富集的”、“分离的”、“分开的”、“分选的”、“纯化的”或通过耗尽而纯化或其等同方式是指这样的细胞培养物或细胞群或细胞样品:其含有至少15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或100%的目的细胞系或具有某种细胞表型,例如表达该细胞表型的某细胞标志物或不表达该细胞表型的某细胞标志物基因特征的目标细胞。用于纯化、富集、分离、分开、分选和/或耗尽源于hES细胞的内胚层谱系细胞的方法还描述于2008年4月21日提交的题为“用于纯化内胚层和源于人胚胎干细胞的胰腺内胚层细胞的方法”的美国申请NO.12/107,020,其通过引用以其全文并入本文。
本文使用的术语“接触”(即,例如可分化细胞的细胞接触化合物)意在包括将化合物和细胞一起体外孵育(例如将化合物添加到培养的细胞中)。术语“接触”不意在包括细胞体外暴露于包含ErbB3配体和任选地可能天然存在于受试者中的TGF-β家族成员的限定的细胞培养基(即可能作为自然生理过程的结果而发生的暴露)。细胞和包含ErbB3配体和任选的TGF-β家族成员的限定的细胞培养基接触的步骤可以以任何适合的方式进行。例如,可以在贴壁培养中或在悬浮培养中处理细胞。应该理解,与限定的培养基接触的细胞可以进一步用细胞分化环境处理,以稳定细胞或分化细胞。
本文使用的术语“分化”是指比其来源的细胞类型更为分化的细胞类型的产生。在一些实施方案中,术语“分化”表示产生比其来源的细胞具有更少命运选择的细胞。因此该术语包括部分和终末分化的细胞类型。源于hES细胞的分化细胞通常被称为源于hES的细胞或源于hES的细胞团块培养物,或源于hES的单细胞悬液,或源于hES的细胞贴壁培养物等。
本文使用的术语“可分化的细胞”用于描述可以分化成至少部分成熟的细胞,或者可以参与细胞分化,例如与可以分化成至少部分成熟的细胞的其它细胞融合的细胞或细胞群。本文使用的“部分成熟的细胞”、“祖细胞”、“不成熟细胞”、“前体细胞”、“多能细胞”或其等同物包括不是终末分化的那些细胞,例如定形内胚层细胞、PDX1阴性的前肠内胚层细胞、PDX1阳性的胰腺内胚层细胞,PDX1阳性的胰腺内胚层细胞进一步包括PDX1阳性的前胰腺内胚层细胞和PDX1阳性的胰腺内胚层端细胞。所有细胞都是表现出来自相同器官或组织的成熟细胞的至少一个表型特征,例如形态或蛋白表达,但是可以进一步分化成至少一种其它细胞类型。例如,正常的成熟肝细胞典型地表达例如白蛋白、纤维蛋白原、α-1-抗胰蛋白酶、凝血素凝集因子(prothrombin clotting factor)、转铁蛋白和解毒酶(detoxificationenzyme),如细胞色素P-450等及其它的蛋白。因此,本文使用的“部分成熟的肝细胞”可以表达白蛋白或另外的一种或多种蛋白,或者开始具有正常的成熟肝细胞的外观或功能。
本文使用的术语“基本上”是指大的限度或程度,例如,上下文中的“基本上类似的”可以用于描述一种方法以大范围或程度类似于另一种方法。然而,本文使用的术语“基本上不含”,例如,“基本上不含”或“基本上不含污染物”,或“基本上不含血清”或“基本上不含胰岛素或胰岛素样生长因子”或其等同物表示,溶液、培养基、补充物、赋形剂等为至少98%或至少98.5%、或至少99%、或至少99.5%、或至少100%不含血清、污染物或其等同物。在一个实施方案中,限定的培养基不含血清,或为100%不含血清,或基本上不含血清。相反地,本文使用的术语“基本上类似的”或其等同方式表示,组合物、过程、方法、溶液、培养基、补充物、赋形剂等为至少50%、55%、60%、65%、70%、75%、80%、至少85%、至少90%、至少95%、或至少99%类似于在本文说明书中之前描述的、或在以其全文并入本文的之前描述的过程或方法中的过程、方法、溶液等。
并且,本文与细胞群的组合物一起使用的术语“实质上”或“基本上”表示占主导地位地或主要地。在一些实施方案中,这些术语表示细胞群中的至少85%的细胞、细胞群中的至少86%的细胞、细胞群中的至少87%的细胞、细胞群中的至少88%的细胞、细胞群中的至少89%的细胞、细胞群中的至少90%的细胞、细胞群中的至少91%的细胞、细胞群中的至少92%的细胞、细胞群中的至少93%的细胞、细胞群中的至少94%的细胞、细胞群中的至少95%的细胞、细胞群中的至少96%的细胞、细胞群中的至少97%的细胞、细胞群中的至少98%的细胞、或细胞群中的至少99%的细胞。在其它实施方案中,术语或短语“实质上不含”或“基本上不含”是指在任何细胞培养物中存在最低量或少量的组分或细胞,例如本文所述的胰腺祖细胞为“实质上或基本上同质的”、“实质上或基本上同-细胞的(homo-cellular)”、“实质上hES细胞”、“实质上或基本上定形内胚层细胞”、“实质上或基本上前肠内胚层细胞”、“实质上或基本上肠内胚层细胞”、“实质上或基本上PDX1阴性的前肠内胚层细胞”、“实质上或基本上PDX1阳性的前胰腺内胚层细胞”、“实质上或基本上PDX1阳性的前胰腺祖细胞”、“实质上或基本上胰腺上皮细胞”、“实质上或基本上PDX1阳性的胰腺内胚层端细胞”、“实质上或基本上胰腺内胚层前体细胞”、“实质上或基本上胰腺内分泌细胞”等。术语“实质上”和“基本上”还可以表示至少50%、55%、60%、65%、70%、75%、80%、至少85%、至少90%、至少95%、或至少99%该细胞(定形内胚层;PDX1阴性的前肠内胚层;PDX1阳性的前胰腺内胚层;PDX1阳性的胰腺祖细胞;PDX1阳性的胰腺端细胞;内分泌前体细胞,和内分泌激素分泌细胞)。
本文使用的术语化合物的“有效量”或其等同物是指该化合物的浓度在存在所限定的培养基的剩余组分下足以实现培养物中的可分化细胞在缺乏培养层细胞和在缺乏血清或血清替代物时稳定超过一个月。该浓度可由本领域普通技术人员容易地确定。
本文使用的术语“表达”是指细胞中多核苷酸的转录或多肽的翻译,使得分子在表达该分子的细胞中的可测量水平比它们在不表达该分子的细胞中的更高。测量分子表达的方法是本领域普通技术人员所熟知的,且包括但不限于,RNA印迹、RT-PCR、原位杂交、蛋白质印迹和免疫染色。
当述及细胞、细胞系、细胞培养物或细胞群时,本文使用的术语“分离的”是指基本上与该细胞的天然来源分开的,从而该细胞、细胞系、细胞培养物或细胞群能够在体外培养。此外,术语“分离”用于指从两种或更多种细胞的组中物理选择一种或多种细胞,其中基于细胞形态和/或各种标志物的表达选择细胞。
本文使用的术语“保存细胞”表示在移植前以可存活的状态维持细胞一段时间。该时间段可以是1小时、2小时、5小时、10小时、15小时、20小时、24小时、2天、4天、5天、1周、2周、4周、1个月、2个月、4个月、6个月、8个月、10个月、1年、2年、4年、6年、8年、10年、12年、14年、16年、18年、20年、22年、24年、30年、35年、40年、45年或100年或在该范围内提供的任意时间之间的任何时间段。
本文使用的可分化细胞可以是多能的(pluripotent)、多能的(multipotent)、寡能的(oligopotent)或甚至单能的。在某些实施方案中,可分化细胞是多能的可分化细胞。在更具体的实施方案中,该多能的可分化细胞选自胚胎干细胞、ICM/上胚层细胞、原初外胚层细胞和畸胎癌细胞。在一些实施方案中,可分化细胞源于植入前胚胎。在一个具体实施方案中,可分化细胞是哺乳动物胚胎干细胞。在一个更具体的实施方案中,可分化细胞是人胚胎干细胞。
从可分化细胞分化的细胞类型在多个研究和开发领域具有几种用途,所述领域包括但不限于药物发现、药物开发和试验、毒理学、用于治疗目的以及基础科学研究的细胞制备。这些细胞类型表达在广泛研究领域中感兴趣的分子。这些包括已知的如标准参考教科书描述的各种细胞类型的功能所需的分子。这些分子包括但不限于细胞因子、生长因子、细胞因子受体、胞外基质、转录因子、分泌的多肽和其它分子以及生长因子受体。
本发明考虑到可分化细胞可以通过与细胞分化环境接触而被分化。本文使用的术语“细胞分化环境”是指这样的细胞培养条件:其中诱导可分化细胞分化,或者诱导可分化细胞成为富集了分化的细胞的人细胞培养物。优选地,通过生长因子诱导的分化的细胞系在性质上将是同质的。术语“同质的”是指含有超过约50%、60%、70%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的目的细胞系的群体。
可以利用细胞分化培养基或环境来部分地、终末地或可逆地分化本文所述的可分化细胞。根据本文所述的实施方案,细胞分化环境的培养基可以含有多种组分,包括例如,KODMEM培养基(Knockout Dulbecco氏改良的Eagle氏培养基)、DMEM、Ham氏F12培养基、FBS(胎牛血清)、FGR2(成纤维细胞生长因子2)、KSR或hLIF(人白血病抑制因子)。细胞分化环境还可以含有补充物,例如L-谷氨酰胺、NEAA(非必需氨基酸)、P/S(青霉素/链霉素)、N2、B27和β-巯基乙醇(β-ME)。本发明考虑到可以向细胞分化环境中添加额外的因子,包括但不限于纤连蛋白、层粘连蛋白、肝素、硫酸肝素、视黄酸、表皮生长因子家族(EGF)的成员、成纤维细胞生长因子家族(FGF)的成员(包括FGF2、FGF7、FGF8和/或FGF10)、血小板源性生长因子家族(PDGF)的成员、转化生长因子(TGF)/骨形成蛋白(BMP)/生长和分化因子(DGF)家族拮抗剂,包括但不限于头蛋白(noggin)、卵泡抑素、腱蛋白、gremlin、cerberus/DAN家族蛋白、ventropin、高剂量活化素和amnionless或其变体或功能片段。还可以以TGF/BMP/GDP受体-Fc嵌合体的形式添加TGF/BMP/GDP拮抗剂。可以添加的其它因子包括可以激活或抑制通过Notch受体家族传递信号的分子,包括但不限于δ-样和Jagged家族的蛋白以及Notch加工或切割的抑制剂,或其变体或功能片段。其它生长因子可以包括胰岛素样生长因子家族(IGF)成员、胰岛素、无翅相关(WNT)因子家族和hedgehog因子家族或其变体或功能片段。可以添加其它因子来促进中内胚层干/祖细胞、内胚层干/祖细胞、中胚层干/祖细胞、或定形内胚层干/祖细胞增殖和存活以及这些祖细胞衍生物的存活和分化。
可以通过对目的细胞系的标志物基因特征的表达以及可分化细胞类型的标志物基因特征的表达的缺乏定量,来监测可分化细胞向目的细胞系的发展,或其维持在未分化状态。定量此类标志物基因的基因表达的一种方法是使用定量PCR(Q-PCR)。本领域熟知进行Q-PCR的方法。本领域已知的其它方法也可用于定量标志物基因表达。可以通过使用针对该目标标志物基因的特异性抗体来检测标志物基因表达。
本文所述的实施方案还考虑到来自动物中的任何来源的可分化细胞,条件是该细胞是本文所限定的可分化的。例如,可以从胎盘或绒毛膜组织、或从例如成人干细胞的更为成熟的组织,包括但不限于脂肪、骨髓、神经组织、乳腺组织、肝组织、胰腺、上皮组织、呼吸组织、性腺组织和肌肉组织收获可分化细胞。在特定实施方案中,可分化细胞是胚胎干细胞。在其它特定实施方案中,可分化细胞是成人干细胞。还在其它特定实施方案中,可分化细胞是源于胎盘或绒毛膜的干细胞。
其它实施方案考虑到使用来自能够产生可分化细胞的任何动物的可分化细胞。从其收获可分化细胞的动物可以是脊椎动物或无脊椎动物,哺乳动物或非哺乳动物,人或非人。动物来源的实例包括但不限于灵长类动物、啮齿类动物、狗、猫、马、牛和猪。
一些实施方案考虑到使用诱导的多能干(iPS)细胞,其为源于非多能细胞的多能干细胞。参见Zhou等人(2009),Cell Stem Cell 4:381-384;Yu等人,(2009)Science 324(5928):729-801,Epub March 26,2009;Yu等人,(2007)Science 318(5858):1917-20,EpubNovember 20,2007;Takahashi等人,(2007)Cell,131:861-72;以及Takahashi K.和Yamanaka S.(2006),Cell 126:663-76,这些文献通过引用以其全文并入本文。从其收获非多能细胞的动物可以是脊椎动物或无脊椎动物,哺乳动物或非哺乳动物,人或非人。动物来源的实例包括但不限于灵长类动物、啮齿类动物、狗、猫、马、牛和猪。
可以使用本领域技术人员已知的任何方法生成本文所述的可分化细胞。例如,可以使用去分化和核转移方法制备人多能细胞。此外,本文使用的人ICM/上胚层细胞或原初外胚层细胞在体内或体外生成。原初外胚层细胞可以在贴壁培养中产生,或作为细胞团块在悬浮培养中产生,如在WO99/53021所述的。此外,可以使用本领域技术人员已知的任何方法传代人多能细胞,该方法包括人工传代方法,和批量传代方法,例如酶促或非酶促的传代。
在某些实施方案中,当利用ES细胞时,胚胎干细胞具有正常的核型,而在其它实施方案中,胚胎干细胞具有异常的核型。在一个实施方案中,胚胎干细胞中的多数具有正常的核型。本发明考虑超过50%、55%、60%、65%、70%、75%、80%、85%、90%或超过95%的被考察的中期细胞表现出正常的核型。
储存用于包封和移植的细胞
一些实施方案涉及用于冷冻保存已经体外培养和/或分化的细胞的方法。该储存将实现保存、质量控制和其它期望的操作和管理,或与体外分析有关,或与体内植入有关。用于移植前细胞储存的方法包括通过冷冻细胞(冷冻保存);或者通过在高于冷冻温度时冷藏细胞(冬眠)保存组织。参见Chanaud等人,1987Neurosci Lett 82:127-133;Collier等人,(1987)436:363-366;以及Sauer等人,1991Neurology and Neuroscience 2:123-135;Gage等人,1985Neurosci Lett 60:133-137,这些文献的公开内容通过引用以其全文并入本文。尽管已报道冬眠相比冷冻保存的组织提高移植物存活率和功能,但是在冬眠期间,细胞可能在这样的条件下无法长期维持而不损害细胞活力。
本文使用的“细胞悬液”或其等同物是指与培养基接触的细胞团块和/或簇和/或球。这样的细胞悬液详细描述于2008年11月8日提交的题为“干细胞团块悬液组合物及其分化方法”的美国申请12/264,760中,其公开内容通过引用以其全文并入本文。
本文使用的“适合的细胞悬液”或细胞悬液培养物或其等同物包括已在冷冻以上,优选在4℃下在冬眠培养基中储存约1小时和长达约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25或长达30天的细胞悬液。
本文使用的适于移植的细胞是指对于体内治疗代谢障碍来说活力和/或功能充足的细胞或细胞群。例如,在将适于移植的细胞植入到患有糖尿病的受试者中之后的一段时间,糖尿病或其一种或多种症状可以得到改善或减轻。在一个优选实施方案中,适于移植的细胞或细胞群为胰腺祖细胞或群,或PDX1阳性的胰腺祖细胞或群,或内分泌前体细胞或群,或多激素或单激素内分泌细胞和/或细胞或细胞群的任意组合,或甚至是其纯化的或富集的细胞或细胞群。适于本文所述的实施方案的细胞进一步详细描述于美国专利7,534,608,其公开内容通过引用以其全文并入本文。
本文使用的术语“储存”或其等同方式是指在冷冻以上或以下保持或维持细胞。该术语还表示包括在用于受试者移植之前维持细胞。
本文使用的术语“冷冻保存”或其等同方式是指在冷冻以下的温度保存细胞。
本文使用的术语“冬眠”或其等同方式是指在冷冻以上和相比正常生理温度足够低的温度下保存细胞,使得一种或多种正常细胞生理过程减少或停止。在一个实施方案中,优选的冬眠温度范围为0至4℃,优选约4℃。本文使用的冬眠培养基包括缺少冷冻保存剂且对于在冷冻温度以上,优选约4℃下储存细胞是生理上相容的任何培养基。
冬眠条件
冬眠温度范围通常为0至5℃,优选约4℃。不同类型的培养基可以用作冬眠培养基与现有方法相结合。用于冷冻和冬眠细胞的现有技术方法利用包含缓冲剂和添加的蛋白质的复合培养基,有时候包括完全不限定的组分,例如血清。然而,为了使毒性和免疫原性最小化,这样的添加物对于移植到人体中是不期望的。在优选实施方案中,冬眠培养基不含添加的Ca++。在某些实施方案中,用于冬眠细胞的培养基不含添加的蛋白质和/或不含缓冲剂。优选的冬眠培养基包括最小量的葡萄糖或适量的葡萄糖的盐水溶液,例如在盐水中没有额外的葡萄糖或约0.1%-0.9%葡萄糖,或者由其组成。在优选实施方案中,冬眠培养基包括约0.1-0.5%葡萄糖,或者由其组成。在更优选的实施方案中,冬眠培养基包括约0.2%葡萄糖,或者由其组成。在优选实施方案中,冬眠培养基包括非常小百分比(体积/体积)的NaCl,例如约0.1-1%NaCl,优选约0.5-0.9%NaCl,或者由其组成。在某些实施方案中,可以使用更复杂的培养基,例如Hank氏平衡盐溶液、Dulbecco氏最低必需培养基或Eagle氏改良的最低必需培养基。在某些实施方案中,用添加物补充所选择的冬眠培养基是需要的,该添加物例如添加的蛋白质(例如,哺乳动物血清蛋白或全血清(优选热灭活的))、缓冲剂(例如,磷酸盐缓冲剂,HEPES等)、抗氧化剂、生长因子、KCl(例如约30mM)、乳酸盐(例如约20mM)、丙酮酸盐、MgCl2(例如约2-3mM)、山梨醇(例如约300mM)或本领域熟知的其它添加物。
在某些实施方案中,在约0-5℃、优选约4℃下冬眠细胞。在某些实施方案中,在冷冻或使用之前,在冬眠培养基中在约4℃下维持细胞。在其它实施方案中,在冷冻之后在冬眠培养基中在约4℃下维持细胞。还在其它实施方案中,不经冷冻在冬眠培养基中在约4℃下维持细胞。在某些实施方案中,在冷冻之前、冷冻之后或在用于移植之前,在约4℃下在冬眠培养基中维持细胞至少约1小时和长达约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25或长达30天。在其它实施方案中,在冷冻之前、冷冻之后或在用于移植之前,在冬眠培养基中在约4℃下维持细胞至少约12-72小时。在某些实施方案中,在冷冻之前、冷冻之后或在用于移植之前,在冬眠培养基中在约4℃下维持细胞至少约24小时。在更优选的实施方案中,在冷冻之前、冷冻之后或在使用之前,在冬眠培养基中在约4℃下维持细胞至少约36-48小时。
冷冻保存条件
在一些实施方案中,使用冷冻保存溶液冷冻保存细胞。冷冻保存溶液或培养基包括含有冷冻保存剂的溶液,该冷冻保存剂即随着细胞冷冻或解冻保护细胞免受胞内和/或细胞膜伤害的化合物。通过下述方法鉴别冷冻保存剂:当和在无冷冻保存剂存在时进行类似地冷冻或解冻的细胞相比时,与冷冻保存剂接触的细胞的存活和/或功能性提高。任何冷冻保存剂可以和现有方法一起使用,该术语意味着包括胞内和胞外的冷冻保存剂。
本领域已知的任何冷冻保存剂可以用于冷冻保存溶液中。在某些实施方案中,冷冻保存溶液包括胞内冷冻保存剂,包括但不限于二甲基亚砜(DMSO)、各种二醇和三醇(例如乙二醇、丙二醇、丁二醇和三醇以及甘油)以及各种酰胺(例如甲酰胺和乙酰胺);并且,也可以单独使用或者与任何胞内冷冻保存剂组合使用的胞外冷冻保存剂,包括但不限于磷酸甘油酯的磷酸单酯和磷酸二酯代谢物、聚乙烯吡咯烷酮或甲基纤维素(例如至少0.1%)。
在优选实施方案中,DMSO用作冷冻保存剂。可以以大范围的浓度使用DMSO,例如约1%、2%、约3%、约4%、约5%、约6%、约7%、约8%、约9%、约10%、约11%、约12%、约13%、约14%、约15%或更大。在更优选实施方案中,DMSO的浓度范围为约6%至约12%。在特别优选的实施方案中,DMSO的浓度为约10%。
在某些实施方案中,冷冻保存剂以逐步方式添加到细胞中,从而梯度提高该冷冻保存剂的浓度直到达到冷冻保存剂的期望终浓度。在某些实施方案中,使细胞与冷冻保存溶液接触,该冷冻保存溶液含有期望终浓度的冷冻保存剂,或者直接将冷冻保存剂添加到基础培养基中而无需浓度梯度上升。
冷冻保存溶液包括在适合的基础培养基中的冷冻保存剂。任何类型的培养基都可以用于此目的。在优选实施方案中,添加冷冻保存剂的基础培养基不含有添加的Ca++。在某些实施方案中,添加冷冻保存剂的培养基不含有添加的蛋白质和/或不含有缓冲剂。在其它实施方案中,添加冷冻保存剂的基础培养基(例如DMEM或DMEM/F12)包括约0.1-0.5%葡萄糖或者由其组成,或不包括葡萄糖或包括少量葡萄糖。在该实施方案的一些方面,添加冷冻保存剂的基础培养基(例如DMEM或DMEM/F12)包括约0.5-0.9%NaCl,或者由其组成。在优选实施方案中,添加冷冻保存剂的基础培养基包括非常少的葡萄糖,甚至至没有以及约0.5-0.9%NaCl,或者由其组成。在另一个优选实施方案中,添加冷冻保存剂的基础培养基包括约0.1-0.2%葡萄糖,或者由其组成。在该实施方案的一些方面中,添加冷冻保存剂的基础培养基包括约0.5-0.9%NaCl,或者由其组成。
在某些实施方案中,冷冻保存溶液还可以含有添加的蛋白质,例如血清(例如胎牛血清或人血清),或者血清蛋白(例如白蛋白或敲除的血清替代物)。在其它实施方案中,冷冻保存剂还可以含有其它添加物,例如上述用于包含在冬眠培养基中的,例如抗氧化剂、生长因子、KCl(例如约30mM)、乳酸盐(例如约20mM)、丙酮酸盐、MgCl2(例如约2-3mM)、山梨醇(例如至约300mM的摩尔渗透压浓度)或本领域熟知的其它添加物。
一旦细胞悬浮在冷冻保存溶液中时,以受控方式降低细胞的温度。在冷却细胞到低于冷冻温度时,优选缓慢进行温度的降低,使得细胞在冷冻保存剂的胞内和胞外浓度之间建立平衡,从而抑制胞内冰晶形成。在一些实施方案中,优选冷冻速度足够快,从而保护细胞免于过多损失水分和冷冻保存剂的毒性作用。然后可以在-20℃至约-250℃的温度下冷冻保存细胞。优选地,在低于-90℃下储存细胞,从而将冰再结晶的风险最小化。在特别优选的实施方案中,在约-196℃的液氮中冷冻保存细胞。或者,可以在商业可得的电子控制冷冻设备的帮助下实现受控冷冻。
解冻条件
冷冻保存后,可通过任何可用的方法解冻细胞。在优选实施方案中,迅速解冻细胞,例如通过快速浸没在37℃的液体中。一旦细胞解冻,通过添加稀释培养基实现冷冻保存剂的稀释。
任何培养基都可以用于稀释与解冻的细胞接触的冷冻保存溶液。例如,用于冬眠细胞的或者用于细胞生长和分化的上文列出的任何培养基,都可以用于稀释冷冻保存溶液。其它培养基也是合适的,例如Hank氏平衡盐溶液(优选不含Ca++)、含DMEM且不含葡萄糖或含最少量至少量葡萄糖的培养基。例如上文列出的用于包含于冬眠或冷冻培养基中的添加物也可以用于稀释培养基中。示例性的添加物包括,例如,缓冲剂(例如磷酸盐缓冲剂、HEPES等)、抗氧化剂、生长因子、KCl(例如约30mM)、乳酸盐(例如约20mM)、丙酮酸盐、MgCl2(例如约2-3mM)、山梨醇(例如至约300mM的摩尔渗透压浓度)或本领域熟知的其它添加物。其它适合的添加物包括DNA酶(例如可从Genentech,Incorporated以PULMOZYMEOR商购的)。用于稀释冷冻保存溶液的培养基可以任选地含有添加的蛋白质,例如添加的蛋白质(例如哺乳动物血清(优选热灭活的))或血清蛋白,例如白蛋白。在其它实施方案中,培养基不含添加的蛋白质和/或添加的缓冲剂。
稀释冷冻保存剂后,然后可以使细胞沉降,或者可以在离心力下形成细胞团,以尽可能多地从细胞中去除冷冻保存溶液。然后在不含有冷冻保存剂的培养基中洗涤细胞。在加入洗涤培养基之后和使细胞沉降或在离心力下形成团之前,对细胞来说保持在室温是优选的。在优选实施方案中,在第二次离心前,细胞在室温下保持约10、15、20、30分钟。本领域已知的任何培养基都可以用于洗涤细胞,例如可以使用上文列出的任何冬眠或稀释培养基。
解冻和洗涤后,在37℃下培养细胞不同的时间,从而在移植之前使其复苏。可以在任何培养基中培养细胞,优选在适合它们的分化阶段的培养基中。在此时间内,一些细胞可能会死亡。
为了用于移植,应该将细胞悬浮在适于施用给受试者的最终培养基中。细胞移植基本上类似于美国专利号7,534,608所述,其通过引用以其全文并入本文。
此外,在用于移植之前,可以如上所述在0至37℃、优选约4℃下将解冻的细胞维持在冬眠培养基中长达1小时和长达约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25或长达30天,而不会有活力的明显损失。在一些实施方案中,细胞活力没有发生统计学上显著的损失。
测定复苏的细胞的活力
储存后,测定移植前细胞的活力和/或功能以确定它们用于,例如移植的适用性是需要的。这可以使用本领域已知的多种方法实现。例如,可以使用活体染料使细胞染色,该活体染料例如台盼蓝或溴化乙锭或吖啶橙。在有些实施方案中,适于移植的细胞群为至少约50-100%是存活的。在优选实施方案中,适于移植的细胞群为至少约50%、为至少约55%、为至少约60%、为至少约65%、为至少约70%、为至少约75%、为至少约80%、为至少约85%、为至少约90%、为至少约95%、为至少约96%、为至少约97%、为至少约98%、为至少约99%是存活的。在特别优选的实施方案中,这样的细胞群为至少约85%是存活的。
在其它实施方案中,可以测定细胞的形态特征作为用于移植的细胞适合性的度量。在优选实施方案中,已使用现有方法储存的且适于移植的细胞的形态和新鲜细胞没有区别(例如,统计学上显著的)。在优选实施方案中,已使用现有方法储存的且适于移植的细胞的体内形态和新鲜细胞没有区别(例如,统计学上显著的)。
在细胞簇的情况下,可以在细胞冷冻/解冻和复苏之前和之后对细胞量进行定量。在一个实施方案中,可以控制悬液中培养的细胞簇以压紧。然后可以对该簇占据的区域拍照并测量。通过比较冷冻/解冻和复苏之前和之后细胞占据的区域,可以测定复苏百分比的值。
也可测定已储存的细胞的某些hES和/或胰腺祖细胞或激素分泌细胞标志物的存在,以确定它们是否适合用于移植。该方法详细描述于上文2008年的Kroon等人的上述描述,或者美国专利No.7,534,608中,这些文献通过引用以其全文并入本文。
此外,或者可选择地,可以测试细胞的功能,例如如上文2008年的Kroon等人或者在美国专利No.7,534,608中所讨论的,这些文献通过引用以其全文并入本文。
包封装置
本文所述的一个实施方案涉及包封装置。该装置可以植入到哺乳动物中以治疗多种疾病和障碍。在优选实施方案中,该装置包含生物相容的免疫分离的装置,其能够完全将治疗生物活性剂和/或细胞包封在其中。例如,此类装置可以在半渗透膜内容纳治疗有效量的细胞,该半渗透膜具有的孔径使得对细胞存活和功能重要的氧和其它分子能够通过该半渗透膜移动,而免疫系统的细胞无法渗透或穿过该孔。类似地,此类装置可以含有治疗有效量的生物活性剂,例如血管生成因子、生长因子、激素等。
可以采用本文所述的装置来治疗需要向生物体连续供给生物活性物质的病理。例如,此类装置还可以被称为生物人工器官,其含有生物活性剂和/或细胞的同质或异质混合物,或者产生一种或多种目标生物活性物质的细胞。理想地,生物活性剂和/或细胞被完全包封或包裹在至少一个内部空间内,或者为包封腔室,其被至少一个或多个半渗透膜界定。这样的半渗透膜应该容许包封的目标生物活性物质(例如胰岛素、胰高血糖素、胰腺多肽等)通过,使活性物质可到达装置外的靶细胞和患者体内。在优选实施方案中,半渗透膜容许天然存在于受试者中的营养物通过该膜,从而将必需的营养物提供给包封的细胞。同时,这样的半渗透膜抑制或防止患者细胞,更具体地为免疫系统细胞通过和进入该装置并伤害装置中的包封的细胞。例如,在糖尿病的情况下,该方法能够使葡萄糖和氧刺激胰岛素生成细胞来实时释放身体所需的胰岛素,同时防止免疫系统细胞识别和破坏植入的细胞。在优选实施方案中,半渗透膜抑制植入的细胞从包封中逸失。
优选的装置可以具有某些需要的特征,但该特征不限于下述特征中的一种或组合:i)包含在生理条件下起作用的生物相容性材料,该生理条件包括pH和温度;实例包括但不限于,各向异性材料、聚砜(PSF)、纳米纤维垫、聚酰亚胺、四氟乙烯/聚四氟乙烯(PTFE;也称为)、ePTFE(膨体聚四氟乙烯)、聚丙烯腈、聚醚砜、丙烯酸树脂、醋酸纤维素、硝酸纤维素、聚酰胺以及羟丙基甲基纤维素(HPMC)膜;ii)不释放伤害包封在装置中的生物活性剂和/或细胞的毒性化合物;iii)促进生物活性剂或大分子跨装置的分泌或释放;iv)促进大分子扩散的快速动力学;v)促进包封的细胞的长期稳定性;vi)促进血管生成;vii)包含化学惰性的膜或外壳结构;viii)提供稳定的机械特性;ix)维持结构/外壳整体性(例如,防止毒性或有害试剂和/或细胞的不期望的泄露);x)是可重装填和/或可灌注的;xi)是机械上可扩展的;xii)不含开口或含至少1个、2个、3个或更多个开口;xiii)提供用于从宿主组织中免疫分离移植的细胞的机构;xiv)易于制造和制备;以及xv)可被灭菌。
本文所述的包封装置的实施方案不意在限于特定的装置尺寸、形状、设计、容量和/或用于制备该包封装置的材料,只要实现上述一个或多个因素即可。
装置设计
在一个实施方案中,通过在装置中形成一个或多个隔室来改善该包封装置,而不是通过围绕外周或边缘来密封或焊接该装置来防止细胞和/或生物活性剂的泄露而制成的。图1是装置的一个实施方案的示意图实例,但是该装置不意在局限于此设计。而且,该设计可以包括例如本领域中常规设计的变化。在一些实施方案中,装置设计可以依据包封的生物活性剂和/或细胞的类型而进行修改以满足需要和发挥研究功能。具有可行的任意尺寸或形状的装置可以经进一步被分隔而具有至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个、至少11个、至少12个、至少13个、至少14个、至少15个、至少16个、至少17个、至少18个、至少19个、至少20个、至少21个、至少22个、至少23个、至少24个或更多个腔室或隔室。形成多个隔室的一个目的是其提高了包封的细胞和例如装置周围的空隙空间之间的营养物和氧交换的表面积;例如参见图1-11。此外,这样的设计抑制或并不促成大的细胞团块或簇或聚集体,它们使得被塞进大的细胞簇/聚集体中心中的细胞被摒弃,或接受很少的营养物和氧,因此可能无法存活。因此含有多个腔室或隔室的装置更能够将细胞分散在整个腔室/隔室或多个腔室/隔室中。这样,每个细胞更有机会接受营养物和氧,从而促进细胞存活而非细胞死亡。
一个实施方案涉及基本上椭圆形至矩形装置;参见图1和6。这些装置进一步被分隔或重构建,从而替代稍平的装置,存在通过装置中心走向的焊接部分或焊缝,将装置的每一半密封起来,从而形成两个分开的储库、腔、腔室、中空空间、容器或隔室;或者该焊接部分或焊缝形成一个U形腔室,由于该焊接部分其从中间被隔开或分开,但在此情况下的这样的焊接部分没有完全密封该室;参见图1。图1中,提供的两个开口用于容易地使细胞装填和冲进该腔室和通过该腔室。
另一个实施方案涉及类似的椭圆形或矩形装置,其具有跨该装置平面的2、3、4、5、6、7、8、9、10或更多个焊接部分。在一些方面,焊接部分跨装置的水平面或水平平面。在其它方面,焊接部分跨装置的垂直面或垂直平面。还在其它方面,相贯的焊接部分存在于跨该平面的水平面和垂直面二者。在一些方面,焊接部分彼此平行且等距。在其它方面,焊接部分是垂直的。还在其它方面,焊接部分平行但不等距。如上述实例中,如果焊接部分穿过装置延伸并连接装置的两个边界的话,这样的设计可有效形成完全分开的多达2、3、4、5、6、7、8、9、10或更多的室,或者其可以形成一个连续但互相交叉的腔室。此外,尽管某些示例性装置在图1-11中与平行或平行并等距的焊接部分一起描述,但其它装置还可以以任何方向或取向上的焊接部分定制或制备,包括具有不被焊接部分中断的区域的长焊接部分。使用的焊接部分的类型和数量可以取决于采用的细胞群或试剂,并且取决于治疗或用途。在一些实施方案中,可以排列焊接部分以修饰装置的外观。
图1显示了体现本文所述特征的包封装置,但是如上所述,这仅是一个示例,并且本领域普通技术人员可以预见到通过在任意此装置中使用焊接部分或焊缝形成不同构型,可以定制适于用途的隔室的数量。图2-5显示同一装置的上部、侧面和端部横截面。该装置可以围绕整个边缘1超声焊接,以形成完全封闭的内腔。可以使用形成袋状装置的密封或隔绝膜的其它机构。通过位于中心且沿装置的长轴延伸的内部焊接部分2将腔进一步分隔。该焊接部分延伸到点3,该点3有效限制了每个隔室的厚度或深度,但尚未完全将内腔分开。通过此方法,隔室的宽度和深度得到控制且可以根据需要变化,从而实现细胞产物存活和性能。此外,该装置的所有尺寸,包括但不限于总长度、总宽度、外缘焊接部分厚度、外缘焊接部分宽度、隔室长度、隔室宽度、隔室深度、内部焊接部分长度、内部焊接部分宽度和开口位置为可以变化的设计规格,变化的目的在于最优化用于特定细胞产物和/或生物活性剂的装置。
参照图1,通过两个单独的开口5、5’向隔室装载细胞产物或生物活性剂,该开口5、5’在外缘超声焊接时引入到装置中。这些开口延伸到腔或隔室中,并容许通向隔室,用于在装载期间均匀分布细胞和/或试剂的目的。此外,由于通过如图1中的U形内腔连接开口5、5’,在装载邻近的开口5’时,使得气体经每个开口5通气,因此防止在装置内积累压力。
可选择地,在另一个实施方案中,本文提供的装置不含有入口或出口,即该装置称为是少开口的。这样的实施方案显示于图6中。图7-9显示了基本上类似的装置的顶部、侧面和端部横截面。为了制成如图6-11所示的少开口装置,两个、三个、或更多个阶段的焊接加工是必须的。例如,在一个方面,首先通过超声焊接形成椭圆形/矩形外缘6和分隔点焊部分7。点焊接部分7的功能类似于图1的内部焊接部分2。该点焊部分7以跨装置的方式设置,以定期限制在任何给定点处的腔或隔室8的扩展。并且,通过点焊产生腔或隔室8,由此隔室8相互连接,并且不分离或完全分开任一腔或隔室。此外,点焊部分7的总数、直径和分布为设计参数,其可以最优化以适应装载动力学和任何细胞产物或试剂的生长速率。
一旦细胞被载入装置中时,通过跨装置的边缘9的第二个超声焊接部分将该外部边缘完全和无菌地密封。多步密封方法的结果是完成的装置完全封闭,且不具有从外缘延伸的开口。这种方式简化了装载过程,且改善了装置的总体完整性和安全性,因为开口可以是这样的外缘区域,在该处由于未达到最佳的超声焊接导致可能发生开裂。
此外,尽管上述方法以按顺序的2个步骤描述,用于包封细胞和/或试剂的手段并不限于所描述的2个步骤,而是以任何顺序的任意数目的步骤,该步骤对包封细胞是必需的且同时防止或降低装置开裂的水平。
在另一个实施方案中,图10和11显示了基本上类似于图6所示装置的包封装置,但是在焊接过程中改进了点焊接部分10以去除中心。本领域普通技术人员可以以各种方式实现这一点,例如通过使用具有尖锐的内部边缘的超声焊极(ultrasonic sonotrode),可以在焊接后立刻切割材料。这些切割出的焊接部分10具有的优势在于,它们更易于与宿主组织整合,这是由于切割出的焊接部分10促进装置的血管化,因此改善了氧依赖性细胞产物和/或试剂的存活和性能。通过装置实现和促进新的血管系统的结果是氧在X-Y方向上的扩散运输得到改善,该扩散运输通常局限于平面片层装置的中心。
在另一个实施方案中,该装置设计可以为不同形状,例如细胞包封装置可以是管状或平管状,或者是满足本发明装置的上述要求之一的任何其它形状。
装置材料
所包括的本领域已描述的细胞可渗透膜和不可渗透膜包括上文Baxter之前描述的那些专利或之前被称为TheraCyte细胞包封装置,包括美国专利No.6,773,458;6,520,997;6,156,305;6,060,640;5,964,804;5,964,261;5,882,354;5,807,406;5,800,529;5,782,912;5,741,330;5,733,336;5,713,888;5,653,756;5,593,440;5,569,462;5,549,675;5,545,223;5,453,278;5,421,923;5,344,454;5,314,471;5,324,518;5,219,361;5,100,392;和5,011,494,上述所有专利通过引用以其全文并入本文。
在一个实施方案中,由生物相容性材料组成包封装置,该生物相容性材料包括但不限于各向异性材料、聚砜(PSF)、纳米纤维垫、聚酰亚胺、四氟乙烯/聚四氟乙烯(PTFE;也称为)、ePTFE(膨体聚四氟乙烯)、聚丙烯腈、聚醚砜、丙烯酸树脂、醋酸纤维素、硝酸纤维素、聚酰胺以及羟丙基甲基纤维素(HPMC)膜。至少由例如Phillips 和等制备这些和基本上类似的膜类型和组分。
固定化的装置
还提供了可植入的装置,其固定在植入位点处,以将包封的细胞和/或生物活性剂维持在植入位点并使得例如表达和分泌的治疗多肽从该植入位点扩散。一方面,该植入位点在治疗所针对的组织或器官处或者邻近该组织或器官。在其它方面,在从装置分泌的试剂的递送并非位点依赖性的且该试剂的生物分布取决于血管系统的情况下,该装置可以植入远离的位置。例如,在优选实施方案中,该生物相容的装置皮下植入在前臂、或侧腹、或背部、或臀部、或腿部等的皮肤下面,在该处其基本上保持直到需要将其移出的这样的时间。
可扩展的装置
本文所述的装置具有内表面和外表面,其中该装置含有至少一个空隙(或储库、或腔、或容器或隔室),并且其中至少一个空隙对装置的内表面是开放的。常规可植入的装置通常由刚性的、非扩展的生物相容性材料制成。本文所述的装置的一个实施方案由可扩展的材料制成。其它实施方案涉及不可扩展的材料。装置是否能够扩展可以是制作该装置而采用的材料的固有部分,例如可扩展的聚合物外鞘,或者可以设计使得其可扩展或具有可扩展的能力。例如,提供了扩展尺寸以容纳额外的细胞或以重新装填现有装置的装置。
在另一个实施方案中,该可植入的装置包含在外壳或支架中,该外壳或支架是稍微更为刚性的,且为不可扩展的,但是能够以足够的手段通过增加植入装置的数量来提高细胞或试剂容量。例如,用于插入各自具有预先装载的细胞或试剂的额外的储库、腔、容器、隔室或盒子的机构。可选择地,该外壳含有多个装置,该多个装置中仅部分装载了细胞或其中包封了细胞,而其它装置是空的,可以在之后的时间段及时或在最初植入后的任意时间装载和装填细胞或试剂。这样的可扩展外壳由适于体内移植的惰性材料组成,该惰性材料例如金属、钛、钛合金或不锈钢合金、塑料和适合在哺乳动物中、更具体地在人体内植入的陶瓷。
还在另一个实施方案中,这样的外壳或植入装置支架包括外部套管,该外部套管具有纵轴、沿着该纵轴的至少一个通道和远端以及适合共同接合装置的装置接合区域。类似地,该装置支架起的作用类似于能够在任何时间或长时间容纳超过一个磁盘或盒式录音带的磁盘或盒式录音带支架。还在一些实施方案中,该装置支架含有适合提高支架高度的延展器。
可重装填细胞的包封装置
另一个实施方案涉及具有可重装填的储库、腔、容器或隔室的包封装置,其可以用适合的治疗或生物活性试剂和/或细胞定期装填或灌注。可以通过将治疗有效量的适合的治疗或生物活性剂和/或细胞注射进植入的储库、腔、容器或隔室来实现这样的装填,例如使用注射器或本领域用于体内装填像储库、腔、容器或隔室的其它标准手段真皮下或皮下进行。
包封的细胞
在一些实施方案中,该系统包含的细胞密度为约1×105、1×106细胞/mL至约1×1010细胞/mL或更大。在一些实施方案中,细胞在培养条件下或在系统中体内存活至少1个月、2个月、3个月、4个月、5个月、6个月、7个月、8个月、9个月、10个月、11个月、12个月或1年或更长,且具有的功能相当于细胞被引入系统时或细胞在系统中完全发育和/或成熟时,例如植入需要在体内进一步发育或成熟为功能细胞的祖细胞表现的功能的至少50%、55%、60%、65%、70%、75%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多。在一些实施方案中,系统中的细胞在所述系统中扩增,以提高系统体内植入后的细胞密度和/或细胞功能。
提高细胞存活的方法
细胞和组织包封/免疫分离领域的一个障碍是跨过用于包封细胞和组织的聚合物膜的氧和营养运输的不足。这种气体和营养交换不足的结果是降低的代谢活性和细胞死亡。本文所述的实施方案涉及解决现有技术的这一缺陷的可植入的细胞包封装置。
已经测量了在胰岛的天然环境中分离后和移植后,在不同聚合物装置中以及裸露或游离的,例如在肾包囊下胰岛内的氧分压。胰腺胰岛中的氧分压是体内任何器官中最高的(37-46mmHg)。然而,经过分离,这些值急剧下降(14-19mmHg)。胰腺胰岛经移植到血糖量正常的动物中后,和它们分离的值相比,该值轻微下降(9-15mmHg)。参见Dionne等人,Trans.Am.Soc.Artf.Intern.Organs.1989;35:739-741;和Carlsson等人,Diabetes July199847(7):1027-32,所述文献的公开内容通过引用明确并入本文。这些研究证实了当组织被免疫分离且移植时,即使在血管化的区域,例如肾包囊中,与其自然状态相比(37-46mmHg),该氧分压也下降。因此,这些近乎缺氧的条件可以导致细胞死亡,特别是更为接近细胞簇的中心或包封装置的中心的细胞。
为了达到更好的氧利用性和向包封的细胞或组织和/或生物活性剂的更好的递送,本文所述的实施方案涉及在装置设计和/或制剂中,例如在用于装配该装置的膜或材料中使用例如全氟化物质。特别是全氟有机化合物,例如全氟化碳(PFC),由于其对氧的溶解性比水高数倍,是良好的溶剂。例如,在正常条件下,液体PFC溶解以体积计的40至55%的氧和以体积计的100至150%的CO2。PFC被大量用作血液替代物和组织保存。此外,PFC衍生物是无法代谢的密集的、化学惰性的水可溶性化合物。
在该实施方案的另一个方面,O2递送的增强通过PFC-乳液或PFC和一些基质的混合物进行。例如,装置部件或细胞可以悬浮于或浸于或孵育于乳液/基质中以形成涂层。已知还有某些具有更高的重量/体积浓度的PFV乳液具有改善的氧递送和保留特性。并且,由于由PFC的O2携带能力产生更高氧分压,产生O2压力梯度,其推动溶解的氧扩散到组织中,从而增强向细胞的O2递送。
PFC物质包括但不限于全氟三丁基胺(FC-43)、全氟萘烷、全氟溴辛烷、二-全氟丁基乙烯或其它适合的PFC。优选的PFC通常含有约60至约76重量百分比的碳键合的氟。该全氟流体可以是单一化合物,但通常是此类化合物的混合物。美国专利No.2,500,388(Simons);2,519,983(Simons);2,594,272(Kauck等人);2,616,927(Kauck等人);和4,788,339(Moore等人),其公开内容通过引用整体并入本文。用于本文所述的实施方案的PFC还包括描述于Encyclopedia of Chemical Technology,Kirk-Othmer,第三版,第10卷,第874-81页,John Wiley&Sons(1980)的那些。例如,有用的PFC包括全氟-4-甲基吗啉、全氟三乙基胺、全氟-2-乙基四氢呋喃、全氟-2-丁基四氢呋喃、全氟戊烷、全氟-2-甲基戊烷、全氟己烷、全氟-4-异丙基吗啉、全氟二丁基醚、全氟庚烷、全氟辛烷、及其混合物。优选的惰性液体氟化物包括全氟己烷、全氟-2-丁基四氢呋喃、全氟庚烷、全氟辛烷、及其混合物。用于本文所述的实施方案的可商购的PFC包括FLUORINERT.TM.流体,例如FC-72、FC-75、FC-77和FC-84(描述于1990年产品说明书#98-0211-5347-7(101.5)NPI)、FLUORINERT.TM.流体(可得自Minnesota Mining and Manufacturing Company,St.Paul,Minn)、及其混合物。
体内成像能力
在一个实施方案中,提供了用于在包封装置中体内成像或检测细胞的手段。成像在干细胞疗法中起到重要作用。例如,无创的成像形式可以用于:(1)确定细胞和/或要治疗的疾病的存在、严重性或表型;(2)监测移植细胞疗法中有害或非靶向细胞类型和结构的出现,例如囊肿或小囊肿;(3)引导疗法的递送;(4)跟踪疾病的时间进程和评估效果或疗效;(5)提供标签和限定疗法的机制;(6)分析和评估移植的细胞的存活和功能;以及(7)通常促进任何细胞疗法的过程,例如通过确定细胞疗法的移植、存活和局部功能,包括本文所述的通过替代和/或植入胰腺祖细胞用于治疗糖尿病的细胞疗法。此外,尽管细胞疗法致力于降低致病率/死亡率,此处和下文更详细描述的无创成像技术可以作为有用的替代性终点,例如在初步试验或初步研究中。
任何理想的体内成像技术为:i)无创的;ii)可靠地重复的;iii)能够进入组织直到至少3mm的深度;iv)分辨能力不大于100μm,并且理想地不大于50μm;v)成像不被装置材料削弱,例如可以透过PTFE成像;vi)临床上相容的,且不是技术上难处理的或复杂的;vii)可商购的;viii)FDA批准用于人类使用;ix)合理的成本效益;以及x)可以在合理的时间段(例如数秒或数分钟)内对细胞成像,或者上述的任意组合。
到目前为止,当前的方法包括但不限于共聚焦显微技术、2-光子显微技术、高频超声、光学相干断层成像术(OCT)、光声成像技术(photoacoustic tomography,PAT)、计算机断层扫描技术(CT)、磁共振成像(MRI)、单光子发射计算机断层成像术(SPECT)和正电子发射断层成像术(PET)。这些技术单独或组合可以提供监测移植细胞的有用手段。此外,期望此类技术将随着时间而改进,并且每项技术发挥功能或其利用的基本原理基本上是类似的。这就是说,本文所述的体内成像不意在局限于下文描述的技术,还涉及将起到和本文所述的相同效用的今后开发的和描述的技术。
在一个实施方案中,采用的成像技术为无创的,且提供3维断层扫面数据,具有高的时间和空间分辨率,能够分子成像,并且是低廉和便于携带的。尽管现在没有单独的模式是理想的(下文更为详细地描述),每一个具有不同的特性,并且这些模式可以共同提供值得称赞的信息。
共聚焦显微技术为提高显微相差的光学成像技术,其能够通过使用光学针孔来消除比聚焦平面更厚的样本中的焦点外光线,从而重建三维图像。由于在样品中一次只有一个点被照射,2D或3D成像需要扫描样本中的规则的光栅(即矩形的平行扫描线条式样)。通常采取三个主要扫描变量来产生共聚焦显微扫描图像。可以通过下述方式来实现基本等同的共聚焦操作:采用偶联于稳定照射光束的侧向移动的样本镜台(镜台扫描)、具有稳态的扫描光束(光束扫描)、或通过在用通过旋转的Nipkow或Nipnov盘的孔投射的光点阵列扫描样本的同时,保持镜台和光源稳定。每项技术具有使得其有利于特定共聚焦应用的性能特性,但是限制了其他应用的特性的使用。
所有的共聚焦显微镜都依赖于该技术顺序通过相对厚的切面或全部封固的样本而产生高分辨率图像的能力,该高分辨率图像称为光切面。基于作为基础图像单元的光切面,可以以单、双、三或多波长照射模式从固定的和染色的样本收集数据,并且用不同照射和标记策略收集的图像将互相对准。活细胞成像和延时顺序是可行的,并且应用于图像顺序的数字图像处理方法能获得样本的z-系列和三维表现,以及作为四维成像的3D数据的时间顺序表现。并不限制上述共聚焦显微镜的使用,因为现在或以后开发的其它共聚焦显微镜也包括于本文所述的实施方案中。
可使用大量的荧光探针,当引入到相对简单的操作中时,其可以给某些细胞表面标志物和/或蛋白和胞内细胞器和结构染色,例如Celltracker、DiI、核活体染料等等。特异地直接或间接结合某些细胞表面标志物的荧光标志物可以特别用于鉴别例如不想要的细胞类型。在一个优选实施方案中,对体内存在的包封的多能细胞实时成像提供了检测手段,并因此提供了预防由多能干细胞导致的畸胎瘤形成的可能性,该多能干细胞例如hES或或诱导的多能干(IPS)细胞或无精生殖(parthenote)细胞等。同一检测手段还可以鉴别从装置逸出或泄漏的(或变得不被包封的)多能干细胞。还可以使用在多能干细胞中表达上调的荧光标记的启动子基因OCT4和NANOG进行此类细胞的鉴别。类似地,某些标记核、高尔基体、内质网和线粒体的胞内荧光标志物以及甚至例如以细胞内聚合肌动蛋白为靶点的荧光标记的鬼笔环肽的染料都是可商购的,且可以提供有关细胞命运的重要信息。
在另一个实施方案中,二光子发射荧光(TPEF)显微术是监测分化或反过来说是鉴别多能干细胞的无创手段,该多能干细胞(例如hESC或IPS细胞或无精生殖细胞)不分化,且作为包封于本文所述装置的非常小百分比的产物细胞而无意中植入。二光子发射荧光显微术基本上依赖于内部来源的相差,但还可以通过二次谐波发生检测例如原纤维基质。简单来说,二光子显微术所依赖的荧光发射类似于共聚焦显微术采用的荧光发射。Rice等人(2007年)描述了TPEF可用于揭示生物化学状态中的量差和分化和未分化干细胞的二维(2-D)形状。参见Rice等人(2007年)J Biomed Opt.2007年11月-12月;12(6),其公开内容通过引用明确并入本文。在一个实施方案中,可以基因修饰多能干细胞以表达荧光蛋白,例如增强的绿色荧光蛋白,并被多能干细胞启动子(例如OCT4或NANOG或以后鉴别的任何其它多能干细胞启动子)驱动。对于比皮下移植更深,即深度低于皮肤表面的那些可植入装置,二光子提供比共聚焦显微术更深的无创成像。此外,使用的红外线对活细胞的伤害比暴露于可见光或紫外线的小,这是因为荧光发射所需的光子能量仅在焦点平面处,并且不被焦点外平面中的细胞或组织感受到。
还在一个实施方案中,超声是便于携带的、基本上无害的、多功能的,且可在包封的细胞产物和/或包封的生物活性剂植入时实时进行。特别地,高频超声例如VisualSonics所描述的。高分辨率成像使得可以体内评估哺乳动物纵向研究中的解剖结构和血液动力学功能。例如VisualSonics的Vevo提供:(1)进行个体受试者的疾病发展和退行的纵向研究的能力;(2)低至30微米的解剖和生理结构的成像分辨率;(3)使图像引导的针注射和抽取可视化的能力;(4)微循环和心血管血流评估;(5)经用户友好的设备和研究推动的界面的高通量;和(6)获得全面测量和注释以及离线数据分析的开放性结构。评估微循环和心血管血流的能力将有助于确定细胞的活力,例如O2流动和递送。
在另一个实施方案中,磁共振成像(MRI)可以用于使用相差试剂区分健康的和患病的组织。此外,在另一个实施方案中,计算机断层扫描技术(CT)或CT扫描可以用于产生体组织和结构的详细图片。并且,此处使用相差试剂,并使其易于由于特定吸附速率使正常组织可视化。相差试剂例如8-羟基喹啉铟-111(I-111)的一个用途是用于追踪干细胞,尽管其半衰期确实短。此外,在另一个实施方案中,正电子发射断层扫描技术(PET)扫描可以用于测量来自正电子发射分子,例如碳、氮和氧等的发射,并且提供有价值的功能信息。在又一个实施方案中,光子共聚焦断层扫描技术(OCT)或光声断层扫描技术(PAT)也可用于考察装置内外的细胞和组织。OCT检测不同组织的反射率差异,而PAT检测组织暴露于低能量激光而被加热时产生的超声波。
不同方法和技术或工具可以单独或组合用于可视化、分析和评估体内装置内的植入的细胞。这些和现在已知或今后开发的其它技术可以利用到这样的程度,即它们能够用于体内成像和监测本文所述的细胞和/或试剂。
在整个申请中,引用了不同出版物。所有这些出版物和这些出版物中引用的那些参考文献的公开内容都通过引用一起全文加入到本申请中,从而更为全面的描述该专利所属领域的状态。以下实施例中所使用的人胚胎干细胞、人多能细胞、人胰腺祖细胞、或者来源于人胚胎干细胞、人多能细胞或人胰腺祖细胞的细胞都不是从经过体内发育的人类胚胎以及受精14天后的人类胚胎获得的。
实施例1
包封的胰腺祖细胞的体内功能
进行了下述实施例,至少部分地首先确定了包封胰腺祖细胞的方法的完整性,其包括生物相容性装置和医学/机械装置;第二,确定与未包封的胰腺祖细胞(对照)相比,完全包封的胰腺祖细胞是否体内存活并成熟为有功能的激素分泌细胞。
用于制备来自人胚胎干(hES)细胞的胰腺细胞系的方法基本上描述于下述专利和专利申请中:题为“生产胰腺激素的方法”的美国专利No.7,534,608、2008年10月4日提交的题为“干细胞团块悬浮组合物及其分化方法”的美国申请No.12/264,760;2007年7月5日提交的题为“生产胰腺激素的方法”美国专利申请No.11/773,944;2008年6月3日提交的题为“用于生产定形内胚层的生长因子”的美国申请No.12/132,437;2008年4月8日提交的题为“用于纯化源于人胚胎干细胞的内胚层和胰腺内胚层细胞的方法”的美国申请No.12/107,020;2007年10月19日提交的题为“用于含人血清的无饲养层的多能干细胞培养基的方法和组合物”的美国申请No.11/875,057;2007年2月23日提交的题为“用于培养分化的细胞的组合物和方法”的美国申请No.11/678,487;题为“用于干细胞培养的可选的组合物和方法”的美国专利No.7,432,104;Kroon等人,(2008年)Nature Biotechnology 26(4):443-452;d’Amour等人,2005年,Nat Biotechnol.23:1534-41;D’Amour等人,2006年,NatBiotechnol.24(11):1392-401;McLean等人,2007年,Stem Cells 25:29-38,其公开内容都通过引用以其全文并入本文。
简单来说,未分化的人胚胎干(hES)细胞在DMEM/F12(Mediatech)中维持在小鼠胚胎成纤维细胞饲养层(特殊培养基)上,该DMEM/F12补充了20%KnockOut血清替代物(KOSR,GIBCO BRL)、1mM非必需氨基酸(GIBCO BRL)、Glutamax(GIBCO BRL)、青霉素/链霉素(GIBCOBRL)、0.55mM的2-巯基乙醇(GIBCO BRL)和4ng/mL重组人FGF2(R&D Systems)以及可选择地补充了10-20ng/mL的活化蛋白A(R&D Systems)。每5至7天以约1:4至1:8、1:9或1:10的分流比人工传代人ES细胞培养物。在作为贴壁培养物或在细胞团块悬液中分化之前,在PBS+/+(含有Mg++和Ca++,Invitrogen)中简单洗涤细胞。人ES细胞系可以包括但不限于CyT49、CyT203、Cyt25、BG01和BG02。
用于培养和分化悬液中的细胞或细胞群的方法详细描述于2007年2月23日提交的“用于培养分化的细胞的组合物和方法”的国际申请PCT/US2007/062755和2008年11月4日提交的“干细胞团块悬浮组合物及其分化方法”的美国申请No.12/264,760中,这些申请通过引用以其全文并入到本文。
分化培养条件基本上类似于上文的D’Amour等人2006年所描述的条件和下面的实施例4,二者都描述了5步分化操作:阶段1(定形内胚层;第1天-第4天)、阶段2(原初肠管或前肠内胚层;第5天-第8天)、阶段3(较晚的前肠或Pdx1阳性的内胚层;第9天-第12天)、阶段4(胰腺祖细胞、胰腺上皮和/或内分泌前体;第13天-第15天)和阶段5(激素表达内分泌细胞;第16天或更长)。
在阶段4,从阶段3培养物中去除视黄酸(RA),用DMEM+B27(1:100Gibco)洗涤培养物一次,然后将洗液替换为单独的DMEM+1×B27补充物,或替换为DMEM+1×B27补充物和下述因子的任意组合或任何一种或全部达4-8天:头蛋白(50ng/ml)、FGF10(50ng/ml)、KGF(25-50ng/ml)、EGF(25-50ng/ml)、1-5%FBS。在没有添加RA的情况下,将30-100ng/ml(R&Dsystems)的头蛋白加入到培养基中1-9天。可选择地,在阶段4不添加额外的生长因子。并且,可以向培养物中添加细胞存活试剂,例如Y-27632、法舒地尔、H-1152P以及含有胰岛素/转铁蛋白/硒(ITS)的混合物。
无论是否从贴壁培养物或在细胞团块悬液中生产胰腺祖细胞,所有的胰腺祖细胞群在移植于哺乳动物中时都体内发育和成熟为功能性内分泌组织。由源于hES的移植细胞体内生成胰岛素描述于上文的美国申请和参考文献中,例如题为“生产胰岛激素的方法”的美国申请No.11/773,944和上文的Kroon等人2008年。
不同于美国申请No.11/773,944和上文的Kroon等人2008年所描述的细胞组合物,本研究中的胰腺祖细胞为体内完全分离的或包封的。使用生物相容性聚乙二醇(PEG)包封胰腺祖细胞,其更为详细地描述于题为“用于治疗疾病的包封的生物材料的植入”的美国专利No.7,427,415,其通过引用并入本文。PEG包封的胰腺祖细胞移植在附睾脂肪垫(EFP)下;测定了葡萄糖刺激后不同时间点的血清C肽水平;并且在PEG包封的外植体上进行了免疫组化分析。此外,这些方法之前已描述于题为“生产胰岛激素的方法”的美国申请No.11/773,944和上文的Kroon等人2008年(数据未示出)。免疫组化分析显示胰岛祖细胞能够体内成熟并含有激素表达细胞,例如胰岛素、胰高血糖素和生长激素抑制素。
还可以使用医学或机械装置进行该胰腺祖细胞的包封,该装置例如TheraCyte细胞包封装置。所有述及的TheraCyte细胞包封装置的参考文献都指的是直接从厂商(TheraCyte,Inc.,Irvine,California)购买的装置,并进一步描述于美国专利No.6,773,458;6,156,305;6,060,640;5,964,804;5,964,261;5,882,354;5,807,406;5,800,529;5,782,912;5,741,330;5,733,336;5,713,888;5,653,756;5,593,440;5,569,462;5,549,675;5,545,223;5,453,278;5,421,923;5,344,454;5,314,471;5,324,518;5,219,361;5,100,392;和5,011,494,上述所有专利通过引用以其全文并入本文。胰腺祖细胞体外装载进装置中,或者当该装置已经植入一段时间使得装置预血管化后,然后经装置一侧上的装载口体内装载细胞。
因此,该装置含有细胞(0.4微米)不可渗透的第一膜,但同时该膜不限制氧和不同营养物进出内膜的活动,例如来自内膜外的葡萄糖可以渗透进入含有成熟的胰腺激素分泌细胞的囊,该胰腺激素分泌细胞响应葡萄糖,可以分泌胰岛素,然后该胰岛素渗透出内膜。该装置还含有血管化的外膜。
为了将装置用于任何细胞疗法,该装置必需完全体内含有细胞(例如源于hES的细胞与宿主免疫分离)。为了测定TheraCyte装置的完整性,体内比较了含有胰腺祖细胞的完整装置与膜中具有穿孔的那些装置。将装置穿孔会使宿主细胞侵入,因此建立起宿主-移植物的细胞间接触。
通过外科手术将2个4.5μL TheraCyte装置植入到严重组合免疫缺陷型(SCID)的各只雄性beige(BG)小鼠的附睾脂肪垫(EFP)下或皮下(SQ),该TheraCyte装置首先预血管化。即,一只动物在EFP下接受2个装置,另一只动物接受2个装置(SQ)。这些完整但空(无胰腺祖细胞)的装置在动物内保留足够的时间,使得宿主血管结构形成并与装置相连,例如至少2至8周。8周后,源于hES细胞的约1.5×106个胰腺祖细胞被装载进该4个装置的每一个中。在带有预血管化的装置的动物被装载的同时,将2个改进的TheraCyte装置植入另外3只动物,其中相同尺寸(4.5μL)的原TheraCyte装置的改进是在该装置的膜中穿孔。用具有和装载进入穿孔的装置的相同剂量的细胞离体装载这些穿孔的装置(每只动物2个穿孔装置)。并且在同一时间,和这些实验平行进行2个阳性对照,并且每只动物移植置了Gelfoam上的胰腺祖细胞,如题为“生产胰腺激素的方法”的美国申请No.11/773,944和上文的Kroon等人2008年所述的,尽管在一只动物中两个移植物置于EFP下,另一只动物中仅一个移植物置于EFP下。表1总结了上述实验的结果。
表1:来自包封的成熟胰腺激素分泌细胞的人C-肽血清水平
就葡萄糖刺激的胰岛素分泌(GSIS)而言,0指时间为0;5指葡萄糖刺激后5分钟;30指葡萄糖刺激后30分钟;60指葡萄糖刺激后60分钟;PV TC EFP,在附睾脂肪垫下预血管化的TheraCyte;PV TC SQ,皮下的预血管化的TheraCyte;nPV TC+孔EFP,在附睾脂肪垫下的未预血管化的TheraCyte;以及EFP GF,Gelfoam上的附睾脂肪垫,2×1.5M,具有约1×106个细胞的2个构建体。
使得胰腺祖细胞体内发育和成熟,并且基本上如题为“生产胰腺激素的方法”的美国专利No.11/773,944和上文的Kroon等人2008年所述,测定现在成熟的激素分泌细胞的胰岛素分泌和葡萄糖响应。参见表1。此外,为了确定装置的完整性,处死一些动物,并进行装置的免疫组化考察。
申请人之前证明了,对于证明胰岛素分泌细胞对体内葡萄糖有响应的这一点,低于50pM的血清人C-肽水平或低于25pM的胰岛素水平是没有意义的。这一相同标准用于这些研究中。该研究的结果示于表1。原始Theracyte装置和改进的Theracyte装置在8、12和15周后都具有相当的血清人C-肽水平(动物编号675-676&679-681),动物编号681在葡萄糖刺激后30分钟时除外,当时血清C-肽水平要比在该时间段的任何其它动物要高得多。
首先,就Theracyte包封装置的完整性而言,进行了原始Theracyte装置和改进的Theracyte装置(动物编号分别为675-676和679-681)的苏木精和伊红染色。这些装置的显微镜考察显示,原始Theracyte装置具有不同的宿主血管结构,包括装置周围的血管型细胞,但是没有观察到这些类似的结构侵入细胞不可渗透的内膜和进入含有源于hES的细胞的空间。即,在容纳源于hES的细胞或移植物的细胞不可渗透的内膜内没有观察到宿主血管结构。相比之下,改进的Theracyte装置的显微镜考察显示,不仅在装置的外侧上存在相连的宿主血管结构,在穿孔的细胞不可渗透的内膜内部也发现了血管结构和血管细胞。因此,原始Theracyte装置可以完整含有源于hES的细胞,并且在容纳源于hES的细胞的空间中没有观察到宿主细胞和组织。
总的来说,Theracyte装置能够完全体内包封(分离)源于hES的细胞,并且胰腺祖细胞可以在这些装置中体内存活和成熟为功能性的激素分泌细胞。
除了证明Theracyte装置的完整性之外,本研究还证明了完全完整的装置能够在包含的源于hES的细胞和宿主环境之间交换足够的氧和各种营养物,并且胰腺祖细胞能够体内存活和成熟。例如,和对照(动物682和684)相比,在9和12周时预血管化的装置中的血清人C-肽水平不如相同时间点的一样高。然而,到第15周(细胞植入后),预血管化的装置中的血清人C-肽水平和未包封(Gelfoam)的对照相当。
此外,处死带有原始Theracyte(预血管化的)装置的动物,并取出装置(或外植体)(动物编号675&676)。基本上再如Kroon等人2008年所述,再次进行免疫组化,其通过固定取出的装置和/或外植体,将10个切片切成薄的微米切片而进行。用PBS洗涤切片2次,之后用PBST(PBS/0.2%(wt/vol)吐温20;Thermo Fisher Scientific)洗涤。在24℃下,用5%正常猴血清(Jackson Immuno Research Labs)/PBSTr(PBS/0.1%(wt/vol)Triton X-100(Sigma))封闭1小时。在1%BSA(Sigma)/PBSTr中稀释一抗和二抗。在4℃下孵育一抗过夜,在保湿室中孵育二抗约1小时15分钟。采用下述一抗和稀释液;豚鼠抗胰岛素(INS),1:500(Dako,A0564);兔抗生长激素抑制素(SST),1:500(Dako,A0566);山羊抗生长激素抑制素(SST),1:300(Santa Cruz Biotechnology,SC-7819);山羊抗胰高血糖素(GCG),1:100(Santa Cruz Biotechnology,SC-7780)。通过共聚焦显微术(Nikon,Exlipse 80i,Ci)进行成像。
原始Theracyte装置/外植物的免疫组化考察清楚地显示了单阳性激素细胞,例如GCG、INS和SST表达细胞。该数据支持了血清人C-肽数据,后者证明了移植的源于hES的细胞的葡萄糖响应。激素分泌细胞的存在证实了胰腺祖细胞能够体内存活和成熟,即使是在完全包封的情况下。
上述研究清楚地证明了原始和改进的Theracyte装置完全包含源于hES的胰腺祖细胞且没有宿主细胞跨细胞不可渗透的内膜侵入的能力。这些研究还证明了该装置的细胞不可渗透的内膜尽管对细胞是不可渗透的,但是对于源于hES的胰腺祖细胞在装置中存活所需的氧和各种营养物是可渗透的,使得祖细胞能够体内成熟为激素分泌细胞,即为发挥功能且对葡萄糖响应的细胞。
此外,预见到胰腺系细胞群、特别是至少本文所述的胰腺祖细胞,当包封于改进的装置,例如至少为图1-11中所述的那些之中时,将会体内成熟和发挥功能。
实施例2
在没有宿主-移植物细胞接触情况下,包封的胰腺祖细胞的体内功能
为了确定移植的胰腺祖细胞群内功能化是否需要宿主-移植物细胞间接触,将细胞装载进未预血管化的细胞包封装置。
胰腺祖细胞群基本上如实施例1中所述生成。在此研究中不对装置进行预血管化,并且将所有的TheraCyte装置(4.5μL)中的每个装置离体装载至少1.5×106个细胞(1.5M)或4.5×106个细胞(4.5M)。将含有1.5M个细胞的3个装置皮下植入(TC SQ 1.5M),将含有4.5×106个细胞(4.5M)或约15μL的3个装置离体皮下植入(TC SQ 4.5M)。为了对比和作为对照,将具有植入的未包封的胰腺祖细胞的动物与包封的但未预血管化的实验平行进行。将3只小鼠中的每一只皮下植入2个Gelfoam构建体,所述构建体装载了约1.9-2.4×106个细胞(2个构建体的总合),或约4μL/构建体,并且将2只小鼠在EFP下植入2个Gelfoam构建体,所述构建体装载了约1.9-2.4×106个细胞(2个构建体的总合),或约4μL/构建体。表2总结了上述实验的结果。
表2:来自包封的未预血管化的成熟胰腺激素分泌细胞的人C-肽血清水平
就葡萄糖刺激的胰岛素分泌(GSIS)而言,0指时间为0;60指葡萄糖刺激后60分钟;SQ,皮下装置;SQ GF,皮下Gelfoam;EFP GF,EFP,附睾脂肪垫Gelfoam;1.5M,1×106个细胞;4.5,4.5×106个细胞;1.9-2.4M,1.9-2.4×106个细胞;nd,未检测到。
尽管实施例1证明了源于hES的细胞可以在预血管化的装置中体内存活、成熟和发挥功能,但基于表2,预血管化对于细胞存活、生长和/或成熟不是必不可少的。表2比较了包封的胰腺祖细胞和Gelfoam上的未包封的胰腺祖细胞,文献已经充分表明后者在体内产生功能性激素分泌细胞,参见上文的Kroon等人2008年。事实上,在葡萄糖刺激后60分钟时,包封的细胞的血清C肽水平与从未包封的细胞观察到的血清C肽水平是相当的。事实上,当皮下植入时,在例如比较动物编号833-835(TC SQ 1.5M)与819-821(SQ1.9-2.4M)时,包封的细胞比未包封的细胞表现得更好。因此,宿主-移植物细胞间接触不是必不可少的,这是因为如此实施例中所明确证明的,在完全无任何宿主-移植物细胞间接触时,移植的完全包封的细胞存活、生长和成熟。
本文所述的方法、组合物和装置目前是优选的实施方式的代表,为示例性的且不意为对专利范围的限制。本发明的精神所涵盖的领域的技术人员将会想到改变、替代方式、修饰和变化以及其它用途。例如,TheraCyte装置的尺寸为4.5μL、20μL和40μL,因此,本领域普通技术人员如果采用能够含有更多个细胞的装置,就可以扩大上述研究的规模。此外,由于上文的Kroon等人2008年已经证明了胰腺祖细胞在移植物植入前和之后在治疗链脲佐菌素诱导的糖尿病小鼠中的效能,本领域普通技术人员可以采用本文所述的包封的细胞进行类似的研究。并且,纯化或富集特定源于hES的细胞群的方法详细描述于2008年4月8日提交的题为“用于纯化源于HES细胞的内胚层和胰腺内胚层细胞的方法”的美国申请12/107,020中,其通过引用以其全文并入本文。因此,本领域普通技术人员可以富集特定源于hES的细胞,包括但不限于胰腺祖细胞、胰腺内分泌前体细胞和/或内分泌前体细胞。
实施例3
当植入时体内发育并发挥功能的冷冻保存的胰腺祖细胞
由于细胞移植受到缺乏可用的细胞来源以及操作和后勤问题的影响,需要提供不受限制的细胞来源,用于在患者方便的时间进行移植。
基本上如实施例1和2以及上文的Kroon等人2008年,以及下表3a-h所述,分化人ES细胞。在分化的第14天,离心胰腺祖细胞,然后重悬于冷冻培养基中,该冷冻培养基含有具有30%无异源(Xeno-free)Knockout血清替代物的DMEM、25mM HEPES和10%二甲基亚砜溶液。将细胞等分到冷冻管中。在环境温度下在冷冻培养基中平衡细胞约15分钟,然后在4℃下平衡细胞45分钟,之后置于冰上,并放入平衡到0℃的程控冰箱中。
将细胞和冷冻室以2℃/min的速度调节成-9℃。在此温度,将所述室和样品保持约10分钟,然后手工向小管接种。将样品在-9℃下保持约10分钟,然后以0.2℃/分钟的速度冷却,直到样品达到-40℃。随后将冷冻室以25℃/分钟的速度冷却,直到样品达到约-150℃。然后将置于管中的细胞移到液氮储存冰箱的气相中。
在期望的时间,通过将细胞转移至37℃水浴迅速解冻小管。将细胞转移至15ml无菌试管中,该试管含有具有B-27(1:100)和KGF+EGF(每种50ng/mL)的DMEM,轻柔混合,并以50×g简单离心。去除上清,将细胞重悬于加入25μg/mL DNA酶的相同缓冲液中,并放置进行旋转培养。
当它们已经旋转到组织培养孔的中心时,在任何显著细胞损伤发生之前迅速解冻时,并且在细胞量减小结束时的解冻后4天,通过对胰腺祖细胞团块进行拍照来定量存活的细胞。定量照片中细胞占据的区域,并且表示为解冻后4天时的存活百分比。在此实施例中,至少获得52%的存活。冷冻保存和解冻后培养的胰腺祖细胞的形态和新鲜细胞相同。
解冻后培养4天后,基本上如上文所述将细胞装载于装置中,并如上文所述以外科手术植入哺乳动物中。冷冻保存的细胞能够体内发育和成熟为胰腺的功能性激素分泌细胞和腺泡细胞,类似针对新鲜胰腺祖细胞团块所述的。参见实施例4。
因此,源于hES细胞的人胰腺祖细胞的体外冷冻保存对植入后发育的影响很小或者没有影响。因此,证明了冷冻保存是储存适于移植的源于hESC的胰腺祖细胞的可靠方法。
实施例4
提供用于治疗糖尿病的人胰腺祖细胞的方法
多能干细胞培养条件
基本上如上文的D’Amour等人2005年和2006年和Kroon等人2008年所述,进行多能干细胞、特别是ES和IPS细胞的培养、增殖和维持。采用具有DMEM-F12/1%Glutamax/1%非必需氨基酸/1%Pen-Strep/0.2%b-巯基乙醇的ES基础培养基。对于阶段0或hES细胞的增殖而言,多种生长因子和/或胰岛素和胰岛素样生长因子的水平保持非常低。使用低水平的人血清培养不含饲养层的多能干细胞。使用Rho-激酶抑制剂Y27632维持多能干细胞。将被理解的是其它Rho-激酶抑制剂也可使用而得到类似结果。ES或多能干细胞培养条件基本上类似于上文所述的实施例1和2。
将被理解的是,ES基础培养基可以常规地含有约20%Knockout血清替代物(KSR)或无异源(XF)Knockout血清替代物。
将被理解的是,hES细胞培养物常规地含有约0ng/mL、约4ng/mL或约10ng/mL碱性成纤维细胞生长因子(bFGF)。如之前所证明的,在某些条件下,低水平的活化蛋白A帮助促进多能干细胞增殖,而不促进hES细胞分化。因此,多能干细胞培养物通常含有约5ng/mL、约10ng/mL或约20ng/mL的活化蛋白A或B,或者其它类似的生物活性TGF-β生长因子家族,例如至少GDF-8和GDF-11。还在其它多能干细胞培养物中,Errb2-结合配体,例如低水平的调蛋白也帮助促进hES细胞增殖,例如在约5至10ng/mL。并且,不同或低水平的bFGF、活化蛋白A、B或其它TGF-β生长因子家族成员,特别是GDF-8和-11以及Errb2-结合配体,例如调蛋白的任意组合都可以用于促进hES细胞培养,只要保持低水平的生长因子,从而促进hES细胞的增殖和它们的多能性并且其细胞不分化。本文所述的实施方案描述了在维持和增殖多能干细胞培养物中的各种生长因子(在一些情况下的大蛋白),但是这些蛋白在大规模制备基础上的高成本使得在成本上受限制。因此,鉴别和表征某些小分子替代更大的生长因子蛋白可能是有利的。一个这样的分子是去甲肾上腺素(NE),其更为详细地描述于2009年4月27日提交的题为“支持多能细胞生长的小分子及其方法”的美国申请61/172,998,其通过引用以其全文并入本文。在一个实施方案中,约5ng/mL、约10ng/mL、约20ng/mL、约30ng/mL、约40ng/mL、约50ng/mL、约60ng/mL、约70ng/mL、约80ng/mL、约90ng/mL、约100ng/mL或更多的用于维持多能干细胞培养物,例如,hES或iPS培养物。在一个优选实施方案中,约50ng/mL可以用于hES细胞培养物中。
将被理解的是,可以常规地在成纤维细胞饲养层细胞上保持多能干细胞的增殖。可选择地,可以在胞外基质包被的板(Corning)上培养ES细胞。此外,Bodnar等人(GeronCorporation,Menlo Park,California,USA)在美国专利6,800,480中描述了在单层胞外基质上生长hES细胞培养物,该基质通过裂解成纤维细胞饲养层生成,该美国专利的公开内容通过引用明确并入本文。然而,在优选实施方案中,使用低水平的人血清培养不含饲养层的多能干细胞,该低水平例如在基础ES细胞培养基中的约0.1%、约0.2%、约0.3%、约0.4%、约0.5%、约0.6%、约0.7%、0.8%、约0.9%、约1%、约1.2%、约1.4%、约1.6%、约1.8%、约2%至约10%或更多。可以同时向基础培养基中加入人血清,从而避免任何对如美国专利6,800,480中考虑的或由Corning提供的预包被组织培养皿的需要。人血清在培养、维持和增殖多能干细胞培养物中的用途更详细地描述于2007年10月19日提交的题为“用于含人血清的无需饲养层的多能干细胞培养基的方法和组合物”的美国申请11/875,057,其通过引用以其全文并入本文。
还可以通过加入Rho激酶家族的抑制剂,例如至少Y27632来维持多能干细胞。近来已发现Y27632防止细胞凋亡,以及促进解离的人多能干细胞的存活和克隆效率,而不影响自更新性质或多能性。尽管本文所述的实施方案由于Y27632的商业可用性使用Y27632,但也可以采用其它Rho激酶抑制剂,并且仍在本发明的范围内。
阶段1的多能干细胞分化条件
基本上如上文的D’Amour等人2005年和2006年和Kroon等人2008年以及上文相关美国申请所述进行多能干细胞、特别是ES和IPS细胞的定向分化,该美国申请包括2009年4月22日提交的题为“从分化的重新编程的细胞生成的细胞组合物”的美国申请61/171,759,上述这些通过引用以其全文并入本文。
在分化阶段1之前,或在分化过程的第0天,在培养基中培养多能干细胞,该培养基包含RPMI1640/1%Glutamax/1%Pen-Strep,并且基本上无血清和/或约0.1%牛血清白蛋白(BSA)。此外,分别加入1:5000或1:1000或约0.02%或0.1%的胰岛素/转铁蛋白/硒(ITS)补充物。此外,向分化培养基中加入包括TGF-β超家族生长因子和Wnt家族成员的各种生长因子。
将被理解的是,加入的TGF-β超家族生长因子包括但不限于活化蛋白A、活化蛋白B、GDF-8或GDF-11。在一些实施方案中,可以使用Wnt通路活化因子。在另一个实施方案中,Wnt-3a与TGF-β超家族生长因子之一一起使用。在进一步优选的实施方案中,约50ng/mL的Wnt3a和约100ng/mL的TGF-β超家族成员,例如活化蛋白A、活化蛋白B和GDF-8和-11一起使用。还在另一个实施方案中,活化类似的信号传导通路的小分子可以代替生长因子。参见,例如Borowiak,M等人(2009年)描述了使小鼠和人胚胎干细胞定向分化为内胚层的两个小分子。Borowiak,M等人(2009年)Cell Stem Cell,4(4):348-358通过引用以其全文并入本文。
在上述培养基条件下孵育多能干细胞至少24小时,该时间之后将培养基换成包含下述成分的培养基:RPMI1640/1%Glutamax/1%Pen-Strep和较多的FBS,约0.2%FBS,并进一步含有约100ng/mL的TGF-β超家族成员。不加入Wnt家族成员。将被理解的是,可以在约24小时后向培养物中加入Wnt家族成员。
在此培养基中再培养细胞24小时。从细胞已经分化约总计48小时(第0天至第2天)后,培养物中的细胞包含分化的定形内胚层细胞。
将被理解的是,从第0天(多能干细胞)开始的阶段1的分化总天数可以为约1-3天,优选约1-2天,甚至更优选约2天。将被理解的是,阶段1分化后,培养物中的细胞将包含约10%、约20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%、约95%、约96%、约97%、约98%或约99%分化的定形内胚层细胞。
用于确定培养物的组成的方法之前已描述于上文相关申请中,但是主要通过本领域熟知的RNA和蛋白测定进行。定形内胚层细胞表达高水平的某些标签细胞表面标志物如SOX17和FOXA2,还可以表达高水平的CER和CXCR4,但不会可感知地表达HNF4-α,HNF4-α在前肠内胚层(或PDX1阴性的前肠)细胞中可感知地表达。定形内胚层细胞也不会可感知地表达在例如之后的阶段3、4或5的细胞中观察到的标志物,或者在PDX1阳性的前肠内胚层细胞中表达的PDX1、NNF6、SOX9和PROX 1,或者在PDX1阳性的胰腺祖细胞或PDX1/NKK6.1共阳性的胰腺祖细胞中表达的PDX1、NKX6.1、PTF1A、CPA和cMYC,或者在内分泌前体细胞中表达的NGN3、PAX4、ARX和NKX2.2,或者在多激素或单激素胰腺内分泌细胞中表达的INS、GCG、GHRL、SST或PP。
阶段2的分化条件
多能干细胞分化成DE约48小时(约2天)后,将DE分化培养基替换为促进人前肠内胚层(PDX1阴性的前肠内胚层)形成的另一种培养基条件或阶段2细胞。该细胞培养基包含RPMI1640/1%Glutmax/1%Pen-Strep和0.2%FBS或进一步升高含量的FBS,例如约2%FBS。类似于上文阶段1培养基,分别加入1:5000或1:1000或约0.02%或0.1%的ITS补充物。
将被理解的是,DE分化培养基不总是补充ITS。
然而,有意在培养基中不包含DE分化生长因子,例如TGF-β超家族生长因子或Wnt家族成员。向培养基中加入TGF-β激酶抑制剂。
由于去除TGF-β超家族成员对前肠内胚层正确形成有利,TGF-β超家族成员抑制剂,例如TGF-β激酶抑制剂的使用确保了TGF-β超家族成员的活动基本上被抑制的效果。这使得DE有效定向分化成前肠内胚层(PDX1阴性的前肠内胚层),而没有培养物中DE分化的持续效果。
代替TGF-β家族成员,向培养物中加入角化细胞生长因子(KGF)以促进前肠内胚层形成。在此培养基中孵育细胞约24小时,之后将培养物替换成基本上相同的培养基,除了此刻从培养物中去除TGF-β激酶抑制剂。在培养基改变情况下,在此培养基(去掉TGF-β激酶抑制剂)孵育细胞5天。
将被理解的是,对于发生可允许的培养基改变的阶段2,可以在此培养基(去掉TGF-β激酶抑制剂)中孵育细胞长达约3天。从第0天开始,多能干细胞的分化总天数为约3-5天,优选约4-5天,更优选约5天。
此外,用于确定培养物的组成的方法之前已描述于上文相关申请中,但是主要通过本领域熟知的RNA和蛋白测定进行。前肠内胚层细胞或PDX1阴性的前肠内胚层细胞表达高水平的某些标签细胞表面标志物,如Sox17、HNF3-β和HNF4-α。这区别于阶段1的DE,其不会可感知地表达HNF4-α,但是确实可感知地表达另外两种标志物,即Sox17和HNF3-β。PDX1阴性的前肠细胞也不会可感知地表达在例如之后的阶段3、4或5的细胞中观察到的标志物,或者在PDX1阳性的前肠内胚层细胞中表达的PDX1、NNF6、SOX9和PROX 1,或者在PDX1阳性的胰腺祖细胞或PDX1/NKK6.1共阳性的胰腺祖细胞中表达的PDX1、NKX6.1、PTF1A、CPA和cMYC,或者在内分泌前体细胞中表达的NGN3、PAX4、ARX和NKX2.2,或者在多激素或单激素胰腺内分泌细胞中表达的INS、GCG、GHRL、SST或PP。
阶段3的分化条件
为了促进阶段2的PDX1阴性的前肠内胚层细胞分化为PDX1阳性的前肠内胚层细胞,替换PDX1阴性的前肠内胚层细胞培养基,并在包含下述成分的培养基中孵育:DMEM高葡萄糖/1%Glutamax/1%Pen-Srep/1%B27补充物,并含有约1或2μM的视黄酸(RA)、约0.25μM的KAAD-环巴胺,以及含有或不含有约50ng/mL的头蛋白。可选择地,一些培养物加入1nM至约3nM的芳香族类维生素A(E)-4-[2-(5,6,7,8-四氢-5,5,8,8-四甲基-2-萘基)-1-丙基]苯甲酸(TTNPB),代替加入RA。其它培养物还加入约1mM的dorsomorphin。在此培养基中孵育细胞约3天。将被理解的是,可以孵育细胞约1-5天,优选2-4天,更优选3天。
类似于上文,用于确定培养物组成的方法之前已描述于上文相关申请中,但是主要通过本领域熟知的RNA和蛋白测定进行。除PDX1外,PDX1阳性的前肠内胚层细胞表达高水平的某些标签细胞表面标志物,例如Sox9、HNF6和PROX1,但不会可感知地表达在例如之后的阶段4或5的细胞中的其它标志物,或者在胰腺祖细胞中发现的PDX1、NKX6.1、PTF1A、PCA和cMYC,或者在内分泌前体细胞中表达的NGN3、PAX4、ARX和NKX2.2,或者在多激素或单激素胰腺内分泌细胞中表达的INS、GCG、GHRL、SST或PP。
阶段4的分化条件
为了进一步促进正确分化的PDX1/NKX6.1共阳性的胰腺祖细胞从PDX1阳性的前肠内胚层细胞的分化,替换PDX1阳性的前肠内胚层细胞培养基,并在包含如上文阶段3中的类似基础培养基的培养基中孵育,即DMEM高葡萄糖/1%Glutamax/1%Pen-Srep/1%B27补充物,除了不含RA或视黄酸衍生物,例如TTNPB或头蛋白或dorsomorphin。相反,向培养物中加入约50ng/mL的头蛋白、KGF和FGF。将被理解的是,可以向培养物中加入约10至100ng/mL的表皮生长因子和成纤维细胞生长因子(EGF和FGF)。优选向培养物中加入约10至50ng/mL或优选地约10ng/mL的EGF和约50ng/mL的FGF。可选择地,可以不向培养物中加入FGF,或者使用头蛋白、KGF、FGF各25-100ng/mL,或者优选地约50ng/mL的头蛋白、KGF和FGF。在培养基替换情况下,在此培养基中保持细胞约4至5天。将被理解的是,在可允许的培养基替换的情况下,可以在此培养基中保持细胞约2至6天,优选3至5天,甚至更优选4至5天。
类似于上文,用于确定培养物组成的方法之前已描述于上文相关申请中,但是主要通过本领域熟知的RNA和蛋白测定进行。PDX1/NKK6.1共阳性的胰腺祖细胞或内胚层细胞表达高水平的某些标签细胞表面标志物,如PDX1、NKX6.1、PTF1A、CPA和cMYC,但不会可感知地表达在之后的阶段的细胞中发现的其它标志物,例如在内分泌前体细胞中表达的NGN3、PAX4、ARX和NKX2.2,或者在多激素或单激素胰腺内分泌细胞中表达的INS、GCG、GHRL、SST或PP。
PDX1阳性的胰腺祖细胞的移植和纯化
在阶段4的细胞培养基中约3-5天后,制备细胞培养物用于:i)流式细胞术分离和/或纯化和分析;ii)如上文更为详细讨论的将细胞包封进包封装置;和/或iii)移植到哺乳动物中。可选择地,来自阶段4的细胞培养物被转移进或适应培养基约1至2天,该培养基具有DMEM高葡萄糖/1%Glutamax/1%Pen-Srep/1%B27补充物,去掉生长因子,然后进行流式细胞术和/或移植。
用于富集、分开、分离和/或纯化胰腺祖细胞和/或胰腺内分泌细胞或内分泌前体细胞的详细内容详细描述于2008年4月8日提交的题为“用于纯化源于hES细胞的内胚层和胰腺内胚层细胞的方法”的美国申请No.12/107,020中,其通过引用以其全文并入本文。
简单而言,CD142用于富集PDX1阳性的胰腺祖细胞(或胰腺上皮细胞或PE),这是通过用PBS快速洗涤,然后使用TrypLE和3%FBS/PBS/1mM EDTA(分选缓冲液)酶促解离成基本上单个细胞的悬液完成的。该单个细胞的悬液通过40-100μM过滤器,然后成团,在分选缓冲液中再次洗涤,再次成团,之后以约1×108个细胞/mL在分选缓冲液中再次重悬为基本上单个细胞的悬液。用藻红蛋白缀合的抗小鼠CD142抗体(BD PHARMIGENTM)以10μl/1×107个细胞孵育重悬的细胞。用体积分选缓冲液洗涤细胞至少一次,成团并在含抗藻红蛋白微珠(Miltenyi Biotec)的溶液的分选缓冲液中再次重悬为基本上单个细胞的悬液,并孵育。洗涤细胞至少一次,并进行CD142阳性细胞的免疫磁筛选。分别收集预分选的、结合的和流过的部分,并用抗-PDX1和/或抗CHGA复染。
相比预分选的和流过的部分,结合部分高度富集了CD142阳性的细胞和PDX1阳性的胰腺祖细胞。参见美国专利申请No.12/107,020的表9。例如,相比预分选组分中的约22%PDX1阳性的胰腺祖细胞和流过组分的约8%PDX1阳性的胰腺祖细胞,抗CD142阳性的或结合组分由约71%PDX1阳性的胰腺祖细胞组成。因此,相对于预分选细胞群,在抗CD142阳性的或结合组分中具有约3倍富集的PDX1阳性的胰腺祖细胞。并且,CD142阳性的或结合组分没有嗜铬粒细胞A(CHGA)阳性的细胞,这指示没有在此细胞群中选择或富集多或单激素内分泌细胞。因此,CD142可以用于阳性免疫筛选以富集和/或纯化PDX1阳性的胰腺祖细胞或上皮细胞,而用胰腺内分泌型细胞富集流过组分(没有结合到抗体柱上的组分或细胞;或CD142-)。并且,参考美国专利申请No.12/07,020的表10。
实施例5
体内成熟的胰腺祖细胞改善糖尿病诱导动物的低血糖症
为了确定PDX1阳性的胰腺祖细胞培养物或富集的细胞群,包括冷冻保存的细胞群是否完全能体内发育和成熟为葡萄糖敏感性的胰岛素分泌细胞,使用带有平头适当尺寸型号针头的Hamilton注射器或根据厂商的方法的离心装载方法,将祖细胞群装载进类似于上文实施例1和实施例2所述的包封装置中。
在将细胞装载进装置前,认为该装置适于在包括人的哺乳动物中移植和使用,例如该装置已通过包括灭菌的质量控制典型标准。由于装置的膜部件可能由疏水膜,例如PTFE组成,并因此排斥水,通常通过在醇溶剂(例如95%ETOH)中润湿装置,然后在盐水溶液中重复洗涤它们,而实现装置的灭菌。因此,在装载之前应该保持装置湿润。理想地,在确保植入的任何装置部件将不被不想要的细胞污染的无菌条件下实施任何装置装载方法。
可以通过使用加上平头适当尺寸型号的无菌针头等(尺寸将依据装置的开口的直径而变化),例如22号针头的Hamilton注射器等进行装置装载。针头连接于适合的Hamilton注射器,并含有约5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100或更多μL的反映治疗有效量或剂量的细胞的细胞体积。然后将针头插入装置的至少一个开口,并插入腔(或腔室或储库),但不接触装置的壁。基本上将注射器的全部内容物缓慢地排入到装置中,同时抽出针头。
可选择地,使用针头装载装置的另一个方法为通过使用无菌塑料或硅开口管,其将装置开口连接到针头,针头插入该开口而非腔中。在此方法中,将硅粘合剂注射到硅开口管中,从装置开口成壁或密封。然后切下该开口管,并检查漏洞或裂缝。
为了使用离心方法装载装置,将含有治疗有效量或剂量的细胞的一定量的细胞吸取到微量移液器的吸头中,并使该吸头与装置开口接触。还可以将装置和移液器吸头放入较大的容器或离心机锥形管中,固定或不固定。通常将一定体积的培养基层加在移液器吸头以及在较大的锥形管中的细胞悬液的顶部。然后在约1000rpm下离心锥形管数分钟,优选20秒至约2分钟,或者直到细胞被装载到装置中。之后,非常小心地去除装载部件,并放置好装载的装置。
然后制备装置中包封的细胞用于植入哺乳动物中,例如免疫系统损伤的小鼠(例如SCID/Bg)、大鼠、更大的哺乳动物或人类受试者。植入包封的细胞和装置的方法基本上如上文的实施例1和2以及Kroon等人2008年所述,除了在Kroon等人中植入GELFOAM上的细胞而非包含在装置中的。然而,由于包封的细胞群基本上含有类似于Kroon等人2008年和2007年7月5日提交的题为“生产胰腺激素的方法”的美国专利No.7,534,608(其通过引用以其全文并入本文)中所述的祖细胞群,所以用于确定细胞功能性的试验也基本相同。简单而言,通过给动物注射一定量的精氨酸或葡萄糖,优选葡萄糖来测试动物约每2、3或4周,如果包封的细胞现在已经体内适当地成熟为β细胞,其将响应葡萄糖而分泌胰岛素。简而言之,和天然产生的β细胞相同,成熟β细胞响应葡萄糖。从哺乳动物收集血液,以确定人C-肽的水平,该人C-肽分泌自已成熟为人β细胞的人移植的祖细胞。早在移植后4至6周就可以在动物血清中检测出人C-肽,并且经时间推移,随着更多祖细胞或内分泌前体细胞成熟为正确发挥功能的β细胞,人C-肽的水平上升。通常认为人C-肽大于50pM的量为移植的细胞的功能指征。之前显示来自PDX1阳性的胰腺祖细胞的移植细胞确实产生了表达标志物和具有功能性胰腺激素分泌细胞的生理特征的内分泌细胞。参见上文的Kroon等人2009年和2007年7月5日提交的题为“生产胰腺激素的方法”的美国申请11/773,944,其通过引用以其全文并入本文。
对于某些哺乳动物,考虑到最初间歇期的免疫抑制,直到装置内的祖细胞完全成熟并响应葡萄糖。在一些哺乳动物中,免疫抑制方案可以长达约1、2、3、4、5、6或更多周,并可能取决于哺乳动物。
最后,类似于Kroon等人2008年,包封的细胞不仅成熟为具有内分泌细胞的胰腺胰岛簇,而且发育为胰岛相关细胞,例如腺泡细胞。因此,移植的PDX1阳性的胰腺祖细胞不一定仅成为单激素的内分泌分泌细胞,而是能够成熟和发育为基本上类似人胰岛的细胞,包括内分泌和腺泡细胞。并且观察这种移植细胞的体内成熟和葡萄糖响应,是否培养了祖细胞(PDX1/NKX6.1共阳性的细胞;内分泌前体细胞,或某些多激素或单激素细胞),并且体外分化和随后移植,或者是否在移植前纯化或富集了某些祖细胞,或者它们是否之前已由一个或多个批次制备并冷冻保存、解冻和适应移植前培养。
简而言之,移植后,使移植的细胞体内分化和进一步成熟。为了确定移植的细胞是否具有如例如天然产生的β细胞的正常生理功能,通过测试人C-肽的水平测定人胰岛素的水平。人C-肽由人胰岛素原切割或加工,因此人C-肽而非内源性小鼠C肽的检测显示了胰岛素分泌来源于移植的(外源的)细胞。
在移植后不同时间点测量血清中移植细胞的葡萄糖刺激的人C-肽分泌。将被理解的是,可以在不同时间点测量葡萄糖刺激的人C-肽分泌,例如至少30、35、40、45、50、55、60、65和更多天。葡萄糖刺激的人C-肽水平可以在早在葡萄糖服用或注射后约15分钟时在血清中准确测定。以葡萄糖服用后约15、30和60分钟的时间间隔从动物中取血。根据厂商的描述(Becton Dickinson)通过在微量容器中离心,将血清与血细胞分离。使用超敏人特异性C-肽ELISA平板(Alpco)进行血清的ELISA分析。通常,如通过大于50pM人C-肽阈值水平的水平所证明的,接受包封的移植细胞的绝大多数的动物响应葡萄糖。
总之,通过上文装置完全包封的细胞不影响细胞的成熟,一旦细胞成熟后也不影响细胞的生理功能。此外,在这些糖尿病诱导动物中观察到了低血糖症的改善,且基本上类似于上文的Kroon等人(2008年)以及在美国专利No.7,534,608中之前所述的,尽管这两篇文献没有描述完全包封的移植细胞或移植物。这些参考文献通过引用以其全文并入本文。
相应地,对本领域技术人员显而易见的是,可以对本文所述的实施方案进行不同的替代、修饰或优化、或者组合,而不偏离本发明的范围和精神。
本说明书提及的所有出版物和专利通过引用以其全文并入本文。
如下文的权利要求书和整个公开内容中所用的,短语“基本上由……组成”是指包括该短语后列出的任何元素,并且限于不干扰或促进本公开内容针对所列出的元素而限定的活性或活动的其它元素。因此,短语“基本上由……组成”表明所列出的元素是必须的或强制的,但是其它元素是任选的,并且存在与否取决于它们是否影响所列出的元素的活性或活动。
Claims (4)
1.一种装置,其包含:
半渗透膜,所述半渗透膜在所述装置植入哺乳动物体内时允许其血管化;
第一细胞包封腔室,其包含第一装载口;以及
第二细胞包封腔室,其包含第二装载口,其中所述第一和第二细胞包封腔室在外周密封,其中所述第一和第二细胞包封腔室由分隔密封件完全分隔,以及所述分隔密封件有效降低所述第一细胞包封腔室和所述第二细胞包封腔室的腔室容积。
2.如权利要求1所述的装置,其还包含活细胞,其中所述活细胞不是从人胚胎获得的。
3.如权利要求2所述的装置,其中所述活细胞包含人胰腺十二指肠同源盒基因-1(PDX1)阳性的胰腺祖细胞。
4.如权利要求1所述的装置,其中所述腔室是预血管化的。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11485708P | 2008-11-14 | 2008-11-14 | |
US61/114,857 | 2008-11-14 | ||
US12108608P | 2008-12-09 | 2008-12-09 | |
US61/121,086 | 2008-12-09 | ||
CN200980154622.7A CN102282254B (zh) | 2008-11-14 | 2009-11-13 | 源于人多能干细胞的胰腺细胞的包封 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980154622.7A Division CN102282254B (zh) | 2008-11-14 | 2009-11-13 | 源于人多能干细胞的胰腺细胞的包封 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105349517A CN105349517A (zh) | 2016-02-24 |
CN105349517B true CN105349517B (zh) | 2021-05-04 |
Family
ID=42170745
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510760059.5A Active CN105349517B (zh) | 2008-11-14 | 2009-11-13 | 源于人多能干细胞的胰腺细胞的包封 |
CN200980154622.7A Active CN102282254B (zh) | 2008-11-14 | 2009-11-13 | 源于人多能干细胞的胰腺细胞的包封 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980154622.7A Active CN102282254B (zh) | 2008-11-14 | 2009-11-13 | 源于人多能干细胞的胰腺细胞的包封 |
Country Status (9)
Country | Link |
---|---|
US (9) | US8278106B2 (zh) |
EP (3) | EP4176888A1 (zh) |
JP (6) | JP2012508584A (zh) |
CN (2) | CN105349517B (zh) |
AU (1) | AU2009313870B2 (zh) |
CA (2) | CA3229301A1 (zh) |
ES (2) | ES2932850T3 (zh) |
PL (1) | PL2356227T3 (zh) |
WO (1) | WO2010057039A2 (zh) |
Families Citing this family (162)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003014313A2 (en) * | 2001-08-06 | 2003-02-20 | Bresagen, Ltd. | Alternative compositions and methods for the culture of stem cells |
US9080145B2 (en) | 2007-07-01 | 2015-07-14 | Lifescan Corporation | Single pluripotent stem cell culture |
KR101617243B1 (ko) | 2007-07-31 | 2016-05-02 | 라이프스캔, 인코포레이티드 | 인간 배아 줄기 세포의 분화 |
EP2229434B1 (en) | 2007-11-27 | 2011-09-07 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
CN102046779A (zh) | 2008-02-21 | 2011-05-04 | 森托科尔奥索生物科技公司 | 用于细胞粘附、培养和分离的方法、表面改性培养板和组合物 |
GB2460842B (en) * | 2008-06-10 | 2011-02-16 | Cryogenetics As | Packaging for biological material |
PL2310492T3 (pl) | 2008-06-30 | 2015-12-31 | Janssen Biotech Inc | Różnocowanie pluripotencjalnych komórek macierzystych |
KR102025158B1 (ko) | 2008-10-31 | 2019-09-25 | 얀센 바이오테크 인코포레이티드 | 인간 배아 줄기 세포의 췌장 내분비 계통으로의 분화 |
AU2009308967C1 (en) | 2008-10-31 | 2017-04-20 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells to the pancreatic endocrine lineage |
US8895300B2 (en) | 2008-11-04 | 2014-11-25 | Viacyte, Inc. | Scalable primate pluripotent stem cell aggregate suspension culture and differentiation thereof |
US8008075B2 (en) | 2008-11-04 | 2011-08-30 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
EP4176888A1 (en) | 2008-11-14 | 2023-05-10 | ViaCyte, Inc. | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
AU2009316583B2 (en) | 2008-11-20 | 2016-04-21 | Janssen Biotech, Inc. | Methods and compositions for cell attachment and cultivation on planar substrates |
MX356756B (es) | 2008-11-20 | 2018-06-11 | Centocor Ortho Biotech Inc | Células madre pluripotentes en microportadores. |
US9109245B2 (en) | 2009-04-22 | 2015-08-18 | Viacyte, Inc. | Cell compositions derived from dedifferentiated reprogrammed cells |
EP2456862A4 (en) | 2009-07-20 | 2013-02-27 | Janssen Biotech Inc | DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS |
MX2012002440A (es) | 2009-08-28 | 2012-06-19 | Sernova Corp | Metodos y dispositivos para el transplante de celulas. |
DK2498796T3 (en) | 2009-11-09 | 2018-03-05 | Aal Scient Inc | HEART DISEASE TREATMENT |
CN102741395B (zh) | 2009-12-23 | 2016-03-16 | 詹森生物科技公司 | 人胚胎干细胞的分化 |
US8455242B2 (en) | 2010-02-22 | 2013-06-04 | Hyclone Laboratories, Inc. | Mixing system with condenser |
RU2702198C2 (ru) | 2010-03-01 | 2019-10-04 | Янссен Байотек, Инк. | Способы очистки клеток, производных от плюрипотентных стволовых клеток |
RU2587634C2 (ru) | 2010-05-12 | 2016-06-20 | Янссен Байотек, Инк. | Дифференцирование эмбриональных стволовых клеток человека |
RU2576000C2 (ru) | 2010-08-09 | 2016-02-27 | Такеда Фармасьютикал Компани Лимитед | Способ получения клеток, продуцирующих панкреатические гормоны |
JP2013533319A (ja) * | 2010-08-12 | 2013-08-22 | ヤンセン バイオテツク,インコーポレーテツド | 膵内分泌腺前駆体細胞による糖尿病の治療 |
AU2015213422A1 (en) * | 2010-08-12 | 2015-09-10 | Janssen Biotech, Inc. | Treatment of diabetes with pancreatic endocrine precursor cells |
US9475709B2 (en) | 2010-08-25 | 2016-10-25 | Lockheed Martin Corporation | Perforated graphene deionization or desalination |
BR112013004614A2 (pt) | 2010-08-31 | 2024-01-16 | Janssen Biotech Inc | Diferenciação de células-tronco pluripotentes |
KR101851956B1 (ko) | 2010-08-31 | 2018-04-25 | 얀센 바이오테크 인코포레이티드 | 인간 배아 줄기 세포의 분화 |
WO2012030539A2 (en) | 2010-08-31 | 2012-03-08 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
JP5852655B2 (ja) * | 2010-09-27 | 2016-02-03 | エヌエスジーン・アクティーゼルスカブNsGene A/S | 支持・放射状拡散スカフォールディングを備える埋込み型細胞デバイス |
MX2010013135A (es) * | 2010-11-30 | 2012-05-31 | Val De Bio S De R L De C V | Procedimiento y dispositivo mejorados para favorecer el trasplante de material biológico. |
WO2012115619A1 (en) | 2011-02-21 | 2012-08-30 | Viacyte, Inc. | Loading system for an encapsulation device |
US20140234963A1 (en) | 2011-06-21 | 2014-08-21 | Novo Nordisk A/S | Efficient induction of definitive endoderm from pluripotent stem cells |
CN102550542B (zh) * | 2011-08-09 | 2014-06-25 | 臻景生物技术(上海)有限公司 | 用于脂肪干细胞的无血清冻存液及脂肪干细胞库的建立 |
US20140242038A1 (en) * | 2011-10-11 | 2014-08-28 | The Trustees Of Columbia University In The City Of New York | Method for generating beta cells |
USD726306S1 (en) * | 2011-12-12 | 2015-04-07 | Viacyte, Inc. | Cell encapsulation device |
USD728095S1 (en) * | 2011-12-12 | 2015-04-28 | Viacyte, Inc. | Cell encapsulation device |
USD726307S1 (en) * | 2011-12-12 | 2015-04-07 | Viacyte Inc. | Cell encapsulation device |
KR102203056B1 (ko) | 2011-12-22 | 2021-01-14 | 얀센 바이오테크 인코포레이티드 | 인간 배아 줄기 세포의 단일 인슐린 호르몬 양성 세포로의 분화 |
SG11201405052RA (en) | 2012-03-07 | 2014-10-30 | Janssen Biotech Inc | Defined media for expansion and maintenance of pluripotent stem cells |
US10980919B2 (en) | 2016-04-14 | 2021-04-20 | Lockheed Martin Corporation | Methods for in vivo and in vitro use of graphene and other two-dimensional materials |
US9610546B2 (en) | 2014-03-12 | 2017-04-04 | Lockheed Martin Corporation | Separation membranes formed from perforated graphene and methods for use thereof |
US10418143B2 (en) | 2015-08-05 | 2019-09-17 | Lockheed Martin Corporation | Perforatable sheets of graphene-based material |
US10376845B2 (en) | 2016-04-14 | 2019-08-13 | Lockheed Martin Corporation | Membranes with tunable selectivity |
US9834809B2 (en) | 2014-02-28 | 2017-12-05 | Lockheed Martin Corporation | Syringe for obtaining nano-sized materials for selective assays and related methods of use |
US9744617B2 (en) | 2014-01-31 | 2017-08-29 | Lockheed Martin Corporation | Methods for perforating multi-layer graphene through ion bombardment |
US10653824B2 (en) | 2012-05-25 | 2020-05-19 | Lockheed Martin Corporation | Two-dimensional materials and uses thereof |
USD734847S1 (en) * | 2012-05-31 | 2015-07-21 | Viacyte, Inc. | Cell encapsulation device |
CN108034633B (zh) | 2012-06-08 | 2022-08-02 | 詹森生物科技公司 | 人胚胎干细胞向胰腺内分泌细胞的分化 |
US20150320836A1 (en) * | 2012-07-06 | 2015-11-12 | The Regents Of The University Of California | Cryopreservation of cells inside a macro-encapsulation device |
US20150247123A1 (en) | 2012-09-03 | 2015-09-03 | Novo Nordisk A/S | Generation of pancreatic endoderm from Pluripotent Stem cells using small molecules |
AU2013248265B2 (en) | 2012-11-08 | 2018-11-01 | Viacyte, Inc. | Scalable primate pluripotent stem cell aggregate suspension culture and differentiation thereof |
EP2938724B1 (en) | 2012-12-31 | 2020-10-28 | Janssen Biotech, Inc. | Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells |
BR112015015714A2 (pt) | 2012-12-31 | 2017-07-11 | Janssen Biotech Inc | suspensão e aglomeração de células pluripotentes humanas para diferenciação em célu-las endócrinas pancreáticas |
AU2013368224B2 (en) | 2012-12-31 | 2018-09-27 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using HB9 regulators |
US10370644B2 (en) | 2012-12-31 | 2019-08-06 | Janssen Biotech, Inc. | Method for making human pluripotent suspension cultures and cells derived therefrom |
CA3212301A1 (en) * | 2013-02-06 | 2014-08-14 | Viacyte, Inc. | Cell compositions derived from dedifferentiated reprogrammed cells |
WO2014127219A1 (en) * | 2013-02-14 | 2014-08-21 | The Cleveland Clinic Foundation | Methods for induction of cell fates from pluripotent cells |
USD720469S1 (en) | 2013-03-07 | 2014-12-30 | Viacyte, Inc. | Cell encapsulation device |
WO2014138691A1 (en) | 2013-03-07 | 2014-09-12 | Viacyte, Inc. | 3-dimensional large capacity cell encapsulation device assembly |
WO2014138671A2 (en) | 2013-03-08 | 2014-09-12 | Viacyte, Inc. | Cryopreservation, hibernation and room temperature storage of encapulated pancreatic endoderm cell aggregates |
WO2014164621A1 (en) | 2013-03-12 | 2014-10-09 | Lockheed Martin Corporation | Method for forming filter with uniform aperture size |
US8859286B2 (en) * | 2013-03-14 | 2014-10-14 | Viacyte, Inc. | In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells |
EP2988699B1 (en) | 2013-04-24 | 2020-05-27 | Société des Produits Nestlé S.A. | Encapsulation device |
MX2015017103A (es) | 2013-06-11 | 2016-11-07 | Harvard College | Celulas beta derivadas de células madre ( sc-beta ) y composiciones y métodos para generarlas. |
US9572918B2 (en) | 2013-06-21 | 2017-02-21 | Lockheed Martin Corporation | Graphene-based filter for isolating a substance from blood |
SG11201510671SA (en) * | 2013-07-02 | 2016-01-28 | Austrianova Singapore Pte Ltd | A method of freeze-drying encapsulated cells, freeze-dried encapsulated cells, compositions containing freeze-dried encapsulated cells and uses of such cells and compositions |
CA3059017C (en) | 2013-09-24 | 2021-05-25 | Giner Life Sciences, Inc. | System for gas treatment of a cell implant |
CA2938305A1 (en) | 2014-01-31 | 2015-08-06 | Lockheed Martin Corporation | Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer |
CN105940479A (zh) | 2014-01-31 | 2016-09-14 | 洛克希德马丁公司 | 使用宽离子场穿孔二维材料 |
WO2015138736A1 (en) * | 2014-03-12 | 2015-09-17 | Lockheed Martin Corporation | In vivo and in vitro use of graphene |
CA2942496A1 (en) | 2014-03-12 | 2015-09-17 | Lockheed Martin Corporation | Separation membranes formed from perforated graphene |
EP3868856B1 (en) | 2014-03-21 | 2023-10-25 | Life Technologies Corporation | Condenser systems for fluid processing systems |
EP3782721B1 (en) | 2014-03-21 | 2023-08-23 | Life Technologies Corporation | Gas filter systems for fluid processing systems |
US9950151B2 (en) * | 2014-03-27 | 2018-04-24 | Beta-O2 Technologies Ltd. | Implantable medical devices |
US11051900B2 (en) * | 2014-04-16 | 2021-07-06 | Viacyte, Inc. | Tools and instruments for use with implantable encapsulation devices |
USD760399S1 (en) * | 2014-04-16 | 2016-06-28 | Viacyte, Inc. | Case for an encapsulation device |
EP4289467A3 (en) | 2014-04-16 | 2024-02-21 | ViaCyte, Inc. | Instruments for use with implantable encapsulation devices |
US11083758B2 (en) * | 2014-05-14 | 2021-08-10 | Prime Merger Sub, Llc | Placental membrane preparations and methods of making and using same for regenerating cartilage and spinal intervertebral discs |
EP3143127B1 (en) | 2014-05-16 | 2021-07-14 | Janssen Biotech, Inc. | Use of small molecules to enhance mafa expression in pancreatic endocrine cells |
US10472610B2 (en) | 2014-05-21 | 2019-11-12 | Kyoto University | Method for generating pancreatic bud cells and therapeutic agent for pancreatic disease containing pancreatic bud cells |
CN107073176B (zh) | 2014-06-09 | 2021-02-19 | 康奈尔大学 | 可植入治疗递送系统及其方法 |
EA201790508A1 (ru) | 2014-09-02 | 2017-08-31 | Локхид Мартин Корпорейшн | Мембраны гемодиализа и гемофильтрации на основе двумерного мембранного материала и способы их применения |
EP3234110B1 (en) | 2014-12-18 | 2024-02-28 | President and Fellows of Harvard College | METHODS FOR GENERATING STEM CELL-DERIVED ß CELLS AND USES THEREOF |
WO2016100930A1 (en) | 2014-12-18 | 2016-06-23 | President And Fellows Of Harvard College | Methods for generating stem cell-derived b cells and methods of use thereof |
WO2016100898A1 (en) | 2014-12-18 | 2016-06-23 | President And Fellows Of Harvard College | Serum-free in vitro directed differentiation protocol for generating stem cell-derived b cells and uses thereof |
CA3226186A1 (en) * | 2015-03-23 | 2016-09-29 | The Regents Of The University Of California | Use of thin film cell encapsulation devices |
CN107787363B (zh) | 2015-04-24 | 2021-06-25 | 哥本哈根大学 | 真正的胰腺祖细胞的分离 |
JP2018530499A (ja) | 2015-08-06 | 2018-10-18 | ロッキード・マーチン・コーポレーション | グラフェンのナノ粒子変性及び穿孔 |
WO2017049008A1 (en) * | 2015-09-16 | 2017-03-23 | Lockheed Martin Corporation | Methods for in vivo and in vitro use of graphene and other two-dimensional materials |
EP3167911A1 (en) * | 2015-11-10 | 2017-05-17 | Oniris | Si-hpmc-encapsulated insulin-producing cells for the treatment of type 1 diabetes |
WO2017116910A1 (en) * | 2015-12-29 | 2017-07-06 | Life Technologies Corporation | Flexible bioprocessing container with partial dividing partition |
EP3402330B1 (en) * | 2016-01-12 | 2021-12-29 | StemoniX Inc. | Cell medium formulation for cell stabilization |
US11534466B2 (en) | 2016-03-09 | 2022-12-27 | Aal Scientifics, Inc. | Pancreatic stem cells and uses thereof |
WO2017165850A1 (en) * | 2016-03-25 | 2017-09-28 | Lockheed Martin Corporation | Methods for in vivo and in vitro use of graphene and other two-dimensional materials |
MA45479A (fr) * | 2016-04-14 | 2019-02-20 | Janssen Biotech Inc | Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen |
WO2017180139A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Two-dimensional membrane structures having flow passages |
WO2017180141A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Selective interfacial mitigation of graphene defects |
SG11201808961QA (en) | 2016-04-14 | 2018-11-29 | Lockheed Corp | Methods for in situ monitoring and control of defect formation or healing |
JP2019511451A (ja) | 2016-04-14 | 2019-04-25 | ロッキード・マーチン・コーポレーション | 浮遊法を用いてグラフェンシートを大判転写用に処理する方法 |
US10053660B2 (en) | 2016-07-12 | 2018-08-21 | California Institute Of Technology | Substrates for high-density cell growth and metabolite exchange |
KR20190106996A (ko) | 2016-11-03 | 2019-09-18 | 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 | 외부 산소 전달을 수반 또는 비-수반하는 산소 센서가 구비된 캡슐화 장치 시스템 |
WO2018144099A1 (en) * | 2016-11-03 | 2018-08-09 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Methods and systems for real-time assessment of cells in encapsulation devices pre-and post-transplantation |
AU2017396753B2 (en) | 2016-11-03 | 2021-04-29 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Stacked tissue encapsulation device systems with or without oxygen delivery |
AU2017366791B2 (en) * | 2016-11-03 | 2021-01-21 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Methods, systems, and implantable devices for enhancing blood glucose regulation |
US10849731B2 (en) * | 2016-11-08 | 2020-12-01 | W. L. Gore & Associates, Inc. | Cell encapsulation devices containing structural spacers |
US11052230B2 (en) * | 2016-11-08 | 2021-07-06 | W. L. Gore & Associates, Inc. | Implantable encapsulation devices |
WO2018089011A1 (en) * | 2016-11-10 | 2018-05-17 | Viacyte, Inc | Pdx1 pancreatic endoderm cells in cell delivery devices and methods thereof |
USD824042S1 (en) | 2016-11-10 | 2018-07-24 | Viacyte, Inc. | Perforated cell encapsulation device |
WO2018093940A1 (en) | 2016-11-15 | 2018-05-24 | Giner, Inc. | Self-regulating electrolytic gas generator and implant system comprising the same |
AU2017361260B2 (en) | 2016-11-15 | 2023-06-08 | Giner, Inc. | Percutaneous gas diffusion device suitable for use with a subcutaneous implant |
CN108148808B (zh) * | 2016-12-05 | 2020-12-11 | 同济大学 | 有助于诱导生成神经前体细胞的诱导培养基 |
EP3591040A4 (en) * | 2017-03-03 | 2020-11-11 | Kyoto University | METHOD FOR PRODUCING PANCREATIC ANALYZER CELLS |
US12016327B2 (en) * | 2017-03-20 | 2024-06-25 | Boston Scientific Medical Device Limited | Cell encapsulation device |
WO2018204867A1 (en) | 2017-05-04 | 2018-11-08 | Giner, Inc. | Robust, implantable gas delivery device and methods, systems and devices including same |
EP3409239A1 (en) * | 2017-05-29 | 2018-12-05 | University College Dublin, National University of Ireland, Dublin | An implantable active agent encapsulating device |
JPWO2018230588A1 (ja) * | 2017-06-14 | 2020-04-16 | 武田薬品工業株式会社 | 細胞封入デバイス |
IL308120B1 (en) | 2017-06-14 | 2024-08-01 | Vertex Pharma | Devices and methods for drug administration |
KR102001120B1 (ko) | 2017-06-29 | 2019-07-16 | 서울대학교산학협력단 | 나노섬유 및 하이드로젤의 복합체 및 이를 포함하는 조직 재생용 스캐폴드 |
US10391156B2 (en) | 2017-07-12 | 2019-08-27 | Viacyte, Inc. | University donor cells and related methods |
EP3677289A4 (en) * | 2017-08-30 | 2020-08-26 | FUJIFILM Corporation | ANGIOGENIC AGENT AND PROCESS FOR THE PRODUCTION OF THE LATTER |
CN111032099B (zh) | 2017-08-30 | 2022-08-30 | 富士胶片株式会社 | 细胞移植用设备及其制造方法 |
RU2020111055A (ru) * | 2017-09-11 | 2021-09-17 | Ново Нордиск А/С | Обогащение клетками, совместно экспрессирующими nkx6.1 и c-пептид, полученными in vitro из стволовых клеток |
EP3687499A4 (en) | 2017-09-29 | 2021-06-30 | Semma Therapeutics, Inc. | CELL HOUSING DEVICE |
CA2983845C (en) | 2017-10-26 | 2024-01-30 | University Of Copenhagen | Generation of glucose-responsive beta cells |
IL305391B2 (en) * | 2017-11-15 | 2024-09-01 | Vertex Pharma | Preparations for the production of islet cells and methods of use |
JP2019097442A (ja) | 2017-11-30 | 2019-06-24 | 株式会社日立製作所 | 免疫隔離デバイス |
JP6417023B2 (ja) * | 2017-12-20 | 2018-10-31 | ネステク ソシエテ アノニム | カプセル化デバイス |
CN108543116B (zh) * | 2018-05-02 | 2021-04-27 | 深圳市华异生物科技有限责任公司 | 海藻酸钠与明胶复合水凝胶3d胰岛支架及其制备方法 |
WO2019222704A1 (en) | 2018-05-17 | 2019-11-21 | Giner Life Sciences, Inc. | Electrolytic gas generator with combined lead and gas port terminals |
US20210292708A1 (en) * | 2018-08-03 | 2021-09-23 | Kyoto University | Cell production method |
EP3833365A4 (en) | 2018-08-10 | 2022-05-11 | Vertex Pharmaceuticals Incorporated | ISLE DIFFERENTIATION DERIVED FROM STEM CELLS |
US11963862B2 (en) | 2018-08-22 | 2024-04-23 | Boston Scientific Scimed, Inc. | Cell encapsulation device including a porous tube |
JP7398434B2 (ja) * | 2018-08-30 | 2023-12-14 | ザ キュレイターズ オブ ザ ユニバーシティ オブ ミズーリ | 試料と細胞外氷との直接接触を防ぐのに有効な凍結保存装置 |
US10724052B2 (en) | 2018-09-07 | 2020-07-28 | Crispr Therapeutics Ag | Universal donor cells |
US20210401564A1 (en) * | 2018-09-24 | 2021-12-30 | Arizona Board Regents On Behalf Of The University Of Arizona | Methods and systems for implantable medical devices and vascularization membranes |
EP3856077A1 (en) * | 2018-09-26 | 2021-08-04 | W.L. Gore & Associates Inc. | Cell encapsulation devices with controlled cell bed thickness |
UY38389A (es) | 2018-09-27 | 2020-04-30 | Sigilon Therapeutics Inc | Dispositivos implantables para terapia celular y métodos relacionados |
KR20210077698A (ko) * | 2018-10-15 | 2021-06-25 | 사이니티 가부시키가이샤 | 저분자 화합물에 의한 내배엽 조직 또는 기관 유래 세포로부터의 줄기/전구 세포의 제작 방법 |
CN109289090A (zh) * | 2018-10-31 | 2019-02-01 | 陈津 | 一种胰岛移植微环境及其构建方法 |
JP7260563B2 (ja) * | 2018-12-25 | 2023-04-18 | 富士フイルム株式会社 | 細胞移植キット、袋状構造物の製造方法、および糖尿病治療剤 |
JP6970245B2 (ja) * | 2019-02-25 | 2021-11-24 | ヴィアサイト インコーポレイテッド | 埋め込み可能な封入デバイスと共に使用するツールおよび器具 |
JP7267377B2 (ja) * | 2019-02-25 | 2023-05-01 | ヴィアサイト インコーポレイテッド | 埋め込み可能な封入デバイスと共に使用するツールおよび器具 |
WO2020206157A1 (en) * | 2019-04-03 | 2020-10-08 | Vertex Pharmaceuticals Incorporated | Multicompartment macroencapsulation devices |
AU2020282355B2 (en) | 2019-05-31 | 2023-11-02 | Viacyte, Inc. | A biocompatible membrane composite |
CN114401752B (zh) | 2019-05-31 | 2023-04-04 | W.L.戈尔及同仁股份有限公司 | 具有受控氧扩散距离的细胞封装装置 |
EP3975926A1 (en) | 2019-05-31 | 2022-04-06 | W.L. Gore & Associates, Inc. | A biocompatible membrane composite |
CA3139590C (en) * | 2019-05-31 | 2024-01-23 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
CA3150235A1 (en) | 2019-09-05 | 2021-03-11 | Alireza Rezania | UNIVERSAL DONOR CELLS |
KR20220058579A (ko) | 2019-09-05 | 2022-05-09 | 크리스퍼 테라퓨틱스 아게 | 보편적 공여자 세포 |
EP4034174A4 (en) * | 2019-09-27 | 2023-11-01 | Isla Technologies, Inc. | BIOARTIFICIAL PANCREAS |
WO2022047543A1 (en) * | 2020-09-04 | 2022-03-10 | Captix Biomedical Pty Ltd | "bone implant" |
CA3196876A1 (en) | 2020-10-30 | 2022-05-05 | Klearchos Papas | Methods and systems for encapsulation devices for housing cells and agents |
CN112544613B (zh) * | 2020-12-25 | 2022-08-16 | 武汉睿健医药科技有限公司 | 一种多能干细胞冻存液、其应用及冻存方法 |
AU2021414617A1 (en) | 2020-12-31 | 2023-08-10 | Crispr Therapeutics Ag | Universal donor cells |
CA3228936A1 (en) * | 2021-08-10 | 2023-02-16 | Universiteit Maastricht | Open type implantable cell delivery device |
WO2023164171A2 (en) | 2022-02-25 | 2023-08-31 | Viacyte, Inc. | Multilayer implantable cell encapsulation devices and methods thereof |
WO2023203208A1 (en) | 2022-04-21 | 2023-10-26 | Evotec International Gmbh | New cell populations and means and methods for their differentiation and preservation |
WO2024073711A1 (en) | 2022-09-30 | 2024-04-04 | W.L. Gore & Associates, Inc. | Implantable membrane construct and encapsulaton devices incorporating the same |
WO2024081309A1 (en) | 2022-10-11 | 2024-04-18 | Sigilon Therapeutics, Inc. | Engineered cells and implantable elements for treatment of disease |
WO2024081310A1 (en) | 2022-10-11 | 2024-04-18 | Sigilon Therapeutics, Inc. | Engineered cells and implantable elements for treatment of disease |
JP7451818B1 (ja) | 2023-11-10 | 2024-03-18 | 洋之 高尾 | Diffusion Chamber型人工膵島器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993021902A1 (en) * | 1992-04-24 | 1993-11-11 | Somatix Therapy Corporation | Biocompatible, therapeutic, implantable device |
US5554148A (en) * | 1987-11-17 | 1996-09-10 | Brown University Research Foundation | Renewable neural implant device and method |
US5964261A (en) * | 1996-05-29 | 1999-10-12 | Baxter International Inc. | Implantation assembly |
Family Cites Families (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2500388A (en) | 1948-07-21 | 1950-03-14 | Minnesota Mining & Mfg | Fluorocarbon ethers |
US2594272A (en) | 1948-09-10 | 1952-04-29 | Minnesota Mining & Mfg | Cyclic fluoroalkylene oxide compounds |
US2519983A (en) | 1948-11-29 | 1950-08-22 | Minnesota Mining & Mfg | Electrochemical process of making fluorine-containing carbon compounds |
US2616927A (en) | 1950-05-12 | 1952-11-04 | Minnesota Mining & Mfg | Fluorocarbon tertiary amines |
US4298002A (en) * | 1979-09-10 | 1981-11-03 | National Patent Development Corporation | Porous hydrophilic materials, chambers therefrom, and devices comprising such chambers and biologically active tissue and methods of preparation |
US4542104A (en) | 1983-04-06 | 1985-09-17 | The Board Of Trustees Of The Leland Stanford Jr. Univ. | Phycobiliprotein fluorescent conjugates |
US4723953A (en) * | 1985-01-07 | 1988-02-09 | Rocky Mountain Medical Corporation | Absorbent pad |
US4788339A (en) | 1985-09-06 | 1988-11-29 | Minnesota Mining And Manufacturing Company | Perfluoroaminoethers |
US5026365A (en) * | 1987-04-29 | 1991-06-25 | The University Of Massachusetts | Method and apparatus for therapeutically treating immunological disorders and disease states |
US5283187A (en) | 1987-11-17 | 1994-02-01 | Brown University Research Foundation | Cell culture-containing tubular capsule produced by co-extrusion |
US5158881A (en) | 1987-11-17 | 1992-10-27 | Brown University Research Foundation | Method and system for encapsulating cells in a tubular extrudate in separate cell compartments |
US5182111A (en) | 1987-11-17 | 1993-01-26 | Boston University Research Foundation | In vivo delivery of active factors by co-cultured cell implants |
US5418154A (en) | 1987-11-17 | 1995-05-23 | Brown University Research Foundation | Method of preparing elongated seamless capsules containing biological material |
US5219361A (en) | 1988-09-16 | 1993-06-15 | Clemson University | Soft tissue implant with micron-scale surface texture to optimize anchorage |
US5011494A (en) | 1988-09-16 | 1991-04-30 | Clemson University | Soft tissue implant with micron-scale surface texture to optimize anchorage |
CA1335181C (en) | 1988-10-11 | 1995-04-11 | R. Alan Hardwick | System for selective cell separation from cell concentrate |
AU4746590A (en) | 1988-12-28 | 1990-08-01 | Stefan Miltenyi | Methods and materials for high gradient magnetic separation of biological materials |
US5116493A (en) | 1989-08-25 | 1992-05-26 | W. R. Grace & Co.-Conn. | Artificial pancreatic perfusion device with reseedable matrix |
US5002661A (en) | 1989-08-25 | 1991-03-26 | W. R. Grace & Co.-Conn. | Artificial pancreatic perfusion device |
US5100392A (en) | 1989-12-08 | 1992-03-31 | Biosynthesis, Inc. | Implantable device for administration of drugs or other liquid solutions |
US5171846A (en) | 1990-05-21 | 1992-12-15 | Coulter Corporation | Method of preferential labelling of a phycobiliprotein with a second dye for use in a multiple color assay and product for such use |
US5272257A (en) | 1990-05-21 | 1993-12-21 | Coulter Corporation | Method of preferential labelling of a phycobiliprotein with an amine-reactive dye for use in a multiple color assay and product for such use |
US5240640A (en) | 1990-06-04 | 1993-08-31 | Coulter Corporation | In situ use of gelatin or an aminodextran in the preparation of uniform ferrite particles |
US5529914A (en) | 1990-10-15 | 1996-06-25 | The Board Of Regents The Univeristy Of Texas System | Gels for encapsulation of biological materials |
US5639620A (en) | 1990-10-31 | 1997-06-17 | Coulter Corporation | Polymeric particles having a biodegradable gelatin or aminodextran coating and process for making same |
US5545223A (en) | 1990-10-31 | 1996-08-13 | Baxter International, Inc. | Ported tissue implant systems and methods of using same |
US5466609A (en) | 1990-10-31 | 1995-11-14 | Coulter Corporation | Biodegradable gelatin-aminodextran particle coatings of and processes for making same |
CA2070816A1 (en) | 1990-10-31 | 1992-05-01 | James H. Brauker | Close vascularization implant material |
US5344454A (en) | 1991-07-24 | 1994-09-06 | Baxter International Inc. | Closed porous chambers for implanting tissue in a host |
US5713888A (en) | 1990-10-31 | 1998-02-03 | Baxter International, Inc. | Tissue implant systems |
US5314471A (en) | 1991-07-24 | 1994-05-24 | Baxter International Inc. | Tissue inplant systems and methods for sustaining viable high cell densities within a host |
AU662752B2 (en) | 1991-07-15 | 1995-09-14 | Wellcome Foundation Limited, The | Production of antibodies |
US6773458B1 (en) | 1991-07-24 | 2004-08-10 | Baxter International Inc. | Angiogenic tissue implant systems and methods |
US5453278A (en) | 1991-07-24 | 1995-09-26 | Baxter International Inc. | Laminated barriers for tissue implants |
JPH06502577A (ja) | 1991-07-30 | 1994-03-24 | バクスター、インターナショナル、インコーポレイテッド | 有孔埋め込み物 |
JPH0613739Y2 (ja) * | 1991-09-26 | 1994-04-13 | 富士システムズ株式会社 | 人工臓器用カプセル及び人工臓器 |
US5248772A (en) | 1992-01-29 | 1993-09-28 | Coulter Corporation | Formation of colloidal metal dispersions using aminodextrans as reductants and protective agents |
US6165993A (en) | 1992-03-23 | 2000-12-26 | University Of Massachusetts Medical Center | DNA vaccines against rotavirus infections |
US5453357A (en) | 1992-10-08 | 1995-09-26 | Vanderbilt University | Pluripotential embryonic stem cells and methods of making same |
US7153684B1 (en) | 1992-10-08 | 2006-12-26 | Vanderbilt University | Pluripotential embryonic stem cells and methods of making same |
US5690926A (en) | 1992-10-08 | 1997-11-25 | Vanderbilt University | Pluripotential embryonic cells and methods of making same |
US5262055A (en) | 1992-10-19 | 1993-11-16 | The University Of Utah | Implantable and refillable biohybrid artificial pancreas |
US5593972A (en) | 1993-01-26 | 1997-01-14 | The Wistar Institute | Genetic immunization |
US5523226A (en) | 1993-05-14 | 1996-06-04 | Biotechnology Research And Development Corp. | Transgenic swine compositions and methods |
EP0702793B1 (en) | 1993-06-11 | 2003-08-27 | Coulter International Corporation | Anti-cd3 antibody-aminodextran conjugates for induction of t-cell activation and proliferation |
NZ269041A (en) * | 1993-06-23 | 1998-02-26 | Univ Brown Res Found | Implantable encapsulation device having a cell-tight dry seal at an opening thereof |
JPH08503715A (ja) | 1993-09-24 | 1996-04-23 | バクスター、インターナショナル、インコーポレイテッド | 埋め込み装置の血管化を促進するための方法 |
US6015671A (en) | 1995-06-07 | 2000-01-18 | Indiana University Foundation | Myocardial grafts and cellular compositions |
US5421923A (en) | 1993-12-03 | 1995-06-06 | Baxter International, Inc. | Ultrasonic welding horn with sonics dampening insert |
US5549675A (en) | 1994-01-11 | 1996-08-27 | Baxter International, Inc. | Method for implanting tissue in a host |
US6156305A (en) | 1994-07-08 | 2000-12-05 | Baxter International Inc. | Implanted tumor cells for the prevention and treatment of cancer |
US5989833A (en) | 1994-09-20 | 1999-11-23 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods for detection of molecules with affinity for MPL polypeptides |
US5807406A (en) * | 1994-10-07 | 1998-09-15 | Baxter International Inc. | Porous microfabricated polymer membrane structures |
US5874301A (en) | 1994-11-21 | 1999-02-23 | National Jewish Center For Immunology And Respiratory Medicine | Embryonic cell populations and methods to isolate such populations |
US5843780A (en) | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
US5705059A (en) | 1995-02-27 | 1998-01-06 | Miltenyi; Stefan | Magnetic separation apparatus |
WO1996032076A1 (en) * | 1995-04-11 | 1996-10-17 | Baxter Internatonal Inc. | Tissue implant systems |
US6060640A (en) | 1995-05-19 | 2000-05-09 | Baxter International Inc. | Multiple-layer, formed-in-place immunoisolation membrane structures for implantation of cells in host tissue |
AU6251196A (en) | 1995-06-07 | 1996-12-30 | Gore Hybrid Technologies, Inc. | An implantable containment apparatus for a therapeutical dev ice and method for loading and reloading the device therein |
WO1997010807A1 (en) * | 1995-09-22 | 1997-03-27 | Gore Hybrid Technologies, Inc. | Improved cell encapsulation device |
JP2001517927A (ja) | 1996-02-28 | 2001-10-09 | バンダービルト ユニバーシティ | 胚幹細胞を作製する組成物および方法 |
JP2001508302A (ja) | 1997-01-10 | 2001-06-26 | ライフ テクノロジーズ,インコーポレイテッド | 胚性幹細胞血清置換 |
US6090622A (en) | 1997-03-31 | 2000-07-18 | The Johns Hopkins School Of Medicine | Human embryonic pluripotent germ cells |
US6261281B1 (en) | 1997-04-03 | 2001-07-17 | Electrofect As | Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells |
EP1024836B1 (en) | 1997-09-15 | 2006-12-13 | Genetic Immunity, LLC | Compositions for delivering genes to antigen presenting cells of the skin |
US5945293A (en) | 1997-10-09 | 1999-08-31 | Coulter International Corp. | Protein-colloidal metal-aminodextran coated particle and methods of preparation and use |
US6074884A (en) | 1997-10-09 | 2000-06-13 | Coulter International Corp. | Stable protein-nickel particles and methods of production and use thereof |
JP3880795B2 (ja) | 1997-10-23 | 2007-02-14 | ジェロン・コーポレーション | フィーダー細胞を含まない培養物中で、霊長類由来始原幹細胞を増殖させるための方法 |
CA2324591A1 (en) | 1998-04-09 | 1999-10-21 | Bresagen Limited | Cell differentiation/proliferation and maintenance factor and uses thereof |
US6921811B2 (en) | 1998-09-22 | 2005-07-26 | Biosurface Engineering Technologies, Inc. | Bioactive coating composition and methods |
US6667176B1 (en) | 2000-01-11 | 2003-12-23 | Geron Corporation | cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells |
DE19852800C1 (de) | 1998-11-16 | 2000-04-13 | Univ Albert Ludwigs Freiburg | Verfahren zur Herstellung von Antikörpern gegen ein Polypeptid, von dem die kodierende Nukleinsäure bekannt ist |
EP1435220B1 (en) * | 1998-12-15 | 2006-08-16 | Universidad Nacional Autonoma de Mexico | Process and device for facilitating the implantation of biological material |
CA2362593A1 (en) * | 1999-02-10 | 2000-08-17 | Curis, Inc. | Pancreatic progenitor cells, methods and uses related thereto |
US6365385B1 (en) | 1999-03-22 | 2002-04-02 | Duke University | Methods of culturing and encapsulating pancreatic islet cells |
US6872389B1 (en) | 1999-07-08 | 2005-03-29 | Rhode Island Hospital | Liver stem cell |
US6520997B1 (en) | 1999-12-08 | 2003-02-18 | Baxter International Inc. | Porous three dimensional structure |
US6617151B1 (en) * | 2000-02-29 | 2003-09-09 | Gore Enterprise Holdings, Inc. | Method of closing a cell containment device with a wet seal |
US7005252B1 (en) | 2000-03-09 | 2006-02-28 | Wisconsin Alumni Research Foundation | Serum free cultivation of primate embryonic stem cells |
US6436704B1 (en) * | 2000-04-10 | 2002-08-20 | Raven Biotechnologies, Inc. | Human pancreatic epithelial progenitor cells and methods of isolation and use thereof |
US7256042B2 (en) | 2000-04-27 | 2007-08-14 | Geron Corporation | Process for making hepatocytes from pluripotent stem cells |
US6458589B1 (en) | 2000-04-27 | 2002-10-01 | Geron Corporation | Hepatocyte lineage cells derived from pluripotent stem cells |
US7045353B2 (en) | 2000-08-01 | 2006-05-16 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Directed differentiation of human embryonic cells |
WO2002034880A2 (en) | 2000-10-23 | 2002-05-02 | University Of Kansas | Cadherin peptides for drug delivery and inhibition of tumor metastasis/invasion |
US20020090388A1 (en) * | 2000-12-01 | 2002-07-11 | Humes H. David | Intravascular drug delivery device and use therefor |
US6616912B2 (en) | 2001-01-05 | 2003-09-09 | Spectrum Laboratories, Inc. | Bi-component microporous hollow fiber membrane structure for in vivo propagation of cells |
CA2435826A1 (en) | 2001-01-24 | 2002-08-01 | The Government Of The United States Of America | Differentiation of stem cells to pancreatic endocrine cells |
US20050079159A1 (en) | 2001-06-13 | 2005-04-14 | Massachusetts Instiute Of Technology | In vivo bioreactors |
US6702857B2 (en) * | 2001-07-27 | 2004-03-09 | Dexcom, Inc. | Membrane for use with implantable devices |
WO2003014313A2 (en) | 2001-08-06 | 2003-02-20 | Bresagen, Ltd. | Alternative compositions and methods for the culture of stem cells |
EP1298201A1 (en) | 2001-09-27 | 2003-04-02 | Cardion AG | Process for the production of cells exhibiting an islet-beta-cell-like state |
ES2377099T3 (es) * | 2001-12-04 | 2012-03-22 | Organogenesis Inc. | Células cultivadas procedentes de islotes pancreáticos |
US7157278B2 (en) | 2001-12-04 | 2007-01-02 | Organogenesis, Inc. | Cultured cells from pancreatic islets |
WO2003050249A2 (en) | 2001-12-07 | 2003-06-19 | Geron Corporation | Islet cells from human embryonic stem cells |
US20030138949A1 (en) | 2001-12-12 | 2003-07-24 | Anil Bhushan | Methods for the regeneration of pancreatic islets and expansion of pancreatic endocrine cells |
US7101546B2 (en) * | 2001-12-21 | 2006-09-05 | Amcyte, Inc. | In situ maturation of cultured pancreatic stem cells having a specified, intermediate stage of development |
US20060003446A1 (en) | 2002-05-17 | 2006-01-05 | Gordon Keller | Mesoderm and definitive endoderm cell populations |
CA2684022C (en) | 2002-05-17 | 2014-09-23 | Mount Sinai School Of Medicine Of New York University | Mesoderm and definitive endoderm cell populations |
BR0311360A (pt) | 2002-05-28 | 2006-06-06 | Becton Dickinson Co | métodos para expansão e transdiferenciação in vitro de células acinares pancreáticas humanas em células produtoras de insulina |
CA2487858A1 (en) | 2002-05-28 | 2003-12-04 | Novocell, Inc. | Methods, compositions, and growth and differentiation factors for insulin-producing cells |
NZ539713A (en) * | 2002-10-11 | 2008-07-31 | Novocell Inc | Implantation of encapsulated biological materials for treating diseases |
WO2004050827A2 (en) | 2002-12-05 | 2004-06-17 | Technion Research & Development Foundation Ltd. | Cultured human pancreatic islets, and uses thereof |
EP1594954A4 (en) | 2003-02-07 | 2010-01-27 | Wisconsin Alumni Res Found | GENETIC MODIFICATIONS DIRECTED FROM HUMAN STEM CELLS |
US20070154981A1 (en) | 2003-02-14 | 2007-07-05 | The Board Of Trustees Of The Leland Stanford Junior University | Insulin-producing cells derived from stem cells |
US20030224411A1 (en) | 2003-03-13 | 2003-12-04 | Stanton Lawrence W. | Genes that are up- or down-regulated during differentiation of human embryonic stem cells |
US20040229350A1 (en) | 2003-05-12 | 2004-11-18 | Nikolai Strelchenko | Morula derived embryonic stem cells |
CA2526397A1 (en) | 2003-05-20 | 2004-12-02 | Riken | Preparation of endodermal stem cells |
WO2005017131A2 (en) | 2003-08-14 | 2005-02-24 | THE GOUVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF THE DEPARTMENT F HEALTH AND HUMAN SERVICES | Methods for the differentiation of human stem cells |
US20060205072A1 (en) | 2003-08-27 | 2006-09-14 | Nobuko Uchida | Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for such populations |
WO2005033294A2 (en) | 2003-09-30 | 2005-04-14 | Regents Of The University Of California | Methods for maintaining hepatocytes in culture and for differentiating embryonic stem cells along a hepatocyte lineage |
WO2005059095A2 (en) * | 2003-12-10 | 2005-06-30 | The General Hospital Corporation | Expansion and differentiation of islet progenitor cells |
US8586357B2 (en) | 2003-12-23 | 2013-11-19 | Viacyte, Inc. | Markers of definitive endoderm |
US7541185B2 (en) | 2003-12-23 | 2009-06-02 | Cythera, Inc. | Methods for identifying factors for differentiating definitive endoderm |
US7625753B2 (en) | 2003-12-23 | 2009-12-01 | Cythera, Inc. | Expansion of definitive endoderm cells |
US7985585B2 (en) | 2004-07-09 | 2011-07-26 | Viacyte, Inc. | Preprimitive streak and mesendoderm cells |
US20050266554A1 (en) | 2004-04-27 | 2005-12-01 | D Amour Kevin A | PDX1 expressing endoderm |
CN103898045B (zh) | 2003-12-23 | 2019-02-01 | 维亚希特公司 | 定形内胚层 |
US20050191282A1 (en) * | 2004-03-01 | 2005-09-01 | Opara Emmanuel C. | Method of cryopreserving pancreatic islet cells |
US20060281174A1 (en) * | 2004-03-09 | 2006-12-14 | Gang Xu | Methods for generating insulin-producing cells |
WO2005097980A2 (en) | 2004-03-26 | 2005-10-20 | Geron Corporation | New protocols for making hepatocytes from embryonic stem cells |
AU2005230832B2 (en) | 2004-04-01 | 2010-11-11 | Wisconsin Alumni Research Foundation | Differentiation of stem cells to endoderm and pancreatic lineage |
DK2377922T3 (da) | 2004-04-27 | 2020-05-04 | Viacyte Inc | PDX1-eksprimerende endoderm |
CN100457900C (zh) * | 2004-06-29 | 2009-02-04 | 天津大学 | 细胞和组织移植用金属微囊 |
CN102925406B (zh) | 2004-07-09 | 2019-11-22 | 维亚希特公司 | 鉴定用于分化定型内胚层的因子的方法 |
ES2754038T3 (es) | 2004-07-09 | 2020-04-15 | Viacyte Inc | Células mesendodérmicas y células de línea pre-primitiva |
WO2006020919A2 (en) | 2004-08-13 | 2006-02-23 | University Of Georgia Research Foundation, Inc. | Compositions and methods for self-renewal and differentiation in human embryonic stem cells |
US20060063141A1 (en) | 2004-09-17 | 2006-03-23 | Mcgann Locksley E | Method of cryopreserving cells |
JP2008514214A (ja) | 2004-09-29 | 2008-05-08 | セルアーティス アーベー | ヒト胚盤胞由来幹細胞(hBS)から肝細胞様細胞を発生させる方法 |
WO2006079854A1 (en) * | 2005-01-28 | 2006-08-03 | Novathera Ltd | Methods for embryonic stem cell culture |
JP2008528038A (ja) | 2005-01-31 | 2008-07-31 | エス セル インターナショナル ピーティーイー リミテッド | 胚性幹細胞の指示された分化及びその利用 |
US20060182722A1 (en) | 2005-02-11 | 2006-08-17 | Hering Bernhard J | Methods and materials for isolating isogenic islet cells |
CN100425694C (zh) | 2005-04-15 | 2008-10-15 | 北京大学 | 诱导胚胎干细胞向胰腺细胞分化的方法 |
WO2007002210A2 (en) | 2005-06-20 | 2007-01-04 | Bresagen, Inc. | Embryonic stem cell culture compositions and methods of use thereof |
EP1957636B1 (en) | 2005-10-27 | 2018-07-04 | Viacyte, Inc. | Pdx1-expressing dorsal and ventral foregut endoderm |
GB0522564D0 (en) * | 2005-11-04 | 2005-12-14 | Reneuron Ltd | Cells |
GB0602063D0 (en) | 2006-02-02 | 2006-03-15 | Univ Manchester | Cell Culture |
JP5269612B2 (ja) | 2006-02-07 | 2013-08-21 | スパイナルサイト, エルエルシー | インビボバイオリアクターを使用する軟骨の修復のための方法および組成物 |
SG170021A1 (en) | 2006-02-23 | 2011-04-29 | Novocell Inc | Compositions and methods useful for culturing differentiable cells |
EP2650359B1 (en) | 2006-03-02 | 2022-05-04 | Viacyte, Inc. | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US7695965B2 (en) | 2006-03-02 | 2010-04-13 | Cythera, Inc. | Methods of producing pancreatic hormones |
AP2949A (en) * | 2006-03-07 | 2014-07-31 | Shroff Geeta | Compositions comprising human embryonic stem cellsand their derivatives, methods of use, and method s of preparation |
US20070237749A1 (en) * | 2006-04-07 | 2007-10-11 | Wang Taylor G | Multi-membrane immunoisolation system for cellular transplant |
US8741643B2 (en) | 2006-04-28 | 2014-06-03 | Lifescan, Inc. | Differentiation of pluripotent stem cells to definitive endoderm lineage |
WO2008013664A2 (en) | 2006-07-26 | 2008-01-31 | Cythera, Inc. | Methods of producing pancreatic hormones |
US20090274712A1 (en) * | 2006-10-24 | 2009-11-05 | Dennis James E | Compositions for coating cell membranes and methods of use thereof |
US20080241250A1 (en) | 2006-11-08 | 2008-10-02 | Emans Pieter J | In vivo bioreactors and methods of making and using same |
US20080176318A1 (en) * | 2006-12-07 | 2008-07-24 | Wilson John R | Highly efficient devices and methods for culturing cells |
US20080279833A1 (en) | 2007-05-10 | 2008-11-13 | Matheny Robert G | Laminate sheet articles for tissue regeneration |
US7695963B2 (en) | 2007-09-24 | 2010-04-13 | Cythera, Inc. | Methods for increasing definitive endoderm production |
US8623650B2 (en) | 2007-10-19 | 2014-01-07 | Viacyte, Inc. | Methods and compositions for feeder-free pluripotent stem cell media containing human serum |
WO2009059072A2 (en) | 2007-10-30 | 2009-05-07 | Tufts University | Analysis of endogenous fluorescence images to extract morphological/organization information about living samples |
US8338170B2 (en) | 2008-04-21 | 2012-12-25 | Viacyte, Inc. | Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells |
US8008075B2 (en) | 2008-11-04 | 2011-08-30 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
EP4176888A1 (en) | 2008-11-14 | 2023-05-10 | ViaCyte, Inc. | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
MX2012002440A (es) | 2009-08-28 | 2012-06-19 | Sernova Corp | Metodos y dispositivos para el transplante de celulas. |
CN102741395B (zh) | 2009-12-23 | 2016-03-16 | 詹森生物科技公司 | 人胚胎干细胞的分化 |
RU2587634C2 (ru) | 2010-05-12 | 2016-06-20 | Янссен Байотек, Инк. | Дифференцирование эмбриональных стволовых клеток человека |
US10702008B2 (en) | 2018-02-26 | 2020-07-07 | Hbn Shoe, Llc | Device and method of constructing shoes |
US11586805B2 (en) | 2021-07-26 | 2023-02-21 | Atlassian Pty Ltd. | Machine-learning-based natural language processing techniques for low-latency document summarization |
-
2009
- 2009-11-13 EP EP22195181.7A patent/EP4176888A1/en active Pending
- 2009-11-13 ES ES18163933T patent/ES2932850T3/es active Active
- 2009-11-13 EP EP18163933.7A patent/EP3363444B1/en active Active
- 2009-11-13 PL PL09826863T patent/PL2356227T3/pl unknown
- 2009-11-13 CA CA3229301A patent/CA3229301A1/en active Pending
- 2009-11-13 CA CA2743641A patent/CA2743641C/en active Active
- 2009-11-13 ES ES09826863.4T patent/ES2667493T3/es active Active
- 2009-11-13 US US12/618,659 patent/US8278106B2/en active Active
- 2009-11-13 WO PCT/US2009/064459 patent/WO2010057039A2/en active Application Filing
- 2009-11-13 AU AU2009313870A patent/AU2009313870B2/en active Active
- 2009-11-13 CN CN201510760059.5A patent/CN105349517B/zh active Active
- 2009-11-13 CN CN200980154622.7A patent/CN102282254B/zh active Active
- 2009-11-13 JP JP2011536536A patent/JP2012508584A/ja active Pending
- 2009-11-13 EP EP09826863.4A patent/EP2356227B1/en active Active
-
2011
- 2011-07-22 US US13/188,706 patent/US8425928B2/en active Active
-
2013
- 2013-03-26 US US13/850,978 patent/US20130209425A1/en not_active Abandoned
- 2013-05-24 US US13/902,774 patent/US9132226B2/en active Active
-
2014
- 2014-05-28 JP JP2014110151A patent/JP2014159477A/ja active Pending
-
2015
- 2015-08-07 US US14/820,807 patent/US9764062B2/en active Active
- 2015-11-13 US US14/941,052 patent/US9913930B2/en active Active
-
2017
- 2017-07-28 JP JP2017146480A patent/JP2017197578A/ja active Pending
- 2017-08-16 US US15/679,002 patent/US10272179B2/en active Active
-
2018
- 2018-09-10 JP JP2018168902A patent/JP2018188484A/ja not_active Withdrawn
-
2019
- 2019-03-11 US US16/299,022 patent/US11660377B2/en active Active
-
2020
- 2020-10-09 JP JP2020170889A patent/JP2021004258A/ja active Pending
-
2022
- 2022-07-05 JP JP2022108223A patent/JP2022125204A/ja active Pending
-
2023
- 2023-04-25 US US18/138,904 patent/US20230256137A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5554148A (en) * | 1987-11-17 | 1996-09-10 | Brown University Research Foundation | Renewable neural implant device and method |
WO1993021902A1 (en) * | 1992-04-24 | 1993-11-11 | Somatix Therapy Corporation | Biocompatible, therapeutic, implantable device |
US5964261A (en) * | 1996-05-29 | 1999-10-12 | Baxter International Inc. | Implantation assembly |
Non-Patent Citations (1)
Title |
---|
Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells;Kevin A D’Amour et al.;《NATURE BIOTECHNOLOGY》;20061019;第24卷(第11期);第1392页左栏最后1段 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105349517B (zh) | 源于人多能干细胞的胰腺细胞的包封 | |
AU2023285823A1 (en) | Encapsulation of pancreatic cells derived from human pluripotent stem cells | |
AU2021200419B2 (en) | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |