CN105217640B - 一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法 - Google Patents

一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法 Download PDF

Info

Publication number
CN105217640B
CN105217640B CN201510512345.XA CN201510512345A CN105217640B CN 105217640 B CN105217640 B CN 105217640B CN 201510512345 A CN201510512345 A CN 201510512345A CN 105217640 B CN105217640 B CN 105217640B
Authority
CN
China
Prior art keywords
graphene oxide
preparation
sio
hybrid
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510512345.XA
Other languages
English (en)
Other versions
CN105217640A (zh
Inventor
王勇
肖燕君
杨静晖
张楠
黄婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201510512345.XA priority Critical patent/CN105217640B/zh
Publication of CN105217640A publication Critical patent/CN105217640A/zh
Application granted granted Critical
Publication of CN105217640B publication Critical patent/CN105217640B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:A、将0.05~0.1mol前躯体加入到9~18ml的蒸馏水中,滴加浓度为0.2~0.6mol/L的水解催化剂到前躯体水溶液中,其中催化剂和前躯体的摩尔比为1:20~1:100;在20~30℃下,搅拌5~8h;然后调节pH值至pH=6~7,搅拌5‑45min,即得含有二氧化硅微球的分散液;B、将二氧化硅微球的分散液加水稀释5~50倍,再和浓度为0.6~2mg/ml的氧化石墨烯分散液等体积混合,搅拌10~30min,超声10~30min,即得氧化石墨烯/二氧化硅的杂化水凝胶;C、将杂化水凝胶在液氮下冷冻5~10min,冷冻干燥除去水分,即得。该方法环境友好,工艺简单;制备的杂化气凝胶具有凝胶网络结构完整、孔隙率高、吸附性好,强度高,密度低等优点。

Description

一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法
技术领域
本发明涉及一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,属于气凝胶技术领域。
背景技术
气凝胶是指以微纳米颗粒相互聚集构成纳米多孔网络结构,并在网络孔隙中充满气态分散介质的轻质纳米固态材料,具有极低密度,高比表面积,极高孔隙率与超高孔体积率的特点。因此气凝胶材料在能源材料,光学材料,磁性材料,催化剂材料以及隔热隔声材料等方面受到广泛关注.最常见的气凝胶是二氧化硅(SiO2)气凝胶。SiO2气凝胶是由相互连接的纳米级粒子形成的具有连续三维空间网络结构的多孔、轻质、非晶态纳米固体材料。典型的SiO2气凝胶具有比表面积高(400~1500m2·g-1)、密度低(40~200kg·m-3)、孔隙率(85%~99.8%)、热导率低(0.02W·m-1·K-1)、折射率低(1.05)及介电系数低等特点,在高效热绝缘隔热材料、隔音料、气体吸附和分离膜等方面具有广阔的应用值。
目前,SiO2气凝胶的制备一般要经过溶胶-凝胶聚合和干燥两个部分。溶胶-凝胶聚合是指向硅酸甲酯、水玻璃或正硅酸乙酯等前驱体中在水解催化剂的催化作用下发生水解反应,得到正硅酸;调节溶液的pH值,正硅酸发生缩聚反应,得到由富有弹性的凝胶网络和网络中的溶剂(水)组成的水凝胶。在保证凝胶网络结构不变的前提下,将水凝胶进行干燥处理,除去网络中的溶剂,即得到SiO2气凝胶。其中,干燥处理的过程是获得多孔网状结构的关键,现今主要的干燥技术包括超临界干燥技术,常压干燥技术以及冷冻干燥。超临界干燥是通过压力和温度的控制,使得溶剂在干燥过程中达到其本身的临界点,完成液相至气相的超临界转变的一种干燥技术。其原理是:当液体处于其临界点以上时,气液相的分界面消失,体系的性质变得均一,表面张力不复存在,此时凝胶毛细孔中就不存在由表面张力产生的附加压力,从而可以保持凝胶原先的分散结构,避免了排除溶剂时引起的凝胶结构的坍塌。但这种技术能耗高且危险性大,设备复杂,难以实现连续化以及规模化生产。常压干燥技术则是在亚临界状态下干燥凝胶,得到气凝胶。在常压干燥时,由于凝胶内部孔径大小不均匀,细孔道的毛细管力大于粗孔道,导致凝胶内部存在压力差,从而很容易引发溶剂蒸发过程中导致结构收缩碎裂。通常常压干燥为了得到完整的气凝胶,需要通过对凝胶进行老化处理提高凝胶的网络结构强度;需要对凝胶表面进行改性,通常是加入三甲基氯硅烷,降低与溶剂之间的表面张力;还需要溶剂置换,用表面张力小的溶剂如正己烷,正庚烷置换出表面张力大的溶剂。这种方法是基于对骨架材料增强改性来实现,但也同时增强了材料的密度,这与气凝胶低密度的特点相违背,同时常压干燥需要长时间的溶剂置换,改性工艺也较为复杂,大大提高了生产成本,且容易产生大量废液。冷冻干燥技术是将凝胶孔隙中的流体在液氮下迅速冻结,在低温低压下液/气界面转化为气/固界面,从而避免了孔内的弯曲液面,在使液体升华的过程中消除了毛细管力的影响,实现凝胶干燥。但冷冻干燥虽然可以将凝胶网络中的溶剂去除,但凝胶网络本身结构强度较差,抵抗不了在冷冻过程中溶剂结晶体积膨胀的作用,最终只能得到粉末状气凝胶而不是块状气凝胶,限制了其应用。因此选择强化骨架材料和选择适当干燥技术是目前制备二氧化硅凝胶的关键问题。
发明内容
本发明的目的是提供一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法。该方法环境友好,工艺简单且利于大规模生产;制备的氧化石墨烯/二氧化硅杂化气凝胶具有凝胶网络结构完整、孔隙率高、吸附性好,强度高,密度低等优点。
本发明实现其发明目的采取的技术方案是:一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:
一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:
A、制备二氧化硅微球:将0.05~0.1mol前躯体加入到9~18ml的蒸馏水中,得到前驱体水溶液;然后缓慢滴加浓度为0.2~0.6mol/L的水解催化剂到前躯体水溶液中,其中催化剂和前躯体的摩尔比为1:20~1:100;在20~30℃下,搅拌5~8h;然后加入pH值调节剂,调节反应体系的pH值至pH=6~7,搅拌5-45min,即得含有二氧化硅微球的分散液;
B、制备杂化水凝胶:将二氧化硅微球的分散液加水稀释5~50倍,得到二氧化硅微球稀释分散液;然后将氧化硅微球稀释分散液和浓度为0.6~2mg/ml的氧化石墨烯分散液等体积混合,搅拌10~30min,再超声10~30min;即得氧化石墨烯/二氧化硅的杂化水凝胶;
C、制备杂化气凝胶:将B步的杂化水凝胶在液氮下冷冻5~10min,然后进行冷冻干燥处理,除去水分,即得氧化石墨烯/二氧化硅的杂化气凝胶。
本发明的反应机理是:本发明的反应机理是:
在A步中,二氧化硅前驱体(Si(OR)4)在酸性催化剂的催化作用下发生水解反应,-OH逐渐代替-OR,生成正硅酸,如水解化学反应式所示;加入pH值调节剂,调节pH值至pH=6~7时,搅拌5-15min的过程中,Si-OH之间发生脱水缩合,形成Si-O-Si键,搅拌过程中逐渐长大,5-15min的搅拌可形成纳米级的二氧化硅微球(如搅拌时间过长,会逐渐形成二氧化硅水凝胶,则无法在氧化石墨烯水溶液中分散),如缩聚化学反应式所示。此时形成的二氧化硅微球的表面为未参加缩聚反应的羟基(-OH)。
Si(OR)4+H2O→Si(OH)4+HOR 水解
n Si(OH)4→(SiO2)n+2n H2O 缩聚
在B步中,将A步得到的含有二氧化硅纳米微球的分散液稀释0-50倍,然后与氧化石墨烯分散液混合,二氧化硅微球表面的羟基和氧化石墨烯表面的羟基、羧基和环氧基团等极性基团之间形成氢键,使二氧化硅微球稳定地分散附着于氧化石墨烯网络的表面;形成氧化石墨烯/二氧化硅的杂化水凝胶。
通过C步冷冻干燥的处理,去除水凝胶中的溶剂,即形成具有多层次的孔洞结构的块状氧化石墨烯/二氧化硅气凝胶。其中,以高强度的氧化石墨烯作为骨架搭接起来形成微米级的大孔,而二氧化硅微球是在氧化石墨烯的表面均匀分散堆积,形成纳米级的微孔。
与现有技术相比,本发明的有益效果是:
一、制备的氧化石墨烯/二氧化硅杂化气凝胶中,高强度的氧化石墨烯片层之间相互搭接自组装形成三维孔隙结构,构成杂化气凝胶的骨架,保证了凝胶网络结构的强度和稳定性,避免了在后续的冷冻干燥过程中凝胶网络的塌陷,最终得到了性能良好的块状气凝胶。
二、以强度高,密度低的氧化石墨烯作为气凝胶的骨架材料,制备的杂化气凝胶不仅在强度和稳定性上优于现有的纯二氧化硅气凝胶,而且密度也远远小于现有的纯二氧化硅气凝胶。
三、氧化石墨烯本身具有的典型二维网状结构,且径厚比较大,在形成气凝胶的过程中,氧化石墨烯片层边缘相互搭接;通过二氧化硅微球表面的羟基与氧化石墨烯表面的羧基、羟基和环氧基团等极性官能团之间的分子间作用,使二氧化硅微球在氧化石墨烯形成的微米级大孔的网络结构上的负载与聚集,形成尺度较小的孔隙结构。最终杂化凝胶经过干燥后形成的气凝胶孔隙率高,且具有多尺度、分级孔径的三维结构。同时可以根据氧化石墨烯与二氧化硅的配比,调控各级孔径大小以及比例。
四、该发明所获得的气凝胶孔隙率高,溶剂吸附作用强,对极性和非极性有机溶剂都有较好的吸附作用,而且氧化石墨烯的极性可进一步提高对极性溶剂的吸附作用。正是由于这一特点,该气凝胶可以运用到海水中漏油的处理以及污水中有机溶剂的回收处理。
五、二氧化硅气凝胶一个重要的用途即对污水中重金属离子的吸附,特别是汞离子和铜离子。本发明制备的气凝胶,保持了传统二氧化硅气凝胶微观纳米结构的孔隙和二氧化硅纳米微粒自身的基团,保证了其对重金属离子良好的吸附能力;并且,由于氧化石墨烯表面是带电负性,所以,该气凝胶对带正电的阳离子具有相比现有的二氧化硅气凝胶更好的吸附性能,吸附速率也更快。
六、采用冷冻干燥技术可以保证氧化石墨烯片层在凝胶中的良好分散,获得较大的比表面积,同时该技术不需要复杂设备,简单易操作,不涉及高温高压,不需表面改性,溶剂置换等程序,无污染,成本低廉,适宜大批量生产。
进一步,本发明所述的A步中制备二氧化硅微球所用的二氧化硅前驱体为硅酸四甲酯、正硅酸乙酯、水玻璃或甲基三甲氧基硅烷。
这几种前躯体的价格都很便宜,而且水解过程相对简单,最后能到的二氧化硅微球其表面基本都是亲水的羟基,可以很好的保证二氧化硅在水中分散和与氧化石墨烯能有很好的相互作用,促进其在氧化石墨烯表面的稳定性。
进一步,本发明所述的A步中制备二氧化硅微球所用的水解催化剂为草酸溶液或盐酸溶液。
草酸溶液或盐酸溶液为二氧化硅前驱体(Si(OR)4)的水解提供酸性条件,使-OH逐渐代替-OR,生成正硅酸,这两种稀酸溶液均为实验室常用的酸性试剂,这两种酸的毒性小,反应的副产物易除去,且残留对气凝胶孔洞的结构破坏性小。
进一步,本发明所述的A步中用的pH值调节剂为浓度为0.5~1mol/L氨水或氢氧化钠溶液。
为Si-OH之间发生脱水缩合,形成Si-O-Si键,形成纳米级的二氧化硅微球提供碱性条件,这些碱溶液均为常用的碱性pH调节剂,调节效果明显,所得副产物易除去,且不影响二氧化硅微球的组成和结构。
进一步,本发明所述的B步中氧化石墨烯水溶液中的氧化石墨烯是通过Hummers法制备得到的。
Hummers法可制备中性的分散性好的氧化石墨烯分散液,且可以通过控制氧化剂的强弱和氧化时间,得到片层相对较薄的氧化石墨烯片层。
进一步,本发明所述的B步中氧化石墨烯水溶液中的氧化石墨烯厚度为5~50nm。
这种厚度的氧化石墨烯的片层,可以提高得到的杂化气凝胶的孔隙率和降低气凝胶的密度。
进一步,本发明所述的B步中搅拌10~30min的搅拌速度为50~100r/min。
更进一步,本发明所述的B步中超声10~30min的超声功率为50~100W。
在这样的搅拌速度和超声功率下,既能使二氧化硅和氧化石墨烯可以更好的分散,不至于团聚,也不会破坏二氧化硅微粒的微观结构。
进一步,本发明所述的C步中冷冻干燥处理的具体条件为:压力0~20Pa,温度为-50~-60℃,时间为24~48h。
0~20Pa,-50~-60℃的冷冻干燥参数,可以保证孔洞中的固态水能很好的气化成气态,这样不会产生很大的毛细管力破坏孔洞的结构,以至于让孔洞坍塌,且24~48h的冷冻干燥时间可以保证杂化气凝胶中的水分充分干燥,
下面结合附图和具体实施方式对本发明做进一步描述。
附图说明
图1为本发明实施例一、实施例二制备的氧化石墨烯/二氧化硅杂化气凝胶和对比例制备的二氧化硅气凝胶的溶液吸附性能柱状图。
具体实施方式
实施例一
一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:A、制备二氧化硅微球:将0.05mol正硅酸乙酯加入到9ml的蒸馏水中,然后缓慢滴加浓度为0.5mol/L的草酸溶液到正硅酸乙酯水溶液中,其中草酸和正硅酸乙酯的摩尔比为1:50;在25℃下,搅拌5h;然后加入浓度为1mol/L氨水溶液,调节反应体系的pH值至pH=7,搅拌10min,即得含有二氧化硅微球的分散液;
B、制备杂化水凝胶:将二氧化硅微球的分散液加水稀释10倍,得到二氧化硅微球稀释分散液;然后将氧化硅微球稀释分散液和浓度为0.8mg/ml的氧化石墨烯分散液等体积混合,搅拌15min,搅拌速度为50r/min,再超声15min,超声功率为100W;即得氧化石墨烯/二氧化硅的杂化水凝胶;
C、制备杂化气凝胶:将B步的杂化水凝胶在液氮下冷冻5min,然后进行冷冻干燥处理,除去水分,即得氧化石墨烯/二氧化硅的杂化气凝胶。所述冷冻干燥处理的具体条件为:压力20Pa,温度为-50℃,时间为48h。
本实例中氧化石墨烯水溶液中的氧化石墨烯是通过Hummers法制备得到的,氧化石墨烯的厚度为5~50nm。
实施例二
一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:A、制备二氧化硅微球:将0.05mol正硅酸乙酯加入到9ml的蒸馏水中,然后缓慢滴加浓度为0.5mol/L的草酸溶液到正硅酸乙酯水溶液中,其中草酸和正硅酸乙酯的摩尔比为1:50;在25℃下,搅拌5h;然后加入浓度为1mol/L氨水溶液,调节反应体系的pH值至pH=7,搅拌10min,即得含有二氧化硅微球的分散液;
B、制备杂化水凝胶:将二氧化硅微球的分散液加水稀释20倍,得到二氧化硅微球稀释分散液;然后将氧化硅微球稀释分散液和浓度为0.8mg/ml的氧化石墨烯分散液等体积混合,搅拌15min,搅拌速度为50r/min,再超声15min,超声功率为100W;即得氧化石墨烯/二氧化硅的杂化水凝胶;
C、制备杂化气凝胶:将B步的杂化水凝胶在液氮下冷冻5min,然后进行冷冻干燥处理,除去水分,即得氧化石墨烯/二氧化硅的杂化气凝胶。所述冷冻干燥处理的具体条件为:压力20Pa,温度为-50℃,时间为48h。
本实例中氧化石墨烯水溶液中的氧化石墨烯是通过Hummers法制备得到的,氧化石墨烯的厚度为5~50nm。
对比例
一种二氧化硅杂化气凝胶的制备方法,其步骤如下:
A、制备二氧化硅凝胶:将0.05mol正硅酸乙酯加入到5ml的蒸馏水和10ml的乙醇中,然后缓慢滴加浓度为0.5mol/L的水解催化剂到前躯体水溶液中,其中催化剂和前躯体的摩尔比为1:50;在25℃下,搅拌8h;然后缓慢滴加入pH值调节剂,调节反应体系的pH值至pH=8,搅拌直到体系变浑浊,粘度变大,停止搅拌。二氧化硅开始凝胶,形成二氧化硅水凝胶;
B、制备改性二氧化硅凝胶:加水凝胶放入老化液中进行老化,其中老化液中含正硅酸乙酯和乙醇的体积比为1:5,老化温度50℃,老化时间12小时。然后加入正己烷进行溶剂置换,溶剂置换温度为40℃,时间为3小时。随后,加入8.2g的表面改性剂三甲基氯硅烷以及体积为其5倍的正己烷对凝胶进行表面改性,改性温度60℃,时间2小时。最后再用正己烷对改性后的凝胶进行溶剂置换,置换温度60℃,时间3小时。
C、制备二氧化硅气凝胶:将B步得到的凝胶放入烘箱中进行常压干燥,干燥步骤为在60℃,80℃,100℃,120℃,150℃下各干燥2小时。
图1为本发明实施例一、实施例二制备的氧化石墨烯/二氧化硅杂化气凝胶和对比例一制备的二氧化硅气凝胶的溶液吸附性能柱状图。由图中可以看出,本发明方法制备的氧化石墨烯/二氧化硅杂化气凝胶和现有的方法制备的二氧化硅杂化气凝胶相比,吸附能力大大提高。可通过改变B步中含有二氧化硅微球的分散液的稀释倍数,调整最终得到的杂化气凝胶的吸附能力。
实施例三
一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:A、制备二氧化硅微球:将0.1mol正硅酸乙酯加入到18ml的蒸馏水中,然后缓慢滴加浓度为0.6mol/L的草酸溶液到正硅酸乙酯水溶液中,其中草酸和正硅酸乙酯的摩尔比为1:100;在30℃下,搅拌6h;然后加入浓度为0.5mol/L氨水溶液,调节反应体系的pH值至pH=6.5,搅拌45min,即得含有二氧化硅微球的分散液;
B、制备杂化水凝胶:将二氧化硅微球的分散液加水稀释5倍,得到二氧化硅微球稀释分散液;然后将氧化硅微球稀释分散液和浓度为2mg/ml的氧化石墨烯分散液等体积混合,搅拌10min,搅拌速度为100r/min,再超声10min,超声功率为50W;即得氧化石墨烯/二氧化硅的杂化水凝胶;
C、制备杂化气凝胶:将B步的杂化水凝胶在液氮下冷冻5min,然后进行冷冻干燥处理,除去水分,即得氧化石墨烯/二氧化硅的杂化气凝胶。所述冷冻干燥处理的具体条件为:压力0Pa,温度为-60℃,时间为24h。
本实例中氧化石墨烯水溶液中的氧化石墨烯是通过Hummers法制备得到的,氧化石墨烯的厚度为5~50nm。
实施例四
一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:A、制备二氧化硅微球:将0.08mol正硅酸乙酯加入到13ml的蒸馏水中,然后缓慢滴加浓度为0.2mol/L的草酸溶液到正硅酸乙酯水溶液中,其中草酸和正硅酸乙酯的摩尔比为1:20;在20℃下,搅拌8h;然后加入浓度为0.7mol/L氨水溶液,调节反应体系的pH值至pH=6,搅拌5min,即得含有二氧化硅微球的分散液;
B、制备杂化水凝胶:将二氧化硅微球的分散液加水稀释50倍,得到二氧化硅微球稀释分散液;然后将氧化硅微球稀释分散液和浓度为0.6mg/ml的氧化石墨烯分散液等体积混合,搅拌30min,搅拌速度为80r/min,再超声30min,超声功率为80W;即得氧化石墨烯/二氧化硅的杂化水凝胶;
C、制备杂化气凝胶:将B步的杂化水凝胶在液氮下冷冻10min,然后进行冷冻干燥处理,除去水分,即得氧化石墨烯/二氧化硅的杂化气凝胶。所述冷冻干燥处理的具体条件为:压力10Pa,温度为-55℃,时间为36h。
本实例中氧化石墨烯水溶液中的氧化石墨烯是通过Hummers法制备得到的,氧化石墨烯的厚度为5~50nm。
实施例五
一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:A、制备二氧化硅微球:将0.07mol正硅酸乙酯加入到13ml的蒸馏水中,然后缓慢滴加浓度为0.4mol/L的盐酸溶液到正硅酸乙酯水溶液中,其中草酸和正硅酸乙酯的摩尔比为1:80;在20℃下,搅拌8h;然后加入浓度为1mol/L氢氧化钠溶液,调节反应体系的pH值至pH=7,搅拌10min,即得含有二氧化硅微球的分散液;
B、制备杂化水凝胶:将二氧化硅微球的分散液加水稀释10倍,得到二氧化硅微球稀释分散液;然后将氧化硅微球稀释分散液和浓度为0.8mg/ml的氧化石墨烯分散液等体积混合,搅拌15min,搅拌速度为50r/min,再超声15min,超声功率为100W;即得氧化石墨烯/二氧化硅的杂化水凝胶;
C、制备杂化气凝胶:将B步的杂化水凝胶在液氮下冷冻8min,然后进行冷冻干燥处理,除去水分,即得氧化石墨烯/二氧化硅的杂化气凝胶。所述冷冻干燥处理的具体条件为:压力15Pa,温度为-50℃,时间为48h。
本实例中氧化石墨烯水溶液中的氧化石墨烯是通过Hummers法制备得到的,氧化石墨烯的厚度为5~50nm。
实施例六
一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:A、制备二氧化硅微球:将0.07mol正硅酸乙酯加入到13ml的蒸馏水中,然后缓慢滴加浓度为0.2mol/L的盐酸溶液到正硅酸乙酯水溶液中,其中草酸和正硅酸乙酯的摩尔比为1:80;在20℃下,搅拌8h;然后加入浓度为0.5mol/L氢氧化钠溶液,调节反应体系的pH值至pH=7,搅拌10min,即得含有二氧化硅微球的分散液;
B、制备杂化水凝胶:将二氧化硅微球的分散液加水稀释10倍,得到二氧化硅微球稀释分散液;然后将氧化硅微球稀释分散液和浓度为0.8mg/ml的氧化石墨烯分散液等体积混合,搅拌15min,搅拌速度为50r/min,再超声15min,超声功率为100W;即得氧化石墨烯/二氧化硅的杂化水凝胶;
C、制备杂化气凝胶:将B步的杂化水凝胶在液氮下冷冻8min,然后进行冷冻干燥处理,除去水分,即得氧化石墨烯/二氧化硅的杂化气凝胶。所述冷冻干燥处理的具体条件为:压力15Pa,温度为-50℃,时间为48h。
本实例中氧化石墨烯水溶液中的氧化石墨烯是通过Hummers法制备得到的,氧化石墨烯的厚度为5~50nm。
实施例七
一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:A、制备二氧化硅微球:将0.07mol正硅酸乙酯加入到13ml的蒸馏水中,然后缓慢滴加浓度为0.6mol/L的盐酸溶液到正硅酸乙酯水溶液中,其中草酸和正硅酸乙酯的摩尔比为1:80;在20℃下,搅拌8h;然后加入浓度为0.7mol/L氢氧化钠溶液,调节反应体系的pH值至pH=7,搅拌10min,即得含有二氧化硅微球的分散液;
B、制备杂化水凝胶:将二氧化硅微球的分散液加水稀释10倍,得到二氧化硅微球稀释分散液;然后将氧化硅微球稀释分散液和浓度为0.8mg/ml的氧化石墨烯分散液等体积混合,搅拌15min,搅拌速度为50r/min,再超声15min,超声功率为100W;即得氧化石墨烯/二氧化硅的杂化水凝胶;
C、制备杂化气凝胶:将B步的杂化水凝胶在液氮下冷冻8min,然后进行冷冻干燥处理,除去水分,即得氧化石墨烯/二氧化硅的杂化气凝胶。所述冷冻干燥处理的具体条件为:压力15Pa,温度为-50℃,时间为48h。
本实例中氧化石墨烯水溶液中的氧化石墨烯是通过Hummers法制备得到的,氧化石墨烯的厚度为5~50nm。

Claims (9)

1.一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其步骤如下:
A、制备二氧化硅微球:将0.05~0.1mol前躯体加入到9~18ml的蒸馏水中,得到前驱体水溶液;然后缓慢滴加浓度为0.2~0.6mol/L的水解催化剂到前躯体水溶液中,其中水解催化剂的溶质和前躯体的摩尔比为1:20~1:100;在20~30℃下,搅拌5~8h;然后加入pH值调节剂,调节反应体系的pH值至pH=6~7,搅拌5-45min,即得含有二氧化硅微球的分散液;
B、制备杂化水凝胶:将二氧化硅微球的分散液加水稀释5~50倍,得到二氧化硅微球稀释分散液;然后将氧化硅微球稀释分散液和浓度为0.6~2mg/ml的氧化石墨烯分散液等体积混合,搅拌10~30min,再超声10~30min;即得氧化石墨烯/二氧化硅的杂化水凝胶;
C、制备杂化气凝胶:将B步的杂化水凝胶在液氮下冷冻5~10min,然后进行冷冻干燥处理,除去水分,即得氧化石墨烯/二氧化硅的杂化气凝胶。
2.根据权利要求1所述的一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其特征在于:所述的A步中制备二氧化硅微球所用的二氧化硅前驱体为硅酸四甲酯、正硅酸乙酯、水玻璃或甲基三甲氧基硅烷。
3.根据权利要求1所述的一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其特征在于:所述的A步中制备二氧化硅微球所用的水解催化剂为草酸溶液或盐酸溶液。
4.根据权利要求1所述的一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其特征在于:所述的A步中用的pH值调节剂为浓度为0.5~1mol/L氨水或氢氧化钠溶液。
5.根据权利要求1所述的一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其特征在于:所述的B步中氧化石墨烯水溶液中的氧化石墨烯是通过Hummers法制备得到的。
6.根据权利要求1所述的一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其特征在于:所述的B步中氧化石墨烯水溶液中的氧化石墨烯的厚度为5~50nm。
7.根据权利要求1所述的一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其特征在于:所述的B步中搅拌10~30min的搅拌速度为50~100r/min。
8.根据权利要求1所述的一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其特征在于:所述的B步中超声10~30min的超声功率为50~100W。
9.根据权利要求1所述的一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法,其特征在于:所述的C步中冷冻干燥处理的具体条件为:压力0~20Pa,温度为-50~-60℃,时间为24~48h。
CN201510512345.XA 2015-08-20 2015-08-20 一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法 Active CN105217640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510512345.XA CN105217640B (zh) 2015-08-20 2015-08-20 一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510512345.XA CN105217640B (zh) 2015-08-20 2015-08-20 一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN105217640A CN105217640A (zh) 2016-01-06
CN105217640B true CN105217640B (zh) 2017-08-04

Family

ID=54986996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510512345.XA Active CN105217640B (zh) 2015-08-20 2015-08-20 一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN105217640B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159107A (zh) * 2016-03-08 2017-09-15 常州烃环保科技有限公司 一种石墨烯/硅气凝胶复合吸附剂的制备方法
CN107541096A (zh) * 2016-06-28 2018-01-05 中国科学院成都有机化学有限公司 一种石墨烯白炭黑复合粉体及其制备技术
CN106986605B (zh) * 2017-03-21 2019-12-10 吉林建筑大学 一种纯水体系制备硅气凝胶及生产方法
CN108689412A (zh) * 2017-04-12 2018-10-23 中国科学院苏州纳米技术与纳米仿生研究所 一种气凝胶微粉及其制备方法
CN107032360B (zh) * 2017-04-19 2019-06-21 航天特种材料及工艺技术研究所 一种石墨烯/二氧化硅复合气凝胶材料及其制备方法
CN107235744B (zh) * 2017-06-02 2020-06-02 东南大学 一种石墨烯-二氧化硅气凝胶的制备方法
CN107325328B (zh) * 2017-06-15 2019-06-07 北京化工大学 一种石墨烯/二氧化硅复合粒子的制备方法
CN107216115B (zh) * 2017-06-26 2019-10-29 南京工业大学 一种PTFE纤维布复合石墨烯-SiO2气凝胶的制备方法
US11053127B2 (en) * 2017-12-22 2021-07-06 Fatemeh Pashaei Soorbaghi Mechanically robust aerogels and preparation method thereof
CN108342217A (zh) * 2018-01-16 2018-07-31 浙江工业大学 一种以Ag2O/SiO2-氧化石墨烯复合气凝胶为吸附剂脱除燃料油中噻吩类硫的方法
CN108311099A (zh) * 2018-01-16 2018-07-24 浙江工业大学 Ag2O/SiO2-Al2O3-氧化石墨烯复合气凝胶脱除燃料油中噻吩类硫的方法
CN108218386B (zh) * 2018-01-23 2021-01-08 贵州省建材产品质量监督检验院 氯硅烷改性氧化石墨烯/二氧化硅保温复合材料制备方法
CN108461309B (zh) * 2018-04-25 2019-09-24 山西大学 一种石墨烯膜电极材料的制备方法
CN108728156A (zh) * 2018-06-12 2018-11-02 浙江工业大学 Cu2O/SiO2-Al2O3-GO复合气凝胶吸附脱除燃料油中噻吩类硫化物的方法
CN109111943A (zh) * 2018-06-12 2019-01-01 浙江工业大学 Cu2O/SiO2-TiO2-GO复合气凝胶吸附脱除燃料油中噻吩类硫化物的方法
CN109550479A (zh) * 2018-06-12 2019-04-02 浙江工业大学 Cu2O/SiO2-氧化石墨烯复合气凝胶吸附脱除燃料油中噻吩类硫化物的方法
CN108854953B (zh) * 2018-06-12 2022-03-01 浙江工业大学 Ag2O/SiO2-TiO2-氧化石墨烯复合气凝胶吸附脱除燃料油中噻吩类硫的方法
CN108715444B (zh) * 2018-06-15 2020-02-04 中国科学院苏州纳米技术与纳米仿生研究所 一种超疏水氧化硅杂化石墨烯气凝胶微粉、制法及其应用
CN110304879A (zh) * 2019-06-28 2019-10-08 济南大学 一种使混凝土具有水体净化功能的方法及具有水体净化功能的混凝土
CN110354811A (zh) * 2019-07-18 2019-10-22 浙江工业大学 以Pd(II)-SiO2-GO复合气凝胶为吸附剂脱除燃料油中噻吩类硫化物的方法
CN110354813B (zh) * 2019-07-18 2022-03-11 浙江工业大学 以SiO2-MTES-氧化石墨烯复合气凝胶为吸附剂脱除燃料油中噻吩类硫化物的方法
CN112441576A (zh) * 2019-08-29 2021-03-05 中国科学院上海硅酸盐研究所苏州研究院 一种石墨烯气凝胶的改性方法
CN112516927B (zh) * 2020-11-09 2022-06-28 安徽宇航派蒙健康科技股份有限公司 一种三维石墨烯-纳米线杂化气凝胶的制备方法
CN112479188B (zh) * 2020-11-23 2023-02-28 陕西理工大学 一种硅掺杂的石墨烯气凝胶及其制备方法和应用
CN113477236A (zh) * 2021-08-24 2021-10-08 西北有色金属研究院 氧化石墨烯-聚乙烯亚胺/二氧化硅复合气凝胶的制备方法
CN114436620A (zh) * 2022-01-18 2022-05-06 东莞市鹏威能源科技有限公司 一种石墨烯基气凝胶及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130202890A1 (en) * 2012-02-03 2013-08-08 Jing Kong Aerogels and methods of making same
CN104098089A (zh) * 2014-07-25 2014-10-15 西南民族大学 一种掺杂石墨烯泡沫的制备方法
CN104828810A (zh) * 2015-05-07 2015-08-12 中国人民解放军国防科学技术大学 一种超高比表面积石墨烯气凝胶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130202890A1 (en) * 2012-02-03 2013-08-08 Jing Kong Aerogels and methods of making same
CN104098089A (zh) * 2014-07-25 2014-10-15 西南民族大学 一种掺杂石墨烯泡沫的制备方法
CN104828810A (zh) * 2015-05-07 2015-08-12 中国人民解放军国防科学技术大学 一种超高比表面积石墨烯气凝胶的制备方法

Also Published As

Publication number Publication date
CN105217640A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
CN105217640B (zh) 一种氧化石墨烯/二氧化硅杂化气凝胶的制备方法
CN101691227B (zh) 二氧化硅气凝胶材料的制备方法
CN102179230B (zh) 一种赋磁二氧化硅气凝胶的制备方法
Hwang et al. Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient-drying
CN108002749B (zh) 一种疏水高弹性甲基硅倍半氧烷气凝胶块体及其制备方法
CN103706342B (zh) 氨基杂化SiO2气凝胶材料及其应用
CN105622767B (zh) 一种疏水性纳米纤维素气凝胶的制备方法
CN107304052A (zh) 一种氧化石墨烯掺杂二氧化硅气凝胶的制备方法
CN104163444B (zh) 一种α-氧化铝空心球的制备方法
CN103316614B (zh) 一种γ-Fe2O3/SiO2纳米复合材料的制备方法及纳米复合材料颗粒
CN107216115B (zh) 一种PTFE纤维布复合石墨烯-SiO2气凝胶的制备方法
CN104087077B (zh) 基于相变储热的相变储热保温涂料及其制备方法和应用
CN103204666A (zh) 一种水性条件下低成本制备气凝胶或气凝胶纤维复合材料的方法
CN104129973A (zh) 一种填充SiO2气凝胶的碳气凝胶的制备方法
CN108083262A (zh) 一种还原氧化石墨烯-二氧化硅块体气凝胶的制备方法
CN106009428A (zh) 一种二氧化硅填充ptfe复合材料及其制备方法
CN103936018A (zh) 一种常压干燥制备疏水性SiO2气凝胶的方法
CN105347351B (zh) 一种乳液法制备TiO2/SiO2气凝胶微球的方法
CN104495859A (zh) 一种二氧化硅气凝胶的制备方法
CN105344334B (zh) 一种聚乙烯醇/二氧化硅复合微球的制备方法
CN104355313B (zh) 一种二氧化硅疏水多孔材料的简易制备方法
CN106467304A (zh) 一种二氧化硅气凝胶微球及其制备方法
CN111848140B (zh) 一种氧化铝纳米线气凝胶隔热材料及其制备方法
CN111807810A (zh) 一种纳米线/硅铝气凝胶复合材料的制备方法
CN100441512C (zh) 二氧化钛纳米环的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant