CN105008868B - 热式空气流量计 - Google Patents

热式空气流量计 Download PDF

Info

Publication number
CN105008868B
CN105008868B CN201380074118.2A CN201380074118A CN105008868B CN 105008868 B CN105008868 B CN 105008868B CN 201380074118 A CN201380074118 A CN 201380074118A CN 105008868 B CN105008868 B CN 105008868B
Authority
CN
China
Prior art keywords
mentioned
lsi
testing division
flow testing
air flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380074118.2A
Other languages
English (en)
Other versions
CN105008868A (zh
Inventor
绪方公俊
石塚典男
松本昌大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to CN201810190200.6A priority Critical patent/CN108458762B/zh
Publication of CN105008868A publication Critical patent/CN105008868A/zh
Application granted granted Critical
Publication of CN105008868B publication Critical patent/CN105008868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Volume Flow (AREA)

Abstract

为了提供测量精度高的热式流量计,采用以下结构:具有流量检测部、用于配置上述流量检测部的副通路和被输入从上述流量检测部得到的信号且向外部输出信号的LSI,上述副通路的侧壁配置在上述流量检测部与上述LSI之间或者配置在上述LSI上,设置在上述LSI的内部的扩散电阻的长度方向与单晶硅的<100>轴平行。

Description

热式空气流量计
技术领域
本发明涉及热式空气流量计。
背景技术
测量空气的流量的热式空气流量计具有用于测量空气流量的流量检测部,通过在上述流量检测部和作为测量对象的上述气体之间进行热传递,测量上述气体的空气流量。热式空气流量计所测量的空气流量作为各种装置的重要的控制参数广泛使用。热式空气流量计的特征在于与其它方式的流量计相比能够以相对高的精度测量空气的流量。
但是,期待进一步提高空气流量的测量精度。例如,在搭载有内燃机的车辆中,节省燃料的要求和排气净化的要求都非常高。为了实现这些要求,需要以较高的精度测量作为内燃机的主要参数的吸入空气量。测量被导入内燃机的吸入空气量的热式空气流量计包括取入吸入空气量的一部分的副通路和配置在上述副通路的流量检测部,上述流量检测部在其与被测量气体之间进行热传递,由此测量流过上述副通路的被测量气体的状态,输出表示被导入上述内燃机的吸入空气量的电信号。这样的技术例如公开于日本特开2011-252796号公报(专利文献1)中。
现有技术文献
专利文献
专利文献1:日本特开2011-252796号公报
发明内容
发明要解决的技术问题
为了利用热式空气流量计以较高精度测量空气的流量,要求在设置于用于测量流过主通路的空气流量的热式空气流量计的副通路,以较高精度将流量检测部定位且固定,正确地测量由流量检测部检测出的流量。专利文献1记载的技术中,用树脂预先制造具有成形有用于嵌入流量检测部的孔的副通路的箱体,除了该箱体之外,制造具有流量检测部的传感器组件,然后在将上述流量检测部插入到上述副通路的孔的状态下,将上述传感器组件固定于箱体。在上述副通路的孔与流量检测部之间的间隙和传感器组件向箱体的嵌入部分的间隙中,填充有弹性粘接剂,利用接合剂的弹性力吸收彼此的线膨胀差。
在这样的结构中,难以将包含流量检测部的传感器组件正确地设定并固定于包含副通路的箱体。即,存在传感器组件和设置于箱体的副通路的位置和角度因粘接剂的状态等的不同而简单地变化的问题。因此,在现有的热式空气流量计中,难以进一步提高流量的检测精度。
为了将流量检测部相对于副通路正确地定位,将包含流量检测部的传感器组件在箱体形成的同时进行固定是有效的。但是,在该情况下,与使用粘接材料的情况相比,由传感器组件与箱体部件的线膨胀系数差导致的热应力较高地产生,配置在传感器组件内的LSI的输出(主要是电阻因热应力而发生变化)发生变动,存在热式空气流量计的测量精度降低的问题。
本发明的目的在于提供一种测量精度高的热式空气流量计。
用于解决技术课题的技术方案
为了达成上述目的,本发明的热式空气流量计包括:流量检测部;用于配置上述流量检测部的副通路;和被输入从上述流量检测部获得的信号,且向外部输出信号的LSI,上述副通路的侧壁配置在上述流量检测部与上述LSI之间或者配置在上述LSI上,设置在上述LSI的内部的扩散电阻的长度方向与单晶硅的<100>轴平行。
发明效果
根据本发明,能够提供测量精度高的热式空气流量计。
附图说明
图1是本发明的第1实施例中的传感器组件平面图。
图2是本发明的第1实施例中的热式空气流量计平面图。
图3是本发明的第1实施例中的热式空气流量计截面图。
图4是说明本发明的第1实施例中的电阻配置的图。
图5是说明本发明的第2实施例中的电阻配置的图。
图6是改变本发明的第2实施例中的电阻配置的图。
图7是说明本发明的第3实施例中的电阻体的图。
具体实施方式
以下,使用附图对本发明的实施方式进行说明。
(实施例1)
对作为本发明的热式空气流量计的一实施例的第1实施例进行说明。如图1所示,传感器组件10包括引线架1、玻璃板2、LSI3、传感器芯片4,它们被第1树脂7覆盖。使用树脂膜5将玻璃板2接合于引线架1,使用树脂膜6将LSI3和传感器芯片4接合于该玻璃板2。LSI3与传感器芯片4之间、LSI3与引线架1之间通过利用金属线8、9进行引线接合而接线,从而电连接。对它们用热固化性的第1树脂7进行模塑,制作传感器组件10。此外,LSI3将来自成为流量检测部的传感器芯片4的模拟信号转换为数字信号,并进行控制、输出。
图2是包含副通路的壳体11和传感器组件10的正面图,图3是图2上的双点划线A-A的截面图。上述壳体11包括:用于将流过上述主通路的空气导向传感器芯片4的副通路槽12;传感器组件10的保持部13;和上述引线架1的保持部14。传感器组件10在形成包含副通路的壳体11的同时被固定,该壳体11由热可塑性的第2树脂形成。成为流量检测部的上述传感器芯片4测定空气流量,因此配置在上述副通路槽12中。因此,上述传感器组件10在传感器芯片4与LSI3之间、或者在上述LSI3的正上方周边由上述保持部13固定。
图4是表示上述LSI3内的扩散电阻体15的配置方向的概要图。上述LSI3由Si单晶形成,上述LSI3内的扩散电阻体15以Si结晶轴的<100>方向16和扩散电阻体15的长度方向平行的方式配置。
接着,说明上述第1实施例的效果。传感器组件10在利用第2树脂进行模塑时与壳体11一体成形而固定。因此,传感器组件10内的传感器芯片4的位置精度提高,空气流量的测定精度提高。壳体11包括具有传感器芯片4的副通路槽12,利用保持部13固定传感器组件10,因此,在保持部13正下方的周边配置LSI3。传感器组件10由第1树脂形成,壳体11由第2树脂形成,因此,在保持部13和传感器组件10的分界面(LSI3附近)产生因第1树脂与第2树脂的线膨胀系数差导致的热应力或者因树脂收缩差导致的收缩应力。
在此,当电阻体产生应力(应变)时,由于压电效应而产生电阻值的变化。上述压电效应导致的电阻值的变化为压电电阻系数和在电阻中产生的应变(形变)的函数。另外,上述压电电阻系数较强地依赖于Si单晶(单晶硅)的结晶方位,在Si结晶轴的<100>方向16上配置电阻体的长度方向时,压电电阻系数最小。在本实施例中,在Si结晶轴的<100>方向16上配置扩散电阻体15的长度方向,因此,能够减小因产生应变而导致的电阻值的变化,LSI的输出变化受到抑制,流量测定精度提高。
(实施例2)
说明热式空气流量计的第2实施例。此外,传感器组件10和壳体11的结构为与上述实施例1相同的结构。
图5是表示保持部13和LSI3的内部的扩散电阻体15的位置关系的概要图。LSI3的内部的扩散电阻体15是例如A/D转换电路这样的输出被电路内电阻的比所控制的电路17所具有的电阻体。A/D转换电路是将由传感器芯片4得到的模拟信号转换为数字信号的电路,使得能够在LSI3内进行处理,由整数倍的电阻体、数个构成。该扩散电阻体15以下述方式配置:壳体11所具有的保持部13的端部a与扩散电阻体15的各个端部的距离为相等距离L,保持部13的端部a与扩散电阻体15的另一方的各个端部的距离为相等距离L’。进而,利用相同长度的电阻体制作整数倍的电阻体。
接着,说明热式空气流量计的第2实施例的效果。在LSI3的内部的扩散电阻体15产生因第1树脂与第2树脂的线膨胀系数差导致的热应力,或者因树脂收缩差导致的收缩应力。在扩散电阻体15产生因压电效应导致的电阻值变动,该电阻变动是压电电阻系数和在电阻体产生产生的应变的函数。在第2实施例中,扩散电阻体15位于距作为应力产生源的保持部13的端部a相等距离的位置,在各电阻体产生的热应变分布是一样的。另外,利用相同长度的电阻体制作整数倍的电阻体。因此,压电效应导致的扩散电阻体15各自的电阻值变动相同,输出由电阻值的比控制的A/D转换电路等中,能够使热应力的影响相互抵消。因此,能够降低在LSI3产生的热应力的影响,能够提高空气流量的测定精度。此外,如图6所示,扩散电阻体15在本实施例中,在与Si结晶轴的<100>方向16平行的方向上配置长度方向时,能够进一步降低热应力的影响,这是当然的。
(实施例3)
说明热式空气流量计的第3实施例。传感器组件10和壳体11的结构是与上述实施例1相同的结构。在实施例3中,如图7所示,将LSI3内部的扩散电阻体改变为多晶硅电阻18。
接着,说明热式空气流量计的第3实施例的效果。Si的压电电阻系数在<110>结晶方向上较大,在<100>结晶方向上最小。当由多晶硅膜形成电阻体时,多晶硅膜中的晶粒在各个方向上生长,因此压电电阻系数被平均化。因此,与扩散电阻体的长度方向为<110>结晶方向的结构相比,压电电阻系数变小。如以上所说明的那样,能够降低在LSI3产生的热应力的影响,能够提高该空气流量的测定精度。
在本实施例中,将LSI3的内部的扩散电阻体改变为多晶硅电阻18,但是,在距保持部13远的位置几乎没有应变的影响,因此当然也可以由多晶硅电阻形成LSI3内所有的电阻。此外,像实施例2所示的那样将A/D转换电路的扩散电阻体15由多晶硅膜形成,当然也能够降低应力的影响。
附图标记说明
1……引线架
2……玻璃板
3……LSI
4……传感器芯片
5……树脂膜
6……树脂膜
7……第1树脂
8……金属线
9……金属线
10……传感器组件
11……壳体
12……副通路槽
13……传感器组件保持部
14……引线架保持部
15……扩散电阻体
16……Si结晶轴<100>方向
17……电路
18……多晶硅电阻。

Claims (2)

1.一种热式空气流量计,其特征在于,包括:
流量检测部;用于配置所述流量检测部的副通路;和被输入从所述流量检测部得到的信号,且向外部输出信号的LSI,
所述副通路的侧壁配置在所述流量检测部与所述LSI之间或者配置在所述LSI上,
所述流量检测部和所述LSI被热固化性树脂覆盖,
所述副通路由热可塑性树脂成形,
设置在所述LSI的内部的扩散电阻的长度方向与单晶硅的<100>轴平行。
2.如权利要求1所述的热式空气流量计,其特征在于,
构成所述LSI的内部的A/D转换电路的电阻配置在从所述副通路的侧壁起一定距离的位置。
CN201380074118.2A 2013-03-08 2013-12-13 热式空气流量计 Active CN105008868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810190200.6A CN108458762B (zh) 2013-03-08 2013-12-13 热式空气流量计

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013046083A JP5904959B2 (ja) 2013-03-08 2013-03-08 熱式空気流量計
JP2013-046083 2013-03-08
PCT/JP2013/083412 WO2014136347A1 (ja) 2013-03-08 2013-12-13 熱式空気流量計

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201810190200.6A Division CN108458762B (zh) 2013-03-08 2013-12-13 热式空气流量计

Publications (2)

Publication Number Publication Date
CN105008868A CN105008868A (zh) 2015-10-28
CN105008868B true CN105008868B (zh) 2018-04-13

Family

ID=51490889

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810190200.6A Active CN108458762B (zh) 2013-03-08 2013-12-13 热式空气流量计
CN201380074118.2A Active CN105008868B (zh) 2013-03-08 2013-12-13 热式空气流量计

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201810190200.6A Active CN108458762B (zh) 2013-03-08 2013-12-13 热式空气流量计

Country Status (5)

Country Link
US (1) US10386216B2 (zh)
EP (1) EP2966417B1 (zh)
JP (1) JP5904959B2 (zh)
CN (2) CN108458762B (zh)
WO (1) WO2014136347A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090413A (ja) 2014-11-06 2016-05-23 日立オートモティブシステムズ株式会社 熱式空気流量計
EP3358326B1 (en) * 2015-09-30 2020-01-08 Hitachi Automotive Systems, Ltd. Dynamic quantity measuring apparatus
JP6520636B2 (ja) * 2015-10-16 2019-05-29 株式会社デンソー 物理量センササブアセンブリおよび物理量測定装置
NL2020901B1 (en) * 2018-05-09 2019-11-18 Sencio B V A sensor package and a method of manufacturing a sensor package
JP2020079808A (ja) * 2020-03-02 2020-05-28 日立オートモティブシステムズ株式会社 熱式空気流量計

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965453A (en) * 1974-12-27 1976-06-22 Bell Telephone Laboratories, Incorporated Piezoresistor effects in semiconductor resistors
JP2856542B2 (ja) * 1990-11-21 1999-02-10 株式会社日立製作所 熱線式空気流量計
DE4439222C2 (de) 1994-11-03 1998-05-28 Bosch Gmbh Robert Massenflußsensor mit Druckkompensation
JPH09181191A (ja) * 1995-12-27 1997-07-11 Denso Corp 差動対トランジスタを有する回路装置
JP2001012985A (ja) * 1999-06-28 2001-01-19 Hitachi Ltd 熱式空気流量センサ及び内燃機関制御装置
JP3538188B2 (ja) * 2002-04-02 2004-06-14 三菱電機株式会社 感熱式流量検出素子およびその製造方法
JP2003315126A (ja) * 2002-04-18 2003-11-06 Hitachi Ltd 空気流量計
JP2004219080A (ja) * 2003-01-09 2004-08-05 Denso Corp 半導体センサ及びその製造方法
JP4177183B2 (ja) * 2003-06-18 2008-11-05 株式会社日立製作所 熱式空気流量計
DE102004003853B4 (de) * 2004-01-26 2009-12-17 Infineon Technologies Ag Vorrichtung und Verfahren zur Kompensation von Piezo-Einflüssen auf eine integrierte Schaltungsanordnung
US7536908B2 (en) * 2004-03-11 2009-05-26 Siargo, Ltd. Micromachined thermal mass flow sensors and insertion type flow meters and manufacture methods
JP4881554B2 (ja) * 2004-09-28 2012-02-22 日立オートモティブシステムズ株式会社 流量センサ
JP3870969B2 (ja) * 2005-05-02 2007-01-24 オムロン株式会社 流量測定装置
JP4697004B2 (ja) 2006-03-29 2011-06-08 株式会社日立製作所 力学量測定装置
US20080153959A1 (en) * 2006-12-20 2008-06-26 General Electric Company Thermally Conducting and Electrically Insulating Moldable Compositions and Methods of Manufacture Thereof
JP2008227441A (ja) * 2007-02-15 2008-09-25 Nec Electronics Corp 半導体装置およびその製造方法
JP5168091B2 (ja) 2008-11-05 2013-03-21 株式会社デンソー 熱式フローセンサの製造方法及び熱式フローセンサ
JP5272930B2 (ja) 2009-07-01 2013-08-28 オムロン株式会社 流量測定装置
JP4839395B2 (ja) 2009-07-30 2011-12-21 日立オートモティブシステムズ株式会社 熱式流量計
JP5406674B2 (ja) * 2009-11-06 2014-02-05 日立オートモティブシステムズ株式会社 熱式流体流量センサおよびその製造方法
JP5208099B2 (ja) * 2009-12-11 2013-06-12 日立オートモティブシステムズ株式会社 流量センサとその製造方法、及び流量センサモジュール
JP5447331B2 (ja) 2009-12-21 2014-03-19 株式会社デンソー 中空体の製造方法、中空体、流量測定装置の製造方法および流量測定装置
JP5458935B2 (ja) * 2010-02-16 2014-04-02 株式会社デンソー 空気流量測定装置
JP5542505B2 (ja) 2010-04-01 2014-07-09 日立オートモティブシステムズ株式会社 熱式流量センサ
JP5195819B2 (ja) 2010-06-02 2013-05-15 株式会社デンソー 空気流量測定装置
JP5573689B2 (ja) * 2011-01-13 2014-08-20 株式会社デンソー 空気流量測定装置
FR2974628B1 (fr) 2011-04-28 2013-12-27 Commissariat Energie Atomique Microdebitmetre et son procede de realisation
CN104081169B (zh) * 2012-01-10 2016-10-19 日立汽车系统株式会社 流量计测装置

Also Published As

Publication number Publication date
CN108458762A (zh) 2018-08-28
US20160025539A1 (en) 2016-01-28
EP2966417B1 (en) 2020-04-29
JP5904959B2 (ja) 2016-04-20
CN105008868A (zh) 2015-10-28
US10386216B2 (en) 2019-08-20
EP2966417A1 (en) 2016-01-13
EP2966417A4 (en) 2016-12-28
CN108458762B (zh) 2020-05-15
JP2014173960A (ja) 2014-09-22
WO2014136347A1 (ja) 2014-09-12

Similar Documents

Publication Publication Date Title
CN105008868B (zh) 热式空气流量计
CN107101685B (zh) 热式流量计
US10031006B2 (en) Sensor including a printed circuit board with semiconductor parts having a first and second resin
JP2008151738A (ja) 圧力センサ
CN105765360A (zh) 压力传感器
KR20080001673A (ko) 대칭적으로 제공된 센서칩 및 압력도입통로를 구비한차압센서
JP5763575B2 (ja) 流量センサおよびその製造方法
US10928232B2 (en) Thermal air flow meter
JP2014048072A (ja) 圧力センサモジュール
JP2004361308A (ja) 物理量検出装置および物理量検出手段格納ケース
JP6043833B2 (ja) 熱式流量計
JP2010025843A (ja) 圧力センサ
CN108871483A (zh) 一种耐腐蚀燃气表温压补偿一体化传感器及其制造方法
JP6134840B2 (ja) 熱式流量計
JP6520636B2 (ja) 物理量センササブアセンブリおよび物理量測定装置
JP6458104B2 (ja) 熱式流量計
KR20150145188A (ko) 유동하는 유체의 온도를 검출하기 위한 온도 측정 장치
JP6045644B2 (ja) 流量センサおよびその製造方法
JP6064022B2 (ja) 熱式空気流量計
JP6215502B2 (ja) 熱式流量計
WO2017086086A1 (ja) 流量センサ
JP2018025394A (ja) 圧力センサ
JP2019138681A (ja) 圧力検出装置および圧力検出システム
JP2014035200A (ja) 物理量センサ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Ibaraki

Patentee after: Hitachi astemo Co.,Ltd.

Address before: Ibaraki

Patentee before: HITACHI AUTOMOTIVE SYSTEMS, Ltd.

CP01 Change in the name or title of a patent holder