CN104907066A - 一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法 - Google Patents
一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法 Download PDFInfo
- Publication number
- CN104907066A CN104907066A CN201510249650.4A CN201510249650A CN104907066A CN 104907066 A CN104907066 A CN 104907066A CN 201510249650 A CN201510249650 A CN 201510249650A CN 104907066 A CN104907066 A CN 104907066A
- Authority
- CN
- China
- Prior art keywords
- carbon
- nano
- nanocatalyst
- modification
- carries
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 124
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 122
- 239000011943 nanocatalyst Substances 0.000 title claims abstract description 67
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 27
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 title abstract 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000084 colloidal system Substances 0.000 claims abstract description 23
- 239000012153 distilled water Substances 0.000 claims abstract description 23
- 238000003756 stirring Methods 0.000 claims abstract description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000004140 cleaning Methods 0.000 claims abstract description 16
- 238000001291 vacuum drying Methods 0.000 claims abstract description 3
- 230000004048 modification Effects 0.000 claims description 52
- 238000012986 modification Methods 0.000 claims description 52
- 238000000967 suction filtration Methods 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 15
- 239000000706 filtrate Substances 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000012065 filter cake Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- 238000003828 vacuum filtration Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 239000002048 multi walled nanotube Substances 0.000 abstract description 47
- 239000003054 catalyst Substances 0.000 abstract description 14
- 238000002360 preparation method Methods 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract 3
- 238000001914 filtration Methods 0.000 abstract 3
- 238000005086 pumping Methods 0.000 abstract 3
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 abstract 1
- 238000001816 cooling Methods 0.000 abstract 1
- 238000001035 drying Methods 0.000 abstract 1
- 125000001153 fluoro group Chemical group F* 0.000 abstract 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 abstract 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 95
- 239000000243 solution Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 12
- 230000003197 catalytic effect Effects 0.000 description 9
- 238000007306 functionalization reaction Methods 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 230000005518 electrochemistry Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 230000010148 water-pollination Effects 0.000 description 1
Landscapes
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,属于催化剂制备技术领域。首先向碳纳米材料中加入NaOH溶液,超声后搅拌,抽滤后加入NH4F溶液连续搅拌,然后抽滤、蒸馏水清洗至无氟离子,干燥、冷却至室温,即得到NH4F改性处理碳纳米材料;将丙酮、聚乙二醇-400、H2PdCl4溶液混合均匀,并在紫外光下照射,即可得到Pd纳米胶体;将NH4F改性处理碳纳米材料和制备得到的Pd纳米胶体混合,连续搅拌、真空抽滤、蒸馏水清洗、真空干燥,即得到碳载Pd纳米催化剂。该方法通过采用NH4F使MWCNTs的管壁连接了氟基(-F)(-N),使得分散性良好。
Description
技术领域
本发明涉及一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,属于催化剂制备技术领域。
背景技术
燃料电池是一种直接将贮存在燃料和氧化剂中的能量通过电化学反应从一种形式(化学能)转换成另一种形式(电能)的转换装置。在燃料电池技术中,特别是对直接甲醇燃料电池(DMFC)具有燃料来源丰富、结构简单、能量密度高、储存携带方便、工作温度低、安全性高、绿色环保等特点,现已成为能源领域研究的热点,在汽车动力电源、便携移动电源、人造卫星和航天器的电源等领域中得到广泛的应用,被认为是最具前景的便携式电源设备。DMFC通常使用贵金属单质或合金作为催化剂。然而,贵金属面临资源稀缺和成本高等诸多问题。因此,为了提高贵金属的使用率,人们将贵金属纳米粒子负载在碳载体上,制备贵金属纳米粒子负载型催化剂。因为碳纳米材料具有较大的比表面积,在酸性、碱性介质中具有较好的导电性和稳定性, 被认为是最有潜力的催化剂载体材料。但由于碳纳米材料是疏水性材料,其表面缺少功能性基团,在各种溶剂中的亲水性都很低且与金属离子间相互作用较弱。另外,碳纳米管之间存在较强的范德华引力加之它巨大的比表面积和很高的长径比,使其形成团聚或缠绕,严重影响了纳米粒子负载在碳纳米管上的分散性,需要对其(以MWCNTs为例)进行功能化处理。
目前已经发展了一些用有机物或无机物对碳纳米管进行化学修饰的方法:有采用HNO3和H2SO4混合物氧化处理的MWCNTs作为载体(Z C Wang et al., J Solid State Electrochem.2009,13:371),经过氧化处理的MWCNTs表面均匀密集分布着贵金属Pt粒子,制得具有较高催化活性的Pt/MWCNTs催化剂;利用酸氧化处理后再经过乙二胺修饰(G D Vukovic etal.Mater. Chem.Phys.,2011, 130:657)的MWCNTs,Pt粒子的负载量大幅度提高。而且,乙二胺修饰过的MWCNTs表面Pt粒子分布均匀,制备出了Pt/MWCNTs催化剂,其催化性能优于商业Pt/XC-72R催化剂。经过MnO2修饰(Zhao Y,Zhan L,Tian J etal. J Hydrogen Energy,2010,35:10522-10526)的MWCNTs负载Pd纳米粒子,制备Pd/MnO2-MWCNTs,与Pd/MWCNTs和Pd/Vulcan相比,在碱性溶液中对甲醇具有更好的催化性能和稳定性;还有用聚二烯丙基二甲基氯化铵、浓硫酸等化学药品功能化处理碳纳米材料,它们分别使其带正电、氧化和组装新官能团。上述方法虽然都能一定程度改善碳纳米材料的负载效果,提高负载型贵金属的电催化活性,但这些改性方法都在一定程度上破坏了MWCNTs的原始结构,改性后的活性位点不够均匀,有时出现团聚现象,抑制了催化剂的电催化活性。必须探讨更加有效的碳纳米管功能化方法以提高纳米粒子负载在MWCNTs上分散性。
本发明中,采用氟化氨(NH4F)溶液对MWCNTs进行表面修饰。通过NH4F修饰后,在MWCNTs的管壁引入的功能基团,形成C-F、C-N化学键促进MWCNTs在水中均匀分散。上述方法处理的结果明显提高了MWCNTs管壁表面的Pd纳米粒子的负载率和负载均匀性,没有出现明显的团聚现象,Pd纳米粒子在MWCNTs表面结合牢固,不易脱落。因此,通过本方法功能化处理的MWCNTs,负载Pd纳米粒子,制备的负载型Pd纳米催化剂的催化活性明显提高,并具有良好的稳定性。
发明内容
针对上述现有技术存在的问题及不足,本发明提供一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法。该方法通过采用NH4F使MWCNTs的管壁连接了氟基(-F)(-N),将MWCNTs进行改性使得分散性良好,本发明通过以下技术方案实现。
一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,其具体步骤如下:
(1)NH4F改性处理碳纳米材料:首先向碳纳米材料中按照液固比为100~200:20~40mg/ml加入0.1~1mol/LNaOH溶液,超声10min后搅拌2~6h,抽滤后过滤物采用蒸馏水清洗,然后过滤物按照液固比为100~200:20~40mg/ml加入0.1~1mol/LNH4F溶液连续搅拌2~10h,搅拌完成后进行抽滤、蒸馏水清洗至无氟离子,在60℃下恒温真空干燥12h,自然冷却至室温,即得到NH4F改性处理碳纳米材料;
(2)Pd纳米胶体的合成:将丙酮、聚乙二醇-400、0.325mg/mlH2PdCl4溶液按照体积比为0.5~1:1~4:1~4混合均匀,并在312nm的紫外光下照射20~40min,即可得到棕褐色的粒径大小为2~7nm的Pd纳米胶体;
(3)碳载Pd纳米催化剂:将步骤(1)NH4F改性处理碳纳米材料和步骤(2)制备得到的Pd纳米胶体按照固液比为10.4:100mg/ml混合,超声0.5min,连续搅拌3~6h,真空抽滤、蒸馏水清洗,将抽滤后得到的滤饼在60℃下恒温真空干燥2~6h,即得到碳载Pd纳米催化剂。
所述碳纳米材料为碳纳米管、石墨碳、纳米多孔碳、碳纤维或石墨烯。
所述碳纳米管管径为10~20nm、20~40nm、40~60nm或60~100nm。
本发明的有益效果是:
上述碳载Pd纳米催化剂中Pd的负载率为20%。
1、利用无毒无机物NH4F试剂功能化的MWCNTs做载体,将Pd纳米粒子负载在MWCNTs表面,负载效果明显改善且Pd纳米粒子分布均匀,从而提高了催化剂的利用率;
2、负载型催化剂本身颗粒较小,无明显团聚且负载的Pd粒子不易脱落,既增强了催化剂的电催化活性也保证了催化剂较高的稳定性;
3、该方法改性试剂绿色无毒、且不产生废水、废酸等污染物,工艺简单,工艺参数容易控制,具有广阔的应用前景。
附图说明
图1是本发明实施例1采用1.0mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂TEM图;
图2是本发明实施例1采用1.0mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂C-V对比图;
图3是本发明实施例1采用1.0mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂i-t对比图;
图4是本发明实施例2采用0.8mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂TEM图;
图5是本发明实施例2采用0.8mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂C-V对比图;
图6是本发明实施例2采用0.8mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂i-t对比图;
图7是本发明实施例3采用0.6mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂TEM图;
图8是本发明实施例3采用0.6mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂C-V对比图;
图9是本发明实施例3采用0.6mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂i-t对比图。
具体实施方式
下面结合附图和具体实施方式,对本发明作进一步说明。
实施例1
该利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,其具体步骤如下:
(1)NH4F改性处理碳纳米材料:首先向200mg、管径为20~40nm碳纳米管中按照液固比为200:40mg/ml加入1mol/LNaOH溶液,超声10min后搅拌6h,抽滤后过滤物采用蒸馏水清洗,然后过滤物按照液固比为200:40mg/ml加入1mol/LNH4F溶液连续搅拌6h,搅拌完成后进行抽滤、蒸馏水清洗至无氟离子,在60℃下恒温真空干燥12h,自然冷却至室温,即得到NH4F改性处理碳纳米材料;
(2)Pd纳米胶体的合成:将丙酮、聚乙二醇-400、0.325mg/mlH2PdCl4溶液按照体积比为1:4:4混合均匀加入二次蒸馏水定溶于100ml容量瓶中,并在312nm的紫外光下照射30min,即可得到棕褐色的粒径大小为2~7nm的Pd纳米胶体;
(3)碳载Pd纳米催化剂:将步骤(1)NH4F改性处理碳纳米材料和步骤(2)制备得到的Pd纳米胶体按照固液比为10.4:100mg/ml混合,超声0.5min,连续搅拌6h,真空抽滤、蒸馏水清洗,将抽滤后得到的滤饼在60℃下恒温真空干燥3h,即得到碳载Pd纳米催化剂(Pd的负载率为20%)。
实施例1采用1.0mol/LNH4F改性处理碳纳米材料制备得到碳载Pd纳米催化剂TEM图如图1所示,实施例1采用1.0mol/LNH4F改性处理碳纳米材料制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂C-V对比图如图2所示,实施例1采用1.0mol/LNH4F改性处理碳纳米材料制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂i-t对比图如图3所示,其中测试条件为:在30℃恒温水浴锅中,0.5mol·L-1的KOH+2.0mol·L-1的CH3OH溶液中利用三电极体系测试。其中,TEM照片、电化学循环伏安曲线(C-V)和计时电流曲线(i-t)。
实施例2
该利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,其具体步骤如下:
(1)NH4F改性处理碳纳米材料:首先向200mg、管径为40~60nm碳纳米管中按照液固比为200:40mg/ml加入1mol/LNaOH溶液,超声10min后搅拌6h,抽滤后过滤物采用蒸馏水清洗,然后过滤物按照液固比为200:40mg/ml加入0.8mol/LNH4F溶液连续搅拌6h,搅拌完成后进行抽滤、蒸馏水清洗至无氟离子,在60℃下恒温真空干燥12h,自然冷却至室温,即得到NH4F改性处理碳纳米材料;
(2)Pd纳米胶体的合成:将丙酮、聚乙二醇-400、0.325mg/mlH2PdCl4溶液按照体积比为1:4:4混合均匀加入二次蒸馏水定溶于100ml容量瓶中,并在312nm的紫外光下照射30min,即可得到棕褐色的粒径大小为2~7nm的Pd纳米胶体;
(3)碳载Pd纳米催化剂:将步骤(1)NH4F改性处理碳纳米材料和步骤(2)制备得到的Pd纳米胶体按照固液比为10.4:100mg/ml混合,超声0.5min,连续搅拌6h,真空抽滤、蒸馏水清洗,将抽滤后得到的滤饼在60℃下恒温真空干燥3h,即得到碳载Pd纳米催化剂(Pd的负载率为20%)。
实施例2采用0.8mol/LNH4F改性处理碳纳米材料制备得到碳载Pd纳米催化剂TEM图如图4所示,实施例2采用0.8mol/LNH4F改性处理碳纳米材料制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂C-V对比图如图5所示,实施例2采用0.8mol/LNH4F改性处理碳纳米材料制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂i-t对比图如图6所示,其中,TEM照片、电化学循环伏安曲线(C-V)和计时电流曲线(i-t),其中测试条件为:在30℃恒温水浴锅中,0.5mol·L-1的KOH+2.0mol·L-1的CH3OH溶液中利用三电极体系测试。其中,TEM照片、电化学循环伏安曲线(C-V)和计时电流曲线(i-t)。
实施例3
该利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,其具体步骤如下:
(1)NH4F改性处理碳纳米材料:首先向200mg、管径为60~100nm碳纳米管中按照液固比为200:40mg/ml加入1mol/LNaOH溶液,超声10min后搅拌6h,抽滤后过滤物采用蒸馏水清洗,然后过滤物按照液固比为200:40mg/ml加入0.6mol/LNH4F溶液连续搅拌6h,搅拌完成后进行抽滤、蒸馏水清洗至无氟离子,在60℃下恒温真空干燥12h,自然冷却至室温,即得到NH4F改性处理碳纳米材料;
(2)Pd纳米胶体的合成:将丙酮、聚乙二醇-400、0.325mg/mlH2PdCl4溶液按照体积比为1:4:4混合均匀加入二次蒸馏水定溶于100ml容量瓶中,并在312nm的紫外光下照射30min,即可得到棕褐色的粒径大小为2~7nm的Pd纳米胶体;
(3)碳载Pd纳米催化剂:将步骤(1)NH4F改性处理碳纳米材料和步骤(2)制备得到的Pd纳米胶体按照固液比为10.4:100mg/ml混合,超声0.5min,连续搅拌6h,真空抽滤、蒸馏水清洗,将抽滤后得到的滤饼在60℃下恒温真空干燥3h,即得到碳载Pd纳米催化剂(Pd的负载率为20%)。
实施例3采用0.6mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂TEM图如图7所示,实施例3采用0.6mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂C-V对比图如图8所示,实施例3采用0.6mol/LNH4F改性处理碳纳米管制备得到碳载Pd纳米催化剂和市场购买的碳载Pd纳米催化剂i-t对比图如图9所示,其中测试条件为:在30℃恒温水浴锅中,0.5mol·L-1的KOH+2.0mol·L-1的CH3OH溶液中利用三电极体系测试。其中,TEM照片、电化学循环伏安曲线(C-V)和计时电流曲线(i-t)。
如图1所示,Pd纳米粒子均匀负载在碳纳米管(MWCNTs)表面,粒子尺寸较小约为4.5~6.5nm,而且没有发生明显的团聚现象,经浓度为1.0mol L-1的NH4F功能化处理的MWCNTs具有优异的分散性;图2所示,经浓度为1.0mol L-1的NH4F功能化处理的MWCNTs制备的碳载Pd纳米催化剂,对甲醇氧化的电催化测试中,在-0.18V附近均出现了明显的氧化峰,且明显优于(JM)公司的商业Pd/C催化剂。这表明实施例1制备得到的碳载Pd纳米催化剂比(JM)公司的商业碳载Pd纳米催化剂的催化活性显著提高。从图4和图7可以看出,实施例2、实施例3制备得到的碳载Pd纳米催化剂Pd纳米粒子较均匀负载在MWCNTs表面,从图4、6、8、9也可以看出实施例2、实施例3制备得到的碳载Pd纳米催化剂比(JM)公司的商业碳载Pd纳米催化剂的催化活性显著提高。
实施例4
该利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,其具体步骤如下:
(1)NH4F改性处理碳纳米材料:首先向200mg石墨碳中按照液固比为100:20mg/ml加入0.1mol/LNaOH溶液,超声10min后搅拌2h,抽滤后过滤物采用蒸馏水清洗,然后过滤物按照液固比为100:20mg/ml加入0.1mol/LNH4F溶液连续搅拌2h,搅拌完成后进行抽滤、蒸馏水清洗至无氟离子,在60℃下恒温真空干燥12h,自然冷却至室温,即得到NH4F改性处理碳纳米材料;
(2)Pd纳米胶体的合成:将丙酮、聚乙二醇-400、0.325mg/mlH2PdCl4溶液按照体积比为0.5:1:1混合均匀加入二次蒸馏水定溶于100ml容量瓶中,并在312nm的紫外光下照射30min,即可得到棕褐色的粒径大小为2~7nm的Pd纳米胶体;
(3)碳载Pd纳米催化剂:将步骤(1)NH4F改性处理碳纳米材料和步骤(2)制备得到的Pd纳米胶体按照固液比为10.4:100mg/ml混合,超声0.5min,连续搅拌6h,真空抽滤、蒸馏水清洗,将抽滤后得到的滤饼在60℃下恒温真空干燥2h,即得到碳载Pd纳米催化剂(Pd的负载率为20%)。
实施例5
该利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,其具体步骤如下:
(1)NH4F改性处理碳纳米材料:首先向200mg纳米多孔碳中按照液固比为150:30mg/ml加入0.6mol/LNaOH溶液,超声10min后搅拌4h,抽滤后过滤物采用蒸馏水清洗,然后过滤物按照液固比为150:30mg/ml加入0.4mol/LNH4F溶液连续搅拌10h,搅拌完成后进行抽滤、蒸馏水清洗至无氟离子,在60℃下恒温真空干燥12h,自然冷却至室温,即得到NH4F改性处理碳纳米材料;
(2)Pd纳米胶体的合成:将丙酮、聚乙二醇-400、0.325mg/mlH2PdCl4溶液按照体积比为0.8:2:2混合均匀加入二次蒸馏水定溶于100ml容量瓶中,并在312nm的紫外光下照射30min,即可得到棕褐色的粒径大小为2~7nm的Pd纳米胶体;
(3)碳载Pd纳米催化剂:将步骤(1)NH4F改性处理碳纳米材料和步骤(2)制备得到的Pd纳米胶体按照固液比为10.4:100mg/ml混合,超声0.5min,连续搅拌6h,真空抽滤、蒸馏水清洗,将抽滤后得到的滤饼在60℃下恒温真空干燥4h,即得到碳载Pd纳米催化剂(Pd的负载率为20%)。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
Claims (3)
1.一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,其特征在于具体步骤如下:
(1)NH4F改性处理碳纳米材料:首先向碳纳米材料中按照液固比为100~200:20~40mg/ml加入0.1~1mol/LNaOH溶液,超声10min后搅拌2~6h,抽滤后过滤物采用蒸馏水清洗,然后过滤物按照液固比为100~200:20~40mg/ml加入0.1~1mol/LNH4F溶液连续搅拌2~10h,搅拌完成后进行抽滤、蒸馏水清洗至无氟离子,在60℃下恒温真空干燥12h,自然冷却至室温,即得到NH4F改性处理碳纳米材料;
(2)Pd纳米胶体的合成:将丙酮、聚乙二醇-400、0.325mg/mlH2PdCl4溶液按照体积比为0.5~1:1~4:1~4混合均匀,并在312nm的紫外光下照射20~40min,即可得到棕褐色的粒径大小为2~7nm的Pd纳米胶体;
(3)碳载Pd纳米催化剂:将步骤(1)NH4F改性处理碳纳米材料和步骤(2)制备得到的Pd纳米胶体按照固液比为10.4:100mg/ml混合,超声0.5min,连续搅拌3~6h,真空抽滤、蒸馏水清洗,将抽滤后得到的滤饼在60℃下恒温真空干燥2~6h,即得到碳载Pd纳米催化剂。
2.根据权利要求1所述的利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,其特征在于:所述碳纳米材料为碳纳米管、石墨碳、纳米多孔碳、碳纤维或石墨烯。
3.根据权利要求1所述的利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法,其特征在于:所述碳纳米管管径为10~20nm、20~40nm、40~60nm或60~100nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510249650.4A CN104907066B (zh) | 2015-05-18 | 2015-05-18 | 一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510249650.4A CN104907066B (zh) | 2015-05-18 | 2015-05-18 | 一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104907066A true CN104907066A (zh) | 2015-09-16 |
CN104907066B CN104907066B (zh) | 2017-12-01 |
Family
ID=54076750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510249650.4A Expired - Fee Related CN104907066B (zh) | 2015-05-18 | 2015-05-18 | 一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104907066B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105932303A (zh) * | 2016-05-26 | 2016-09-07 | 昆明理工大学 | 一种使用不同前躯体光化学法制备负载钯催化剂的方法 |
CN105932306A (zh) * | 2016-05-26 | 2016-09-07 | 昆明理工大学 | 利用光化学法还原MnPd制备碳纳米管负载金属纳米粒子催化剂的方法 |
CN106058273A (zh) * | 2016-05-26 | 2016-10-26 | 昆明理工大学 | 利用氧化镍修饰处理碳纳米管制备负载型钯纳米催化剂的方法 |
CN106602093A (zh) * | 2016-12-14 | 2017-04-26 | 昆明理工大学 | 一种利用化学还原法制备碳纳米管负载PtPd网状结构纳米线催化剂的方法 |
CN109012737A (zh) * | 2018-06-19 | 2018-12-18 | 马学英 | 一种抗抑郁药物中间体的催化合成方法 |
CN109433193A (zh) * | 2018-10-15 | 2019-03-08 | 昆明理工大学 | 一种纳米Pd/M-rGO复合催化剂及其制备方法 |
CN109675583A (zh) * | 2018-12-27 | 2019-04-26 | 昆明理工大学 | 一种核壳结构复合催化剂及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1921197A (zh) * | 2006-08-23 | 2007-02-28 | 南京师范大学 | 直接甲酸燃料电池的超细、高分散Pd/C催化剂及其制备方法 |
CN103474674A (zh) * | 2012-06-08 | 2013-12-25 | 南京理工大学 | 一种钯与石墨烯结构碳材料复合电极催化剂的复合方法 |
-
2015
- 2015-05-18 CN CN201510249650.4A patent/CN104907066B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1921197A (zh) * | 2006-08-23 | 2007-02-28 | 南京师范大学 | 直接甲酸燃料电池的超细、高分散Pd/C催化剂及其制备方法 |
CN103474674A (zh) * | 2012-06-08 | 2013-12-25 | 南京理工大学 | 一种钯与石墨烯结构碳材料复合电极催化剂的复合方法 |
Non-Patent Citations (2)
Title |
---|
GUOTAO YANG ET AL: "Multi-walled carbon nanotube modified with methylene blue under ultraviolet irradiation as a platinum catalyst support for methanol oxidation", 《JOURNAL OF POWER SOURCES》 * |
肖海峰等: "不同改性的MWCNTs负载Au催化剂电催化甲醇的研究", 《材料热处理技术》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105932303A (zh) * | 2016-05-26 | 2016-09-07 | 昆明理工大学 | 一种使用不同前躯体光化学法制备负载钯催化剂的方法 |
CN105932306A (zh) * | 2016-05-26 | 2016-09-07 | 昆明理工大学 | 利用光化学法还原MnPd制备碳纳米管负载金属纳米粒子催化剂的方法 |
CN106058273A (zh) * | 2016-05-26 | 2016-10-26 | 昆明理工大学 | 利用氧化镍修饰处理碳纳米管制备负载型钯纳米催化剂的方法 |
CN106058273B (zh) * | 2016-05-26 | 2018-08-31 | 昆明理工大学 | 利用氧化镍修饰处理碳纳米管制备负载型钯纳米催化剂的方法 |
CN105932303B (zh) * | 2016-05-26 | 2019-09-03 | 昆明理工大学 | 一种使用不同前躯体光化学法制备负载钯催化剂的方法 |
CN110247069A (zh) * | 2016-05-26 | 2019-09-17 | 昆明理工大学 | 碳载MnPd纳米催化剂及其制备方法 |
CN106602093A (zh) * | 2016-12-14 | 2017-04-26 | 昆明理工大学 | 一种利用化学还原法制备碳纳米管负载PtPd网状结构纳米线催化剂的方法 |
CN109012737A (zh) * | 2018-06-19 | 2018-12-18 | 马学英 | 一种抗抑郁药物中间体的催化合成方法 |
CN109012737B (zh) * | 2018-06-19 | 2021-09-17 | 陕西蒲城万德科技有限公司 | 一种抗抑郁药物中间体的催化合成方法 |
CN109433193A (zh) * | 2018-10-15 | 2019-03-08 | 昆明理工大学 | 一种纳米Pd/M-rGO复合催化剂及其制备方法 |
CN109433193B (zh) * | 2018-10-15 | 2021-07-23 | 昆明理工大学 | 一种纳米Pd/M-rGO复合催化剂及其制备方法 |
CN109675583A (zh) * | 2018-12-27 | 2019-04-26 | 昆明理工大学 | 一种核壳结构复合催化剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104907066B (zh) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104907066A (zh) | 一种利用NH4F改性处理碳纳米材料制备碳载Pd纳米催化剂的方法 | |
Sun et al. | 3D foam-like composites of Mo2C nanorods coated by N-doped carbon: A novel self-standing and binder-Free O2 electrode for Li–O2 Batteries | |
Xu et al. | Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution | |
Liu et al. | Preparation of Pd/MnO2-reduced graphene oxide nanocomposite for methanol electro-oxidation in alkaline media | |
US20170098843A1 (en) | Membraneless direct liquid fuel cells | |
Pan et al. | Platinum assisted by carbon quantum dots for methanol electro-oxidation | |
CN104549242B (zh) | 一种纳米钯‑石墨烯三维多孔复合电催化剂的制备方法 | |
Zhang et al. | A pioneering melamine foam-based electrode via facile synthesis as prospective direction for vanadium redox flow batteries | |
CN107346826A (zh) | 一种单原子铁分散的氧还原电催化剂的制备方法 | |
CN104923204A (zh) | 一种石墨烯包覆金属纳米粒子催化剂的制备方法及其应用 | |
US10727495B2 (en) | Nitrogen-containing carbon material and process for producing nitrogen-containing carbon material, and slurry, ink, and electrode for fuel cell | |
CN103394350B (zh) | 一种钛钨氧化物包覆碳纳米管载铂电催化剂的制备方法 | |
Li et al. | Fabrication of Pt–Cu/RGO hybrids and their electrochemical performance for the oxidation of methanol and formic acid in acid media | |
Zhou et al. | New insights into the surface-dependent activity of graphitic felts for the electro-generation of H2O2 | |
CN107069048A (zh) | 一种Fe‑N‑C氧还原催化剂的制备方法 | |
Zha et al. | Coconut shell carbon nanosheets facilitating electron transfer for highly efficient visible-light-driven photocatalytic hydrogen production from water | |
CN102107147B (zh) | 二氧化钛-碳复合材料及其制备和应用 | |
CN103337642B (zh) | 一种锌空气电池用氧还原催化剂及其制备方法 | |
CN108808018A (zh) | 一种八面体掺氮碳骨架材料的制备和应用 | |
CN109935840A (zh) | 一种燃料电池用Pt基催化剂的制备方法 | |
CN102764648A (zh) | 一种钯催化剂的制备方法,由该方法制备的钯催化剂及应用 | |
KR20060052555A (ko) | 연료전지, 막 전극 접합체 및 그들에 이용되는 촉매와촉매의 제조방법 | |
CN104258848B (zh) | 一种Pt/三维石墨烯复合催化剂的制备方法及其应用 | |
CN103120960B (zh) | 一种Pt-Nafion/C催化剂及其制备和应用 | |
Na et al. | Identification of catalytic sites for cerium redox reactions in a metal-organic framework derived powerful electrocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171201 |
|
CF01 | Termination of patent right due to non-payment of annual fee |