CN104303357A - 用于制造非水二次电池的方法 - Google Patents

用于制造非水二次电池的方法 Download PDF

Info

Publication number
CN104303357A
CN104303357A CN201380025546.6A CN201380025546A CN104303357A CN 104303357 A CN104303357 A CN 104303357A CN 201380025546 A CN201380025546 A CN 201380025546A CN 104303357 A CN104303357 A CN 104303357A
Authority
CN
China
Prior art keywords
positive electrode
battery
electrolyte solution
preliminary treatment
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380025546.6A
Other languages
English (en)
Other versions
CN104303357B (zh
Inventor
阿部武志
河合利幸
木下信一
三井隆道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN104303357A publication Critical patent/CN104303357A/zh
Application granted granted Critical
Publication of CN104303357B publication Critical patent/CN104303357B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明提供了一种非水二次电池制造方法。所述方法包括构建预处理电池(步骤S110),所述预处理电池包括包含正电极活性材料的正电极、包含支持盐和含氟非离子化合物的预处理电解质溶液、以及预处理负电极;通过对预处理电池充电并且使含氟非离子化合物在正电极处分解以在正电极活性材料的表面上形成涂层来进行预处理工艺(步骤S120);和使用经涂覆的正电极活性材料、不同于预处理电解质溶液的非水电解质溶液、以及包含负电极活性材料的负电极构建非水二次电池(步骤S130)。

Description

用于制造非水二次电池的方法
技术领域
本发明涉及非水二次电池及制造其的方法。
本申请要求基于2012年5月18日提交的日本专利申请第2012-114642号的优先权,所述专利申请的全部内容以引用方式并入本文。
背景技术
为提高二次电池的性能,期望其具有较高的能量密度。较高的能量密度可例如通过增大电池的工作电压(通过增大电池电压)来获得。例如,日本专利申请公开第2002-042814号(PLT 1)公开了一种使用由规定通式表示的尖晶石锂镍锰复合氧化物组成的正电极活性材料的非水二次电池作为相对于锂金属表现出4.5V或更高的工作电压的非水二次电池。
引用列表
专利文献
PLT 1:日本专利申请公开第2002-042814号
发明内容
然而,在具有高的工作电压的电池中,当被充电时,正电极的电位增大,因而电解质溶液很可能在正电极处发生氧化分解。为了防止这样的氧化分解,已研究使用具有较高抗氧化性(具有较高氧化分解电位)的材料作为电解质组分。然而,一般来说,因为物质的抗氧化性和抗还原性是两个对立的性质,因而当一个增大时,另一个将减小。换句话说,具有高抗氧化性的电解质组分具有当被充电时在负电极处发生还原分解的趋势。电解质组分这样的分解可能导致二次电池性能的退化。例如,其可能导致容量随着施加的充/放电循环数的增大而下降。
本发明的一个目的是提供一种用于制造非水二次电池的方法,所述非水二次电池较不可能随反复的充放电而退化(换句话说,具有优异的循环性能的非水二次电池)。另一个涉及的目的是提供一种可通过这样的制造方法获得的非水二次电池以及使用所述非水二次电池的电源装置。
本发明人已发现,所述问题可通过在正电极活性材料的表面上预先形成能够抑制对电解质组分的反应性的涂层并使用经涂布正电极活性材料构建非水二次电池来解决并完成本发明。
本发明所提供的非水二次电池制造方法包括构建预处理电池。预处理电池包括包含正电极活性材料的正电极、包含支持盐和含氟(F)非离子化合物的预处理电解质溶液、以及预处理负电极。所述方法还包括通过对预处理电池充电并且使含F非离子化合物在正电极处分解以在正电极活性材料的表面上形成涂层来进行预处理工艺。预处理工艺可理解为产生经涂布的正电极活性材料的工艺。所述方法还可包括使用经涂布的正电极活性材料、不同于预处理电解质溶液的非水电解质溶液、和包含负电极活性材料的负电极构建非水二次电池。在下文中,为防止与预处理电解质溶液相混淆,用于构建非水二次电池的非水电解质溶液可被称为“电池电解质溶液”。
在这样的方法中,进行预处理工艺,其中使预处理电解质溶液中所含的含F非离子化合物分解以在正电极活性材料的表面上形成涂层;并用经涂布的正电极活性材料来制造非水二次电池。由于经预处理的正电极活性材料具有涂层,因而其对电解质组分的分解活性得以抑制。因此,即便非水二次电池具有包括抗氧化性相对较低的电池电解质溶液的构成,该电解质溶液在正电极处也较不易于氧化分解。例如,即便采用包括氧化电位低于预处理电解质溶液的氧化电位的电池电解质溶液的构成,该电池电解质溶液在正电极处也较不易于氧化分解。一般来说,具有低抗氧化性的电解质溶液往往表现出良好的抗还原性。因此,根据上面描述的方法,可获得其中在正电极处的氧化分解和在负电极处的还原分解均被抑制的非水二次电池。其中电解质组分的分解在很大程度上被抑制的非水二次电池可具有优异的循环性能。例如,电池容量随着反复的充放电而可能较不可能下降。
如本文所用,“二次电池”一般指可被反复地充放电的蓄电装置,并且该术语的范围涵盖所谓的蓄电池如锂二次电池等以及蓄电元件如双电层电容器等。“非水二次电池”指包含非水电解质溶液的电池。非水电解质溶液通常在非水溶剂中含有支持盐(支持电解质)。
如本文所用,“锂二次电池”指使用锂离子作为电解质离子的二次电池,其中充放电由在正电极和负电极之间输运的锂离子介导(mediated)。通常称为锂离子二次电池的二次电池为包括在本文公开的锂二次电池的范围中的典型实例。
如本文所用,“活性材料”指能够可逆地贮存和释放(通常能够实现嵌入和脱嵌)在二次电池中用作载流子的化学物质(例如,锂二次电池中的锂离子)的物质。
如本文所用,“锂过渡金属化合物”指含有锂和至少一种过渡金属的化合物。
如本文所用,“含F非离子化合物”指包含氟原子的非离子化合物(通常为非离子有机化合物)。“非离子化合物”指不含酸性基团(羧基基团、磷酸酯/根基团、磺酸酯/根基团等)和碱性基团(氨基基团等)中的任何官能团的化合物。预处理电解质溶液中含有的含F非离子化合物可为已知可用作非水二次电池的电解质溶液中的组分的无F非离子有机化合物的氟化产物。无F非离子有机化合物的实例包括已知可用作非水二次电池的电解质溶液中的组分并且不含氟原子的非水溶剂(通常为非质子溶剂)。无F非离子有机化合物的氟化产物指具有其中所述无F非离子有机化合物的至少一个氢原子被氟原子所取代的化学结构的化合物。例如,其可为氟化的非水溶剂。
作为预处理电解质溶液中含有的含F非离子化合物,可优选地使用一种、两种或更多种含F碳酸酯。在本文中,“碳酸酯”指在分子中具有至少一个碳酸酯基团(-O-(C=O)-O-)的有机化合物,并且该术语的范围涵盖环状碳酸酯和无环(链)碳酸酯。如本文所用,除非另外指明,否则术语“链”既指直链又指支链。根据具有这样的组成的预处理电解质溶液,正电极活性材料的表面可被提供以在更大程度上防止电解质组分分解的涂层。因此可获得具有甚至更好的循环性能的非水二次电池。
在一个优选的实施方案中,预处理电解质溶液包含至少一种含F环状碳酸酯作为含F非离子化合物。这样的预处理电解质溶液的优选实例包括含有反式-二氟碳酸亚乙酯(或反式-4,5-二氟-1,3-二氧杂环戊-2-酮,或下文中的“反式-DFEC”)和单氟碳酸亚乙酯(或下文中的“MFDC”)中之一或每一者的预处理电解质溶液。根据具有这样的组成的预处理电解质溶液,正电极活性材料的表面可被提供以在更大程度上防止电解质组分分解的涂层。因此可获得具有甚至更好的循环性能的非水二次电池。
在另一方面,构建非水二次电池所用的非水电解质溶液(电池电解质溶液)通常包含支持盐和非水溶剂。非水溶剂(通常,非质子溶剂)可具有基本上不含氟化非水溶剂的组成。例如,其可为基本上由一种或更多种无F非离子化合物组成的非水溶剂。本文公开的技术的优选实施方案的实例包括其中电池电解质溶液基本上不含氟化碳酸酯(其可理解为含F碳酸酯)作为非水溶剂的实施方案。一般来说,氟化后,在构成非水溶剂的有机化合物中抗氧化性往往提高,同时抗还原性降低。因此可获得这样的非水二次电池,其中由于经预处理的正电极活性材料的使用,正电极处防止了氧化分解,同时由于基本上不含氟化非水溶剂的电池电解质溶液加上经预处理的正电极活性材料的使用,电池电解质溶液的氧化分解和还原分解均被大大抑制。这样的非水二次电池可具有甚至更好的循环性能。
预处理工艺可优选于其中在正电极在相对于锂金属(或下文中的“相对于Li/Li+”)处于高于4.3V的电位下的同时使含F非离子化合物分解的实施方案中进行。换句话说,优选预处理电池被充电直至正电极的电位达到高于4.3V(相对于Li/Li+)。含F非离子化合物(当预处理电解质溶液中含有若干不同种类的含F非离子化合物时,其中的至少一种)优选具有高于4.3V(相对于Li/Li+)的氧化分解电位。根据这样的实施方案,正电极活性材料的表面可被提供以在更大程度上防止电解质组分分解的涂层。换句话说,可获得具有更大的防止电解质组分分解能力的经预处理正电极活性材料。因此,根据该实施方案,可获得具有甚至更好的循环性能的非水二次电池。通过在保持正电极于例如4.5V或更高(相对于Li/Li+)的电位下的同时使得含F非离子化合物分解,可获得更好的结果。
本文公开的技术可优选地应用于其中正电极在高于4.3V(相对于Li/Li+)(更优选地,相对于Li/Li+为4.5V或更高)的电位下运行的非水二次电池(例如,锂离子二次电池)的制造。在本文中,“其中正电极在高于4.3V(相对于Li/Li+)的电位下运行的非水二次电池”指其中正电极活性材料在一定的SOC(充电状态;充电水平)范围上(在0%至100%的全SOC范围的一部分上)具有高于4.3V(相对于Li/Li+)的氧化还原电位(工作电位)的非水二次电池。这样的电池可被看作是至少在一定的SOC范围上表现出高于4.3V(相对于Li/Li+)的正电极电位的非水二次电池。在一定的SOC范围上可在高于4.3V的电位下运行的正电极活性材料的优选实例包括尖晶石锂镍锰氧化物(例如,LiNi0.5Mn1.5O4)。根据具有这样的高工作电位的正电极活性材料,可获得跨经两个电极具有较高电压的非水二次电池(即,高电压非水二次电池)。此外,因为在这样的高电位下电解质组分在正电极上更易于氧化分解,因而使用具有提高的防止电解质组分分解能力的正电极活性材料尤其有意义。
在另一个方面,本文公开的技术提供了一种包括经涂布的正电极活性材料的非水二次电池。所述非水二次电池包括经涂布的正电极活性材料、非水电解质溶液(电池电解质溶液)和包含负电极活性材料的负电极。电池电解质溶液通常包含支持盐和非水溶剂。在一个优选的实施方案中,非水溶剂基本上由一种或更多种无F非离子化合物组成。在这样的非水二次电池中,电池电解质溶液的氧化分解和还原分解均可被大大抑制。根据这样的非水二次电池,可获得优异的循环性能。
在另一个方面,本文公开的技术提供了一种电源装置,其包括本文公开的任何非水二次电池(其可为通过应用本文公开的任何方法制造的非水二次电池)和电连接至所述电池的控制电路。当电源装置被投入使用时,控制电路能够至少调节非水二次电池的上限电压。在一个优选的实施方案中,上限电压设定在容许电池中高于4.3V(相对于Li/Li+)的正电极电位的值(例如,使得正电极电位处于4.5V或更高(相对于Li/Li+)的值)下。由于非水二次电池包含对电解质组分的分解较不活跃的正电极活性材料(经涂布的正电极活性材料),因而其可产生优异的循环性能,即使在其中正电极电位可能变得高如上述的使用条件下亦如此。其可在这样的条件下稳定地使用,从制造具有较高能量密度(较高电压)的电池的角度出发是有利的。
如上所述,本文公开的非水二次电池(例如,锂离子二次电池)可具有优异的循环性能。例如,容量可不随反复的充放电而显著下降。利用这样的特性,本文公开的非水二次电池可优选地用作例如混合动力车辆或电动车辆的电源(驱动电源)。因此,在另一个方面,例如如图5中所示,本发明提供了优选包含本文公开的非水二次电池100作为电源的车辆1。车辆1可通常以其中这些电池串联连接的电池组包含多个非水二次电池100。混合动力车辆的典型实例包括既包含发动机(内燃系统)又包含电动机驱动电池作为其电源的车辆。
附图说明
[图1]图1示出了根据一个实施方案的非水二次电池制造方法的流程图。
[图2]图2示出了示意性地示意了根据一个实施方案的非水二次电池的外形的透视图。
[图3]图3示出了沿图2中线III-III截取的截面图。
[图4]图4示出了示意根据一个实施方案的包含非水二次电池的电源装置的图。
[图5]图5示出了示意性地示意了包含非水二次电池的车辆(汽车)的侧视图。
具体实施方式
下面描述本发明的优选实施方案。除本说明书中明确提及的那些外的实施本发明的必要事项可理解为本领域普通技术人员基于相关领域中的常规技术的设计事项。本发明可基于本文公开的内容和主题领域中的公知常识来实施。在下面提及的附图中,可能对产生相同效果的构件或部位赋予共同的附图标记,多余的描述可能被略去或简化。此外,各幅附图中(长度、宽度、厚度等的)的尺寸关系不一定表示实际的尺寸关系。
下面结合一个实施方案中的锂离子二次电池作为主要实例来详细描述本发明,在该实施方案中,包括正电极和负电极的电极体与非水电解质溶液一起被置于正方形电池壳中,但本发明的应用不限于具有这样的形状的非水二次电池。换句话说,根据本发明的非水二次电池的形状不受特别限制,电池壳、电极体等的材料、形状、尺寸等可根据其预期用途和容量合适地选择。例如,电池壳可具有立方体形状、扁平形状、圆筒形状或其它形状。
<锂离子二次电池>
如图2和图3中所示,根据本文公开的技术的一个实施方案的锂离子二次电池具有例如这样的构成,其中卷绕电极体20与非水电解质溶液90一起被置于与电极体20的形状相对应的扁平箱形状的电池壳10中。壳10的开口12用盖14关闭。盖14具有正电极端子38和负电极端子48以连接到外部,所述端子从盖14的表面部分地延伸出。具有这样的构成的锂离子二次电池100可例如通过经由开口12将电极体20放置到壳10中、在壳10的开口12上盖上盖14、然后经由盖14中用于电解质溶液注入的孔(附图中未示出)注入非水电解质溶液(电池电解质溶液)90并随后关闭所述孔来构建。
图3中示出的电极体20具有扁平形状,其通过叠置和卷绕正电极片30和负电极片40并横向地压缩所得卷绕体而形成。通常,在正电极片30和负电极片40之间,存在绝缘层以防止这两者之间的直接接触。在一个优选的实施方案中,使用两个隔板片50作为绝缘层。例如,将这些隔板片50与正电极片30和负电极片40一起卷绕以形成电极体20。
正电极片30形成为在沿长度方向的一个不提供正电极活性材料层34的边缘上具有部分暴露的正电极集电体32。类似地,负电极片40形成为在沿长度方向的一个不提供负电极活性材料层44的边缘上具有部分暴露的负电极集电体42。分别地,正电极端子38接合到正电极集电体32的暴露边缘,负电极端子48接合到负电极集电体42的暴露边缘。正电极端子和负电极端子38和48可例如通过超声波焊接、电阻焊接等接合到正电极集电体和负电极集电体32和42。
<正电极片>
图3中示出的正电极片30具有这样的构成,其中包含正电极活性材料的正电极活性材料层34被保持在正电极集电体32的长片上。作为正电极活性材料,可使用已知可用作锂离子二次电池中的正电极活性材料的多种材料中的一种、两种或更多种而无特别的限制。实例包括具有层状结构或尖晶石结构等并含有锂和至少一种过渡金属作为金属组分的锂过渡金属化合物;多阴离子(polyanionic,例如橄榄石型)锂过渡金属化合物;等。更具体而言,可例如使用以下化合物。
(1)由通式LiMn2-xMxO4(A1)表示的锂过渡金属化合物(氧化物),其通常具有尖晶石结构。这里,x为零或更大但小于2并且通常为零或更大但为1或更小。当x大于零时,M可为不同于Mn的金属或为非金属。在一个优选的实施方案中,M包含至少一种过渡金属。具体实例包括LiNi0.5Mn1.5O4、LiCrMnO4等。
优选的正电极活性材料的实例包括至少含有Ni作为通式(A1)中的M的化合物,例如由通式LiNipM1 qMn2-p-qO4(A2)表示的尖晶石锂过渡金属氧化物。这里,p大于零,q为零或更大,并且p+q小于2(通常,p+q为1或更小)。在一个优选的实施方案中,q为零,并且p为0.2或更大但为0.6或更小。当q大于零时,M1可为不同于Ni和Mn的金属(例如,选自Fe、Co、Cu、Cr、Zn和Al中的一种、两种或更多种)或为非金属。M1优选包含Fe(III)和Co中的至少之一。此外,q优选大于零但为0.3或更小,并且2p+q优选为1或更大。
(2)由通式LiMO2表示的锂过渡金属化合物(氧化物),其通常具有层状结构。这里,M包含过渡金属如Ni、Co、Mn等中的至少一种并且还可包含另一金属或非金属。具体实例包括LiNiO2、LiNi1/3Co1/3Mn1/3O2等。
(3)由通式Li2MO3表示的锂过渡金属化合物(氧化物)。这里,M包含过渡金属如Mn、Fe、Co等中的至少一种,并且还可包含另一金属或非金属。具体实例包括Li2MnO3、Li2PtO3等。
(4)由通式LiMPO4表示的锂过渡金属化合物(磷酸盐)。这里,M包含过渡金属如Mn、Fe、Ni、Co等中的至少一种,并且还可包含另一金属或非金属。具体实例包括LiMnPO4、LiFePO4等。
(5)由通式Li2MPO4F表示的锂过渡金属化合物(磷酸盐)。这里,M包含过渡金属如Mn、Ni、Co等中的至少一种,并且还可包含另一金属或非金属。具体实例包括LiMnPO4F等。
(6)LiMO2和Li2MO3的固溶体。这里,LiMO2与上面(2)中给出的通式一致,而Li2MO3与上面(3)中给出的通式一致。具体实例包括由0.5LiNiMnCoO2-0.5Li2MnO3表示的固溶体。
在一个优选的实施方案中,正电极活性材料至少在一定的SOC范围上具有高于一般的锂离子二次电池(工作电位限于至高约4.1V至4.2V)的工作电位(相对于Li/Li+)。例如,优选的正电极活性材料具有高于4.3V(相对于Li/Li+)的工作电位。换句话说,可优选地使用在0%至100%的全SOC范围中最大工作电位高于4.3V(相对于Li/Li+)的正电极活性材料。在使用这样的正电极活性材料时,可获得其中正电极在高于4.3V(相对于Li/Li+)的电位下运行的锂离子二次电池。这样的正电极活性材料的优选实例包括LiNipMn2-pO4(这里,P为0.2或更大但为0.6或更小;例如,LiNi0.5Mn1.5O4)、LiNiPO4、LiCoPO4、0.5LiNiMnCoO2-0.5Li2MnO3等。更优选的正电极活性材料具有4.5V或更高(或甚至4.6V或更高,例如4.7V或更高)的工作电位(相对于Li/Li+)。
这里,正电极活性材料的工作电位可如下来确定。特别地,构建三电极电池,其具有包含待测正电极活性材料的正电极、作为对电极的锂金属块、作为参比电极的另一锂金属块和在由EC和DMC(30∶70体积比)组成的混合溶剂中含有1M浓度的LiPF6的电解质溶液。基于该电池的理论容量,以5%的增量从0%SOC向100%SOC改变电池的SOC值。例如,通过在恒定电流倍率下对电池充电来调节SOC值。将调节到各个SOC值的电池静置一小时,然后进行正电极电位测量。记录测得的正电极电位(相对于Li/Li+)作为正电极活性材料在此SOC值下的工作电位。
一般来说,使正电极活性材料的工作电位在包括100%SOC的SOC范围上最大化。因此,正电极活性材料的最大工作电位(例如,其是否高于4.3V)可常常基于正电极活性材料在100%SOC下(即,当完全充电时)的工作电位来评估。正电极活性材料在100%SOC下的工作电位(相对于Li/Li+)优选高于4.4V,或更优选4.5V或更高。通常,本文公开的技术可优选地应用于包含在100%SOC下具有7.0V或更低(通常6.0V或更低,例如5.5V或更低)的工作电位(相对于Li/Li+)的正电极活性材料的锂离子二次电池。
一般来说,正电极活性材料优选以平均颗粒直径为约1微米至20微米(例如,2微米至10微米)的颗粒存在。如本文所用,“平均颗粒直径”指体积平均颗粒直径,即,在使用基于激光散射/衍射理论的颗粒计数器测得的尺寸分布中50%累积体积下的颗粒直径,另有指出除外。在下文中,体积平均颗粒直径可被缩写为“D50”。上面示出的平均颗粒直径范围可优选地应用于预处理工艺之前的正电极活性材料(即,经预处理前的正电极活性材料)。优选经预处理的正电极活性材料(经涂布的正电极活性材料)也具有在上面规定的范围中的平均颗粒直径。
一般来说,优选的正电极活性材料具有合适地约0.1m2/g至3.0m2/g、例如约0.2m2/g至1.0m2/g的BET比表面积。该BET比表面积范围可优选地应用于预处理工艺之前的正电极活性材料。优选经预处理正电极活性材料也具有在此范围中的比表面积。
正电极活性材料层可根据需要包含导电材料、粘结剂等。
作为导电材料,可优选地使用导电材料粉末如碳粉、碳纤维等。作为碳粉,优选各种炭黑如乙炔黑、炉黑、科琴导电炭黑(Ketjen black)、石墨粉等。在这些导电材料中,可单独地使用一种,或组合地使用两种或更多种。
作为粘结剂,可在聚合物材料如羧甲基纤维素(CMC;通常以钠盐的形式)、聚乙烯醇(PVA)、聚四氟乙烯(PTFE)、丁苯橡胶(SBR)、聚偏二氟乙烯(PVDF)等中单独地使用一种或以合适的组合使用两种或更多种。
整个正电极活性材料层中含有的正电极活性材料的量合适地为约50质量%或更多(通常,50质量%至95质量%),通常优选为约70质量%至95质量%。当使用导电材料时,整个正电极活性材料层中含有的导电材料的量可为约2质量%至20质量%,通常优选为约2质量%至15质量%。当使用粘结剂时,整个正电极活性材料层中含有的粘结剂的量可为约0.5质量%至10质量%,通常合适为约1质量%至5质量%。
作为正电极集电体,可优选地使用由具有良好导电性的金属形成的导电构件。例如,可使用铝或含铝的合金作为主要组分。正电极集电体32的形状不受特别限制,其可随着锂离子二次电池的形状等而变,并且其可具有各种形状如棒、板、片、箔、网格等。在包括卷绕电极体20的锂离子二次电池100中,例如本实施方案中,可优选地使用具有约10微米至30微米的厚度的铝片(铝箔)作为正电极集电体32。
<制造正电极片的方法>
本文公开的非水二次电池(这里,图2、3中示出的锂离子二次电池100)的特征在于用正电极片30构建,正电极片30包含正电极活性材料,所述正电极活性材料在其表面上具有下文所述的涂层。所述涂层可为起到抑制正电极活性材料对电解质组分的分解活性的作用的SEI(固体电解质界面)膜。所述涂层可已经经由含F非离子化合物的氧化分解形成(通常,包含含F非离子化合物的分解产物)。包含这样的经涂布的正电极活性材料的正电极片30可例如通过包括以下步骤的预处理工艺来制备:获得包含未经涂布的正电极活性材料(涂层形成之前的正电极活性材料)的正电极;用所述正电极、预处理负电极和包含含F非离子化合物的预处理电解质溶液构建预处理电池;对预处理电池充电以使得含F非离子化合物在正电极处分解,从而在正电极活性材料的表面上形成涂层。锂离子二次电池100可用经预处理的正电极片30和不同于预处理电解质溶液的非水电解质溶液构建。
下文参照图1中示出的流程图描述用于制造正电极片30的方法和使用所述正电极片制造非水二次电池(这里,具有图2和3中所示构造的锂离子二次电池100)的方法的优选实例。在下面的描述中,经受预处理工艺之前的正电极活性材料可被称为“经预处理前的正电极活性材料”,包含经预处理前的正电极活性材料的正电极可被称为“经预处理前的正电极”。已经受预处理工艺的正电极活性材料可被称为“经预处理的正电极活性材料”或“经涂布的正电极活性材料”,包含这样的正电极活性材料的正电极可被称为“经预处理的正电极”。
<经预处理前的正电极>
经预处理前的正电极可优选如下来制造:制备在如上所述正电极活性材料和根据需要使用的导电材料以及粘结剂等的合适溶剂中呈分散体形式的糊剂或浆料组合物(形成正电极活性材料层的组合物);然后通过向正电极集电体片(例如,铝片)施加所述组合物并使所述组合物干燥来形成正电极活性材料层(经预处理前的正电极活性材料层)。作为溶剂,可使用任何含水溶剂和有机溶剂。合适的是,经预处理前的正电极活性材料层中经预处理前的正电极活性材料、导电材料和粘结剂等的量与锂离子二次电池的正电极片中使用的量大致相同。
施加到正电极集电体的组合物的干燥可根据需要使用加热来进行。每单位面积的正电极集电体提供的正电极活性材料的量合适地为例如约5mg/cm2至40mg/cm2(通常5mg/cm2至20mg/cm2)。在其中集电体的每个面都提供有正电极活性材料层的一个实施方案中,例如,两个层的合并量合适地为约5mg/cm2至40mg/cm2(通常5mg/cm2至20mg/cm2)。在这样的实施方案中,常常优选正电极集电体的各个面上提供的正电极活性材料层具有大致相同的质量。
施加到正电极集电体的组合物可在干燥后根据需要完全压制。正电极活性材料层可具有例如约1.0g/cm3至3.0g/cm3(通常1.5g/cm3至3.0g/cm3)的密度。
<预处理负电极>
预处理负电极包含能够通过对预处理电池充电(步骤S122)而贮存从经预处理前的正电极活性材料释放的载流子(这里,锂离子)的负电极活性材料。作为负电极活性材料,可在后面针对电池负电极列出的那些中单独地使用一种或是使用合适种类的组合。
在一个优选的实施方案中,预处理负电极包含能够在最初(在预处理电池的构建后;步骤S110)释放锂的负电极活性材料。这样的负电极活性材料的优选实例包括锂金属。在图1中示出的实例中,使用呈片形式的锂金属作为预处理负电极。能够在最初释放锂的负电极活性材料的优选实例包括锂过渡金属氧化物如锂钛氧化物(例如,Li4Ti5O12)等。因此,预处理负电极可包含锂过渡金属氧化物如锂钛氧化物(例如,Li4Ti5O12)等作为负电极活性材料。这样的锂过渡金属氧化物可用作负电极活性材料层,将其根据需要与导电材料和粘结剂等混合并通常保留在合适的负电极集电体上。
通常,当通过对预处理电池充电(步骤S122)而在正电极活性材料的表面提供了涂层时,电解质中的锂将部分地结合到涂层中并且所结合的锂固定在涂层中,从而变得不能为电池反应所利用。可使用能够释放锂的负电极活性材料来替代涂层形成过程中失去的锂。这可防止当对预处理电池放电(步骤S124)时待贮存在正电极活性材料中的锂的不足。当电池负电极中的负电极活性材料不含有任何最初可释放的锂时,使用包含能够在最初释放锂的负电极活性材料的预处理负电极将尤其有意义。不含有任何最初可释放的锂的负电极活性材料的优选实例包括至少部分地具有石墨结构的微粒碳材料(石墨颗粒等)。
本文公开的预处理负电极可包括与锂离子二次电池中常规地使用的那些相似的负电极。这样的负电极活性材料的典型实例包括碳材料。可优选地使用至少部分地具有石墨结构(层状结构)的微粒碳材料(碳颗粒)。可优选地使用所谓的石墨状物质(石墨)、难以石墨化的碳质物质(硬碳)、易于石墨化的碳质物质(软碳)和具有组合这些的结构的物质中的任何碳材料。特别地,在这些中,可优选地使用石墨颗粒如天然石墨等。也可使用在石墨颗粒的表面上包含非晶(无定形)碳的碳颗粒等。负电极活性材料的其它实例包括金属如锡(Sn)、铝(Al)、锌(Zn)等以及硅(Si)和由主要包括这些元素的合金组成的金属材料(所谓的基于合金的负电极)以及类似材料。
<预处理电解质溶液>
预处理电解质溶液包含锂盐作为支持盐(支持电解质)。作为预处理电解质溶液的支持盐,可使用已知的起到锂离子二次电池中的支持电解质的作用的各种锂盐,实例包括LiPF6、LiBF4、LiClO4、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiCF3SO3、LiC4F9SO3、LiC(SO2CF3)3等。在这些支持盐中,可单独地使用一种,或组合地使用两种或更多种。作为尤其优选的实例,提及LiPF6。优选制备预处理电解质溶液以具有在例如0.7mol/L至1.3mol/L的范围内的支持盐浓度。优选的预处理电解质溶液在室温(例如,25摄氏度)下以液体存在。
<含F非离子化合物>
预处理电解质溶液包含含F非离子化合物。含F非离子化合物可为例如已知可用作锂离子二次电池中的电解质溶液的无F非离子有机化合物的氟化产物。其可为具有通过用一个或更多个氟原子取代无F非离子有机化合物中的一个、两个或更多个氢原子而获得的结构的化合物。无F非离子有机化合物可为各种碳酸酯、醚、酯、腈、砜、内酯等。碳酸酯涵盖环状碳酸酯和链(无环)碳酸酯。醚涵盖环状醚和无环醚。在这些含F非离子有机化合物中,可单独地使用一种或者以合适的组合使用两种或更多种。
一般而言,含F非离子化合物中的氟含量合适地为10%或更高、优选20%或更高、或更优选30%或更高(例如,40%或更高)。这里,“氟含量”指含F非离子化合物中所含的F原子数相对于对应的无F非离子化合物中所含的H原子数的比率。在下文中,这可被称为“F取代率”。F取代率的上限不受特别限制,并且可为100%(即,其中所有的H原子都被F原子所取代的化合物)。从降低预处理电解质溶液的粘度和增大其离子电导率的角度出发,可优选地使用F取代率为90%或更低(通常,80%或更低,例如70%或更低)的含F非离子化合物。
期望预处理电解质溶液具有等于或高于正电极活性材料的工作电位(相对于Li/Li+)的氧化电位(相对于Li/Li+)。例如,优选的电解质溶液的氧化电位可以比正电极活性材料的工作电位(相对于Li/Li+)高出大于0V(通常高出约0.1V至3.0V,优选地高出约0.2V至2.0V,例如高出约0.3V至1.0V)、高出约0V至0.3V或高出0.3V或更大(通常高出约0.3V至3.0V,优选地高出约0.3V至2.0V,例如高出约0.3V至1.0V)。
预处理电解质溶液优选包含至少一种氧化电位等于或高于正电极活性材料的工作电位(相对于Li/Li+)的含F非离子化合物。例如,这样的含F非离子化合物的氧化电位可以比正电极活性材料的工作电位(相对于Li/Li+)高出大于0V(通常高出约0.1V至3.0V,优选地高出约0.2V至2.0V,例如高出约0.3V至1.0V)、高出约0V至0.3V或高出0.3V或更大(通常高出约0.3V至3.0V,优选地高出约0.3V至2.0V,例如高出约0.3V至1.0V)。
预处理电解质溶液优选以预处理电解质溶液中除支持盐外的所有组分的5质量%或更高(例如,5质量%至100质量%)包含这样的含F非离子化合物。在一个优选的实施方案中,该含F非离子化合物为预处理电解质溶液中的组分中具有最低的氧化电位的组分。具有这样的组成的预处理电解质溶液适于通过对预处理电池充电而在正电极活性材料的表面上形成涂层。
这里,电解质溶液的氧化电位(相对于Li/Li+)指通过以下方法测得的值。
用LiFePO4制造工作电极。特别地,以85∶5∶10的质量比混合LiFePO4、乙炔黑(导电材料)和PVDF(粘结剂)并分散在N-甲基-2-吡咯烷酮(NMP)中以制备浆料组合物。将其施加到铝片上、使其干燥并用辊压制以制造工作电极(正电极)片。使用该工作电极、锂金属块作为对电极、另一锂金属块作为参比电极、和待测电解质溶液构建三电极电池。使该三电极电池经受从工作电极完全移除锂的过程。特别地,在25摄氏度的温度下,在对应于从工作电极的理论容量预测的电池容量(Ah)的电流值的五分之一的恒定电流值下将电池充电直至4.2V,然后在4.2V的相同恒定电压下充电直至电流值变为初始电流值的五十分之一(即,等于电池容量的五分之一的五十分之一的电流值)。随后,在其中包括待测电解质溶液的氧化电位的电压范围(通常,高于4.2V的电压范围)中,于一定的恒定电压下进行规定时间段的充电,并且同时测量电流值。更具体而言,在所述电压范围内逐步增大电压,在各个电压下进行规定时间段(例如,约10小时)的恒电压充电,并且同时测量电流值。将恒电压充电过程中观察到电流值大于0.1mA时的电压记录为电解质溶液的氧化电位。
电压可例如以0.2V的增量增大。在后面描述的工作实施例中,电压以0.2V的增量增大。在各个电压水平下,进行10小时的恒电压充电。
进而,电解质溶液的还原电位指通过以下方法测得的值。
使用玻璃碳块作为工作电极、锂金属块作为对电极、另一锂金属块作为参比电极制造三电极电池。对该三电极电池进行线性扫描伏安分析。特别地,在20摄氏度的温度下,将工作电极的电位从电池制造完成时的开路电压(OCV)扫描到0.05V。扫描速率设定为1mV/秒。从所得电流(I)和电位(V)值,计算微分值dI/dV。相对于电位V(X-轴)绘制dI/dV值(Y-轴)以得到图。在此图中,将对应于分析开始后出现的第一dI/dV峰的电位V记录为还原电位(还原分解电位)。关于后面描述的工作实施例的实施方案,电池制造完成时的OCV为大约3V。
<氟化碳酸酯>
在一个优选的实施方案中,预处理电解质溶液包含一种、两种或更多种氟化碳酸酯(例如,前面所列碳酸酯的氟化产物)作为含F非离子化合物。可优选地使用任何氟化环状碳酸酯和氟化无环碳酸酯。常常优选使用每分子含有一个碳酸酯基团的氟化碳酸酯。这样的氟化碳酸酯的F取代率常常合适为10%或更大,或例如其可为20%或更大(通常20%或更大,但小于100%,例如,20%或更大,但80%或更小)。根据包含F取代率为30%或更大(通常30%或更大,但小于100%,例如,30%或更大,但70%或更小)的氟化碳酸酯的预处理电解质溶液,可获得甚至更好的结果。
<氟化环状碳酸酯>
本文公开的技术中的预处理电解质溶液的优选实例包括包含至少一种氟化环状碳酸酯作为含F非离子化合物的预处理电解质溶液。在预处理电解质溶液中除支持盐外的所有组分(或下文中的“非支持盐组分”)中,氟化环状碳酸酯的量可为例如5质量%或更高,并且常常合适为10质量%或更高,优选为20质量%或更高(例如,30质量%或更高)。基本上100质量%(通常99质量%或更多)的非支持盐组分可为氟化环状碳酸酯。通常,从降低预处理电解质溶液的粘度和增大其离子电导率的角度出发,氟化环状碳酸酯的量合适地为非支持盐组分的90质量%或更少,或优选地80质量%或更少(例如,70质量%或更少)。当预处理电解质溶液包含两种或更多种氟化环状碳酸酯时,氟化环状碳酸酯的量指其总量。
优选的氟化环状碳酸酯具有2至8(更优选地,2至6,例如2至4,通常2或3)个碳原子。在有太多碳原子时,预处理电解质溶液的粘度可能增大,或离子电导率可能减小。例如,可优选地使用由下式(C1)表示的氟化环状碳酸酯。
[化学式1]
在式(C1)中,R11、R12和R13中的每一者可独立地选自氢原子、氟原子、具有1至4(更优选地,1或2,通常1)个碳原子的烷基基团和卤代烷基基团、以及除氟原子外的其它卤素原子(优选地,氯原子)。卤代烷基基团可具有通过用一个或更多个卤素原子(例如,一个或更多个氟原子或者一个或更多个氯原子,优选地,一个或更多个氟原子)取代烷基基团的一个、两个或更多个氢原子所获得的结构。在一种优选的化合物中,R11、R12和R13中的一者或两者为氟原子。例如,优选R12和R13中的至少一者为氟原子的化合物。从减小预处理电解质溶液的粘度的角度出发,可优选地使用其中R11、R12和R13中的每一者都为氟原子或氢原子的化合物。
由式(C1)表示的氟化环状碳酸酯的具体实例包括单氟碳酸亚乙酯(MFEC)、二氟碳酸亚乙酯、4,4-二氟碳酸亚乙酯、三氟碳酸亚乙酯、全氟碳酸亚乙酯、4-氟-4-甲基碳酸亚乙酯、4,5-二氟-4-甲基碳酸亚乙酯、4-氟-5-甲基碳酸亚乙酯、4,4-二氟-5-甲基碳酸亚乙酯、4-(氟甲基)-碳酸亚乙酯、4-(二氟甲基)-碳酸亚乙酯、4-(三氟甲基)-碳酸亚乙酯、4-(氟甲基)-4-氟碳酸亚乙酯、4-(氟甲基)-5-氟碳酸亚乙酯、4-氟-4,5-二甲基碳酸亚乙酯、4,5-二氟-4,5-二甲基碳酸亚乙酯、4,4-二氟-5,5-二甲基碳酸亚乙酯等。作为二氟碳酸亚乙酯(DFEC),可使用反式-二氟碳酸亚乙酯(反式-DFEC)和顺式-二氟碳酸亚乙酯(顺式-DFEC)中的任一者。反式-DFEC的使用通常更优选。由于反式-DFEC在室温(例如,25摄氏度)下以液体存在,因而与在室温下以固体存在的顺式-DFEC相比,其在操作性能方面有利。
例如,可优选地使用具有包含至少反式-DFEC、至少MFEC、反式-DFEC和MFEC二者等作为含F非离子有机化合物的组成的预处理电解质溶液。当对预处理电池充电(步骤S122)时,这样的含F环状碳酸酯(氟化碳酸亚乙酯)可在正电极活性材料的表面上形成良好的涂层。例如,其可形成将在更大程度上防止氧化分解的涂层。根据具有这样的涂层的此类正电极活性材料,可构建具有甚至更好的循环性能的锂离子二次电池。所述正电极活性材料可例如为由前面描述的通式(A2)表示的尖晶石锂过渡金属氧化物(LiNi0.5Mn1.5O4等)。
<氟化无环碳酸酯>
除上面描述的氟化环状碳酸酯外或代替上面描述的氟化环状碳酸酯,本文公开的技术中的预处理电解质溶液可包含由下式(C2)表示的氟化无环碳酸酯作为含F非离子化合物。
[化学式2]
式(C2)中R21和R22中的至少一者(优选每一者)为含F有机基团,并且其可为例如氟化烷基基团或氟化烷基醚基团。其可为已被不同于氟原子的卤素原子进一步取代的氟化烷基基团或氟化烷基醚基团。R21和R22中的一者可为不含氟原子的有机基团(例如,烷基基团或烷基醚基团)。R21和R22中的每一者优选为具有1至6(更优选地,1至4,例如1至3,通常1或2)个碳原子的有机基团。在有太多碳原子时,预处理电解质溶液的粘度可能增大,或离子电导率可能减小。出于类似的原因,一般而言,优选R21和R22中的至少一者为直链,更优选R21和R22中的每一者为直链。例如,优选使用其中R21和R22中的每一者为各含总共一个或两个碳原子的氟代烷基基团的氟化无环碳酸酯。
由式(C2)表示的氟化无环碳酸酯的具体实例包括氟甲基甲基碳酸酯、二氟甲基甲基碳酸酯、三氟甲基甲基碳酸酯、氟甲基二氟甲基碳酸酯、(或下文中的“TFDMC”)、双(氟甲基)碳酸酯、双(二氟甲基)碳酸酯、双(三氟甲基)碳酸酯、2-氟乙基甲基碳酸酯、乙基氟甲基碳酸酯、2,2-二氟乙基甲基碳酸酯、2-氟乙基氟甲基碳酸酯、乙基二氟甲基碳酸酯、2,2,2-三氟乙基甲基碳酸酯、2,2-二氟乙基氟甲基碳酸酯、2-氟乙基二氟甲基碳酸酯、乙基三氟甲基碳酸酯、乙基2-氟乙基碳酸酯、乙基2,2-二氟乙基碳酸酯、双(2-氟乙基)碳酸酯、乙基2,2,2-三氟乙基碳酸酯、2,2-二氟乙基2’-氟乙基碳酸酯、双(2,2-二氟乙基)碳酸酯、2,2,2-三氟乙基2’-氟乙基碳酸酯、2,2,2-三氟乙基2’,2’-二氟乙基碳酸酯、双(2,2,2-三氟乙基)碳酸酯、五氟乙基甲基碳酸酯、五氟乙基氟甲基碳酸酯、五氟乙基乙基碳酸酯、双(五氟乙基)碳酸酯等。
在一个优选的实施方案中,预处理电解质溶液包含至少一种氟化环状碳酸酯和至少一种氟化无环碳酸酯作为含F非离子化合物。在具有这样的组成的预处理电解质溶液中,氟化无环碳酸酯(优选地,氟化直链碳酸酯)可有助于使得电解质溶液在室温(例如,25摄氏度)下以液体存在,或有助于减小电解质溶液的粘度。
氟化环状碳酸酯和氟化无环碳酸酯可以在例如5∶95至95∶5的范围中的体积比(环状的相对于无环的)使用,并且所述比率通常合适为10∶90至90∶10,优选为20∶80至80∶20(更优选为30∶70至70∶30)。当所述体积比的值过大或过小时,在预处理电解质溶液中,氟化环状碳酸酯和氟化无环碳酸酯无法形成均匀的混合物。
优选的氟化无环碳酸酯具有高于待组合地使用的氟化环状碳酸酯的氧化电位。根据具有这样的组成的预处理电解质溶液,当对预处理电池充电(步骤S122)时,将使得氟化环状碳酸酯优先进行氧化分解,由此,正电极活性材料的表面被提供以良好品质的涂层。此陈述非意在排除本文公开的技术中充电工艺(步骤S122)过程中氟化无环碳酸酯的部分氧化分解(有助于正电极活性材料表面上的涂层形成)。
除支持盐和含F非离子化合物外,预处理电解质溶液还可根据需要包含其它组分。例如,为减小预处理电解质溶液的粘度,其可包含如前面描述的无F非离子化合物。一般而言,这样的无F非离子化合物优选以电解质溶液中所含非支持盐组分的20质量%或更少、或者更优选10质量%或更少(例如,5质量%或更少)的量使用。一般而言,优选的预处理电解质溶液基本上不含这样的无F非离子化合物(例如,无F非离子化合物含量为零或低于1质量%)。
<预处理电池的构建>
通过将这样的预处理电解质溶液、前面描述的经预处理前的正电极、和预处理负电极置于合适的电池壳中来构建预处理电池(步骤S110)。在图1中,提及LiNi0.5Mn1.5O4作为经预处理前的正电极活性材料的一个实例,并提及锂金属块作为预处理负电极活性材料的一个实例。作为预处理电解质溶液的一个实例,提及在由反式-DEFC和TFDMC形成的混合溶剂(混合氟化溶剂)中包含LiPF6作为支持盐的电解质溶液。混合溶剂中反式-DEFC相对于TFDMC的体积比可为例如约1∶1。LiPF6的浓度可为例如约1mol/L。
为构建预处理电池,可使用隔板来置于经预处理前的正电极和预处理负电极之间。作为隔板,可使用与一般的非水二次电池中使用的那些(例如,锂离子二次电池中使用的那些)类似的隔板而无特别的限制。例如,可使用由树脂如聚乙烯(PE)、聚丙烯(PP)、聚酯、纤维素、聚酰胺等形成的多孔片或非织造织物等。优选的实例包括基本上由一种、两种或更多种聚烯烃树脂组成的单层或多层多孔片(微孔树脂片)。例如,可优选地使用PE片、PP片、其中在PE层的每一个面上覆盖有PP层的三层(PP/PE/PP)片等。隔板的厚度优选自例如约10微米至40微米的范围选择。
<预处理电池的充电>
随后,使预处理电池经受预处理工艺(步骤S120)。预处理工艺至少包括对预处理电池充电(步骤S122)。可优选进行充电直至预处理电池的正电极电位(上限电位或最大电位)达到大致等于(例如,加减0.2V内,通常加减0.1V内)或高于预处理电解质溶液中含有的至少一种含F非离子化合物的氧化电位(相对于Li/Li+)的水平。例如,可优选进行充电直至预处理电池的正电极电位(上限电位)达到比预处理电解质溶液中含有的至少一种含F非离子化合物的氧化电位(相对于Li/Li+)高0.05V或更多(优选高0.1V或更多)的水平。这使得含F非离子化合物(例如,氟化环状碳酸酯)在预处理电池的正电极处发生分解(氧化分解),从而使得在正电极活性材料的表面上形成包含其分解产物的涂层。因为预处理电解质溶液常常存在(全面分布)于预处理电池中正电极活性材料层的表面上和内部中,因而在含F非离子化合物的分解后,将在正电极活性材料层的每个部分中含有的各个正电极活性材料(通常,颗粒)的表面上形成涂层。
含F非离子化合物优选为组分中具有最低氧化电位的组分,其占预处理电解质溶液的5质量%或更高。可优选进行充电直至正电极电位(相对于Li/Li+)达到大致等于(例如,加减0.2V内,通常加减0.1V内)或高于含F非离子化合物的氧化电位的水平。例如,优选对预处理电池充电直至正电极电位(相对于Li/Li+)达到比含F非离子化合物的氧化电位高0.05V或更多、优选高0.1V或更多的水平。当上限电位过高时,涂层可能较不均匀地形成,或者涂层可能趋向于具有较低的防止氧化分解的能力。
充电工艺过程中预处理电池的正电极的上限电位(相对于Li/Li+)合适地设置在与正电极中含有的正电极活性材料的工作电位(相对于Li/Li+)大致相等(例如,加减0.2V内,通常加减0.1V内)或比正电极中含有的正电极活性材料的工作电位(相对于Li/Li+)高(例如,高0.05V或更多,优选高0.1V或更多)的水平。上限电位与正电极活性材料的工作电位之差常常合适地为5V或更小,优选为3V或更小(更优选为2V或更小,例如1V或更小)。例如,关于使用LiNi0.5Mn1.5O4(工作电位4.7V(相对于Li/Li+))作为正电极活性材料的预处理电池,可进行充电直至正电极电位(相对于Li/Li+)达到4.8V或更高(通常,4.8V至6.0V,例如,4.9V至5.5V)。当上限电位过低时,预处理工艺的效率可能趋向于下降。当上限电位过高时,正电极活性材料可能降解,涂层可能较不均匀地形成,或者涂层可能趋向于具有较低的防止氧化分解的能力。关于使用锂金属作为负电极活性材料的预处理电池,正电极的上限电位(相对于Li/Li+)大致等于预处理电池的上限电压(跨经两个电极的电压的上限)。
在使用包含氟化环状碳酸酯和具有高于氟化环状碳酸酯的氧化电位的氟化无环碳酸酯的预处理电解质溶液的实施方案中,上限电位可设定在高于氟化环状碳酸酯的氧化电位、但低于氟化无环碳酸酯的氧化电位的水平。通过在这样的上限电位下进行预处理工艺,正电极活性材料的表面可被提供以具有较高均匀性以及优异的防止氧化分解能力的涂层。
预处理电池的充电可例如通过其中电池在恒定电流(CC)倍率下充电直至其达到上限电压的方法(CC-充电方法)或通过其中电池在恒定电流倍率下充电至上限电压并然后在恒定电压(CV)下充电的方法(CC-CV充电方法)来进行。一般而言,可优选地采用CC-CV充电方法。CC-充电(其可为CC-CV充电过程中的CC-充电期)的充电倍率不受特别限制,其可为例如约1/50C至5C(1C为使得电池在一小时内完全充电的电流倍率)。常常合适的是,充电倍率为约1/30C至2C(例如,1/20C至1C)。当充电倍率过低时,预处理工艺的效率趋向于下降。当充电倍率过高时,正电极活性材料可能降解,涂层可能较不均匀地形成,或者涂层可能趋向于具有较低的防止氧化分解的能力。
合适的是,预处理电池的正电极在上限电位(相对于Li/Li+)下保持例如180分钟或更少(即,超过零分钟,但为180分钟或更少)的时间段,并且此时间段常常合适为15分钟至90分钟。当此时间段过短时,涂层的形成可能不够或较不均匀,由此,防止电解质溶液分解的能力可能趋向于减小。当此时间段过长时,取决于预处理工艺的条件,涂层可能过度地形成,并且使用所得经涂布的正电极活性材料的电池可能具有增大的内电阻(例如,增大的初始电阻),或者正电极活性材料可能降解。
<预处理电池的放电>
在根据一个优选的实施方案的制造方法中,使得在以这样的方式充电(步骤S122)后的预处理电池放电(步骤S124)。放电使得经充电的正电极活性材料(经涂布的正电极活性材料)贮存锂离子,并且在用此正电极活性材料构成的锂离子二次电池中,可合适地控制充放电中涉及的锂的量。另外,由于其中经充电的预处理电池的正电极保持在上限电位的时间可容易地管理,因而可适宜地控制涂层形成的程度。此外,通过避免其中预处理电池的正电极在上限电位保持过长时间的情况,正电极活性材料的降解可得到更好的防止。从正电极移除过程中的可作业性的角度出发,还优选在从预处理电池移除正电极(经预处理的正电极)之前使预处理电池放电。
当非水二次电池(这里,锂离子二次电池)使用例如包含能够在最初释放锂的负电极活性材料的负电极构建时,放电过程(步骤S124)可略去。
<正电极片的移除>
随后,从预处理电池移除(取出)经预处理的正电极(包含经涂布的正电极活性材料的正电极)。然后,如图3中所示,使用该正电极(正电极片)30、电池负电极(负电极片)40和电池电解质溶液90,构建锂离子二次电池100(图1中示出的步骤S130)。
<电池负电极>
图3中示出的负电极片40具有其中包含负电极活性材料的负电极活性材料层44保留在负电极集电体42的长片上的构成。
作为负电极活性材料,可使用一种、两种或更多种锂离子二次电池中常规使用的材料而无特别的限制。优选的负电极活性材料包括碳材料。可优选地使用至少部分地具有石墨结构(层状结构)的微粒碳材料(碳颗粒)。可优选地使用所谓的石墨状物质(石墨)、难以石墨化的碳质物质(硬碳)、易于石墨化的碳质物质(软碳)和具有组合这些的结构的物质中的任何碳材料。特别地,在这些中,可优选地使用石墨颗粒如天然石墨等。也可使用在石墨颗粒的表面上包含非晶(无定形)碳的碳颗粒等。
在图1中,提及石墨作为电池中使用的负电极活性材料的一个实例。负电极活性材料的其它实例包括氧化物如锂钛氧化物(例如,Li4Ti5O12)等;金属如锡(Sn)、铝(Al)、锌(Zn)等以及硅(Si),和由主要包括这些元素的合金组成的金属材料(所谓的基于合金的负电极)等。
虽然整个负电极材料层中含有的负电极活性材料的量不受特别限制,但其常常合适地为约50质量%或更高,优选为约90质量%至99质量%(例如,约95质量%至99质量%)。
为了产生具有较高上限电压(具有较高电池电压)的锂离子二次电池,有利的是使用具有较低氧化还原电位的负电极活性材料。例如,优选使用具有约0.5V或更低、更优选0.2V或更低(例如,0.1V或更低)的氧化还原电位(相对于Li/Li+)的负电极活性材料。可优选地使用可处在这样的低电位的石墨材料(例如,石墨颗粒如天然石墨、合成石墨等)、可通过用非晶碳至少部分地涂布这些石墨材料的表面获得的碳材料以及类似材料。在包括可处在这样的低电位的负电极的锂离子二次电池中,可在更大的程度上产生本文公开的技术的效果。本发明提供了例如具有4.3V或更高(更优选地,4.5V或更高,或甚至4.6V或更高,例如4.7V或更高)的工作电压同时具有优异的循环性能的非水二次电池(例如,锂离子二次电池)。
作为粘结剂,可在针对正电极列出的那些中单独地使用一种或是组合地使用两种或更多种。待加入的粘结剂的量可根据负电极活性材料的类型和量来合适地选择。例如,其可为整个负电极活性材料层的1质量%至5质量%。
作为图3中示出的负电极集电体42,可优选地使用由具有良好导电性的金属形成的导电材料。例如,可使用铜或含铜的合金作为主要组分。与正电极集电体32类似,负电极集电体42可呈多种形状。在包括卷绕电极体20的锂离子二次电池100中,例如本实施方案,可优选地使用具有约5微米至30微米的厚度的铜片(铜箔)作为负电极集电体42。
负电极片40可优选地例如通过向负电极集电体42施加糊剂或浆料组合物(呈分散体形式的形成负电极材料层的组合物)、然后干燥所述组合物来制造,所述糊剂或浆料组合物通过在合适的溶剂中分散负电极活性材料与根据需要使用的粘结剂等获得。干燥过程可根据需要使用加热来进行。干燥后,可根据需要完全压缩。负电极活性材料层44的质量(克数)合适为例如约3mg/cm2至30mg/cm2(通常,3mg/cm2至15mg/cm2)(两个面的组合值)每单位面积的负电极集电体42。常常优选在负电极集电体42的各个面上提供具有大致相同质量的负电极活性材料层。负电极活性材料层44可具有例如约0.8mg/cm2至2.0mg/cm2(通常,1.0mg/cm2至2.0mg/cm2)的密度。
<正电极与负电极的容量比>
虽然不受特别限制,但负电极的理论容量(CN)相对于正电极的理论容量(CP)的比率值CN/CP为例如合适地1.0至2.0,优选地1.2至1.9。当CN/CP值太小时,取决于电池的使用条件(例如,快速充电等),可能出现缺点如锂金属的可能沉积等。当CN/CP值太大时,电池的能量密度可能趋向于减小。
<隔板>
如图3中所示的置于正电极片30和负电极片40之间的隔板50可使用与相关领域中通常使用的那些类似的隔板而无特别的限制。例如,可使用由树脂如PE、PP、聚酯、纤维素、聚酰胺等形成的多孔片或非织造织物。优选的实例包括基本上由一种、两种或更多种聚烯烃树脂组成的单层或多层多孔片(微孔树脂片)。例如,可优选地使用PE片、PP片、其中在PE层的每一个面上覆盖有PP层的三层(PP/PE/PP)片等。隔板的厚度优选自例如约10微米至40微米的范围选择。
本文公开的技术中的隔板可具有在多孔片、非织造织物等的一个或每一个(通常,一个)面上包括耐热多孔层的构成。这样的耐热多孔层可包含例如无机材料和粘结剂。作为所述无机材料,可优选地使用无机填料如氧化铝粉末等。
<电池电解质溶液>
非水电解质溶液(电池电解质溶液)90包含在非水溶剂中的支持盐。作为所述支持盐,可选择和使用锂离子二次电池中通常使用的那些中的合适盐。这样的锂盐的实例包括LiPF6、LiBF4、LiClO4、LiAsF6、Li(CF3SO2)2N、LiCF3SO3等。在这些支持盐中,可单独地使用一种,或组合地使用两种或更多种。作为尤其优选的支持盐,提及LiPF6。非水电解质溶液优选制备为具有0.7mol/L至1.3mol/L的支持盐浓度。
作为非水溶剂,与用于一般的锂离子二次电池的电解质溶液类似,可使用各种碳酸酯、醚、酯、腈、砜、内酯等。碳酸酯涵盖环状碳酸酯和无环碳酸酯。醚涵盖环状醚和无环醚。在这些非水溶剂(优选地,无F非离子化合物)中,可单独地使用一种或者以合适的组合使用两种或更多种。
可用作非水溶剂的化合物的具体实例包括碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸亚乙烯酯(VC)、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、四氢呋喃、2-甲基四氢呋喃、二氧六环、1,3-二氧杂环戊烷、二乙二醇二甲醚、乙二醇二甲醚、乙腈、丙腈、硝基甲烷、N,N-二甲基甲酰胺、二甲亚砜、环丁砜、γ-丁内酯等。例如,优选的非水溶剂可具有以大于50体积%(更优选地,70体积%或更大,或甚至更优选85体积%或更大)的量包含一种、两种或更多种无F碳酸酯的组成。
电池电解质溶液中含F非离子化合物含量(当含有两种或更多种时,它们的总含量)优选低于5质量%,或更优选低于3质量%。在一个优选的实施方案中,电池电解质溶液基本上不含含F非离子化合物(例如,其含量为零或低于1质量%)。这里,“基本上不含含F非离子化合物”指不含无论如何有意地加入的含F非离子化合物。例如,这并不意味着要排除由经预处理正电极自预处理电解质溶液带入(混合到电池电解质溶液中)的含F非离子化合物残余物的存在。
如上所述,通过使用包含含F非离子化合物的预处理电解质溶液同时使用基本上不含(或含微量)含F非离子化合物的电池电解质溶液,伴随含F非离子化合物的使用的优点可有效地出现。这是因为,当与相应的无F非离子化合物相比时,含F非离子化合物往往具有较高的抗氧化性但抗还原性较低。
<涂层的分析>
经预处理正电极活性材料包含涂层,该涂层含有含F非离子化合物的分解产物。与用常规的正电极活性材料(即,未如前所述预处理的正电极活性材料)构建的非水二次电池相比,用这样的正电极活性材料(经涂布的正电极活性材料)构成的非水二次电池可在其构建后(在其组装时)在正电极活性材料的表面上存在明显更多的氟原子。氟原子的存在中这样的差异可至少在一定程度上继续下去,甚至在非水二次电池被投入使用后。特别地,在使用具有低的含F非离子化合物含量的电池电解质溶液的非水二次电池中,氟原子的较多存在可在更大程度上得到保持。例如,在使用含有3质量%或更少或者基本上不含含F非离子化合物的电池电解质溶液的非水二次电池中,氟原子的较多存在可在甚至更大的程度上得到保持。
本说明书公开的内容包括用正电极、负电极和非水电解质溶液构建的非水二次电池(例如,锂离子二次电池),其中所述正电极包含正电极活性材料,所述正电极活性材料在其表面上包含涂层,所述涂层包含含F非离子化合物的分解产物(即,经涂布的正电极活性材料),所述负电极基本上不包含这样的涂层。作为非水电解质溶液,可使用与针对电池电解质溶液所列的那些类似的溶液。尤其优选具有基本上不含含F非离子化合物的组成的非水电解质溶液。经涂布的正电极活性材料可经由预处理工艺制备。根据这样的实施方案,涂层可有效地抑制电解质组分在正电极处的氧化分解。另外,由于使用未经涂布的负电极活性材料,因而电池的内电阻(例如,初始电阻)可比其中使用经涂布的负电极活性材料的电池抑制到更低的水平。从输出性能的角度出发,这是优选的。
氟原子在电极活性材料的表面上的存在水平可反映在包含所述电极活性材料的电极活性材料层的表面上氟原子的存在水平上。氟原子的存在可例如通过使用市售离子色谱系统使电极活性材料表面(正电极活性材料层)经受离子色谱分析来评估。电池电解质溶液可包含氟化合物(含F离子化合物)作为支持盐。因此,对于电极活性材料表面的分析,优选使从非水二次电池移除的正电极活性材料(其可以作为正电极片存在)在洗涤和移除含F离子化合物后经受表面分析。其可用非质子溶剂(例如,由一种、两种或更多种碳酸酯组成的溶剂)合适地洗涤。
<电源装置>
本文公开的内容可包括在上限电压为4.3V或更高(通常,4.5V或更高,例如4.7V或更高)的充/放电条件下使用本文公开的非水二次电池的方法。还包括电源装置,所述电源装置包括这样的锂离子二次电池和控制所述电池于设定以达到上限电压的充/放电条件下的控制系统(控制装置)。可以如包含若干串联或并联地彼此连接的电池的电池组中那样,所述电源装置可以包括所述锂离子二次电池。
例如,电源装置可具有如图4中所示电源装置800的构成,其包括锂离子二次电池600、连接到其的负载802、根据锂离子二次电池600的状态控制负载802的运行的电子控制单元(ECU)804。负载802可包括消耗锂离子二次电池600中贮存的电能的电力消耗部件和/或能够对电池600充电的电力供给部件(充电器)。基于规定的数据,ECU 804控制负载802使得电池600的上限电压处于等于或高于4.3V的规定水平(例如,4.5V)。ECU 804的典型构成可包括贮存用于这样的电池控制的程序的ROM(只读储存器)和能够执行所述程序的CPU(中央处理单元)。作为规定的数据,可使用电池600的电压、一个或每一个电极(例如,正电极)的电位、充/放电历史及其它数据中的一个、两个或更多个数据。本文公开的锂离子二次电池100可作为如图4中示出的电源装置800的部件装载到如图5中示出的车辆1上。车辆1通常为汽车,特别地,其可为包括电动机的汽车,例如混合动力汽车、电动汽车和燃料电池汽车。
下面描述关于本发明的若干工作实施例,但本发明非意在局限于这些实施例。在下面的描述中,“份”和“%”均基于质量,另有指出除外。
接下来描述下面的实验中使用的各个电解质溶液。
<非水电解质溶液>
(电解质溶液A)
在以1∶1的体积比含有反式-DFEC作为环状碳酸酯和TFDMC(即,由FH2CO(C=O)OCHF2表示的氟甲基二氟甲基碳酸酯)作为无环碳酸酯的混合溶剂中,溶解LiPF6至1mol/L的浓度以制备非水电解质溶液A。当根据前面描述的方法测量时,该电解质溶液A具有5.0V至5.2V的氧化电位和2.4V的还原电位。
(电解质溶液B)
在以1∶1的体积比含有MFEC和TFDMC(FH2CO(C=O)OCHF2)的混合溶剂中,溶解LiPF6至1mol/L的浓度以制备非水电解质溶液B。当根据前面描述的方法测量时,该电解质溶液B具有4.9V至5.1V的氧化电位和1.9V的还原电位。
(电解质溶液C)
在以1∶1的体积比含有EC和DMC的混合溶剂中,溶解LiPF6至1mol/L的浓度以制备非水电解质溶液C。当根据前面描述的方法测量时,该电解质溶液C具有4.6V至4.8V的氧化电位和1.5V的还原电位。
[表1]
表1
<实施例1>
(正电极片的制造)
作为正电极活性材料,获得平均颗粒直径D50为6微米并且BET比表面积为0.7m2/g的LiNi0.5Mn1.5O4。将该正电极活性材料、乙炔黑(导电材料)和PVDF(粘结剂)以87∶10∶3的质量比分散在NMP中以制备浆料组合物。将该组合物施加到15微米厚长铝片(正电极集电体)的一个面上并使其干燥以形成正电极活性材料层。用辊压制此具有正电极活性材料层的集电体以调节正电极活性材料层的密度至2.3g/cm3,由此获得具有60mAh的理论容量(设计容量)CP的正电极片。
(预处理电池的构建)
将该正电极片、浸渍有电解质溶液A(在1∶1体积比的反式-DEFC/TFDMC中的非水1mol/L LiPF6溶液)的隔板(PP/PE/PP三层多孔片)和作为预处理负电极的锂金属片以此顺序叠置。用合适尺寸的层合膜覆盖此层状体,并密封周缘,留下一个小的开口。从该开口进一步注入电解质溶液A,并密封开口以构建预处理电池。将该预处理电池装配以正电极端子和负电极端子,所述正电极端子和负电极端子分别连接到正电极片和预处理负电极并延伸到层合膜外。
(预处理)
在1/10C的恒定电流(CC)倍率下对该预处理电池充电直至正电极电位达到4.9V(上限电位),然后在相同的恒定电压(CV)下充电直至电流倍率变为1/50C,由此电池被完全充电。在从充电完成起过10分钟后,使预处理电池在1/10C的恒定电流倍率下放电直至正电极电位达到3.5V,然后在相同的恒定电压下放电直至电流倍率变为1/50C。在预处理工艺后,拆开预处理电池,并单独回收正电极片(经预处理的正电极片)。
(负电极片的制造)
作为负电极活性材料,获得基于天然石墨的材料,其具有20微米的平均颗粒直径D50、0.67nm的晶格常数(C0)和27nm的c-轴长度(Lc)。将该负电极活性材料、CMC(增稠剂)和SBR(粘结剂)以98∶1∶1的质量比在离子交换水中混合以制备浆料组合物。将该组合物施加到10微米厚铜片(负电极集电体)的一个面上并使其干燥以形成负电极活性材料层。用辊压制此具有负电极活性材料层的集电体以调节负电极活性材料层的密度至1.4g/cm3,并且将所得物切成与正电极片相同尺寸的矩形以获得负电极片。调节组合物的施加量使得负电极和正电极具有1.5的理论容量比(CN/CP)值。
(非水二次电池的构建)
将经预处理的正电极片(特别地,自经放电的预处理电池回收的正电极片不经任何洗涤地使用;下同)、浸渍有电解质溶液C的隔板(PP/PE/PP三层多孔片)、和负电极片以此顺序叠置。用合适尺寸的层合膜覆盖此层状体,并密封周缘,留下一个小的开口。从该开口进一步注入电解质溶液C,并密封开口以构建根据本实施例的非水二次电池(锂离子二次电池)。将该电池装配以正电极端子和负电极端子,所述正电极端子和负电极端子分别连接到正电极片和负电极片并延伸到层合膜外。在具有这样的构造的电池中,电池的电压(跨经两个电极)大致等于正电极电位(相对于Li/Li+)。
<实施例2>
代替实施例1中的预处理工艺中的4.9V,将上限电位设定为5.3V。以其它方面与实施例1相同的方式构建根据本实施例的锂离子二次电池。
<实施例3>
代替实施例1中的电解质溶液A,使用电解质溶液B来构建预处理电池。以其它方面与实施例1相同的方式构建根据本实施例的锂离子二次电池。
<实施例4>
在本实施例中,使用预处理之前的正电极片、负电极片和电解质溶液C构建锂离子二次电池。
<实施例5>
以与实施例4相同的方式构建根据本实施例的锂离子二次电池,不同的是使用电解质溶液A代替电解质溶液C。
<实施例6>
以与实施例4相同的方式构建根据本实施例的锂离子二次电池,不同的是使用电解质溶液B代替电解质溶液C。
<处理>
使根据每一个实施例的电池经受在1/3C的倍率下CC-充电直至跨经两个电极的电位差(电压)达到4.9V和在1/3C的倍率下CC-放电至跨经两个电极的电压为3.5V的三个循环。
<性能评价>
(初始容量)
在25摄氏度的温度下,在1/5C的倍率下对电池CC-充电直至跨经两个电极的电压为4.9V,然后CV-充电直至电流倍率变为1/50C,由此其被完全充电。随后,在使电池在1/5C的倍率下CC-放电至跨经两个电极的电压为3.5V的同时,测量放电容量作为初始容量(初始放电容量)。
(循环试验)
在测量初始容量后,使在25摄氏度的温度下在1/5C的倍率下调节至60%SOC的每一个电池在40℃的温度下经受400次以下(1)到(4)的充/放电循环:
(1)在2C倍率下CC-充电直至4.9V(2)间断10分钟(3)在2C倍率下CC-放电至3.5V(4)间断10分钟。第400次循环后,以与初始容量测量相同的方式测量放电容量。求出第400次循环后的放电容量相对于初始放电容量的百分数作为容量保持率(%)。
[表2]
表2
如表2中所示,使用用电解质溶液A或B作为预处理电解质溶液预处理的经预处理的正电极片(包含经涂布的正电极活性材料)的实施例1至3的锂离子二次电池具有与使用经预处理前(预处理之前)的正电极片的实施例4的锂离子二次电池相当的初始容量,但其容量保持率增大1.5倍或更多(在实施例1和2中,1.8倍或更多)。容量保持率的增大可能因电解质溶液C的氧化分解的显著抑制而产生。在其中预处理工艺过程中上限电位相同的实施例1和3之间的比较中,使用含反式-DFEC作为氟化环状碳酸酯的电解质溶液A的实施例1比使用含MFEC的电解质溶液B的实施例3获得了甚至更好的效果。在使用相同的电解质溶液A的实施例1和实施例2之间的比较中,其中在预处理工艺过程中的上限电位更高的实施例2获得了更高的容量保持率。
关于分别使用每一个均含含F非离子化合物的电解质溶液A和B作为电池电解质溶液的实施例5和6,它们的容量保持率比实施例4的容量保持率稍高,但它们的循环性能明显比实施例1至3的那些差。这些结果可如下理解。即,据推测,由于电解质溶液A和B具有比电解质溶液C更高的抗氧化性(更高的氧化电位),因而在根据实施例5和6的电池中,在其正电极处电解质溶液的分解比根据实施例4的电池在更大程度上得到了抑制。然而,据推测,由于电解质溶液A和B具有比电解质溶液C更低的抗还原性(更高的还原电位),因而在根据实施例5和6的电池中,在其负电极处电解质溶液的分解比根据实施例4的电池促进(progressed)。部分地,据认为负电极处电解质溶液的促进分解抵消了正电极处抑制电解质溶液的分解的部分效果。
(初始电阻)
使根据实施例3和4的锂离子二次电池经受以下试验。特别地,在25摄氏度的温度下,将初始容量测量后的每一个电池单电池在1/5C的倍率下CC-充电至60%SOC。将调节至60%SOC的每一个电池单电池在1/3C、1C和3C的倍率下CC-充电和CC-放电,同时检测过电压。用检测到的过电压值除以对应的电流值(例如,对于1/3C,20mA)来求出电阻,并记录其平均值作为初始电阻。
结果,虽然根据实施例4的锂离子二次电池具有1.5欧姆的初始电阻,但使用用预处理电解质溶液B预处理的正电极片(经涂布的正电极活性材料)的根据实施例3的锂离子二次电池具有1.6欧姆的初始电阻,这与根据实施例4的锂离子二次电池的大致相等。此结果表明,使用经预处理的正电极,可以保持初始电阻处于低水平而同时显著提高循环性能(例如,使容量保持率增大1.5倍或更多)。
<涂层的分析>
在循环试验后(400次循环后)拆开根据实施例1、3和4的锂离子二次电池,回收各个正电极片并用EMC洗涤。特别地,将第一、第二和第三容器分别装满EMC。将自每一个电池回收的正电极片(其中存在电池电解质溶液)在第一容器中于EMC下浸没5分钟,然后从EMC浴中取出(回收)。在第二EMC浴和第三EMC浴中重复相同的工序。
针对经洗涤的根据实施例1、3和4的正电极片,用可得自NipponDionex K.K.的型号为“ICS-3000”的离子色谱系统分析其各个正电极活性材料层的表面。将转化为每单位体积正电极活性材料的值的结果示于表3中。
[表3]
表3
                    (符号“--”表示低于检测极限。)
如表3中所示,在电池被投入使用后,在用经由在包含含F非离子化合物的电解质溶液中进行的预处理工艺形成的经涂布的正电极活性材料构建的锂离子二次电池(实施例1、3)和用未经涂布的正电极活性材料构建的锂离子二次电池(实施例4)中,在正电极活性材料层的表面上观察到氟原子的存在的显著差异。实施例4中检测到的氟原子的少量存在可能是一些支持盐(LiPF6)在正电极处分解的结果。
虽然上文已详细描述本发明的特定实施方案,但这些实施方案仅出于示意的目的,并且本文公开的技术涵盖对上面示意的特定实施方案所作的各种修改和改变。
附图标记列表
1  车辆
10 电池壳
20 卷绕电极体
30 正电极片(正电极)
32 正电极集电体
34 正电极活性材料层
40 负电极片(负电极)
42 负电极集电体
44 负电极活性材料层
50 隔板
90 非水电解质溶液(电池电解质溶液)
100、600 锂离子二次电池(非水二次电池)
800 电源装置

Claims (10)

1.一种用于制造非水二次电池的方法,包括:
构建预处理电池,所述预处理电池包括包含正电极活性材料的正电极、包含支持盐和含氟非离子化合物的预处理电解质溶液、以及预处理负电极;
通过对所述预处理电池充电并且使所述含氟非离子化合物在所述正电极处分解以在所述正电极活性材料的表面上形成涂层来进行预处理工艺;以及
使用具有所形成的所述涂层的所述正电极活性材料、不同于所述预处理电解质溶液的非水电解质溶液、以及包含负电极活性材料的负电极构建非水二次电池。
2.根据权利要求1所述的方法,其中所述预处理电解质溶液包含含氟碳酸酯作为所述含氟非离子化合物。
3.根据权利要求1或2所述的方法,其中所述预处理电解质溶液包含含氟环状碳酸酯作为所述含氟非离子化合物。
4.根据权利要求1至3中任一项所述的方法,其中所述预处理电解质溶液包含反式-二氟碳酸亚乙酯和单氟碳酸亚乙酯中的至少之一作为所述含氟非离子化合物。
5.根据权利要求1至4中任一项所述的方法,其中用于构建所述非水二次电池的所述非水电解质溶液包含支持盐和非水溶剂,所述非水溶剂基本上由无氟非离子化合物组成。
6.根据权利要求1至5中任一项所述的方法,其中在所述预处理工艺中,使所述含氟非离子化合物在所述正电极相对于锂金属处在高于4.3V的电位下分解。
7.根据权利要求1至6中任一项所述的方法,其中所述电池为所述正电极在相对于锂金属处在高于4.3V的电位下运行的非水二次电池。
8.根据权利要求1至7中任一项所述的方法,其中所述正电极活性材料包含尖晶石锂镍锰氧化物。
9.一种非水二次电池,通过根据权利要求1至8中任一项所述的方法制造。
10.一种电源装置,包括
根据权利要求9所述的非水二次电池,和
电连接至所述电池并且至少控制所述电池的上限电压的控制电路,其中
所述上限电压设定在使所述电池的所述正电极达到相对于锂金属高于4.3V的电位的水平。
CN201380025546.6A 2012-05-18 2013-04-30 用于制造非水二次电池的方法 Active CN104303357B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012114642A JP5960503B2 (ja) 2012-05-18 2012-05-18 非水二次電池の製造方法
JP2012-114642 2012-05-18
PCT/JP2013/002890 WO2013171991A1 (en) 2012-05-18 2013-04-30 Method for producing a non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
CN104303357A true CN104303357A (zh) 2015-01-21
CN104303357B CN104303357B (zh) 2016-09-28

Family

ID=48614091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380025546.6A Active CN104303357B (zh) 2012-05-18 2013-04-30 用于制造非水二次电池的方法

Country Status (6)

Country Link
US (1) US9698450B2 (zh)
EP (1) EP2850685B1 (zh)
JP (1) JP5960503B2 (zh)
KR (1) KR101604944B1 (zh)
CN (1) CN104303357B (zh)
WO (1) WO2013171991A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252100A (zh) * 2015-06-03 2016-12-21 东莞东阳光科研发有限公司 超级电容器用电极活性材料的预处理装置及其预处理方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923747B2 (ja) 2013-12-04 2016-05-25 パナソニックIpマネジメント株式会社 ナトリウム二次電池
FR3020181B1 (fr) * 2014-04-17 2016-04-01 Renault Sas Procede de formation d'une cellule de batterie li-ion comprenant un materiau pour cathode a base de lnmo
JP2016027562A (ja) * 2014-07-04 2016-02-18 株式会社半導体エネルギー研究所 二次電池の作製方法及び製造装置
JP6094826B2 (ja) 2014-07-16 2017-03-15 トヨタ自動車株式会社 非水電解液二次電池とその製造方法および非水電解液
WO2016123396A1 (en) * 2015-01-30 2016-08-04 Sillion, Inc. Ionic liquid-enabled high-energy li-ion batteries
US10770759B2 (en) * 2015-07-17 2020-09-08 Toyota Jidosha Kabushiki Kaisha Method of manufacturing lithium ion secondary battery
WO2018016246A1 (ja) 2016-07-22 2018-01-25 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール
CN112368871A (zh) * 2018-07-27 2021-02-12 松下知识产权经营株式会社 二次电池及其制造方法
CN110875490B (zh) * 2018-08-29 2024-02-09 中南大学 一种锂离子电池及其制备方法
US20200099099A1 (en) * 2018-09-20 2020-03-26 Uchicago Argonne, Llc Non-aqueous electrolytes for high voltages batteries employing lithium metal anodes
JP7363443B2 (ja) * 2019-12-13 2023-10-18 Tdk株式会社 リチウムイオン二次電池
JP7258002B2 (ja) * 2020-10-30 2023-04-14 プライムプラネットエナジー&ソリューションズ株式会社 リチウムイオン二次電池用非水電解液の製造方法および該非水電解液を用いたリチウムイオン二次電池の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070281212A1 (en) * 2006-05-31 2007-12-06 Uchicago Argonne, Llc Surface stabilized electrodes for lithium batteries
CN101373849A (zh) * 2007-08-23 2009-02-25 气体产品与化学公司 电解质、电池和形成钝化层的方法
US20110117445A1 (en) * 2009-11-17 2011-05-19 Uchicago Argonne, Llc Electrolytes for lithium and lithium-ion batteries
WO2011105002A1 (ja) * 2010-02-25 2011-09-01 パナソニック株式会社 リチウムイオン二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042814A (ja) 2000-07-28 2002-02-08 Hitachi Maxell Ltd 非水二次電池用正極活物質およびそれを用いた非水二次電池
US20060216612A1 (en) * 2005-01-11 2006-09-28 Krishnakumar Jambunathan Electrolytes, cells and methods of forming passivation layers
JP5046352B2 (ja) * 2005-04-06 2012-10-10 日立マクセルエナジー株式会社 リチウムイオン二次電池の製造方法
JP2009110886A (ja) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
JP4774426B2 (ja) * 2008-06-27 2011-09-14 日立ビークルエナジー株式会社 リチウム二次電池
JP5402363B2 (ja) * 2009-03-19 2014-01-29 株式会社エクォス・リサーチ リチウムイオン電池用電極の製造方法及びリチウムイオン電池用電極
JP5874345B2 (ja) * 2011-11-22 2016-03-02 日産自動車株式会社 非水電解液二次電池の製造方法
US9559350B2 (en) * 2011-11-24 2017-01-31 Toyota Jidosha Kabushiki Kaisha Method for producing nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070281212A1 (en) * 2006-05-31 2007-12-06 Uchicago Argonne, Llc Surface stabilized electrodes for lithium batteries
CN101373849A (zh) * 2007-08-23 2009-02-25 气体产品与化学公司 电解质、电池和形成钝化层的方法
US20110117445A1 (en) * 2009-11-17 2011-05-19 Uchicago Argonne, Llc Electrolytes for lithium and lithium-ion batteries
WO2011105002A1 (ja) * 2010-02-25 2011-09-01 パナソニック株式会社 リチウムイオン二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252100A (zh) * 2015-06-03 2016-12-21 东莞东阳光科研发有限公司 超级电容器用电极活性材料的预处理装置及其预处理方法
CN106252100B (zh) * 2015-06-03 2019-06-25 东莞东阳光科研发有限公司 超级电容器用电极活性材料的预处理装置及其预处理方法

Also Published As

Publication number Publication date
EP2850685B1 (en) 2016-03-02
WO2013171991A1 (en) 2013-11-21
CN104303357B (zh) 2016-09-28
US20150140361A1 (en) 2015-05-21
KR20150013301A (ko) 2015-02-04
JP2013243010A (ja) 2013-12-05
US9698450B2 (en) 2017-07-04
JP5960503B2 (ja) 2016-08-02
KR101604944B1 (ko) 2016-03-18
EP2850685A1 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104303357B (zh) 用于制造非水二次电池的方法
JP7232356B2 (ja) 再充電可能なバッテリーセル
CN103715451B (zh) 非水电解溶液二次电池以及制造所述电池的方法
KR101571990B1 (ko) 비수전해액 이차 전지와 그 제조 방법
CN101207197B (zh) 锂离子电池正极材料和含有该材料的正极和锂离子电池
CN103403942B (zh) 非水电解液二次电池
JP4453049B2 (ja) 二次電池の製造方法
US9595718B2 (en) Lithium secondary battery and method for producing same
CN106384808A (zh) 一种锂离子电池正极片及其制备方法、锂离子电池
KR101678798B1 (ko) 비수 전해액 2차 전지의 제조 방법
CN103403943B (zh) 锂离子二次电池
US20100297505A1 (en) Method of producing nitrided li-ti compound oxide, nitrided li-ti compound oxide, and lithium-ion battery
CN105518908A (zh) 非水电解质二次电池
US20150214571A1 (en) Lithium secondary battery and method for producing same
CN101212070A (zh) 一种叠片式锂离子二次电池及其制备方法
JPWO2017154788A1 (ja) 二次電池用電解液及び二次電池
JP2009004357A (ja) 非水電解液リチウムイオン二次電池
JP5234373B2 (ja) リチウムイオン二次電池
CN114361408B (zh) 正极活性物质
CN100568604C (zh) 非水电解液、锂离子二次电池以及它们的制备方法
WO2019150901A1 (ja) 非水電解質二次電池、電解液及び非水電解質二次電池の製造方法
JP7455045B2 (ja) 正極活物質
JP2022063416A (ja) 正極活物質

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant