CN103987736B - 催化剂体系以及在该催化剂体系存在下生产超高分子量聚乙烯的方法 - Google Patents

催化剂体系以及在该催化剂体系存在下生产超高分子量聚乙烯的方法 Download PDF

Info

Publication number
CN103987736B
CN103987736B CN201280061143.2A CN201280061143A CN103987736B CN 103987736 B CN103987736 B CN 103987736B CN 201280061143 A CN201280061143 A CN 201280061143A CN 103987736 B CN103987736 B CN 103987736B
Authority
CN
China
Prior art keywords
compound
chemical formula
carbon atom
alkyl
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280061143.2A
Other languages
English (en)
Other versions
CN103987736A (zh
Inventor
A·A·巴提娜斯-吉乌特斯
N·H·弗莱德尔利施
T·施费恩
E·祖德玛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Basic Industries Corp
Original Assignee
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Basic Industries Corp filed Critical Saudi Basic Industries Corp
Publication of CN103987736A publication Critical patent/CN103987736A/zh
Application granted granted Critical
Publication of CN103987736B publication Critical patent/CN103987736B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)

Abstract

本发明涉及用于生产超高分子量聚乙烯的催化剂体系,它包括:I.通过下述物质反应获得的固体反应产物:(a)包括(1)有机含氧的镁化合物或者含卤素的镁化合物和(2)有机含氧的钛化合物的烃溶液和(b)包括化学式为MeRnX3‑n的金属化合物和化学式为RmSiCl4‑m的硅化合物的混合物,其中在MeRnX3‑n中,X是卤素,Me是门捷列夫的化学元素周期体系的第III族金属,R是含1‑10个碳原子的烃基,和0≤n≤3;其中在RmSiCl4‑m中,0≤m≤2和R是含1‑10个碳原子的烃基,其中来自(b)的金属:来自(a)的钛的摩尔比低于1:1;II.化学式为AlR3的有机铝化合物,其中R是含1‑10个碳原子的烃基;和III.选自1,2‑二烷氧基烷烃,1,2‑二烷氧基烯烃或聚合的外电子供体中的外电子供体。

Description

催化剂体系以及在该催化剂体系存在下生产超高分子量聚乙烯的方法
本发明涉及用于生产超高分子量聚乙烯的催化剂体系和在这一催化剂体系存在下,生产超高分子量聚乙烯的方法。
聚乙烯的催化生产是本领域中非常熟知的。非常特殊的一类聚乙烯是超高分子量聚乙烯(UHMWPE),其具有范围从约1000000到远高于6000000g/mol的非常高的平均分子量,而高密度聚乙烯(HDPE)的摩尔质量典型地为约50000至300000g/mol。因此,这些线性聚合物的平均分子量比高密度聚乙烯高得多。获得UHMWPE的聚合物合成方法公开于Journal of Macromolecular Science Part C PolymerReviews,Vol.C42,No3,第355-371页,2002中。较高的分子量得到特征独特组合的UHMWPE,从而使得它适合于其中较低分子量等级不合格的应用。这种聚乙烯非常高的分子量导致优良的性能,例如非常高的耐磨性,非常高的抗冲击性,非常高的熔体粘度和低的动态摩擦系数。由于分子量高和熔体粘度高,因此,采用专门的加工方法,例如压塑和活塞式挤塑。由于UHMWPE分子量高,因此当熔融时,显示出差的流动性,难以将它模塑成粒料形式,和该产物以粉末形式递送,且甚至更加重要的是,它必须也由粉末加工。因此,粉末的性能严重地决定了生产工艺以及转化工艺。例如,这一粉末必须储存和运输,且因此UHMWPE粉末的堆密度非常重要。较高的堆密度可减少在其运输时的堵塞,和可增加单位体积的可储存量。通过增加堆密度,在聚合容器内,单位体积的UHMWPE的重量可以增加,以及可提高聚合容器内超高分子量聚乙烯粉末的浓度。类似地,在UHMWPE的加工中,还要求高的堆密度。正如所提及的,典型的加工工序是活塞式挤塑和压塑。这两个方法原则上牵涉粉末颗粒的烧结。参见例如H.L.Stein的Engineered Materials Handbook,第2卷:EngineeringPlastics,ASM International1999,第167-171页。为了这一烧结变得有效,非常重要的是实现致密的聚合物粉末填充,这将转化成高的堆密度。UHMWPE的堆密度应当高于300kg/m3,更优选高于350kg/m3,和甚至更优选高于400kg/m3。此外,UHMWPE粉末的平均粒度是重要的特征。平均粒度(D50)优选低于250微米,更优选低于200微米。另外,以(D90-D10)/D50定义的粒度分布,常常称为“跨度(span)”,应当低,优选低于2,和甚至更优选低于1.5。
UHMWPE粉末的粒度分布涉及粗聚合物粉末颗粒量。这些粗颗粒的粒度大于300μm且常常以粉末颗粒的聚集体形式存在。这些粗颗粒的质量分数应当尽可能低,因为它们可负面影响最终UHMWPE制品的性能。消除粗颗粒的一种方式是使最终的UHMWPE粉末穿过具有特定筛目的筛子。不期望在聚合过程中形成这些粗颗粒。
已知(例如,Dall'Occo等人,在"Transition Metals andOrganometallics as Catalysts for Olefin Polymerization"(Kaminsky,W.;Sinn,H.,Eds.)Springer,1988,第209-222页中)聚合物粉末颗粒的形状由催化剂颗粒的形状转换(translate)(也称为复制现象)。一般地,当发生这一复制时,聚合物的平均粒度与催化剂产率(即g所生产的聚合物/g催化剂)的立方根成正比。由于这一比例,人们可通过降低催化剂产率来生产小的聚合物颗粒,但这会引起在聚合物内高的催化剂残渣以及生产聚合物所需的高的催化剂成本。这对催化剂提出了苛刻的要求,因为要求高的催化剂活性结合低于250μm(优选低于200μm)的聚合物粒度。
WO2009/112254公开了适合于生产具有充足堆密度和粉末形貌的UHMWPE的催化剂体系。关于实施例,所得UHMWPE的分子量对于许多UHMWPE应用来说一般是充足的。然而,仍然需要生产甚至更高分子质量的UHMWPE。通过使用较低聚合温度生产较高分子量聚合物是公知的方法。然而,降低聚合温度要求增加冷却,以除去从放热聚合反应中释放的热量和因此使用较低的聚合温度在经济上不是优选的。
本发明的目的是提供一种催化剂,它导致获得显示出高的粉末堆密度、窄的跨度、低于250μm的平均粒度的UHMWPE,该催化剂形成非常少的粗颗粒,显示出高的催化剂活性,和此外,能在高的聚合温度下,生产非常高摩尔质量的聚合物。
本发明的催化剂体系包括:
I.通过下述物质反应获得的固体反应产物:
(a)包括(1)有机含氧的镁化合物或者含卤素的镁化合物和(2)有机含氧的钛化合物的烃溶液,和
(b)包括化学式为MeRnX3-n的金属化合物和化学式为RmSiCl4-m的硅化合物的混合物,其中在MeRnX3-n中,X是卤素,Me是门捷列夫的化学元素周期系统的第III族金属,R是含1-10个碳原子的烃基,和0≤n≤3;其中在RmSiCl4-m中,0≤m≤2和R是含1-10个碳原子的烃基,其中来自I(b)的金属:来自I(a)(2)的钛的摩尔比低于1:1,
II.化学式为AlR3的有机铝化合物,其中R是含1-10个碳原子的烃基,和
III.选自1,2-二烷氧基烷烃,1,2-二烷氧基烯烃或聚合的电子供体中的外电子供体。
本发明的催化剂能生产极其高摩尔质量的聚合物并导致非常低含量的粗聚合物颗粒。
本发明的另一优点是在高的催化剂产率下,所得UHMWPE显示出低于170μm的平均粒度。
该催化剂的进一步的优点是生产率高。
此外,在聚合物内的催化剂残渣非常低。
该催化剂的额外优点是基于容易获得和相对容易处理化合物,生产催化剂的合成相对简单和便宜。
根据本发明的优选实施方案,该催化剂体系包括:
I.通过下述物质反应获得的固体反应产物:
(a)包括(1)有机含氧的镁化合物或者含卤素的镁化合物和(2)有机含氧的钛化合物的烃溶液,以及
(b)包括化学式为MeRnX3-n的金属化合物和化学式为RmSiCl4-m的硅化合物的混合物,其中在MeRnX3-n中,Me是门捷列夫的化学元素周期体系的第III族金属,X是卤素,和R是含1-10个碳原子的烃基,和0≤n≤3;其中在RmSiCl4-m中,0≤m≤2和R是含1-10个碳原子的烃基,其中来自I(b)的金属:来自I(a)(2)的钛的摩尔比低于1:1,和
(c)用化学式为AlRnCl3-n的铝化合物后处理所得固体反应产物,其中R是含有1-10个碳原子的烃基,和0<n≤3;以及
II.化学式为AlR3的有机铝化合物,其中R是含1-10个碳原子的烃基;
III.选自1,2-二烷氧基烷烃,1,2-二烷氧基烯烃或聚合的电子供体中的外电子供体。
根据本发明的进一步的优选实施方案,外电子供体是用式(I)表示的二烷氧基烃化合物:
其中C1-C2是由2个处于sp3和/或sp2杂化形式的碳原子组成的连接基,以及其中取代基R和R'是具有1-10个碳原子的烃基且可以相同或不同,并且可任选地被含O、N或Si的其他基团取代。
烃基的实例包括烷基,烯基,环烷基,环烯基,芳基和芳烷基。
sp3和/或sp2杂化的含义是本领域技术人员已知的且例如由HenryBent公开于Chem.Review,1961(3),第275-311页中。
根据本发明的优选实施方案,外电子供体选自1,2-二烷氧基烷烃和1,2-二烷氧基烯烃,包括1,2-二甲氧基苯、1,2,4-三甲氧基苯、1,2-二乙氧基苯、2,3-二甲氧基甲苯、1-烯丙基-3,4-二甲氧基苯、1,2-二甲氧基乙烷、1,2-二甲氧基环己烷、1,2-二甲氧基丙烷、1,2-二甲氧基丁烷和/或2,3-二甲氧基丁烷。
更优选采用1-烯丙基-3,4-二甲氧基苯。
在外聚合的电子供体的情况下,式(I)表示在该聚合的电子供体内的重复结构单元。外聚合的电子供体的合适实例包括聚乙二醇和/或聚环氧乙烷。
门捷列夫的化学元素的周期体系的第III族的优选金属是铝和硼。
优选地,卤素是Cl。
重要的是混合物(b)的组分用作在与烃溶液(a)的反应中的混合物而不是独立地或按序使用。
优选地,化学式为MeRnX3-n的来自(b)的金属化合物是化学式为AlRnX3-n的铝化合物,其中X是卤素和R是含有1-10个碳原子的烃基,和0≤n≤3。
优选地,来自(b)的金属:来自(a)的钛的摩尔比低于1:1。来自(b)的金属优选是铝。
优选地,包括有机含氧的镁化合物或含卤素的镁化合物的烃溶液是包括有机含氧的镁化合物的烃溶液。
合适的有机含氧的镁化合物包括例如醇盐,例如甲醇镁,乙醇镁和异丙醇镁;以及烷基醇盐,例如乙基乙醇镁。
合适的含卤素的镁化合物包括例如二卤化镁和二卤化镁络合物。优选地,卤素是氯。
优选地,有机含氧的镁化合物是镁的醇盐。
优选地,镁的醇盐是乙醇镁。
合适的有机含氧的钛化合物可以用通式[TiOx(OR)4-2x]n表示,其中R表示有机基团,x的范围为0至1,和n的范围为1至6。
有机含氧的钛化合物的合适实例包括醇盐,酚盐,氧基醇盐,缩合的醇盐,羧酸盐和烯醇盐。
优选地,有机含氧的钛化合物是钛的醇盐。
合适的醇盐包括例如Ti(OC2H5)4,Ti(OC3H7)4,Ti(OC4H9)4和Ti(OC8H17)4
优选地,钛的醇盐是Ti(OC4H9)4
化学式为AlRnX3-n的铝化合物的合适实例包括三氯化铝,乙基二溴化铝,乙基二氯化铝,丙基二氯化铝,正丁基二氯化铝,异丁基二氯化铝,二乙基氯化铝,二异丁基氯化铝,三异丁基铝和三正己基铝。
优选地,有机铝卤化物是有机氯化铝,更优选乙基二氯化铝。
化学式为AlR3的有机铝化合物的合适实例包括例如三乙基铝,三异丁基铝,三正己基铝和三辛基铝。
可根据例如在US4178300和EP-A-876318中公开的工序,制备有机含氧的镁化合物和有机含氧的钛化合物的烃溶液。该溶液一般地是澄清的液体。在其中存在任何固体颗粒的情况下,在催化剂合成中使用该溶液之前,这些可借助过滤除去。
在(b)中铝化合物的用量应当低,典型地低于来自(b)的铝与来自(a)的钛的小于1的摩尔比。
一般地,来自(b)的铝:来自(a)的钛的摩尔比低于1:1。优选地,
这一比值低于0.8:1,和更优选这一比值低于0.6:1。
一般地,来自RmSiCl4-m的氯:在烃溶液(a)内存在的氧的摩尔比低于3:1,和优选低于2:1。
一般地,镁:钛的摩尔比低于3:1,和优选镁:钛的摩尔比范围为0.2:1至3:1。
一般地,来自(b+c)内的铝化合物中的Al:Ti的摩尔比的范围为0.05:1至1:1。
一般地,来自(b+c)内的铝化合物中的Al:Ti的摩尔比的范围为0.05:1至0.8:1。
一般地,外电子供体(III)与来自固体反应产物(I)的钛的摩尔比范围为0.01:1至10:1。
一般地,催化剂的平均粒度范围为3μm至30μm。优选地,这一平均粒度范围为3μm至10μm。
一般地,粒度分布的跨度低于2,优选低于1。
在包括有机含氧的镁化合物和有机含氧的钛化合物的烃溶液与组分(Ib)反应的过程中,固体催化剂前体沉淀,和在沉淀反应之后,加热所得混合物并回流,以完成反应。
可通过首先使有机含氧的镁化合物和有机含氧的钛化合物之间反应,接着用烃溶剂稀释,从而导致由烷氧化镁和烷氧化钛组成的可溶络合物,和之后所述络合物的烃溶液与含化学式为MeRnX3-n的金属化合物和化学式为RmSiCl4-m的硅化合物的混合物之间反应,从而获得催化剂。
在聚合过程中,添加外供体化合物到聚合反应器中。在制备固体反应产物(I)之中或之内,不使用外供体。添加外供体到聚合反应器中可或者独立于固体反应产物(I)和独立于有机铝化合物(II),或者在进入到反应器内之前,与固体反应产物(I)和/或有机铝化合物(II)预混。在添加到聚合反应器中之前,进行这种预混一段时间;优选地,这一预混小于1小时,更优选小于30分钟。
根据本发明的优选实施方案,制备用于生产超高分子量聚乙烯的催化剂体系的方法包括:
I.使下述物质反应:
(a)包括(1)有机含氧的镁化合物或者含卤素的镁化合物和(2)有机含氧的钛化合物的烃溶液,和
(b)包括化学式为MeRnX3-n的金属化合物和化学式为RmSiCl4-m的硅化合物的混合物,其中在MeRnX3-n中,X是卤素,Me是门捷列夫的化学元素周期体系的第III族金属,R是含1-10个碳原子的烃基,和0≤n≤3;其中在RmSiCl4-m中,0≤m≤2和R是含1-10个碳原子的烃基,其中来自I(b)的金属:来自I(a)(2)的钛的摩尔比低于1:1,和任选地
(c)用化学式为AlRnCl3-n的铝化合物后处理所得固体反应产物,其中R是含有1-10个碳原子的烃基,和0<n≤3,
以及结合来自(I)的反应产物与
II.化学式为AlR3的有机铝化合物,其中R是含1-10个碳原子的烃基,
其中将选自1,2-二烷氧基烷烃,1,2-二烷氧基烯烃或聚合的电子供体中的外电子供体独立于有机铝化合物(II)加入到聚合体系中,并与来自(I)的固体反应产物预混小于30分钟。
根据本发明的优选实施方案,化学式为MeRnX3-n(n≤3)的金属化合物和化学式为RmSiCl4-m的硅化合物的混合物包括化学式为AlRnX3-n的铝化合物和化学式为RmSiCl4-m的硅化合物,它优选以在烃内的溶液使用。
在烷基铝或烷基卤化铝存在下的随后的后处理步骤是可能的。
添加顺序可以是或者添加包含有机含氧的镁化合物和有机含氧的钛化合物的烃溶液到含化学式为AlRnCl3-n的铝化合物和化学式为RmSiCl4-m的硅化合物的混合物中或者相反。
优选地,将包含有机含氧的镁化合物和有机含氧的钛化合物的烃溶液计量到含化学式为AlRnCl3-n的铝化合物和化学式为RmSiCl4-m的硅化合物的搅拌的烃溶液中。
这一反应的温度可以是低于用过的烃的沸点的任何温度。然而,有益的是使用低于60℃,优选低于50℃的温度。一般地,添加的持续时间优选长于10分钟和优选长于30分钟。
在包括含镁化合物(优选有机含氧的镁化合物)和有机含氧的钛化合物的烃溶液与含卤素的硅化合物和铝化合物的混合物反应中,固体催化剂前体沉淀,和在沉淀反应之后,加热所得混合物,完成反应。在反应之后,过滤沉淀并用烃洗涤。也可采用从稀释剂中分离固体和随后洗涤的其他方式,例如多次滗析步骤。所有步骤应当在氮气或另一合适的惰性气体的惰性氛围内进行。可在过滤和洗涤步骤之前或者在这一工序之后,进行用铝化合物的后处理。
在包括有机含氧的镁化合物和有机含氧的钛化合物的烃溶液与组分(I b)的反应过程中,固体沉淀,和在沉淀反应之后,加热所得混合物并回流,完成该反应。
优选地,金属化合物是化学式为AlRnCl3-n的铝化合物,其中X是卤素和R是含1-10个碳原子的烃基,和0≤n≤3。
一般地,在固体反应产物中大于10%的钛为Ti3+态。根据本发明的优选实施方案,在固体反应产物内,大于25%的钛是Ti3+态。
本发明还涉及生产超高分子量聚乙烯的方法,其特征在于该方法在催化剂体系存在下发生,所述催化剂体系包括:
I.通过下述物质反应获得的固体反应产物:
(a)包括(1)有机含氧的镁化合物或者含卤素的镁化合物和(2)有机含氧的钛化合物的烃溶液和
(b)包括化学式为MeRnX3-n的金属化合物和化学式为RmSiCl4-m的硅化合物的混合物,其中在MeRnX3-n中,X是卤素,Me是门捷列夫的化学元素周期体系的第III族金属,R是含1-10个碳原子的烃基,和0≤n≤3;其中在RmSiCl4-m中,0≤m≤2和R是含1-10个碳原子的烃基,其中来自(b)的金属:来自(a)的钛的摩尔比低于1:1,和任选地
(c)用化学式为AlRnCl3-n的铝化合物后处理所得固体反应产物,其中R是含有1-10个碳原子的烃基,和0<n≤3和
II.化学式为AlR3的有机铝化合物,其中R是含1-10个碳原子的烃基,和
III.选自1,2-二烷氧基烷烃,1,2-二烷氧基烯烃或聚合的电子供体中的外电子供体。
所述方法甚至在相对高的聚合温度下导致具有所要求性能的UHMWPE。在本发明的方法中使用催化剂导致具有高的粉末堆密度、窄的跨度、低于250微米的平均粒度、低分数粗颗粒和非常高分子质量的聚合物。此外,该催化剂具有高的催化剂活性。
一般地,本发明的超高分子量的聚乙烯粉末的堆密度范围为350kg/m3至600kg/m3,优选范围为350kg/m3至550kg/m3
根据ASTM D1895/A中列出的工序,通过测量聚合物粉末的堆密度,测定超高分子量聚乙烯聚合物粉末的倾倒(poured)的堆密度。
可在气相中或者在本体中,在不存在有机溶剂的情况下进行聚合反应,或者在液体淤浆中、在有机稀释剂存在下进行聚合反应。可间歇或者以连续模式进行聚合。在不存在氧气、水或可充当催化剂毒物的任何其他化合物情况下进行这些反应。合适的溶剂包括例如烷烃和环烷烃,例如丙烷,异丁烷,戊烷,己烷,庚烷,正辛烷,异辛烷,环己烷,和甲基环己烷;以及烷基芳烃,例如甲苯,二甲苯,乙苯,异丙基苯,乙基甲苯,正丙基苯和二乙基苯。
一般地,聚合温度范围为20至200℃,和优选20至120℃。根据本发明的优选实施方案,聚合温度范围为50至95℃。
在聚合过程中的总压力充分地是大气压,和更优选2-40bar(1bar=100000Pa)。
可通过本领域已知的任何方式,例如通过调节聚合温度或者通过添加分子量控制剂(例如氢气或烷基锌),控制聚合物的分子质量。由于UHMWPE的分子量非常高,所以难以通过例如凝胶渗透色谱法(GPC)或尺寸排阻色谱法(SEC)来分析其摩尔质量。因此,常见的是在135℃下,测量UHMWPE的稀溶液(例如在十氢化萘中)的粘度。随后可将这一粘度值转化成分子量值。
或者,可根据DIN53493,测定所谓的伸长应力。这一伸长应力,有时也称为“流动值(Flow Value)”,可随后转化成分子量,正例如J.Berzen等人在The British Polymer Journal,第10卷,1978年12月,第281-287页中公开的。
可在其中要求优良的冲击强度和耐磨性的非常不同的领域中,在制品中采用UHMWPE。在医疗应用中,在膝盖、肩部和臀部植入物中使用UHMWPE,可在防弹服(ballistic cloth)、钓丝和网中以及在采矿工业中发现由UHMWPE制造的高强度纤维。UHMWPE可用作料斗或燃料舱(bunker)衬里。
本发明还涉及选自1,2-二烷氧基烯烃,1,2-二烷氧基烷烃或聚合的供体中的外电子供体在生产超高分子量聚乙烯中的用途。优选地,外电子供体选自1,2-二烷氧基烯烃和1,2-二烷氧基烷烃。
WO2011/144431公开了制备乙烯聚合物的方法,该方法包括在基本上不存在氢气作为链转移剂并在催化剂体系存在下,(共)聚合乙烯,所述催化剂体系包括通过接触(a)含Ti,Mg,卤素和选自1,2-二醚,1,2-二羟基化合物的单或二酯,和1,2-二羟基化合物的单醚-单酯中的内电子供体化合物的固体组分与(b)烷基铝化合物而获得的产物。WO2011/144431涉及内供体,因为该供体是固体组分的一部分。因此MgCl2.nROH与过量液体TiCl4和电子供体反应。然后,可使该固体与TiCl4再反应一次,分离并用液体烃洗涤,直到在洗涤液体内检测不到氯离子。在制备固体组分中使用内电子供体,例如该供体与钛化合物一起加入到MgCl2.nROH加合物中。也可首先使该供体与MgCl2.nROH和钛化合物接触,接着随后洗涤。内供体优选存在于固体组分中,其用量范围为0.1-20wt%,而在本发明中,固体组分基本上不含属于在WO2011/14431中公开的任何供体化合物。
根据WO2011/14431制备固体组分中使用的钛化合物具有Ti-Cl键,而在本发明中,在制备固体组分中使用的钛化合物是基本上不含氯的有机含氧的钛化合物。
根据WO2011/14431,在固体组分内大于70%的钛原子为Ti4+态。
关于聚合物的平均粒度,WO2011/144431中的实施例教导不会应用到供体化合物上,因为在使用供体情况下,平均粒度可以是370至498μm。对于在UHMWPE中使用来说,聚合物的粒度应当优选低于250μm,更优选低于200μm。本发明的方法导致低于170μm的平均粒度。
通过下述非限制性实施例,阐述本发明。
实施例
在氮气覆盖下进行所有实施例。
催化剂悬浮液中的固含量通过在氮气流下干燥10ml催化剂悬浮液,接着排气1小时并随后称重所得干催化剂量三次来测定。
使用Malvern Mastersizer设备,通过所谓的激光散射方法,在己烷类稀释剂中,测定催化剂的平均粒度(D50)。
根据DIN53477,通过筛分分析,测定聚合物粉末的平均粒度和粒度分布("跨度")。
实验I
包括有机含氧的镁化合物和有机含氧的钛化合物的烃溶液的制备
在配有回流冷凝器和搅拌器的2升圆底烧瓶内引入100g粒状Mg(OC2H5)2和150ml Ti(OC4H9)4。在温和搅拌的同时,加热混合物到180℃,和随后搅拌1.5小时。在此期间,获得澄清的液体。冷却该混合物到120℃,和随后用1480ml己烷稀释。一旦添加己烷,则进一步冷却混合物到67℃。在这一温度下保持该混合物2小时,和随后冷却到室温。所得澄清溶液在氮气氛围下储存,并以获得时的形式使用。对该溶液的分析表明钛的浓度为0.25mol/l。
实验II
催化剂的制备(根据WO2009/112254)
将400ml己烷加入到配有冷凝器、搅拌器、挡板和蠕动泵的0,8L玻璃反应器中。向其中添加17.3ml SiCl4(152mmol)和3.5ml乙基二氯化铝(EADC)(11.9mmol)。当搅拌器速率设定在1700RPM时,该混合物在环境温度下。借助蠕动泵,在4小时的时间段内添加200ml根据实施例I中概述的工序制备的溶液。随后回流所得白色悬浮液2小时。冷却该浆液到环境温度,过滤并用己烷洗涤3次。最后,在己烷内溶解该固体,并在氮气下储存。使用样品,利用Neutron ActivationAnalysis,测定催化剂的元素组成。
所得wt%:Ti:4.84±0.35wt%;Mg:12.3±0.9wt%;Al:0.66±0.05wt%;Cl:46.8±3.3wt%。Si含量(使用X-Ray荧光测定)为4.2wt%。该催化剂的D50为4.9μm。
对比例A
聚合
在10升高压釜中,使用5升纯化的己烷作为稀释剂,进行乙烯的聚合。添加8mmol三异丁基铝到5升纯化的己烷中。加热该混合物到75℃,并用4.0bar乙烯加压。之后,使用氮气过压(overpressure),将40mg在己烷中的实验I的固体产物借助单独的注射容器注入到反应器内。温度维持在75℃下,并通过喂入乙烯,保持压力恒定。在150分钟之后终止反应。通过减压和冷却反应器,进行终止。反应器的内容物流经过滤器;收集湿的聚合物粉末,随后干燥,称重,并分析。在表1中概述了结果。
对比例B
聚合
如对比例A中所述,进行乙烯的聚合,区别在于在65℃的温度下进行聚合,同时乙烯的压力增加到6.5bar。在表1中概述了结果。
实施例I
聚合
如对比例A中所述,进行乙烯的聚合,区别在于在注射容器内将5.3ml的0.00628M甲基丁香酚(ME=1-烯丙基-3,4-二甲氧基苯)在己烷中的溶液加入到催化剂浆液中,并在注入到聚合容器内之前,允许接触10分钟。在表1中概述了结果。
实施例II
如对比例A中所述,进行乙烯的聚合,所不同的是在6.0bar的压力下进行反应。另外,在注射容器内,将10.6ml的0.00628M甲基丁香酚(ME)在己烷中的溶液加入到催化剂浆液中,并在注入到聚合容器内之前,允许接触10分钟。在表1中概述了结果。
实施例III
如实施例II中所述,进行乙烯的聚合,所不同的是在注射容器内,将21.2ml的0.00628M甲基丁香酚(ME)在己烷中的溶液加入到催化剂浆液中,并在注入到聚合容器内之前,允许接触10分钟。在表1中概述了结果。
实施例IV
如对比例A中所述,进行乙烯的聚合,所不同的是在用乙烯加压反应器之前,将10.6ml的0.00628M甲基丁香酚(ME)在己烷中的溶液加入到反应器中,并达到反应温度。在表1中概述了结果。
对比例C
如对比例A中所述,进行乙烯的聚合,所不同的是在用乙烯加压反应器之前,将1.5mmol用作外供体的四乙氧基硅烷加入到反应器中,并达到反应温度。在表1中概述了结果。
表1
D/Ti=供体/Ti的摩尔比
PC2=乙烯分压
催化剂产率=kg聚合物/g固体催化剂
BD=倾倒的堆密度
D50=聚合物的平均粒度,这通过筛分分析测定
跨度=通过筛分分析测定的粒度分布((D90-D10)/D50)>300mm=wt%没有通过300mm筛子的聚合物粉末
E.S.=伸长应力
对比例A和B表明根据WO2009/112254的催化剂能产生显示出较高伸长应力的聚合物(但仅通过降低聚合温度实现)。这在能量上是非所需的,因为增加冷却的需求和较低温度。
表1中的数据表明甲基丁香酚供体已经在非常低的浓度下高效地增加所生产的UHMwPE的伸长应力,甚至在高温下,同时维持非常高的堆密度和相对低含量的粗颗粒。
对比例C表明四乙氧基硅烷是不那么有效的供体,因为必须采用相对高含量的外供体,以实现0.70N/mm2的伸长应力值。此外,使用四乙氧基硅烷作为外供体导致较高含量>300微米的颗粒。

Claims (6)

1.一种催化剂体系,它包括:
I.通过下述物质反应获得的固体反应产物:
(a)包括(1)有机含氧的镁化合物或者含卤素的镁化合物和(2)有机含氧的钛化合物的烃溶液,和
(b)包括化学式为MeRnX3-n的金属化合物和化学式为RmSiCl4-m的硅化合物的混合物,其中在MeRnX3-n中,X是卤素,Me是门捷列夫的化学元素周期体系的第III族金属,R是含1-10个碳原子的烃基,和0≤n≤3;其中在RmSiCl4-m中,0≤m≤2和R是含1-10个碳原子的烃基,其中来自I(b)的金属:来自I(a)(2)的钛的摩尔比低于1:1,
II.化学式为AlR3的有机铝化合物,其中R是含1-10个碳原子的烃基,和
III.选自1,2-二烷氧基烷烃或1,2-二烷氧基烯烃的外电子供体。
2.权利要求1的催化剂体系,其特征在于该催化剂体系包括:
I.通过下述物质反应获得的固体反应产物:
(a)包括(1)有机含氧的镁化合物或者含卤素的镁化合物和(2)有机含氧的钛化合物的烃溶液,和
(b)包括化学式为MeRnX3-n的金属化合物和化学式为RmSiCl4-m的硅化合物的混合物,其中在MeRnX3-n中,X是卤素,Me是门捷列夫的化学元素周期体系的第III族金属,R是含1-10个碳原子的烃基,和0≤n≤3;其中在RmSiCl4-m中,0≤m≤2和R是含1-10个碳原子的烃基,其中来自(b)的金属:来自(a)的钛的摩尔比低于1:1,和
(c)用化学式为AlRnCl3-n的铝化合物后处理所得固体反应产物,其中R是含有1-10个碳原子的烃基,和0≤n≤3,
II.化学式为AlR3的有机铝化合物,其中R是含1-10个碳原子的烃基,和
III.选自1,2-二烷氧基烷烃或1,2-二烷氧基烯烃的外电子供体。
3.权利要求1-2任何一项的催化剂体系,其特征在于所述外电子供体是1,2-二甲氧基苯、1,2,4-三甲氧基苯、1,2-二乙氧基苯、2,3-二甲氧基甲苯、1-烯丙基-3,4-二甲氧基苯、1,2-二甲氧基乙烷、1,2-二甲氧基环己烷、1,2-二甲氧基丙烷、1,2-二甲氧基丁烷和/或2,3-二甲氧基丁烷。
4.权利要求3的催化剂体系,其特征在于所述外电子供体是1-烯丙基-3,4-二甲氧基苯。
5.权利要求1-4任何一项的用于生产超高分子量聚乙烯的催化剂体系的制备方法,该方法包括:
I.使下述物质反应:
(a)包括(1)有机含氧的镁化合物或者含卤素的镁化合物和(2)有机含氧的钛化合物的烃溶液,和
(b)包括化学式为MeRnX3-n的金属化合物和化学式为RmSiCl4-m的硅化合物的混合物,其中在MeRnX3-n中,X是卤素,Me是门捷列夫的化学元素周期体系的第III族金属,R是含1-10个碳原子的烃基,和0≤n≤3;其中在RmSiCl4-m中,0≤m≤2和R是含1-10个碳原子的烃基,其中来自I(b)的金属:来自I(a)(2)的钛的摩尔比低于1:1,以及任选地
(c)用化学式为AlRnCl3-n的铝化合物后处理所得固体反应产物,其中R是含有1-10个碳原子的烃基,和0<n≤3,
以及结合来自(I)的反应产物与
II.化学式为AlR3的有机铝化合物,其中R是含1-10个碳原子的烃基,
其中将选自1,2-二烷氧基烷烃或1,2-二烷氧基烯烃的外电子供体独立于有机铝化合物(II)加入到聚合体系中,并与来自(I)的固体反应产物预混小于30分钟。
6.生产超高分子量聚乙烯的方法,其特征在于在权利要求1-4任何一项的催化剂体系或者采用权利要求5的方法获得的催化剂存在下发生聚合。
CN201280061143.2A 2011-12-12 2012-12-10 催化剂体系以及在该催化剂体系存在下生产超高分子量聚乙烯的方法 Active CN103987736B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11075269.8 2011-12-12
EP11075269 2011-12-12
PCT/EP2012/005089 WO2013087185A2 (en) 2011-12-12 2012-12-10 A catalyst system for the production of ultra-high molecular weight polyethylene

Publications (2)

Publication Number Publication Date
CN103987736A CN103987736A (zh) 2014-08-13
CN103987736B true CN103987736B (zh) 2016-09-14

Family

ID=47326058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280061143.2A Active CN103987736B (zh) 2011-12-12 2012-12-10 催化剂体系以及在该催化剂体系存在下生产超高分子量聚乙烯的方法

Country Status (8)

Country Link
US (1) US9518135B2 (zh)
EP (1) EP2791182B1 (zh)
JP (1) JP6146589B2 (zh)
KR (1) KR20140107368A (zh)
CN (1) CN103987736B (zh)
EA (1) EA028661B9 (zh)
ES (1) ES2642369T3 (zh)
WO (1) WO2013087185A2 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013087167A2 (en) 2011-12-12 2013-06-20 Saudi Basic Industries Corporation A process for the production of bimodal polyethylene in the presence of this catalyst system
WO2015121842A1 (en) 2014-02-17 2015-08-20 Reliance Industries Limited Heterogeneous ziegler-natta catalyst composition, a process for its preparation and a process for polymerizing olefin using the same
EP3197924B1 (en) * 2014-09-23 2019-01-23 SABIC Global Technologies B.V. A continuous process for the production of ultra-high molecular weight polyethylene
US20170226242A1 (en) * 2014-10-16 2017-08-10 Sabic Global Technologies B.V. Catalyst composition for the polymerization of olefins
EA033797B1 (ru) * 2014-11-18 2019-11-26 Sabic Global Technologies Bv Полиэтилен с улучшенной износостойкостью (варианты), способ его получения и изделие из него
US10658639B2 (en) * 2015-06-05 2020-05-19 Toray Industries, Inc. Method of preparing microporous membrane, microporous membrane, battery separator, and secondary battery
EP3532516A1 (en) * 2016-10-28 2019-09-04 SABIC Global Technologies B.V. Process for the production of ultra high molecular weight polyethylene
CN114181334B (zh) * 2020-09-14 2023-10-10 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组分、催化剂及其制备方法
CN114249851B (zh) * 2020-09-24 2023-03-14 中国科学院上海有机化学研究所 一类低堆密度超高分子量聚乙烯微粉
CN115710349B (zh) * 2022-03-23 2024-02-20 聚碳氧联新材料科技(无锡)有限公司 一种脂肪-芳香族共聚酯及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218339A (en) * 1977-05-24 1980-08-19 Montedison S.P.A. Catalyst components and catalysts for polymerizing olefins prepared from the catalysts
CN1086223A (zh) * 1992-10-23 1994-05-04 菲利浦石油公司 烯烃聚合反应催化剂及其用途
CN1130636A (zh) * 1994-12-16 1996-09-11 三菱化学株式会社 乙烯聚合物
CN1358202A (zh) * 1999-06-30 2002-07-10 联合碳化物化学和塑料技术公司 镁/过渡金属烷氧基配合物的制备方法及由其制备的聚合催化剂
CN101970508A (zh) * 2008-03-14 2011-02-09 沙特基础工业公司 催化剂体系及在该催化剂体系的存在下制备聚乙烯的方法
WO2011144431A1 (en) * 2010-05-18 2011-11-24 Basell Poliolefine Italia Srl Process for the preparation of ultra high molecular weight polyethylene

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7711923A (nl) 1977-10-31 1979-05-02 Stamicarbon Oplossingen van organische zuurstof bevattende magnesiumverbindingen in koolwaterstoffen.
JPS60163935A (ja) * 1984-02-03 1985-08-26 Mitsui Petrochem Ind Ltd プレス成型用超高分子量ポリオレフィン組成物
JPH07103173B2 (ja) * 1987-03-31 1995-11-08 出光石油化学株式会社 アタクチックポリプロピレンの製造方法
JPH0757768B2 (ja) * 1989-03-29 1995-06-21 出光石油化学株式会社 オレフィン重合体の製造方法
JPH04145105A (ja) * 1990-10-05 1992-05-19 Nippon Oil Co Ltd エチレン重合体または共重合体の製造方法
JPH04314708A (ja) 1991-01-09 1992-11-05 Idemitsu Petrochem Co Ltd エチレン系重合体の製造方法
IT1251796B (it) * 1991-07-15 1995-05-26 Himont Inc Componenti e catalizzatori per la polimerizzazione di etilene
JPH05255440A (ja) 1992-03-11 1993-10-05 Idemitsu Petrochem Co Ltd エチレン系重合体の製造方法
JPH09309922A (ja) 1995-08-02 1997-12-02 Idemitsu Kosan Co Ltd アクリル系重合体の製造方法
DE19545444A1 (de) 1995-12-06 1997-06-12 Du Pont Alkoxide mit Erdalkalien und Titan, Zirkon und/oder Hafnium, deren Herstellung und Verwendung
JPH09309921A (ja) 1996-05-21 1997-12-02 Idemitsu Petrochem Co Ltd 中空成形用エチレン系重合体
JP3537333B2 (ja) 1997-11-28 2004-06-14 出光石油化学株式会社 ポリエチレン系重合体及び該重合体からなるパイプとその継手
JP3476056B2 (ja) * 1998-02-16 2003-12-10 出光石油化学株式会社 ポリエチレン系重合体
JP4314708B2 (ja) 1999-12-22 2009-08-19 パナソニック電工株式会社 屋根の排水構造
WO2002032973A1 (en) * 2000-10-20 2002-04-25 Idemitsu Petrochemical Co., Ltd. Flexible polypropylene resin
JP4590148B2 (ja) 2002-04-26 2010-12-01 東ソー株式会社 ポリエチレン樹脂組成物
JP2005528501A (ja) 2002-06-04 2005-09-22 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション ポリマー組成物およびそれらからパイプ類を製造する方法
WO2003106511A1 (en) 2002-06-13 2003-12-24 Basell Poliolefine Italia S.P.A. Catalyst components for the polymerization of olefins
JP2004018697A (ja) 2002-06-17 2004-01-22 Tosoh Corp エチレン−共役ジエン系共重合体の製造方法
EP1856162A1 (en) * 2005-03-11 2007-11-21 Basell Poliolefine Italia S.r.l. Catalyst components comprising titanium, magnesium, halogen and 1,2-dimethoxyethane for the polymerization of olefins
WO2008013231A1 (fr) 2006-07-28 2008-01-31 Yukitoshi Kageyama Dispositif auxiliaire de la croissance capillaire
EP2307464B1 (en) 2008-07-18 2013-12-11 Saudi Basic Industries Corporation Process for the production of polyethylene
US8174437B2 (en) 2009-07-29 2012-05-08 Hemisphere Gps Llc System and method for augmenting DGNSS with internally-generated differential correction
WO2011110444A1 (en) * 2010-03-08 2011-09-15 Basell Poliolefine Italia Srl Catalyst components for the polymerization of olefins
WO2013087167A2 (en) 2011-12-12 2013-06-20 Saudi Basic Industries Corporation A process for the production of bimodal polyethylene in the presence of this catalyst system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218339A (en) * 1977-05-24 1980-08-19 Montedison S.P.A. Catalyst components and catalysts for polymerizing olefins prepared from the catalysts
CN1086223A (zh) * 1992-10-23 1994-05-04 菲利浦石油公司 烯烃聚合反应催化剂及其用途
CN1130636A (zh) * 1994-12-16 1996-09-11 三菱化学株式会社 乙烯聚合物
CN1358202A (zh) * 1999-06-30 2002-07-10 联合碳化物化学和塑料技术公司 镁/过渡金属烷氧基配合物的制备方法及由其制备的聚合催化剂
CN101970508A (zh) * 2008-03-14 2011-02-09 沙特基础工业公司 催化剂体系及在该催化剂体系的存在下制备聚乙烯的方法
WO2011144431A1 (en) * 2010-05-18 2011-11-24 Basell Poliolefine Italia Srl Process for the preparation of ultra high molecular weight polyethylene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《新型二醚类外给电子体对丙烯聚合负载型Ziegler-Natta催化体系的调节作用》;楼均勤;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20050715;B014-20 *

Also Published As

Publication number Publication date
EP2791182A2 (en) 2014-10-22
US9518135B2 (en) 2016-12-13
US20140296454A1 (en) 2014-10-02
CN103987736A (zh) 2014-08-13
EP2791182B1 (en) 2017-08-30
JP6146589B2 (ja) 2017-06-14
JP2015503009A (ja) 2015-01-29
KR20140107368A (ko) 2014-09-04
EA201400693A1 (ru) 2014-11-28
EA028661B1 (ru) 2017-12-29
WO2013087185A3 (en) 2013-08-08
ES2642369T3 (es) 2017-11-16
WO2013087185A2 (en) 2013-06-20
EA028661B9 (ru) 2018-03-30

Similar Documents

Publication Publication Date Title
CN103987736B (zh) 催化剂体系以及在该催化剂体系存在下生产超高分子量聚乙烯的方法
CN107001518A (zh) 用于烯烃聚合的催化剂组合物
JP5670753B2 (ja) 触媒系およびこの触媒系の存在下でポリエチレンを製造するプロセス
CN108349873A (zh) 取代的酰胺基苯甲酸酯化合物的合成、所获得的化合物以及所述化合物作为用于聚合烯烃的不含邻苯二甲酸酯的内给电子体的用途
JP2011513560A5 (zh)
JP5764125B2 (ja) ポリエチレンを製造するための触媒系およびプロセス
JP2011528384A (ja) ポリエチレンの製造プロセス
EP3221369B1 (en) Polyethylene homo- or copolymer having improved wear properties
JP6620145B2 (ja) 超高分子量ポリエチレンを製造するための連続方法
JP2017141312A (ja) 超高分子量ポリエチレン粒子およびその製造方法
CN102652141B (zh) 烯烃聚合用的催化剂组分以及从其获得的催化剂
RU2381236C1 (ru) Катализатор и способ получения полиэтилена и сополимеров этилена с альфа-олефинами с узким молекулярно-массовым распределением
JPS6254326B2 (zh)
JPS6254327B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant