CN103958734B - 提供不透气性改进的多层结构 - Google Patents

提供不透气性改进的多层结构 Download PDF

Info

Publication number
CN103958734B
CN103958734B CN201280058112.1A CN201280058112A CN103958734B CN 103958734 B CN103958734 B CN 103958734B CN 201280058112 A CN201280058112 A CN 201280058112A CN 103958734 B CN103958734 B CN 103958734B
Authority
CN
China
Prior art keywords
layer
sio
class
lamination
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280058112.1A
Other languages
English (en)
Other versions
CN103958734A (zh
Inventor
史铁番·克里斯
妮可·阿尔贝罗拉
珍-保勒·加弘德
阿诺·摩利耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of CN103958734A publication Critical patent/CN103958734A/zh
Application granted granted Critical
Publication of CN103958734B publication Critical patent/CN103958734B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Silicon Compounds (AREA)
  • Chemically Coating (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本申请描述了一种多层结构以及用于获得所述多层结构的方法。所述多层结构包括基底(2)和第一叠层,所述第一叠层由SiO2层(A)和由SiOxNyHz类材料制成的层(B)组成,所述由SiOxNyHz类材料制成的层(B)定位在所述基底(2)和所述SiO2层(A)之间;其中,所述SiO2层(A)和所述由SiOxNyHz类材料制成的层(B)具有厚度(eB、eA),以便所述SiO2层(A)的厚度小于或等于60nm,所述由SiOxNyHz类材料制成的层(B)的厚度(eB)为所述SiO2层(A)的厚度(eA)的两倍以上,并且所述SiO2层(A)的厚度与所述由SiOxNyHz类材料制成的层(B)的厚度的总和在100nm至500nm之间;并且其中,z严格地为正值并且严格地小于比值(x+y)/5,有利地,z严格地小于比值(x+y)/10。所述生产方法包括:通过波长小于或等于220nm的VUV射线和波长大于或等于220nm的紫外辐射的辐照,使全氢聚硅氮烷类的液体无机前体进行转化。

Description

提供不透气性改进的多层结构
技术领域
本发明涉及一种提供不透气性改进的多层结构。
背景技术
已知在厚的聚合物基底(通常为10微米至几百微米厚),例如由PET(聚对苯二甲酸乙二醇酯)制成的基底上生产致密的无机材料的薄层沉积物(通常在100纳米至几百纳米之间的厚度),以提高其不透气性。该技术被广泛地用于食品包装领域,以改进食品保存。
然而,该无机沉积物导致产生机械应力,尤其是涉及无机层和聚合物之间机械性质和热性质不同(即,弹性模量的不同、变形能力的不同、热膨胀差异等)的机械应力。这些应力导致对沉积的无机层产生损伤,从而限制沉积的无机层的功能性质。随后可能出现裂缝,而降低由聚合物基底和无机沉积物形成的组件的气体阻隔性。
文献US2003/0203210描述了一种在厚的聚合物基底上生产无机层和聚合物层的交替叠层的方法,其中无机层和聚合物层的交替叠层为1微米至几微米厚。无机层和有机层的交替使得各个无机层的缺陷不能相关联,并且凭借此方式而大大改善了气体阻隔性。以该方式覆盖的聚合物基底具有气体阻隔性,足以保护对气氛高度敏感的装置,诸如有机发光二极管(OLED)。然而,生产这种交替结构是相对昂贵的,使得它们不适用于低成本的应用,例如光伏应用。
发明内容
因此,本发明的一个目的是提供:一种装置,该装置与现有技术中记载的结构相比具有改进了气体阻隔性的结构;以及,一种用于生产所述结构的方法,所述方法与现有方法相比具有较低的生产成本。
上面设定的目的通过如下的多层结构来实现:所述多层结构通过基底,至少一个由SiOxNyHz类材料制成的层,以及至少一个SiO2层来形成;其中,所述SiOxNyHz类材料层被设计为插在基底和SiO2层之间。所述SiOxNyHz类材料层在所述基底和所述SiO2层之间形成机械调节层,并且能够调整所述基底和所述SiO2层之间的应力,这样防止或限制了SiO2层的恶化,从而改进了SiO2层的不透气性。
换句话说,产生了在所述基底和所述SiO2层之间形成机械界面的层(该层比SiO2层厚并且比SiO2层的刚性低),这样防止了SiO2层发生破裂。
例如,基底为聚合物基底,该聚合物基底优选是透明的。
该双层叠层可以是重复的,并且这种叠层提供了出众的气体阻隔性,远远优于两个双层叠层所预期的气体阻隔性的总和。
在其它示例性实施方式中,例如在双层结构上也可沉积其它材料的层,例如由聚合物制成的层。
根据本发明的结构例如是通过VUV和UV辐照使液体全氢聚硅氮烷(PHPS)类的前体进行转化来得到。
非常有利地,SiO2层和SiOxNyHz类材料层同时形成,并且该形成发生在特定的低氧和低水的条件下。
随后,本发明的主题是一种多层结构,所述多层结构包括基底和第一叠层,所述第一叠层由SiO2层和SiOxNyHz类材料层组成,所述SiOxNyHz类材料层位于所述基底和所述SiO2层之间;其中,所述SiO2层和所述SiOxNyHz类材料层具有厚度,以便所述SiO2层的厚度小于或等于60nm,所述SiOxNyHz类材料层的厚度为所述SiO2层的厚度的两倍以上,并且所述SiO2层的厚度与所述SiOxNyHz类材料层的厚度的总和在100nm至500nm之间;并且其中,z严格地(strictly)小于比值(x+y)/5,并且有利地,z严格地小于比值(x+y)/10。
非常有利地,沿着从在所述SiOxNyHz类材料层和所述SiO2层之间的界面到所述基底的方向,x的值降低;并且沿着从在所述SiOxNyHz类材料层和所述SiO2层之间的界面到所述基底的方向,y的值增加。优选地,x在2至0之间发生变动,和/或y在0至1之间发生变动。
根据另一有利的特征,所述SiO2层的材料具有大于或等于30GPa的杨氏模量,所述SiOxNyHz类材料层具有小于或等于20GPa的杨氏模量。
该叠层可具有大于1.5的折射率。
根据另一有利的特征,所述叠层是通过转化全氢聚硅氮烷类的无机前体的而得到;其中,在基底是由聚合物材料制成的情况下,所述叠层具有的对应于Si-H键的透射比大于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的透射比的80%,有利地大于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的透射比的90%,所述透射比通过红外反射光谱法测量。或者,所述叠层是通过转化全氢聚硅氮烷类的无机前体而得到;其中,在硅基底的情况下,所述叠层具有的对应于Si-H键的吸光度小于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的吸光度的20%,有利地小于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的吸光度的10%,所述吸光度通过红外透射光谱法测量。
所述SiO2层和所述SiOxNyHz类材料层例如由无定形材料制成。
所述基底例如由聚合物材料制成。
所述多层结构可包括聚合物材料层,所述聚合物材料层在所述第一叠层的SiO2层的与由所述SiOxNyHz类材料制成的层相接触的面相反的面上。
根据另一示例性实施方式,所述多层结构可包括n个叠层,其中n为大于或等于1的正整数,其中,每个叠层都包括(SiO2)i层和SiOxiNyiHzi类材层,其中,i为1至n之间的正整数;其中,每个叠层的所述(SiO2)i层和SiOxiNyiHzi类材料层都具有厚度,以便所述(SiO2)i层的厚度小于或等于60nm,所述SiOxiNyiHzi类材料层的厚度为所述(SiO2)i层的厚度的两倍以上,并且所述(SiO2)i层的厚度与所述SiOxiNyiHzi类材料层的厚度的总和在100nm至500nm之间;并且其中,zi严格地小于比值(xi+yi)/5,并且有利地,zi严格地小于比值(xi+yi)/10;其中针对i的不同值,xi、yi和zi可相同或不同。所述多层结构还可包括至少一个由聚合物材料制成的层,该至少一个由聚合物材料制成的层位于叠层的所述(SiO2)i层和紧随的叠层的所述SiOxiNyiHzi类材料层之间。例如,所述多层结构包括n-1个由聚合物材料制成的层,其中,每个由聚合物材料制成的层都位于两个叠层之间。
本发明的另一个主题是一种用于生产根据本发明的多层结构的方法,所述方法包括:
a)在基底上沉积全氢聚硅氮烷类的液体无机前体;
b)在氧气含量大于10ppm且小于500ppm以及水含量小于或等于1000ppm的气氛下,通过波长小于或等于220nm的VUV辐射和波长大于或等于220nm的紫外辐射的辐照进行转化,以形成SiO2层和SiOxNyHz类材料层的叠层。
所述生产方法可在步骤b)之后包括沉积聚合物材料层的步骤c)。
根据另一示例性实施方式,所述生产方法包括重复步骤a)和步骤b),或重复步骤a)、步骤b)和步骤c)。
本发明的另一主题是一种用于生产多层结构的方法,所述方法包括:
a')在基底上沉积全氢聚硅氮烷类的液体无机前体;
b')在氧气含量和水含量小于10ppm的气氛下,通过波长大于220nm的紫外辐射的辐照进行转化;
c')在所述基底上,在步骤b'中形成的层上沉积全氢聚硅氮烷类的液体无机前体;
d')在氧气含量大于10ppm且小于500ppm的气氛下,通过波长小于或等于220nm的VUV辐射的辐照进行转化。
附图说明
根据下文以及所附附图,将更好地理解本发明,其中:
图1是根据本发明的结构的一实例的侧视图;
图2是该结构的另一实例的侧视图;
图3是作为以天为单位的时间的函数,图2中的结构的水流量(water flow)测量结果的曲线图;
图4是根据本发明的结构的另一实例的侧视图;
图5是图4中的结构的一变体的侧视图。
具体实施方式
在图1中,可以看到根据本发明的结构S1包括基底2和叠层E1,叠层E1由SiO2制成的第一层A和由SiOxNyHz类材料制成的第二层B组成。
层A和层B彼此分离并且是由不同的材料制成的。
例如,基底2为聚合物材料,例如为诸如PET(聚对苯二甲酸乙二醇酯)、PEN(聚萘二甲酸乙二酯)的聚酯类的聚合物材料,或例如为诸如PE(聚乙烯)、PP(聚丙烯)、聚酰胺等的聚烯烃类的聚合物材料。也可设想使用其它材料作为基底,例如单晶硅或无定形硅,或玻璃。
基底优选为透明的。
第二层B被直接沉积在基底2上,并且第二层B被插在基底2和第一层A之间。
第一层A的厚度为eA,并且它的杨氏模量为MA。第二层B的厚度为eB,并且它的杨氏模量为MB
第一层A和第二层B具有这样的厚度:
eA≤60nm,
eB≥2eA
100nm<eA+eB<500nm。
此外,在由SiOxNyHz制成的层B的材料的化学式中,氧的系数x、氮的系数y和氢的系数z为0<z<(x+y)/5,并且有利地为0<z<(x+y)/10。
优选地,系数x和系数y在从层A和层B之间的界面到在基底和层B之间的界面的方向上发生变动。x在从层A和层B之间的界面到在基底和层B之间的界面的方向上降低,优选地,x从2降低至0;y在从层A和层B之间的界面到在基底和层B之间的界面的方向上增加,优选地,y从0增加至1。
有利地,第一层A和第二层B具有这样的杨氏模量:
MA>30GPa;并且
MB<20GPa。
层A和层B的杨氏模量的这些有利条件能够进一步改进气体阻隔性。
利用在文献“A simple guide to determine elastic properties of films onsubstrate from nanoindentation experiments”(S.Bec,A.Tonck和J Loubet,Philosophical Magazine,第86卷,第33-35期,2006年11月21日~12月11日,pp5347-5358)和文献“In vivo measurements of the elastic mechanical properties ofhuman skin by indentation tests”(Medical Engineering&Physics,30(2008)pp599-606)中描述的技术,能够测量层A和层B的杨氏模量。
优选地,结构S1的折射率大于1.5。
层A和层B的材料可为无定形的。
由于第二层B比第一层A厚,并且第二层B由于其较低的杨氏模量而具有比层A低的刚性,因此层B能够适应第一层A和基底2之间的应力,并且通过这种方式能够防止第一层A发生破裂。此外,第二层B能够限制由基底2和双层结构所形成的结构发生变形,该变形涉及能够导致组件发生弯曲的第一层A和基底2之间发生差异变形的现象。
由SiO2制成的第一层A由于其密度而自然地提供了不透气性。由于形成机械适应层的第二层B的存在,不会降低第一层A的不透气性,或仅略微地降低第一层A的不透气性。
在PHPS转化之后,在层A和层B中剩余的Si-H键的量是非常低的。该特征可利用红外透射光谱法测量,对应于Si-H键的带在2100至2300cm-1(波数)之间。对应于本发明的结构的Si-H键的吸光度小于PHPS在处理前的Si-H键的吸光度的20%,优选小于10%。当完成在对红外辐射透明的基底,例如硅基底上的沉积时,可测量该透射吸光度。当结构沉积在聚合物基底上时,也可检测该少量的Si-H。以反射模式进行该测量,并且在波数范围2100~2300cm-1中的透射比大于80%,并且优选大于90%。
现在,我们将描述单步生产结构S1的方法的实例。
基底2的一面被液体无机前体,例如全氢聚硅氮烷类的液体无机前体覆盖。
然后,凭借波长小于或等于220nm的远紫外辐射或(“VUV:真空紫外”),以及波长大于或等于220nm的UV辐射的方式来辐照前体。
例如,该辐照凭借将185nm波长的VUV和254nm波长的UV结合在一起的低压汞灯来实施。例如,在室温下完成沉积和转化。在185nm处接收的辐射剂量例如小于20焦耳/cm2
通过上述有利的方式,在一个方法且一个步骤中同时生产了层A和层B。为此,转化步骤在低氧且低水的环境中完成,以限制层A的厚度和层B的转化,这样能够得到如上所述的层的特征。
该低氧且低水的环境具有:
小于500ppm的氧含量;
小于或等于1000ppm的水含量。
可替代地,该方法可在两个步骤中完成:在第一步骤中,液体有机前体层,例如全氢聚硅氮烷类的液体无机前体层被沉积在基底上;随后在可忽略氧和水的存在下(即小于10ppm),该层经过波长大于220nm的UV辐射。在第二步骤中,另一层与第一层的无机前体相同的无机前体被沉积在第一层上;在氧的存在下,该第二层经过波长大于220nm的VUV辐射;此时,氧浓度在10ppm至500ppm之间。
在图2中,可以看到提供了突出气体阻隔性的结构的实例。
结构S2包括:基底2,与结构S1的叠层相同的第一叠层E1,以及包括SiO2层A2和由SiOx'Ny'Hz'类材料制成的层B2的叠层E2。层B2被直接沉积在参照图1所述的结构S1的第一层A1上。层A2和层B2具有这样的厚度:
eA2≤60nm,
eB2≥2eA2
100nm<eA2+eB2<500nm。
在层B2的材料的化学式中,氧的系数x’、氮的系数y’和氢的系数z’分别与由SiOxNyHz制成的层B1的材料的化学式中的系数x、y、z相同或不同。与层B1一样,x’、y’和z’为z'<(x'+y')/5,并且有利地z'<(x'+y')/10。此外,x’和y’优选在从层A2和层B2之间的界面到基底的方向上发生变动。x’在从层A2和层B2之间的界面到基底的方向上降低,优选地,x’在从2降低至0;y’在从层A2和层B2之间的界面到基底的方向上增加,优选地,y’从0增加至1。
层A2和层B2的厚度以及它们的杨氏模量可分别等于层A1和层B1的厚度和杨氏模量,也可与层A1和层B1的厚度和杨氏模量不同。
与层B1相似,层B2能够保持层A2的完整性,并且因此能够使得A2的功能性质最佳化。此外,在层A2和层B2的沉积过程中,层B1能够限制机械问题,尤其是由基底2和两个双层叠层所形成的结构的弯曲。
如图3中的曲线图所示,证实了结构S2具有突出的气体阻隔性。图3中以作为以天为单位的时间的函数,示出了以g.m-2.焦耳-1为单位的水流量的测量结果(表示为WVTR)。
该测量结果是对三个叠层进行的:
I:仅由PET聚合物制成的基底;
II:根据本发明的结构S1,其中eA=50nm且eB=200nm;
III:根据发发明的结构S2,其中eA1=eA2=50nm且eB1=eB2=200nm。
除了图3之外,下面表1中也列出了与仅由PET基底和二氧化硅层形成的结构(其中二氧化硅层的厚度为250nm或600nm,通过全氢聚硅氮烷在80℃温度下的水解作用产生,或是通过VUV转化得到50nm的二氧化硅层)进行对比,结构S1和结构S2的阻隔性和折射率。在该表中,阻隔性用术语“阻隔改进因子”(BIF)来表示,阻隔改进因子(BIF)表示与仅PET基底相比的改进因子。进行了水和氦的渗透测量。
样品 BIF氦 BIF水 BIF氧 折射率
PET 1 1 1 -
S1 3.5+/-0.5 60 40 1.62
S2 7.5+/-0.5 333 N.D. N.D.
PET+250nm SiO2(PHPS水解作用) 1.5+/-0.5 2 2 1.45+/-0.01
PET+600nm SiO2(PHPS水解作用) 1.5+/-0.5 3.5+/-0.5 6+/-2 1.45+/-0.01
PET+50nm SiO2VUV 1.2+/-0.2 N.D. N.D. 1.46
N.D.表示“未确定的”。
在表1中,可能看出,通过增加250nm或600nm的SiO2层而产生的ET的阻隔性远远小于通过结构S1所获得的改进,并且甚至更大程度上小于通过结构S2所获得的改进。相似地,在如上所述的气氛条件下,由于缺失了机械调节层B,通过VUV辐射产生50nm的SiO2层(但该厚度在本发明的厚度范围之外)并不能得到令人满意的阻隔性。
与仅具有一个基底和一个二氧化硅层的结构相比,根据本发明的S2具有大大改进的气体阻隔性。
当比较曲线I和II时,可以看到本发明的气体阻隔性的改进。
当曲线II和III相比时,观察到水流量的显著降低,所述降低远远大于在两个双层的两个气体阻隔性质简单相加的情况下所预期的水流量的降低。事实上,水流量在结构S1中达到0.35g.m-2.j-1,而水流量在结构S2的情况下达到0.06g.m-2.j-1
最突出的性质是与结构S1相比,结构S2的测量稳定性时间(或英语为“时滞(time lag)”)大大增加,因为稳定时间在结构S1的情况下为1.8小时,而在结构S2的情况下为1000小时,这就意味着时间增加超过了500倍。
层B2具有高韧性和高密度;虽然层B2的密度低于层A2的密度,但层B2的密度仍然比聚合物基底的密度好很多。
因此,包括在层A1和层A2之间的层B2减慢了气体穿过层A1和层A2的过程。
可设想具有多于两个双层叠层的结构。并且,任何数目n的双层叠层都是能够想到的,其中n为正整数。进一步增加了气体阻隔的改进效果。每个叠层的各层都具有如上所述的相对厚度和杨氏模量。
通过重复生产结构S1的方法可生产结构S2。结构S1的SiO2层被全氢聚硅氮烷类的无机前体所覆盖。该全氢聚硅氮烷类的无机前体凭借波长等于如上所述波长的VUV和UV辐射的方式进行转化。在满足如上所限定的条件的气氛中,第二双层叠层的沉积可在一个步骤中完成。
在图4中,可看到根据本发明的结构S3的另一实例。结构S3包括图1的结构S1和由聚合物材料制成的层4,该聚合物材料可与基底2的材料相同或不同。
作为变体,层4可用杂化材料,诸如有机硅烷来生产。
除了气体阻隔之外,结构S4可形成对其它成分的阻隔,例如对UV射线的阻隔。结构S4可形成可热密封的阻隔或具有其它额外功能的阻隔,例如可形成印刷区域。
由于层B,而限制了在沉积聚合物材料层4时的机械性能问题,诸如叠层组件的弯曲。
例如在溶液中,且如果需要,随后通过蒸发和/或聚合作用沉积层4。
在图5中,可看到为结构S2和结构S3的组合的结构S4。在结构S4中,由层A2和层B2组成的叠层E2被生产在聚合物材料层4上,其中SiOxNyHz类的层B2被沉积在聚合物材料层4上。
与结构S2一样,层A1和层A2的厚度以及层B1和层B2的厚度可分别相同或不同。
聚合物材料层4可改进由层B2提供的机械适应效果,和/或有助于其它特定的性质,例如组件的柔性,或抗UV或吸湿性质。
结构S4提供了功能性质,尤其是与结构S2相似的气体阻隔性。
生产结构S4的方法包括结构3的生产和在层4上生产结构S1的方法。
可设计具有n个双层叠层Ei和n-1个聚合物层4的结构。对于该结构,由于连续定位n个致密SiO2层Ai以及由聚合物材料制成的n-1个插入层的事实,而增加了许多功能性质。
沉积在由聚合物材料制成的基底上的根据本发明的结构提供了改进的气体阻隔性,并且根据本发明的结构也可是透明的。通过常规的沉积技术,诸如物理气相沉积、化学气相沉积或溅射法不能得到这种水平的不渗透性。此外,与利用真空腔室的技术,诸如原子层沉积(盎格鲁-撒克逊术语“Atomic layerDeposition”,ALD)或VITEX公司的方法不同,通过湿法进行的沉积方法能够限制该方法的成本,并且也能够使生产的膜形成非常有效、低成本的气体阻隔。
根据本低成本的发明,通过聚合物基底和叠层形成的结构可用做对气氛敏感,且尤其是对水和氧敏感的装置(诸如有机电子器件(OLED、OTFT)、薄膜太阳能装置(CIGS))的保护物,或者此外更普遍地,用于生产易湿的容纳物的容器。这种结构的低成本意味着其可被广泛地用于各个领域中。

Claims (24)

1.一种多层结构,所述多层结构包括基底(2)和n个叠层,其中n为大于或等于1的正整数;每个叠层都由(SiO2)i层(A)和SiOxiNyiHzi类材料层(B)组成,其中i为1至n之间的正整数;其中,每个叠层的(SiO2)i层(A)都具有厚度eA和每个叠层的SiOxiNyiHzi类材料层(B)都具有厚度eB,以便所述(SiO2)i层(A)的厚度小于或等于60nm,所述SiOxiNyiHzi类材料层(B)的厚度eB为所述(SiO2)i层(A)的厚度eA的两倍以上,并且所述(SiO2)i层(A)的厚度与所述SiOxiNyiHzi类材料层(B)的厚度的总和在100nm至500nm之间;并且其中,zi严格地为正值并且zi严格地小于比值(xi+yi)/5,
在i为1的第一叠层中,SiOxiNyiHzi类材料层(B)位于所述基底(2)和所述(SiO2)i层(A)之间。
2.根据权利要求1所述的多层结构,其中,zi严格地小于比值(xi+yi)/10。
3.根据权利要求1或2所述的多层结构,其中,沿着从在所述SiOxiNyiHzi类材料层(B)和所述(SiO2)i层之间的界面到所述基底的方向,xi的值降低;并且沿着从在所述SiOxiNyiHzi类材料层(B)和所述(SiO2)i层之间的界面到所述基底的方向,yi的值增加。
4.根据权利要求3所述的多层结构,其中,xi在2至0之间发生变动,和/或yi在0至1之间发生变动。
5.根据权利要求1或2所述的多层结构,其中,所述(SiO2)i层(A)的材料具有大于或等于30GPa的杨氏模量MA,并且所述SiOxiNyiHzi类材料层(B)具有小于或等于20GPa的杨氏模量MB
6.根据权利要求1或2所述的多层结构,所述多层结构的叠层具有大于1.5的折射率。
7.根据权利要求5所述的多层结构,其中,所述叠层是通过转化全氢聚硅氮烷类的无机前体而得到的;其中,在基底是由聚合物材料制成的情况下,所述叠层具有的对应于Si-H键的透射比大于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的透射比的80%,所述透射比通过红外反射光谱法测量。
8.根据权利要求7所述的多层结构,其中,在基底是由聚合物材料制成的情况下,所述叠层具有的对应于Si-H键的透射比大于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的透射比的90%,所述透射比通过红外反射光谱法测量。
9.根据权利要求5所述的多层结构,其中,所述叠层是通过转化全氢聚硅氮烷类的无机前体而得到;其中,在硅基底的情况下,所述叠层具有的对应于Si-H键的吸光度小于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的吸光度的20%,所述吸光度通过红外透射光谱法测量。
10.根据权利要求9所述的多层结构,其中,所述叠层是通过转化全氢聚硅氮烷类的无机前体而得到;其中,在硅基底的情况下,所述叠层具有的对应于Si-H键的吸光度小于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的吸光度的10%,所述吸光度通过红外透射光谱法测量。
11.根据权利要求1或2所述的多层结构,其中,所述(SiO2)i层(A)和所述SiOxiNyiHzi类材料层(B)由无定形材料制成。
12.根据权利要求1或2所述的多层结构,其中,所述基底(2)由聚合物材料制成。
13.根据权利要求1或2所述的多层结构,所述多层结构包括聚合物材料层(4),所述聚合物材料层(4)在所述第一叠层的(SiO2)i层(A)的与SiOxiNyiHzi类材料层(B)相接触的面相反的面上。
14.根据权利要求6所述的多层结构,其中,所述叠层是通过转化全氢聚硅氮烷类的无机前体而得到的;其中,在基底是由聚合物材料制成的情况下,所述叠层具有的对应于Si-H键的透射比大于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的透射比的80%,所述透射比通过红外反射光谱法测量。
15.根据权利要求14所述的多层结构,其中,在基底是由聚合物材料制成的情况下,所述叠层具有的对应于Si-H键的透射比大于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的透射比的90%,所述透射比通过红外反射光谱法测量。
16.根据权利要求6所述的多层结构,其中,所述叠层是通过转化全氢聚硅氮烷类的无机前体而得到;其中,在硅基底的情况下,所述叠层具有的对应于Si-H键的吸光度小于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的吸光度的20%,所述吸光度通过红外透射光谱法测量。
17.根据权利要求16所述的多层结构,其中,所述叠层是通过转化全氢聚硅氮烷类的无机前体而得到;其中,在硅基底的情况下,所述叠层具有的对应于Si-H键的吸光度小于所述全氢聚硅氮烷类的无机前体在转化之前的Si-H键的吸光度的10%,所述吸光度通过红外透射光谱法测量。
18.根据权利要求1所述的多层结构,其中,zi严格地小于比值(xi+yi)/10,其中针对i的不同值,xi、yi和zi可相同或不同。
19.根据权利要求18所述的多层结构,所述多层结构包括至少一个由聚合物材料制成的层,所述至少一个由聚合物材料制成的层位于叠层的(SiO2)i层和紧随的叠层的SiOxiNyiHzi类材料层之间。
20.根据权利要求19所述的多层结构,所述多层结构包括n-1个由聚合物材料制成的层,其中,每个所述由聚合物材料制成的层都位于两个叠层之间。
21.一种根据权利要求1至20中任一项所述的多层结构的生产方法,包括:
a)在基底上沉积全氢聚硅氮烷类的液体无机前体;
b)在氧气含量大于10ppm且小于500ppm,以及水含量小于或等于1000ppm的气氛下,通过波长小于或等于220nm的VUV辐射和波长大于或等于220nm的紫外辐射的辐照进行转化,以形成由(SiO2)i层和SiOxiNyiHzi类材料层组成的叠层。
22.根据权利要求21所述的生产方法,所述生产方法包括:在步骤b)之后,沉积聚合物材料层的步骤c)。
23.根据权利要求21或22所述的生产方法,所述生产方法包括重复步骤a)和步骤b),或重复步骤a)、步骤b)和步骤c)。
24.一种根据权利要求1至20中任一项所述的多层结构的生产方法,包括:
a')在基底上沉积全氢聚硅氮烷类的液体无机前体;
b')在氧气含量和水含量小于10ppm的气氛下,通过波长大于220nm的紫外辐射的辐照进行转化;
c')在所述基底上,在步骤b'中形成的层上沉积全氢聚硅氮烷类的液体无机前体;
d')在氧气含量大于10ppm且小于500ppm的气氛下,通过波长小于或等于220nm的VUV辐射的辐照进行转化。
CN201280058112.1A 2011-09-26 2012-09-24 提供不透气性改进的多层结构 Expired - Fee Related CN103958734B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1158570 2011-09-26
FR1158570A FR2980394B1 (fr) 2011-09-26 2011-09-26 Structure multicouche offrant une etancheite aux gaz amelioree
PCT/EP2012/068766 WO2013045393A1 (fr) 2011-09-26 2012-09-24 Structure multicouche offrant une etancheite aux gaz amelioree

Publications (2)

Publication Number Publication Date
CN103958734A CN103958734A (zh) 2014-07-30
CN103958734B true CN103958734B (zh) 2016-12-21

Family

ID=46880737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280058112.1A Expired - Fee Related CN103958734B (zh) 2011-09-26 2012-09-24 提供不透气性改进的多层结构

Country Status (8)

Country Link
US (1) US9771654B2 (zh)
EP (1) EP2761055B1 (zh)
JP (1) JP6124896B2 (zh)
KR (1) KR20140067079A (zh)
CN (1) CN103958734B (zh)
BR (1) BR112014007133A2 (zh)
FR (1) FR2980394B1 (zh)
WO (1) WO2013045393A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988520B1 (fr) * 2012-03-23 2014-03-14 Arkema France Utilisation d'une structure multicouche a base de polymere halogene comme feuille de protection de module photovoltaique
FR2997763B1 (fr) 2012-11-06 2015-01-16 Commissariat Energie Atomique Dispositif et procede d'estimation d'un flux de gaz dans une enceinte maintenue en depression vis-a-vis du gaz
US11114332B2 (en) * 2016-03-07 2021-09-07 Globalwafers Co., Ltd. Semiconductor on insulator structure comprising a plasma nitride layer and method of manufacture thereof
KR102639596B1 (ko) 2017-09-11 2024-02-23 도쿄엘렉트론가부시키가이샤 절연막의 성막 방법, 기판 처리 장치 및 기판 처리 시스템
CN109821485B (zh) * 2019-04-11 2021-12-10 湖北科技学院 用于动力锂电池热调控的相变储热胶囊的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1445818A (zh) * 2002-03-15 2003-10-01 台湾积体电路制造股份有限公司 多层式电介质抗反射层及其形成方法
US20090110896A1 (en) * 2007-10-30 2009-04-30 Fujifilm Corporation Silicon -nitrogen compound film, and gas-barrier film and thin-film device using the silicon-nitrogen compound film
WO2011074440A1 (ja) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 ガスバリアフィルム、ガスバリアフィルムの製造方法及び有機光電変換素子

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051308A (en) * 1987-08-24 1991-09-24 General Electric Company Abrasion-resistant plastic articles
US5472827A (en) * 1991-12-30 1995-12-05 Sony Corporation Method of forming a resist pattern using an anti-reflective layer
JP2526766B2 (ja) * 1992-06-15 1996-08-21 東洋製罐株式会社 ガス遮断性積層プラスチックス材
JPH0792337A (ja) * 1993-09-27 1995-04-07 Hitachi Cable Ltd ポリマコア光導波路およびその製造方法
JPH07206410A (ja) 1994-01-17 1995-08-08 Toshiba Corp シリコン窒化膜の形成方法
US5508368A (en) * 1994-03-03 1996-04-16 Diamonex, Incorporated Ion beam process for deposition of highly abrasion-resistant coatings
US5846649A (en) * 1994-03-03 1998-12-08 Monsanto Company Highly durable and abrasion-resistant dielectric coatings for lenses
JP3414107B2 (ja) * 1995-02-20 2003-06-09 株式会社日立製作所 半導体装置の製造方法
US6379014B1 (en) * 2000-04-27 2002-04-30 N & K Technology, Inc. Graded anti-reflective coatings for photolithography
JP5291275B2 (ja) * 2000-07-27 2013-09-18 有限会社コンタミネーション・コントロール・サービス コーティング膜が施された部材及びコーティング膜の製造方法
US6614977B2 (en) * 2001-07-12 2003-09-02 Little Optics, Inc. Use of deuterated gases for the vapor deposition of thin films for low-loss optical devices and waveguides
EP1329946A3 (en) * 2001-12-11 2005-04-06 Sel Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including a laser crystallization step
JP4097947B2 (ja) * 2002-01-24 2008-06-11 住友ベークライト株式会社 透明水蒸気バリアフィルム
US20030203210A1 (en) 2002-04-30 2003-10-30 Vitex Systems, Inc. Barrier coatings and methods of making same
WO2005047944A1 (en) * 2003-11-12 2005-05-26 Ignis Technologies As A low loss silicon oxynitride optical waveguide, a method of its manufacture and an optical device
EP1792726A4 (en) * 2004-09-21 2008-12-31 Konica Minolta Holdings Inc TRANSPARENT GASPERRFILM
JP2006133525A (ja) * 2004-11-05 2006-05-25 Canon Inc 電子写真感光体及びこれを用いた電子写真装置
KR100947803B1 (ko) * 2004-12-17 2010-03-15 토쿠시마 대학 기재 표면의 개질 방법, 개질된 표면을 갖는 기재 및 그제조 방법
US8216684B2 (en) * 2005-02-01 2012-07-10 Mitsu Chemicals, Inc. Method for bonding members, composite film and use thereof
CA2603736A1 (en) * 2005-04-11 2006-10-19 Alcan Technology & Management Ltd. Method for improving the barrier characteristics of ceramic barrier layers
JP4698310B2 (ja) * 2005-07-11 2011-06-08 富士フイルム株式会社 ガスバリア性フィルム、基材フィルムおよび有機エレクトロルミネッセンス素子
DE102005034817A1 (de) * 2005-07-26 2007-02-01 Clariant International Limited Verfahren zur Herstellung einer dünnen glasartigen Beschichtung auf Substraten zur Verringerung der Gaspermeation
CN101228031A (zh) * 2005-08-10 2008-07-23 株式会社新克 刮浆刀
JP2007237588A (ja) * 2006-03-09 2007-09-20 Kyodo Printing Co Ltd ガスバリア性フィルム及びその製造方法
US8586189B2 (en) * 2007-09-19 2013-11-19 Fujifilm Corporation Gas-barrier film and organic device comprising same
TWI493609B (zh) * 2007-10-23 2015-07-21 Semiconductor Energy Lab 半導體基板、顯示面板及顯示裝置的製造方法
JP5405031B2 (ja) * 2008-03-06 2014-02-05 AzエレクトロニックマテリアルズIp株式会社 シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法
JP2009255040A (ja) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd フレキシブルガスバリアフィルムおよびその製造方法
WO2010024378A1 (ja) * 2008-08-29 2010-03-04 独立行政法人産業技術総合研究所 酸化ケイ素薄膜または酸窒化ケイ素化合物薄膜の製造方法およびこの方法で得られる薄膜
KR101040175B1 (ko) * 2008-12-11 2011-06-16 한국전자통신연구원 연성 기판 및 그의 제조 방법
US8906492B2 (en) * 2009-03-17 2014-12-09 LÌNTEC Corporation Formed article, method for producing the formed article, member for electronic device, and electronic device
DE102009013904A1 (de) * 2009-03-19 2010-09-23 Clariant International Limited Solarzellen mit einer Verkapselungsschicht auf Basis von Polysilazan
CN102470637B (zh) * 2009-07-17 2016-04-06 三井化学株式会社 层合体及其制造方法
JP2011044453A (ja) * 2009-08-19 2011-03-03 Konica Minolta Holdings Inc 太陽電池用バックシート及び太陽電池モジュール
JP5585267B2 (ja) * 2009-08-26 2014-09-10 コニカミノルタ株式会社 ガスバリア性フィルム、その製造方法、及びそれを用いた有機光電変換素子
JP5410207B2 (ja) * 2009-09-04 2014-02-05 AzエレクトロニックマテリアルズIp株式会社 シリカ質膜製造方法およびそれに用いるポリシラザン塗膜処理液
FR2949775B1 (fr) * 2009-09-10 2013-08-09 Saint Gobain Performance Plast Substrat de protection pour dispositif collecteur ou emetteur de rayonnement
JP5394867B2 (ja) * 2009-09-17 2014-01-22 富士フイルム株式会社 ガスバリア膜およびガスバリアフィルム
JP5609885B2 (ja) * 2009-10-05 2014-10-22 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法、該ガスバリア性フィルムを有する有機光電変換素子及び該有機光電変換素子を有する太陽電池
WO2011062100A1 (ja) * 2009-11-19 2011-05-26 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、その製造方法、それを用いた有機光電変換素子及び有機エレクトロルミネッセンス素子
JP5736644B2 (ja) * 2009-12-11 2015-06-17 コニカミノルタ株式会社 ガスバリア性フィルム、その製造方法及びそれを用いた有機光電変換素子
FR2953990B1 (fr) 2009-12-14 2013-01-11 Commissariat Energie Atomique Dispositif d'encapsulation a etancheite amelioree
JP5381734B2 (ja) * 2010-01-14 2014-01-08 コニカミノルタ株式会社 バリア性フィルム及び有機電子デバイス
JP5445179B2 (ja) * 2010-02-01 2014-03-19 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法、有機電子デバイス
JP5515847B2 (ja) * 2010-02-24 2014-06-11 コニカミノルタ株式会社 ガスバリアフィルムの製造方法
JP5447022B2 (ja) 2010-03-11 2014-03-19 コニカミノルタ株式会社 ガスバリア性フィルム、その製造方法及びそのガスバリア性フィルムを用いた有機光電変換素子
JP2012004349A (ja) * 2010-06-17 2012-01-05 Az Electronic Materials Kk シリコンオキシナイトライド膜の形成方法およびそれにより製造されたシリコンオキシナイトライド膜付き基板
JP5540949B2 (ja) * 2010-07-07 2014-07-02 コニカミノルタ株式会社 ガスバリア性フィルム、及び有機光電変換素子、有機エレクトロルミネッセンス素子
WO2012008277A1 (ja) * 2010-07-14 2012-01-19 コニカミノルタホールディングス株式会社 ガスバリアフィルムの製造方法、ガスバリアフィルムおよび有機光電変換素子
KR20120008360A (ko) * 2010-07-16 2012-01-30 삼성모바일디스플레이주식회사 플렉서블 디스플레이용 기판 및 그 제조 방법
EP2596874A4 (en) * 2010-07-22 2015-10-21 Konica Minolta Holdings Inc PROCESS FOR PRODUCING BARRIER FILM AGAINST GAS
WO2012014653A1 (ja) * 2010-07-27 2012-02-02 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
EP2610013A4 (en) * 2010-08-25 2016-12-21 Konica Minolta Holdings Inc METHOD FOR PRODUCING A GAS BRAKE PACK AND ORGANIC PHOTOELECTRIC CONVERTER ELEMENT
TWI457235B (zh) * 2010-09-21 2014-10-21 Lintec Corp A gas barrier film, a manufacturing method thereof, an electronic device element, and an electronic device
WO2012077553A1 (ja) * 2010-12-06 2012-06-14 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP5761203B2 (ja) * 2010-12-27 2015-08-12 コニカミノルタ株式会社 ガスバリア性フィルム及び電子デバイス
WO2012090665A1 (ja) * 2010-12-27 2012-07-05 コニカミノルタホールディングス株式会社 ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
KR101736888B1 (ko) * 2011-06-22 2017-05-17 메르크 파텐트 게엠베하 실리콘 옥시나이트라이드 막의 형성 방법 및 이 방법에 의해 제조된 실리콘 옥시나이트라이드 막을 가지는 기판
JP5888329B2 (ja) * 2011-06-27 2016-03-22 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法、および電子デバイス
KR101921131B1 (ko) * 2011-09-08 2018-11-22 린텍 가부시키가이샤 변성 폴리실라잔 필름, 및, 가스 배리어 필름의 제조 방법
EP2783846A4 (en) * 2011-11-24 2015-09-02 Konica Minolta Inc GAS BARRIER FILM AND ELECTRONIC DEVICE
JP5970197B2 (ja) * 2012-02-08 2016-08-17 メルクパフォーマンスマテリアルズマニュファクチャリング合同会社 無機ポリシラザン樹脂
JP6017256B2 (ja) * 2012-10-11 2016-10-26 メルクパフォーマンスマテリアルズマニュファクチャリング合同会社 ケイ素質緻密膜の形成方法
US20140117511A1 (en) * 2012-10-30 2014-05-01 Infineon Technologies Ag Passivation Layer and Method of Making a Passivation Layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1445818A (zh) * 2002-03-15 2003-10-01 台湾积体电路制造股份有限公司 多层式电介质抗反射层及其形成方法
US20090110896A1 (en) * 2007-10-30 2009-04-30 Fujifilm Corporation Silicon -nitrogen compound film, and gas-barrier film and thin-film device using the silicon-nitrogen compound film
WO2011074440A1 (ja) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 ガスバリアフィルム、ガスバリアフィルムの製造方法及び有機光電変換素子

Also Published As

Publication number Publication date
US9771654B2 (en) 2017-09-26
FR2980394A1 (fr) 2013-03-29
WO2013045393A1 (fr) 2013-04-04
JP2014528857A (ja) 2014-10-30
BR112014007133A2 (pt) 2017-04-11
EP2761055B1 (fr) 2016-10-05
KR20140067079A (ko) 2014-06-03
FR2980394B1 (fr) 2013-10-18
JP6124896B2 (ja) 2017-05-10
CN103958734A (zh) 2014-07-30
US20140234602A1 (en) 2014-08-21
EP2761055A1 (fr) 2014-08-06

Similar Documents

Publication Publication Date Title
JP6148340B2 (ja) ウレタン(複数)−(メタ)アクリレート(複数)−シランの(コ)ポリマー反応生成物を含む物品
CN103958734B (zh) 提供不透气性改进的多层结构
Yu et al. Recent progress on thin-film encapsulation technologies for organic electronic devices
Xiao et al. A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al 2 O 3 and alucone layers
US20040195960A1 (en) Coatings with low permeation of gases and vapors
JP5668294B2 (ja) ガスバリアフィルムおよびその製造方法
JP5470969B2 (ja) ガスバリアフィルム、それを含む電子デバイス、ガスバリア袋、およびガスバリアフィルムの製造方法
JP2009133000A (ja) シリコン窒化物膜及びそれを用いたガスバリア膜、薄膜素子
CN102239278A (zh) 具有改进的阻隔层性能的薄膜的高速沉积
KR101465212B1 (ko) 초극유연성 봉지 박막
Blankenburg et al. Perhydropolysilazane derived silica for flexible transparent barrier foils using a reel-to-reel wet coating technique: Single-and multilayer structures
KR101892433B1 (ko) 유연성 기재 상의 박막 규소질화물 장벽 층들
KR20160035045A (ko) 배리어성 적층체, 가스 배리어 필름, 및 디바이스
JP5664341B2 (ja) ガスバリア性フィルム
JP2013202822A (ja) ガスバリア性積層フィルム
JP2006076051A (ja) バリアフィルム及びその製造方法
Suzuki et al. 6.4: Ultra‐High Gas Barrier Films Based on a Few Barrier Layer Stack Fabricated by a Wet Coating and a Plasma Assisted Surface Modification
JP2011051277A (ja) ガスバリア性積層フィルム
KR102159993B1 (ko) 유기광전자소자의 봉지필름 및 그 제조방법
Lim et al. Thin film encapsulation for quantum dot light-emitting diodes using a-SiN x: H/SiO x N y/hybrid SiO x barriers
CN110379923A (zh) 柔性基板及其制造方法、有机发光显示面板
JP2015226995A (ja) ガスバリア性積層フィルム
KR20130075122A (ko) 자기 조립막과 무기 나노라미네이트막을 이용한 수분 투과 방지막 및 그 제조 방법
KR102230817B1 (ko) 배리어 필름
KR102294026B1 (ko) 배리어 필름

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161221

Termination date: 20180924

CF01 Termination of patent right due to non-payment of annual fee