WO2012077553A1 - ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス - Google Patents

ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス Download PDF

Info

Publication number
WO2012077553A1
WO2012077553A1 PCT/JP2011/077668 JP2011077668W WO2012077553A1 WO 2012077553 A1 WO2012077553 A1 WO 2012077553A1 JP 2011077668 W JP2011077668 W JP 2011077668W WO 2012077553 A1 WO2012077553 A1 WO 2012077553A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
film
gas
group
Prior art date
Application number
PCT/JP2011/077668
Other languages
English (en)
French (fr)
Inventor
本田 誠
千代子 竹村
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to CN2011800583527A priority Critical patent/CN103237657A/zh
Priority to US13/988,455 priority patent/US20130236710A1/en
Priority to EP11846279.5A priority patent/EP2650121A4/en
Priority to KR1020137014011A priority patent/KR101526083B1/ko
Priority to JP2012547803A priority patent/JP5803937B2/ja
Publication of WO2012077553A1 publication Critical patent/WO2012077553A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a gas barrier film, a manufacturing method thereof, and an electronic device using the gas barrier film, and more specifically, a display material such as a package of an electronic device or the like, a plastic substrate such as a solar cell, an organic EL element, or a liquid crystal.
  • the present invention relates to a gas barrier film used in the above, a manufacturing method thereof, and an electronic device using the gas barrier film.
  • a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, silicon oxide or the like is formed on the surface of a plastic substrate or film is used for packaging an article that requires blocking of various gases such as water vapor and oxygen. It is widely used in packaging applications to prevent the deterioration of food, industrial goods and pharmaceuticals. In addition to the above packaging applications, it is used in liquid crystal display elements, solar cells, organic electroluminescence (EL) substrates and the like.
  • EL organic electroluminescence
  • a method for producing such a gas barrier film mainly, a method of forming a gas barrier layer by a plasma CVD method (Chemical Vapor Deposition) or a main component is polysilazane.
  • a method of applying a surface treatment after applying a coating solution, or a method of using them together is known (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 it is necessary to form a polysilazane film having a thickness of 250 nm or less by a wet method, and then irradiate with vacuum ultraviolet light. It is disclosed to achieve by a method of forming a layer by repeating two or more times.
  • Patent Document 1 still has a problem that the flexibility is not always sufficient when the lamination is simply repeated in order to obtain a higher gas barrier property.
  • the phenomenon that the edge of the cutting breaks vigorously with the film like glass occurs the effective area as a product decreases from the crack of the cutting surface, and the productivity is bad Newly found to have problems.
  • Patent Document 2 a method of further improving the barrier performance by applying polysilazane on a gas barrier layer formed by a vacuum plasma CVD method on a resin base material and repairing the gas barrier layer by heat treatment Is disclosed.
  • the function as a gas barrier layer of an organic photoelectric conversion element or the like is inadequate, and at present, the water vapor transmission rate has a gas barrier property of a level significantly lower than 1 ⁇ 10 ⁇ 2 g / m 2 ⁇ day. Development of a gas barrier layer is required.
  • heat treatment of polysilazane takes 1 hour at 160 ° C., there is a difficulty in that its application range is limited to a resin base material having excellent heat resistance.
  • Patent Document 3 discloses a manufacturing method in which a conductive film is formed after applying and smoothing a polysilazane to a gas barrier layer obtained by an atmospheric pressure plasma CVD method.
  • a conductive film is formed after applying and smoothing a polysilazane to a gas barrier layer obtained by an atmospheric pressure plasma CVD method.
  • JP 2009-255040 A Japanese Patent No. 3511325 JP 2008-235165 A
  • the present invention has been made in view of the above problems, and its object is to provide a gas barrier film having high barrier performance, excellent bending resistance, smoothness, and suitable for cutting, its manufacturing method, and its gas barrier property.
  • An object of the present invention is to provide an electronic device using a film.
  • a gas barrier layer unit is provided on at least one surface side of the substrate, and the gas barrier layer unit is formed by applying a silicon compound on the first barrier layer formed by chemical vapor deposition and the first barrier layer.
  • a gas barrier film having a second barrier layer obtained by modifying the formed coating film, and having an intermediate layer between the first barrier layer and the substrate.
  • the second barrier layer formed on the first barrier layer is a coating film formed by applying a polysilazane-containing liquid and is subjected to a modification treatment, and is not modified on the substrate surface side. 3.
  • the thickness of the modified region located on the surface layer side of the second barrier layer is 0.2 or more and 0.9 or less in thickness ratio with respect to the total film thickness of the second barrier layer.
  • the first barrier layer formed by the chemical vapor deposition method includes silicon oxide or silicon oxynitride, and the elastic modulus of the modified region in the second barrier layer is E1 when the elastic modulus of the first barrier layer is E1.
  • the gas barrier film according to 3 or 4 above, which satisfies a relationship of E1> E2> E3 when the rate is E2 and the elastic modulus of the non-modified region in the second barrier layer is E3.
  • a gas barrier film having improved barrier properties and substrate adhesion, high barrier performance, excellent bending resistance, smoothness, and suitable for cutting, a method for producing the same, and a gas barrier film therefor It was possible to provide an electronic device using this.
  • the present inventor has a gas barrier layer unit on at least one surface side of the substrate, and the gas barrier layer unit is a first barrier layer formed by a chemical vapor deposition method. And a second barrier layer obtained by modifying a coating film formed by applying a silicon compound on the first barrier layer, and the first barrier layer and the base material
  • a gas barrier film characterized by having an intermediate layer between them improves the adhesion between the barrier layer and the substrate, and also has high barrier performance, excellent bending resistance, smoothness, and suitability for cutting. It has been found that a gas barrier film having the above can be realized, and has reached the present invention.
  • a gas barrier layer unit is provided on at least one surface side of the substrate, the gas barrier layer unit is formed by a chemical vapor deposition method, and the first barrier layer. It is formed by applying a polysilazane-containing liquid thereon, and then has a second barrier layer subjected to a modification treatment, and an intermediate layer between the first barrier layer and the substrate, Further, the second barrier layer preferably has a structure having an unmodified region on the substrate surface side and a modified region on the surface layer side. Thereby, it is possible to realize a gas barrier film having high barrier performance, bending resistance, smoothness, and cutting processability.
  • the chemical vapor deposition method according to the present invention may be an atmospheric pressure plasma CVD method, a vacuum plasma CVD method or a catalytic chemical vapor deposition method, and can be appropriately selected.
  • the first barrier layer formed by the chemical vapor deposition method according to the present invention preferably has at least one selected from silicon oxide, silicon oxynitride, and silicon nitride.
  • the first barrier layer is formed by chemical vapor deposition at a film formation start temperature of 50 ° C. or higher, and is formed on a SiN layer mainly composed of silicon nitride with a film formation start temperature of 170 ° C. or lower.
  • the second barrier layer formed by applying a polysilazane-containing liquid on the barrier layer to form a second barrier layer formed by laminating a SiN layer containing silicon as a main component is formed. Further, it is more preferable because the barrier performance is greatly improved.
  • FIG. 1 is a schematic sectional view showing an example of the layer structure of the gas barrier film of the present invention.
  • a gas barrier film 1 of the present invention has an intermediate layer 3 on a substrate 2, a first barrier layer 4B formed on the intermediate layer 3 by chemical vapor deposition, and a polysilazane on the first barrier layer 4B. It consists of a structure having a gas barrier layer unit 4 composed of a second barrier layer 4A formed by applying a reforming treatment after applying the containing liquid.
  • a modification process is performed from above using a modification process means L, for example, irradiation with vacuum ultraviolet rays having a wavelength component of 180 nm or less. To be obtained.
  • the modification proceeds on the surface layer side on the modification treatment means L side, and the modification does not proceed on the first barrier layer 4B surface side, or No reforming occurs, and a reformed region that has been reformed in the layer and a non-modified region that has not been reformed are formed.
  • a method for confirming the modified region where the modification is performed and the non-modified region where the modification is not performed is the second method. While trimming the barrier layer 4A in the depth direction, the characteristic values, for example, density, elastic modulus, and composition ratio (for example, the ratio of x in SiOx) are sequentially measured to obtain the inflection point of the characteristic value, This can be obtained as an interface between the modified region and the non-modified region. Furthermore, as the most effective method, a cross section of the produced gas barrier film is cut out with a microtome, and the obtained ultrathin section is observed with a transmission electron microscope.
  • a first barrier layer 4B formed by a chemical vapor deposition method, a second barrier layer 4A that has been subjected to a modification process and has a non-modified region and a modified region Have By configuring the non-modified region between the dense first barrier layer 4B and the modified region of the second barrier layer 4A, it is possible to suppress stress concentration during bending to a specific layer. As a result, it has been found that the bending resistance is remarkably improved, and the present invention has been achieved.
  • the thickness of the modified region formed on the surface side of the second barrier layer 4A according to the present invention is 0.2 or more and 0.9 or less with respect to the total film thickness of the second barrier layer 4A.
  • the thickness ratio is preferably 0.3 or more and 0.9 or less, and more preferably 0.4 or more and 0.8 or less.
  • the first barrier layer 4B formed by the chemical vapor deposition method according to the present invention includes silicon oxide or silicon oxynitride, and the elastic modulus of the first barrier layer 4B is E1, and the second barrier layer 4A.
  • the elastic modulus of the modified region in E2 is E2
  • the elastic modulus of the non-modified region in the second barrier layer 4A is E3
  • the modification treatment applied to the second barrier layer has a treatment of irradiating vacuum ultraviolet rays having a wavelength component of 180 nm or less.
  • the gas barrier film of the present invention is used.
  • the gas barrier film of the present invention has a gas barrier layer unit on at least one surface side of the substrate.
  • the gas barrier layer unit referred to in the present invention is a first barrier layer formed by a chemical vapor deposition method, and a second barrier layer that has been subjected to a modification treatment by applying a polysilazane-containing liquid on the first barrier layer. Having a barrier layer.
  • the gas barrier property can be further improved by configuring the gas barrier layer unit with a plurality of units.
  • the plurality of gas barrier layer units may be the same or different.
  • the gas barrier layer units formed on both surfaces of the substrate may be the same or different.
  • gas barrier units By forming gas barrier units on both sides, dimensional changes due to moisture absorption and desorption of the base film itself under severe conditions of high temperature and high humidity are suppressed, stress on the gas barrier unit is reduced, and device durability Improves. Moreover, when using heat resistant resin for a base material, since the effect which provides a gas-barrier unit on both front and back side is large, it is preferable. In other words, heat-resistant resins represented by polyimide and polyetherimide are non-crystalline, so the water absorption is larger than that of crystalline PET and PEN, and the dimensional change of the substrate due to humidity is larger. End up. By providing the gas barrier unit on both the front and back sides of the base material, the dimensional change of the base material at both high temperature and high humidity can be suppressed.
  • the process temperature may exceed 200 ° C. in the array fabrication process, and it is preferable to use a high heat-resistant substrate.
  • a thermosetting resin as the intermediate layer according to the present invention.
  • the “gas barrier property” as used in the present invention is a water vapor transmission rate (water vapor transmission rate) (60 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% measured by a method in accordance with JIS K 7129-1992.
  • RH water vapor transmission rate
  • relative humidity 90 ⁇ 2% measured by a method in accordance with JIS K 7129-1992.
  • RH 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less
  • the oxygen permeability (oxygen permeability) of the gas barrier film measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less (1 atm is 1. 01325 ⁇ 10 5 Pa).
  • first barrier layer constituting the gas barrier film of the present invention is formed by a chemical vapor deposition method. Due to the presence of the first barrier layer, moisture transfer from the base material can be prevented, and the reforming process in forming the second barrier layer is likely to proceed.
  • a target material for example, a thin film such as a carbon film
  • a target material for example, a thin film such as a carbon film
  • vapor deposition resistance heating method, electron beam vapor deposition, molecular beam epitaxy
  • ion plating method sputtering method and the like.
  • the chemical vapor deposition method (chemical vapor deposition method)
  • a raw material gas containing a target thin film component is supplied onto a base material, and a film is deposited by a chemical reaction on the substrate surface or in the gas phase. It is a method to do.
  • there is a method of generating plasma etc. for the purpose of activating chemical reaction and known CVD methods such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, plasma CVD method, atmospheric pressure plasma CVD method, etc. In the present invention, any of them can be advantageously used.
  • Forming the first barrier layer by chemical vapor deposition is advantageous in terms of gas barrier properties.
  • metal carbides, metal nitrides, metal oxides, metal sulfides, metal halides, and mixtures thereof metal oxynitrides, metal oxyhalides, metal nitride carbides, etc.
  • silicon oxide is generated.
  • zinc compound is used as a raw material compound and carbon disulfide is used as the cracking gas, zinc sulfide is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
  • Such a raw material may be in a gas, liquid, or solid state at normal temperature and pressure as long as it contains a typical or transition metal element.
  • gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation.
  • the solvent may be diluted with a solvent, and an organic solvent such as methanol, ethanol, n-hexane or a mixed solvent thereof may be used as the solvent. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
  • it is preferably a compound having a vapor pressure in a temperature range of 0 ° C. to 250 ° C. under atmospheric pressure, and more preferably a compound exhibiting a liquid state in a temperature range of 0 ° C. to 250 ° C.
  • the pressure in the plasma film forming chamber is close to atmospheric pressure, and it is difficult to send a gas into the plasma film forming chamber unless it can be vaporized under atmospheric pressure. This is because the amount fed can be managed with high accuracy.
  • the heat resistance of the plastic film which forms a gas barrier layer is 270 degrees C or less, it is preferable that it is a compound which has a vapor pressure from the plastic film heat resistant temperature to the temperature of 20 degrees C or less.
  • Such a metal compound is not particularly limited, and examples thereof include a silicon compound, a titanium compound, a zirconium compound, an aluminum compound, a boron compound, a tin compound, and an organometallic compound.
  • titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisoporooxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium.
  • examples thereof include diisopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate, butyl titanate dimer, and the like.
  • Zirconium compounds include zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium tri-n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetylacetonate, zirconium acetate, Zirconium hexafluoropentanedioate and the like can be mentioned.
  • Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. Can be mentioned.
  • Boron compounds include diborane, tetraborane, boron fluoride, boron chloride, boron bromide, borane-diethyl ether complex, borane-THF complex, borane-dimethyl sulfide complex, boron trifluoride diethyl ether complex, triethylborane, trimethoxy.
  • Examples include borane, triethoxyborane, tri (isopropoxy) borane, borazole, trimethylborazole, triethylborazole, triisopropylborazole, and the like.
  • tin compounds include tetraethyltin, tetramethyltin, di-n-butyltin diacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, diethyldiethoxytin, triisopropylethoxytin, diethyltin, Dimethyltin, diisopropyltin, dibutyltin, diethoxytin, dimethoxytin, diisopropoxytin, dibutoxytin, tin dibutyrate, tin diacetoacetonate, ethyltin acetoacetonate, ethoxytin acetoacetonate, dimethyltin diacetoacetonate
  • tin halides such as tin hydrogen compounds include tin dichloride and tin tetrachloride.
  • organometallic compound examples include antimony ethoxide, arsenic triethoxide, barium 2,2,6,6-tetramethylheptanedionate, beryllium acetylacetonate, bismuth hexafluoropentanedionate, dimethylcadmium, calcium 2, 2,6,6-tetramethylheptanedionate, chromium trifluoropentanedionate, cobalt acetylacetonate, copper hexafluoropentanedionate, magnesium hexafluoropentanedionate-dimethyl ether complex, gallium ethoxide, tetraethoxygermanium, tetra Methoxygermanium, hafnium t-butoxide, hafnium ethoxide, indium acetylacetonate, indium 2,6-dimethylaminoheptane dione , Ferrocene, lanthanum is
  • a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide
  • examples include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, carbon disulfide, and chlorine gas.
  • the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
  • a desired barrier layer can be obtained by appropriately selecting a source gas containing a metal element and a decomposition gas.
  • the first barrier layer formed by chemical vapor deposition is preferably a metal carbide, metal nitride, metal oxide, metal halide, metal sulfide, or a composite compound thereof from the viewpoint of permeability.
  • the first barrier layer is made of, for example, silicon oxide, silicon oxynitride, silicon nitride, aluminum oxide or the like, and is made of silicon oxide, silicon oxynitride, or silicon nitride in terms of gas barrier properties and transparency. It is preferable to have at least one selected from the group consisting of silicon oxide and silicon oxynitride.
  • the first barrier layer is desirably formed substantially or completely as an inorganic layer.
  • the thickness of the first barrier layer is not particularly limited, but is preferably 50 to 600 nm, and more preferably 100 to 500 nm. If it is such a range, it will be excellent in high gas barrier performance, bending tolerance, and cutting processability.
  • FIG. 2 is a schematic sectional view showing an example of a plasma CVD apparatus that can be used in the present invention.
  • the plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface inside the vacuum chamber 102.
  • a cathode electrode 103 is disposed at a position facing the susceptor 105 on the ceiling side inside the vacuum chamber 102.
  • a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
  • a heat medium is arranged in the heat medium circulation system 106.
  • the heat medium circulation system 106 stores a pump that moves the heat medium, a heating device that heats the heat medium, a cooling device that cools, a temperature sensor that measures the temperature of the heat medium, and a set temperature of the heat medium.
  • a heating / cooling device 160 having a storage device is provided.
  • the heating / cooling device 160 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 105.
  • the supplied heat medium flows inside the susceptor 105, heats or cools the susceptor 105, and returns to the heating / cooling device 160.
  • the temperature of the heat medium is higher or lower than the set temperature, and the heating and cooling device 160 heats or cools the heat medium to the set temperature and supplies the heat medium to the susceptor 105.
  • the cooling medium circulates between the susceptor and the heating / cooling device 160, and the susceptor 105 is heated or cooled by the supplied heating medium having the set temperature.
  • the vacuum chamber 102 is connected to an evacuation system 107, and before the film formation process is started by the plasma CVD apparatus 101, the inside of the vacuum chamber 102 is evacuated in advance and the heating medium is heated to set from room temperature. The temperature is raised to a temperature, and a heat medium having a set temperature is supplied to the susceptor 105. The susceptor 105 is at room temperature at the start of use, and when a heat medium having a set temperature is supplied, the susceptor 105 is heated.
  • the substrate 110 to be deposited is carried into the vacuum chamber 102 while maintaining the vacuum atmosphere in the vacuum chamber 102 and placed on the susceptor 105.
  • a large number of nozzles (holes) are formed on the surface of the cathode electrode 103 facing the susceptor 105.
  • the cathode electrode 103 is connected to a gas introduction system 108.
  • a CVD gas is introduced from the gas introduction system 108 into the cathode electrode 103, the CVD gas is ejected from the nozzle of the cathode electrode 103 into the vacuum chamber 102 in a vacuum atmosphere.
  • the cathode electrode 103 is connected to a high-frequency power source 109, and the susceptor 105 and the vacuum chamber 102 are connected to a ground potential.
  • a high-frequency power source 109 is activated while a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and a high-frequency voltage is applied to the cathode electrode 103, Plasma of the introduced CVD gas is formed.
  • a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and the susceptor 105 is heated or cooled by the heating medium, and a thin film is formed while being maintained at a constant temperature.
  • the lower limit temperature of the growth temperature when forming a thin film is determined by the film quality of the thin film
  • the upper limit temperature is determined by the allowable range of damage to the thin film already formed on the substrate 110.
  • the lower limit temperature and upper limit temperature vary depending on the material of the thin film to be formed, the material of the thin film already formed, etc., but when forming a SiN film or SiON film used for a high barrier film, etc., the lower limit temperature is required to ensure the film quality.
  • the temperature is 50 ° C.
  • the upper limit temperature is lower than the heat resistant temperature of the substrate.
  • the correlation between the film quality of the thin film formed by the plasma CVD method and the film formation temperature, and the correlation between the damage to the film formation target (substrate 110) and the film formation temperature are obtained in advance.
  • the lower limit temperature of the substrate 110 during the plasma CVD process is 50 ° C.
  • the upper limit temperature is 250 ° C.
  • the relationship between the temperature of the heat medium supplied to the susceptor 105 and the temperature of the substrate 110 is measured in advance, and the plasma CVD process is in progress.
  • the temperature of the heat medium supplied to the susceptor 105 is required.
  • the lower limit temperature (here, 50 ° C.) is stored, and a heat medium whose temperature is controlled to a temperature equal to or higher than the lower limit temperature is set to be supplied to the susceptor 105.
  • the heat medium refluxed from the susceptor 105 is heated or cooled, and a heat medium having a set temperature of 50 ° C. is supplied to the susceptor 105.
  • the CVD gas a mixed gas of silane gas, ammonia gas, nitrogen gas, or hydrogen gas is supplied, and the SiN film is formed in a state where the substrate 110 is maintained at a temperature not lower than the lower limit temperature and not higher than the upper limit temperature.
  • the susceptor 105 is at room temperature, and the temperature of the heat medium returned from the susceptor 105 to the heating / cooling apparatus 160 is lower than the set temperature. Therefore, immediately after the start-up, the heating / cooling device 160 heats the refluxed heat medium to raise the temperature to the set temperature and supplies it to the susceptor 105. In this case, the susceptor 105 and the substrate 110 are heated and heated by the heat medium, and the substrate 110 is maintained in a range between the lower limit temperature and the upper limit temperature.
  • the susceptor 105 When a thin film is continuously formed on a plurality of substrates 110, the susceptor 105 is heated by heat flowing from the plasma. In this case, since the heat medium recirculated from the susceptor 105 to the heating / cooling device 160 is higher than the lower limit temperature (50 ° C.), the heating / cooling device 160 cools the heat medium and converts the heat medium at the set temperature into the susceptor. It supplies to 105. Thereby, it is possible to form a thin film while maintaining the substrate 110 in a range between the lower limit temperature and the upper limit temperature.
  • the heating / cooling device 160 heats the heating medium when the temperature of the refluxed heating medium is lower than the set temperature, and cools the heating medium when the temperature is higher than the set temperature.
  • a heat medium having a set temperature is supplied to the susceptor, and as a result, the substrate 110 is maintained in a temperature range between the lower limit temperature and the upper limit temperature.
  • the substrate 110 is unloaded from the vacuum chamber 102, the undeposited substrate 110 is loaded into the vacuum chamber 102, and a heating medium having a set temperature is supplied as described above. A thin film is formed.
  • the atmospheric pressure plasma CVD method which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum.
  • the film speed is high, and further, under a high pressure condition of atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free path is very short, so that a very homogeneous film can be obtained.
  • nitrogen gas or 18th group atom of the periodic table specifically helium, neon, argon, krypton, xenon, radon, etc. are used as the discharge gas.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • the atmospheric pressure plasma treatment is one in which two or more electric fields having different frequencies are formed in the discharge space, as described in International Publication No. 2007/026545. It is preferable to use a method of forming an electric field superimposed with a high-frequency electric field.
  • the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field, the strength V1 of the first high-frequency electric field, the strength V2 of the second high-frequency electric field, and the discharge
  • the relationship with the starting electric field strength IV is V1 ⁇ IV> V2 or V1> IV ⁇ V2
  • the filled, the output density of the second high-frequency electric field is preferably not 1W / cm 2 or more.
  • the discharge can be started and a high density and stable plasma state can be maintained, and a high performance thin film can be formed. It can be carried out.
  • a discharge gas having a high discharge starting electric field strength such as nitrogen gas
  • the discharge start electric field strength IV (1/2 Vp-p) is about 3.7 kV / mm. Therefore, in the above relationship, the first applied electric field strength is , By applying V1 ⁇ 3.7 kV / mm, the nitrogen gas can be excited into a plasma state.
  • the frequency of the first power source is preferably 200 kHz or less.
  • the electric field waveform may be a continuous wave or a pulse wave.
  • the lower limit is preferably about 1 kHz.
  • the frequency of the second power source is preferably 800 kHz or more.
  • the upper limit is preferably about 200 MHz.
  • the formation of a high-frequency electric field from such two power sources is necessary for initiating the discharge of a discharge gas having a high discharge starting electric field strength by the first high-frequency electric field, and the high frequency of the second high-frequency electric field.
  • the atmospheric pressure or the pressure in the vicinity thereof is about 20 kPa to 110 kPa, and 93 kPa to 104 kPa is preferable in order to obtain the good effects described in the present invention.
  • the excited gas as used in the present invention means that at least a part of the molecules in the gas move from the existing state to a higher state by obtaining energy.
  • Excited gas molecules, radicalized gas molecules A gas containing ionized gas molecules corresponds to this.
  • the first barrier layer according to the present invention mixes a gas containing a source gas containing silicon with an excited discharge gas in a discharge space where a high-frequency electric field is generated under atmospheric pressure or a pressure in the vicinity thereof. It is preferable that the inorganic film is formed by forming a secondary excitation gas and exposing the substrate to the secondary excitation gas.
  • the pressure between the counter electrodes (discharge space) is set to atmospheric pressure or a pressure near it, a discharge gas is introduced between the counter electrodes, a high frequency voltage is applied between the counter electrodes, and the discharge gas is converted into plasma. Then, the discharge gas and the raw material gas that are in a plasma state are mixed outside the discharge space, and the base material is exposed to the mixed gas (secondary excitation gas), so that the first barrier is formed on the base material. Form a layer.
  • the second barrier layer according to the present invention is formed by subjecting the first barrier layer formed by chemical vapor deposition to a coating process using a coating solution containing a silicon compound, followed by a modification treatment.
  • any appropriate wet coating method can be adopted as the silicon compound coating method.
  • Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating film thickness can be appropriately set according to the purpose.
  • the coating thickness is appropriately set so that the thickness after drying is preferably about 1 nm to 100 ⁇ m, more preferably about 10 nm to 10 ⁇ m, and most preferably about 10 nm to 1 ⁇ m.
  • the silicon compound according to the present invention is not particularly limited as long as the coating liquid containing the silicon compound can be prepared, but there are few film defects, defects such as cracks, and a small amount of residual organic matter.
  • Polysilazanes such as perhydropolysilazane and organopolysilazane; polysiloxanes such as silsesquioxane are preferred.
  • silicon compound according to the present invention examples include perhydropolysilazane, organopolysilazane, silsesquioxane, tetramethylsilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, methyl Triethoxysilane, tetramethoxysilane, tetramethoxysilane, hexamethyldisiloxane, hexamethyldisilazane, 1,1-dimethyl-1-silacyclobutane, trimethylvinylsilane, methoxydimethylvinylsilane, trimethoxyvinylsilane, ethyltrimethoxysilane, dimethyl Divinylsilane, dimethylethoxyethynylsilane, diacetoxydimethylsilane, dimeth
  • silsesquioxanes such, Mayaterials made Q8 series of Octakis (tetramethylammonium) pentacyclo-octasiloxane-octakis (yloxide) hydrate; Octa (tetramethylammonium) silsesquioxane, Octakis (dimethylsiloxy) octasilsesquioxane, Octa [[3 - [(3-ethyl -3-oxetanyl) methoxy] propyl] dimethylsiloxy] octasilsesquioxane; Octaallyloxetanes silsquioxane, Octa [(3-Propylglycidyletherer dimethylsiloxy] silsesquioxane; Octakis [[3- (2,3-epoxypropoxy) propyl] dimethylsiloxy] octasilsesquioxane, Octakis [[
  • inorganic silicon compounds are particularly preferable, and inorganic silicon compounds that are solid at room temperature are more preferable.
  • Perhydropolysilazane, hydrogenated silsesquioxane and the like are more preferably used.
  • Polysilazane is a polymer having a silicon-nitrogen bond, and is a ceramic precursor such as SiO 2 , Si 3 N 4 made of Si—N, Si—H, N—H or the like, and an intermediate solid solution of both SiO x N y. It is an inorganic polymer.
  • a compound that is ceramicized at a relatively low temperature and modified to silica is preferable, for example, the following general formula described in JP-A-8-112879
  • a compound having a main skeleton composed of the unit represented by (1) is preferred.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms).
  • An alkenyl group preferably an alkenyl group having 2 to 20 carbon atoms
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 10 carbon atoms
  • an aryl group preferably an aryl group having 6 to 30 carbon atoms
  • a silyl group preferably a silyl group having 3 to 20 carbon atoms
  • an alkylamino group preferably an alkylamino group having 1 to 40 carbon atoms, more preferably an alkylamino group having 1 to 20 carbon atoms
  • an alkoxy group preferably Represents an alkoxy group having 1 to 30 carbon atoms.
  • the alkyl group in R 1 , R 2 and R 3 is a linear or branched alkyl group.
  • Specific examples of the alkyl group having 1 to 30 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • N-pentyl group isopentyl group, tert-pentyl group, neopentyl group, 1,2-dimethylpropyl group, n-hexyl group, isohexyl group, 1,3-dimethylbutyl group, 1-isopropylpropyl group, 1,2 -Dimethylbutyl group, n-heptyl group, 1,4-dimethylpentyl group, 3-ethylpentyl group, 2-methyl-1-isopropylpropyl group, 1-ethyl-3-methylbutyl group, n-octyl group, 2- Ethylhexyl group, 3-methyl-1-isopropylbutyl group, 2-methyl-1-isopropyl group, 1-t-butyl-2-methylpropylene Group, n-nonyl group, 3,5,5-trimethylhexyl group, n-decyl group, isodecyl group, n-
  • alkenyl group having 2 to 20 carbon atoms examples include vinyl group, 1-propenyl group, allyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group and 2-pentenyl group. .
  • Examples of the cycloalkyl group having 3 to 10 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group.
  • the aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include non-condensed hydrocarbon groups such as a phenyl group, a biphenyl group, and a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, and a heptaenyl group.
  • biphenylenyl group fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceanthrylenyl group, triphenylenyl group, pyrenyl group,
  • Examples thereof include condensed polycyclic hydrocarbon groups such as a chrycenyl group and a naphthacenyl group.
  • Examples of the silyl group having 3 to 20 carbon atoms include alkyl / arylsilyl groups, and specifically include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, t-butyldimethylsilyl group, methyldiphenylsilyl group, t -Butyldiphenylsilyl group and the like.
  • the alkylamino group having 1 to 40 carbon atoms is not particularly limited, and examples thereof include dimethylamino group, diethylamino group, diisopropylamino group, methyl-tert-butylamino group, dioctylamino group, didecylamino group, dihexadecyl group.
  • An amino group, a di-2-ethylhexylamino group, a di2-hexyldecylamino group and the like can be mentioned.
  • alkoxy group having 1 to 30 carbon atoms examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a 2-ethylhexyloxy group, an octyloxy group, and a nonyloxy group.
  • the perhydropolysilazane in which all of R 1, R 2 , and R 3 are hydrogen atoms is particularly preferable from the viewpoint of denseness as a gas barrier film to be obtained.
  • the compound having a main skeleton composed of the unit represented by the general formula (1) preferably has a number average molecular weight of 100 to 50,000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC).
  • the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
  • the ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
  • a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of a unit represented by the above general formula (1) (for example, Japanese Patent Laid-Open No. Hei. No.
  • glycidol-added polysilazane obtained by reacting glycidol (for example, see JP-A-6-122852), alcohol-added polysilazane obtained by reacting alcohol (for example, JP-A-6-240208)
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (see, for example, JP-A-6-299118), and an acetylacetonate complex obtained by reacting a metal-containing acetylacetonate complex
  • Additional polysilazanes eg, Unexamined see JP 6-306329
  • fine metal particles added polysilazane obtained by adding metal particles e.g., Japanese Unexamined see JP 7-196986
  • a commercially available polysilazane may be used.
  • organic solvent that can be used to prepare a coating solution containing polysilazane
  • hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to characteristics such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
  • the polysilazane concentration in the polysilazane-containing coating solution is preferably about 0.2 to 35% by mass, although it varies depending on the film thickness of the target second barrier layer and the pot life of the coating solution.
  • an amine or a metal catalyst can be added in order to promote conversion to a silicon oxide compound.
  • Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.
  • a coating film formed by applying a silicon compound formed with a polysilazane-containing coating solution (hereinafter simply referred to as a silicon compound coating film) has moisture removed before or during the modification treatment. It is preferable. Therefore, in the production of the second barrier layer, the first step for the purpose of removing the organic solvent in the silicon compound coating film and the subsequent second step for the purpose of removing moisture in the silicon compound coating film. Are preferably included. By removing moisture before or during the reforming process, the efficiency of the subsequent reforming process is improved.
  • the drying conditions can be appropriately determined by a method such as heat treatment, and at this time, the moisture may be removed.
  • the heat treatment temperature is preferably a high temperature from the viewpoint of rapid processing, but it is preferable to appropriately determine the temperature and treatment time in consideration of thermal damage to the resin film substrate.
  • Tg glass transition temperature
  • the heat treatment temperature can be set to 200 ° C. or less.
  • the treatment time is preferably set to a short time so that the solvent is removed and thermal damage to the substrate is reduced. If the heat treatment temperature is 200 ° C. or less, the treatment time can be set within 30 minutes.
  • the second step is a step for removing moisture in the silicon compound coating film.
  • a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature.
  • a preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is ⁇ 8 ° C. (temperature 25 ° C./humidity 10%) or lower, and a more preferable dew point temperature is ⁇ 31 ° C. (temperature 25 ° C./temperature).
  • the maintained time is preferably set appropriately depending on the film thickness of the second barrier layer.
  • the dew point temperature is ⁇ 8 ° C. or less and the maintaining time is 5 minutes or more.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher, and preferably ⁇ 40 ° C. or higher.
  • the dew point temperature is ⁇ 8 ° C. or less and the maintaining time is 5 minutes or more.
  • the pressure in the vacuum drying can be selected from normal pressure to 0.1 MPa.
  • the dew point of the second step is 4 ° C. or less.
  • the treatment time can be selected from 5 minutes to 120 minutes to remove moisture.
  • the first process and the second process can be distinguished by a change in dew point, and the difference can be made by changing the dew point of the process environment by 10 ° C. or more.
  • the silicon compound coating film is preferably subjected to a modification treatment while maintaining its state even after moisture is removed in the second step.
  • the moisture content of the silicon compound coating film can be measured according to the following analytical method.
  • the moisture content in the silicon compound coating film is defined as a value obtained by dividing the moisture content (g) obtained by the above analysis method by the volume (L) of the second barrier layer, and moisture is removed in the second step. In this state, it is preferably 0.1% (g / L) or less, and a more preferable water content is 0.01% (g / L) or less (below the detection limit).
  • removal of moisture before or during the reforming treatment is a preferable form from the viewpoint of promoting the dehydration reaction of the second barrier layer converted to silanol.
  • the modification treatment in the present invention refers to a conversion reaction of a silicon compound to silicon oxide or silicon oxynitride.
  • the gas barrier film of the present invention as a whole has a gas barrier property (water vapor permeability is 1 ⁇ 10 ⁇ 2). 3 g / (m 2 ⁇ 24 h) or less) is a treatment for forming an inorganic thin film at a level that can contribute to the development.
  • a known method based on the conversion reaction of the second barrier layer can be selected.
  • the formation of a silicon oxide film or a silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or more, and is difficult to adapt to a flexible substrate such as plastic.
  • the gas barrier film of the present invention from the viewpoint of adapting to a plastic substrate, a conversion reaction using plasma, ozone or ultraviolet rays capable of conversion reaction at a lower temperature is preferable.
  • Plasma treatment In the present invention, a known method can be used as the plasma treatment that can be used as the modification treatment, and the above-mentioned atmospheric pressure plasma treatment and the like can be preferably used.
  • reformation process can be performed by heat-processing the coating film containing a silicon compound in combination with the excimer irradiation process etc. which are mentioned later.
  • a method of heating a coating film by contacting a substrate with a heating element such as a heat block a method of heating an atmosphere by an external heater such as a resistance wire, an infrared region such as an IR heater, etc.
  • a method using light can be raised, but is not particularly limited. Moreover, you may select suitably the method which can maintain the smoothness of the coating film containing a silicon compound.
  • the temperature of the coating film during the heat treatment is preferably adjusted appropriately in the range of 50 ° C. to 250 ° C., more preferably in the range of 100 ° C. to 200 ° C.
  • the heating time is preferably in the range of 1 second to 10 hours, more preferably in the range of 10 seconds to 1 hour.
  • the layer (second barrier layer) preferably formed from a coating film containing a silicon compound itself has a gas barrier property (water vapor permeability is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less)
  • a gas barrier property water vapor permeability is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less
  • UV irradiation treatment treatment by ultraviolet irradiation is also preferable as one of the modification treatment methods.
  • Ozone and active oxygen atoms generated by ultraviolet light have high oxidation ability, and can form a silicon oxide film or silicon oxynitride film having high density and insulation at low temperatures. It is.
  • the base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated.
  • the conversion to ceramics is promoted, and the resulting ceramic film becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
  • any commonly used ultraviolet ray generator can be used.
  • the ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.
  • the irradiation intensity and the irradiation time are set within a range in which the substrate carrying the second barrier layer to be irradiated is not damaged.
  • the distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
  • the substrate temperature during ultraviolet irradiation treatment is 150 ° C. or more
  • the properties of the substrate are impaired, such as deformation of the substrate or deterioration of its strength.
  • a modification treatment at a higher temperature is possible.
  • the substrate temperature at the time of ultraviolet irradiation there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate.
  • ultraviolet ray generating means examples include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. )), UV light laser, and the like.
  • the ultraviolet rays from the generation source are reflected by the reflector and then applied to the second barrier layer. It is desirable to guess.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • a substrate for example, a silicon wafer
  • the ultraviolet baking furnace itself is generally known, and for example, an ultraviolet baking furnace manufactured by Eye Graphics Co., Ltd. can be used.
  • the base material which has a 2nd barrier layer on the surface is a elongate film form, it irradiates an ultraviolet-ray continuously in the drying zone equipped with the above ultraviolet-ray generation sources, conveying this. Can be made into ceramics.
  • the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate used and the second barrier layer.
  • the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
  • the treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes.
  • This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action.
  • a rare gas excimer lamp is preferably used.
  • noble gas atoms such as Xe, Kr, Ar, Ne, and the like are chemically bonded and do not form molecules, they are called inert gases.
  • rare gas atoms excited atoms
  • the rare gas is xenon, e + Xe ⁇ e + Xe * Xe * + Xe + Xe ⁇ Xe 2 * + Xe
  • excimer light of 172 nm is emitted.
  • ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • Dielectric barrier discharge is a lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode.
  • a dielectric transparent quartz in the case of an excimer lamp
  • a high frequency high voltage of several tens of kHz to the electrode.
  • the micro discharge streamer reaches the tube wall (dielectric)
  • the electric discharge accumulates on the surface of the dielectric, and the micro discharge disappears.
  • This micro discharge spreads over the entire tube wall, and is a discharge that repeatedly generates and disappears. For this reason, flickering of light that can be seen with the naked eye occurs.
  • a very high temperature streamer reaches a pipe wall directly locally, there is a possibility that deterioration of the pipe wall may be accelerated.
  • electrodeless field discharge is possible in addition to dielectric barrier discharge.
  • Electrode-free electric field discharge due to capacitive coupling also called RF discharge.
  • the lamp, the electrode, and the arrangement thereof may be basically the same as those of the dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
  • the outer electrode covers the entire outer surface and transmits light to extract light to the outside in order to cause discharge in the entire discharge space.
  • an electrode in which a fine metal wire is formed in a net shape is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere.
  • Synthetic quartz windows are not only expensive consumables, but also cause light loss.
  • the outer diameter of the double-cylindrical lamp is about 25 mm, the difference in distance to the irradiation surface cannot be ignored directly below the lamp axis and on the side of the lamp, resulting in a large difference in illuminance. Therefore, even if the lamps are closely arranged, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
  • the biggest feature of the capillary excimer lamp is its simple structure.
  • the quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside. Therefore, a very inexpensive light source can be provided.
  • Double-cylindrical lamps are easily damaged by handling and transportation compared to thin-tube lamps because they are processed by connecting both ends of the inner and outer tubes.
  • the outer diameter of the tube of the thin tube lamp is about 6 to 12 mm. If it is too thick, a high voltage is required for starting.
  • the discharge mode can be either dielectric barrier discharge or electrodeless field discharge.
  • the electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed, and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
  • the Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane film can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the irradiation object is suppressed.
  • flexible film materials such as polyethylene terephthalate which are considered to be easily affected by heat.
  • the second barrier layer 4A has a low modified region (non-modified region) on the surface of the substrate 2 and a high modified region (modified region) on the surface side.
  • the modified region formed by the modification treatment can be confirmed by various methods. A method of confirming the cross section of the second barrier layer after the modification treatment by observing with a transmission electron microscope (TEM) is the most effective.
  • TEM transmission electron microscope
  • a thin piece of the gas barrier film is prepared by the following FIB processing apparatus, and then a cross-sectional TEM observation is performed. At this time, if the sample is continuously irradiated with an electron beam, a contrast difference appears between a portion that is damaged by the electron beam and a portion that is not.
  • the modified region according to the present invention is less susceptible to electron beam damage because it is densified by the modification process, but in the non-modified region, it is damaged due to electron beam damage, and alteration is confirmed.
  • the thickness of the modified region and the non-modified region can be calculated by the cross-sectional TEM observation confirmed in this way.
  • the film thickness of the modified region estimated in this way is 0.2 or more and 0.9 or less as the film thickness ratio with respect to the thickness of the second barrier layer 4A. preferable. More preferably, it is 0.3 or more and 0.9 or less, More preferably, it is 0.4 or more and 0.8 or less.
  • the film thickness of the modified region with respect to the total film thickness of the second barrier layer 4A is 0.2 or more, the barrier performance and flexibility of the second barrier layer are improved, and when it is 0.9 or less, It is preferable because the barrier performance and flexibility are improved.
  • the gas barrier layer obtained by subjecting the second barrier layer to the modification treatment causes stress concentration by setting the ratio of the modified region in the second barrier layer to the range specified above. It is possible to prevent cracks and achieve both a high barrier property and a stress relaxation function.
  • surface treatment can be efficiently performed with vacuum ultraviolet light in a short time, which is preferable because the effects of the present invention are remarkably exhibited.
  • the first barrier layer 4B formed by chemical vapor deposition is composed of silicon oxide or silicon oxynitride, and the elastic modulus of the first barrier layer 4B is E1,
  • the elastic modulus of the modified region in the second barrier layer 4A is E2
  • the elastic modulus of the non-modified region in the second barrier layer 4A is E3, it is preferable to satisfy the relationship of E1>E2> E3. .
  • the elastic modulus of the modified region and the non-modified region in the first barrier layer and the second barrier layer can be determined by a conventionally known elastic modulus measurement method.
  • Vibron DDV-2 manufactured by Orientec A second barrier layer was formed on a transparent substrate using RSA-II (manufactured by Rheometrics) as a measuring device and a method for measuring under a condition that a constant strain is applied at a constant frequency (Hz). Later, a method for obtaining a measured value obtained by changing the applied strain at a constant frequency, or a nanoindenter to which a nanoindentation method is applied, for example, a nanoindenter manufactured by MTS System (Nano Indenter TMXP / DCM) ) To measure.
  • MTS System Nano Indenter TMXP / DCM
  • the “nanoindentation method” here refers to a triangular pyramid having a tip radius of about 0.1 to 1 ⁇ m with a very small load applied to the second barrier layer provided on the transparent base material to be measured. After applying the indenter, apply the load, unload the indenter, create a load-displacement curve, and measure the elastic modulus (reduced modulus) from the load and indentation depth obtained from the load-displacement curve. It is a method to do. In this nanoindentation method, it is possible to measure with a high accuracy of 0.01 nm as a displacement resolution using a head assembly having an ultra-low load, for example, a maximum load of 20 mN and a load resolution of 1 nN.
  • an indenter having an extremely small triangular pyramid is pushed in from the cross-sectional portion, and the elasticity of the cross-sectional portion opposite to the base material side is obtained.
  • a method of measuring the rate is preferable, and in such a case, a nanoindenter operating in a scanning electron microscope has been developed from the viewpoint of increasing accuracy, and it can be obtained by applying them.
  • the relationship of the elastic modulus of each layer satisfies the relationship of E1> E2> E3.
  • E1 as the elastic modulus value depends on the material constituting the first barrier layer, for example, in the case of silicon oxide or silicon oxynitride, it is preferably 10 to 100 GPa, more preferably 20 to 50 GPa.
  • E2 and E3 of the second barrier layer can be arbitrarily adjusted under the conditions of the modification treatment within a range satisfying the above relational expression.
  • the first barrier layer is preferably formed of a film containing silicon oxide, silicon nitride or silicon oxynitride compound, and the film density of the modified region on the processing surface side of the second barrier layer d1 and the film density d2 of the non-modified non-modified region can be obtained according to the following method.
  • -X-ray reflectivity measuring device Rigaku Electric's thin film structure evaluation device ATX-G ⁇ X-ray source target: Copper (1.2kW)
  • the order of numerical values of the film densities d1 and d2 preferably satisfies the relationship d1> d2.
  • a modified region exists, and the modified region further has the following characteristics.
  • the second barrier layer according to a preferred embodiment of the present invention is a coating film modification process, regions having different properties can be formed without an interface without generating dislocation lines that are likely to occur during deposition of gas phase molecules. It is assumed that it can be done.
  • a high-density region is formed in the modified region, and further, a high-density region of Si— is obtained from FT-IR analysis in the depth direction.
  • a microcrystalline region is confirmed, and a crystallized region is confirmed in a region having the highest density.
  • the surface region SiO 2 of the second barrier layer according to the present invention is treated at a low temperature of 200 ° C. or lower on the resin substrate. But crystallization can be achieved. Although the reason is not clear, the present inventors considered that the cyclic structure of 3 to 5 contained in polysilazane has an interatomic distance advantageous for forming a crystal structure. The process of dissolution, rearrangement, and crystallization described above is unnecessary, and it is assumed that the modification process is involved in the existing short-range order and the ordering can be performed with less energy.
  • the modification treatment by vacuum ultraviolet irradiation is most preferred for forming the modified region.
  • the mechanism by which this modified region is formed is not clear, but the present inventor simultaneously proceeds with a direct cleavage of the silazane compound by light energy and a surface oxidation reaction by active oxygen or ozone generated in the gas phase, It is presumed that a reforming speed difference occurs between the surface side and the inside of the reforming process, and as a result, a reforming region is formed. Further, as a means for positively controlling the difference in the reforming rate, there is a method of controlling the surface oxidation reaction by active oxygen or ozone generated in the gas phase.
  • the desired composition, film thickness, and density of the modified region can be obtained.
  • the conditions that contribute to the surface oxidation reaction such as oxygen concentration, processing temperature, humidity, irradiation distance, and irradiation time, during the irradiation.
  • the desired composition, film thickness, and density of the modified region can be obtained.
  • a mode in which the oxygen concentration is changed during irradiation is preferable, and the nitrogen content on the surface side can be reduced and the film thickness can be increased by increasing the oxygen concentration in accordance with the change in the conditions.
  • the thickness of the second barrier layer is 50 to 1000 nm
  • the vacuum ultraviolet illuminance is 10 to 200 mJ / cm 2
  • the irradiation distance is 0.1 to 10 mm
  • the oxygen concentration is 0 to 5%
  • a dew point temperature of 10 to -50 ° C, a temperature of 25 to 200 ° C, and a treatment time of 0.1 to 150 seconds can be selected.
  • the temperature is preferably 50 to 200 ° C., more preferably 70 to 200 ° C.
  • strength is high, the probability that the photon and the chemical bond in polysilazane will collide will increase, and modification
  • the modified film thickness can be increased and / or the film quality can be improved (densification).
  • the irradiation time is too long, the flatness may be deteriorated and other materials of the barrier film may be damaged.
  • the progress of the reaction is considered by the integrated light quantity expressed by the product of the irradiation intensity and the irradiation time.
  • the irradiation intensity The absolute value of may be important.
  • a modification treatment that gives a maximum irradiation intensity of 100 to 200 mW / cm 2 at least once in the vacuum ultraviolet irradiation step.
  • the treatment time can be shortened in a short time without suddenly deteriorating the reforming efficiency, and by setting it to 200 mW / cm 2 or less, gas barrier performance can be efficiently provided ( Even if it exceeds 200 mW / cm 2 , the increase in gas barrier properties will slow down), and not only damage to the substrate, but also damage to the lamp and other components of the lamp unit, and the life of the lamp itself Can be extended.
  • the surface roughness (Ra) of the surface on the modification treatment side of the second barrier layer according to the present invention is preferably 2 nm or less, more preferably 1 nm or less.
  • the smooth film surface with few irregularities improves the light transmission efficiency and reduces the leakage current between the electrodes. This is preferable because the conversion efficiency is improved.
  • the surface roughness (Ra) of the gas barrier layer according to the present invention can be measured by the following method.
  • AFM measurement> The surface roughness is calculated from an uneven sectional curve continuously measured with an AFM (Atomic Force Microscope), for example, DI3100 manufactured by Digital Instruments, with a detector having a stylus with a minimum tip radius. This is a roughness related to the amplitude of fine irregularities measured by a stylus many times in a section whose measurement direction is several tens of ⁇ m.
  • AFM Atomic Force Microscope
  • the gas barrier film of the present invention is excellent in cutting processability. That is, even if cutting is performed, there is no fraying or breakage on the cut surface, and an effective area can be obtained.
  • the conventional gas barrier film has a phenomenon in which the edge of the cutting breaks with the film vigorously like glass due to the stress applied during the cutting process, and the effective area of the product is reduced due to cracks in the cutting surface.
  • the inventor has eagerly pursued the cause of the conventional gas barrier film breaking like glass at the time of cutting, but the mechanism could not be clarified.
  • the second barrier layer having a modified region and a non-modified region is used particularly in the modification treatment of the second barrier layer, so that the end portion at the time of cutting processing is used. The present inventors have found that such a stress can be dispersed and the phenomenon of breaking like glass can be improved.
  • the cutting method is not particularly limited, but is preferably performed by ablation processing using a high energy laser such as an ultraviolet laser (for example, wavelength 266 nm), an infrared laser, a carbon dioxide gas laser or the like. Since the gas barrier film has an inorganic thin film that is easily broken, cracks may occur in detail when cut with a normal cutter. Furthermore, the cracking at the time of cutting can also be suppressed by installing a protective layer containing an organic component on the surface of the first barrier layer.
  • a high energy laser such as an ultraviolet laser (for example, wavelength 266 nm), an infrared laser, a carbon dioxide gas laser or the like. Since the gas barrier film has an inorganic thin film that is easily broken, cracks may occur in detail when cut with a normal cutter. Furthermore, the cracking at the time of cutting can also be suppressed by installing a protective layer containing an organic component on the surface of the first barrier layer.
  • the base material (hereinafter also referred to as a base material) of the gas barrier film of the present invention is formed of an organic material that can hold a gas barrier layer (first barrier layer + second barrier layer) having gas barrier properties. There is no particular limitation as long as it is the same.
  • examples thereof include a heat-resistant transparent film having a skeleton (product name: Sila-DEC, manufactured by Chisso Corporation), and a resin film formed by laminating two or more layers of the resin.
  • polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), etc. are preferably used, and optical transparency, heat resistance, first
  • a heat-resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure can be preferably used.
  • polyimide or the like is also preferable to use as the heat-resistant substrate.
  • the thickness of the substrate is preferably about 5 to 500 ⁇ m, more preferably 15 to 250 ⁇ m.
  • the base material according to the present invention is preferably transparent. Since the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent gas barrier film, so that it becomes possible to make a transparent substrate such as an organic EL element. It is.
  • the base material using the above-described resins or the like may be an unstretched film or a stretched film.
  • the base material used in the present invention can be produced by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc.
  • a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • the corona treatment may be performed before forming the first barrier layer.
  • One feature of the gas barrier film of the present invention is that it has an intermediate layer between the substrate and the first barrier layer.
  • the intermediate layer according to the present invention is not particularly limited as long as it has a resin as a main component and has a layer structure.
  • the main component means that 50% by mass or more, preferably 75% by mass or more, more preferably 100% by mass of the entire layer. Due to the presence of the intermediate layer, it is possible to prevent the contraction stress during the formation of the second barrier layer from being concentrated on the first barrier layer.
  • the resin used for the intermediate layer is not particularly limited, but UV curable resin, thermosetting resin, etc. can be used, but durability by improving gas barrier properties / interlayer adhesion. It is preferable to have a thermosetting resin from the viewpoint of improving the temperature.
  • a thermosetting resin for the intermediate layer it is possible to suppress discoloration of the intermediate layer and peeling from the substrate or the first barrier layer even when heating at a high temperature of 200 ° C. or higher. is there.
  • interlayer adhesion between the first barrier layer (CVD layer) and the second barrier layer (TFB layer) is improved, and gas barrier performance is also improved.
  • both the modified region and the non-modified region of the second barrier layer after high-temperature heating have a high elastic modulus, so that the film changes to a denser film and the gas barrier property is improved. It is presumed that the polymerization reaction at the interface between the first barrier layer and the second barrier layer has progressed, and the adhesion has improved.
  • thermosetting resin which consists of an acrylic polyol and an isocyanate prepolymer, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin And silicon resin (resins having silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton) and the like.
  • an epoxy resin and a silicon resin are particularly preferable, and an epoxy resin is more preferable.
  • a compound having an acrylate functional group is preferably used as the UV curable resin used for the intermediate layer.
  • the compound having an acrylate functional group include polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and polyhydric alcohol resins.
  • Examples include functional (meth) acrylate oligomers and prepolymers.
  • the intermediate layer examples include those commonly used under names such as an anchor coat layer, a smooth layer, a bleed-out layer, and a hard coat layer.
  • the intermediate layer may be a layer containing a binder resin (for example, a thermosetting resin or a UV curable resin) without regard to its name.
  • an anchor coat layer On the surface of the substrate according to the present invention, it is preferable to form an anchor coat layer as an intermediate layer for the purpose of improving the adhesion with the first barrier layer.
  • the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One or two or more can be used in combination. Among these, an epoxy resin is particularly preferable. Conventionally known additives can be added to these anchor coating agents.
  • the above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, and the like, and is coated by drying and removing the solvent, diluent, etc. Can do.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state).
  • ⁇ Smooth layer> Furthermore, it is desirable to provide a smooth layer as an intermediate layer on the surface of the substrate according to the present invention.
  • the surface preferably has a pencil hardness specified by JIS K 5600-5-4 of H or higher. Further, it is preferable to provide a smooth layer such that the surface roughness of the intermediate layer is 10 nm ⁇ Rt (p) ⁇ 30 nm at the maximum cross-sectional height Rt (p) defined by JIS B 0601: 2001.
  • the film thickness of the smooth layer is not limited, but the film thickness of the smooth layer is preferably 0.1 ⁇ m to 10 ⁇ m in order to cover the unevenness of the resin substrate surface to form a smooth surface and ensure flexibility. A more preferable range is 5 ⁇ m to 6 ⁇ m.
  • the second barrier layer when the second barrier layer is formed by modifying the coating film of the silicon compound on the first barrier layer by chemical vapor deposition as in the present invention, the second barrier layer is used for repairing defects or the surface of the first barrier layer.
  • the first barrier layer receives the stress, which causes defects.
  • the configuration of the present invention may not be fully utilized.
  • a layer below the first barrier layer is provided with a smooth layer such that the maximum surface height difference Rt is 10 nm ⁇ Rt ⁇ 30 nm. It was found that concentration on the first barrier layer was prevented, and the effect of the configuration of the present invention could be exhibited most.
  • the higher inorganic component of the smooth layer is preferable from the viewpoint of the adhesion between the first barrier layer and the substrate and the increase in hardness of the smooth layer, and the composition ratio of the entire smooth layer may be 10% by mass or more. Preferably, 20 mass% or more is more preferable.
  • the smooth layer may be an organic-inorganic hybrid composition such as a mixture of an organic resin binder (photosensitive resin) and inorganic particles, or may be an inorganic layer that can be formed by a sol-gel method or the like.
  • the smooth layer also flattens the rough surface of the transparent resin film substrate where protrusions and the like are present, or unevenness and pinholes generated in the transparent first barrier layer due to the protrusions present on the transparent resin film substrate. Is provided to fill and flatten.
  • Such a smooth layer is basically formed by curing a thermosetting resin or a photosensitive resin.
  • thermosetting resin used for formation of a smooth layer
  • thermosetting urethane resin which consists of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin And silicon resin (resins having silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton) and the like.
  • an epoxy resin and a silicon resin are preferable, and an epoxy resin is particularly preferable.
  • Examples of the photosensitive resin used for forming the smooth layer include a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, and epoxy acrylate. And a resin composition in which a polyfunctional acrylate monomer such as urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, and n-pentyl.
  • composition of the photosensitive resin contains a photopolymerization initiator.
  • photopolymerization initiator examples include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, ⁇ -amino acetophenone, 4,4-dichloro Benzophenone, 4-benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p- tert-Butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzylmethoxyethyl acetal, benzo Methyl ether
  • the method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
  • an appropriate resin or additive may be used in order to improve the film formability and prevent the generation of pinholes in the film.
  • Solvents used when forming a smooth layer using a coating solution in which a photosensitive resin is dissolved or dispersed in a solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol and propylene glycol, ⁇ -Or terpenes such as ⁇ -terpineol, etc., ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aroma such as toluene, xylene, tetramethylbenzene Group hydrocarbons, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl
  • the smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less. If it is smaller than 10 nm, the coating property may be impaired when the coating means comes into contact with the surface of the smooth layer by a coating method such as a wire bar or a wireless bar in the step of coating a silicon compound described later. . Moreover, when larger than 30 nm, it may become difficult to smooth the unevenness
  • the surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of ⁇ m many times. Specifically, the measurement range for one time is 80 ⁇ m ⁇ 80 ⁇ m, and measurement is performed three times by changing the measurement location.
  • AFM Anamic Force Microscope
  • One of the preferred embodiments of the smooth layer is, as an additive, for example, when a photosensitive resin is used as the smooth layer, reactive silica particles in which a photosensitive group having photopolymerization reactivity is introduced into the surface of the photosensitive resin.
  • reactive silica particles examples include a polymerizable unsaturated group represented by a (meth) acryloyloxy group.
  • the photosensitive resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an unsaturated organic compound having a polymerizable unsaturated group. It may be.
  • what adjusted solid content by mixing a general-purpose dilution solvent suitably with such a reactive silica particle or the unsaturated organic compound which has a polymerizable unsaturated group can be used.
  • the average particle size of the reactive silica particles is preferably 0.001 to 0.1 ⁇ m.
  • the average particle size in such a range, the antiglare property and the resolution, which are the effects of the present invention, can be obtained by using in combination with a matting agent composed of inorganic particles having an average particle size of 1 to 10 ⁇ m described later. It becomes easy to form a smooth layer having both optical properties satisfying a good balance and hard coat properties. From the viewpoint of making it easier to obtain such effects, it is more preferable to use an average particle size of 0.001 to 0.01 ⁇ m.
  • the smooth layer used in the present invention preferably contains 10% or more of the above-described inorganic particles as a mass ratio. Furthermore, it is preferable to contain 20% or more. Addition of 10% or more improves adhesion with the gas barrier layer.
  • a polymerizable unsaturated group-modified hydrolyzable silane is chemically bonded to a silica particle by generating a silyloxy group by a hydrolysis reaction of a hydrolyzable silyl group.
  • hydrolyzable silyl group examples include a carboxylylate silyl group such as an alkoxylyl group and an acetoxysilyl group, a halogenated silyl group such as a chlorosilyl group, an aminosilyl group, an oxime silyl group, and a hydridosilyl group.
  • Examples of the polymerizable unsaturated group include acryloyloxy group, methacryloyloxy group, vinyl group, propenyl group, butadienyl group, styryl group, ethynyl group, cinnamoyl group, malate group, and acrylamide group.
  • the thickness of the smooth layer is 0.1 to 10 ⁇ m, preferably 1 to 6 ⁇ m.
  • the thickness is 1 ⁇ m or more, the smoothness of the film having a smooth layer is sufficient, and the surface hardness is easily improved.
  • the thickness is 10 ⁇ m or less, the balance of optical properties of the smooth film can be easily adjusted.
  • the smooth layer is provided only on one surface of the transparent polymer film, curling of the smooth film can be easily suppressed.
  • a bleed-out preventing layer can be provided as an intermediate layer.
  • the bleed-out prevention layer is used for the purpose of suppressing the phenomenon that unreacted oligomers migrate from the film base material to the surface when the film having the smooth layer is heated and contaminate the contact surface. It is provided on the opposite surface of the substrate.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
  • the film undergoes large film shrinkage during the modification treatment, it is preferable to suppress the lateral deformation and prevent cracking.
  • a so-called hard coat layer having a high surface hardness or elastic modulus can be provided, but the bleed-out preventing layer can also serve as the hard coat layer.
  • Examples of the unsaturated organic compound having a polymerizable unsaturated group that can be included in the bleed-out prevention layer include a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, or in the molecule And monounsaturated organic compounds having one polymerizable unsaturated group.
  • the polyunsaturated organic compound for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dicyclopentanyl di (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, ditrimethylolprop Tetra (meth) acrylate, di
  • Examples of monounsaturated organic compounds include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, and lauryl.
  • Matting agents may be added as other additives.
  • the matting agent inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable.
  • inorganic particles one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
  • the matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more and 20 parts by mass or less, preferably 100 parts by mass of the solid content of the hard coating agent. It is desirable that they are mixed in a proportion of 18 parts by mass or less, more preferably 16 parts by mass or less.
  • the bleed-out prevention layer may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator and the like as other components of the hard coat agent and the matting agent.
  • a thermosetting resin it is preferable to contain a thermosetting resin.
  • thermosetting resin examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicon resin, and the like.
  • thermoplastic resin examples include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like.
  • Vinyl resins, acetal resins such as polyvinyl formal and polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, polycarbonate resins Etc.
  • an ionizing radiation curable resin an ionizing radiation (ultraviolet ray or electron beam) is irradiated to an ionizing radiation curable coating material in which one or more of a photopolymerizable prepolymer or a photopolymerizable monomer is mixed. Those that cure can be used.
  • a photopolymerizable prepolymer an acrylic prepolymer having two or more acryloyl groups in one molecule and having a three-dimensional network structure by crosslinking and curing is particularly preferably used.
  • urethane acrylate, polyester acrylate, epoxy acrylate, melamine acrylate and the like can be used.
  • the photopolymerizable monomer the polyunsaturated organic compounds described above can be used.
  • photopolymerization initiators include acetophenone, benzophenone, Michler ketone, benzoin, benzylmethyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl). ) -1-propane, ⁇ -acyloxime ester, thioxanthone and the like.
  • the bleed-out prevention layer as described above is prepared as a coating solution by mixing a hard coating agent, a matting agent, and other components as necessary, and appropriately using a diluent solvent as necessary. It can be formed by coating the film surface with a conventionally known coating method and then curing it by irradiating with ionizing radiation.
  • irradiating with ionizing radiation ultraviolet rays having a wavelength range of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like are irradiated or scanned.
  • the irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a type or curtain type electron beam accelerator.
  • the thickness of the bleed-out preventing layer in the present invention is 1 to 10 ⁇ m, preferably 2 to 7 ⁇ m. By making it 1 ⁇ m or more, it becomes easy to make the heat resistance as a film sufficient, and by making it 10 ⁇ m or less, it becomes easy to adjust the balance of the optical properties of the smooth film, and the smooth layer is one of the transparent polymer films. When it is provided on this surface, curling of the barrier film can be easily suppressed.
  • the gas barrier film of the present invention can be continuously produced and wound into a roll form (so-called roll-to-roll production). In that case, it is preferable to stick and wind up a protective sheet on the surface in which the gas barrier layer was formed.
  • a protective sheet is applied in a place with a high degree of cleanliness. It is very effective to prevent the adhesion of dust. In addition, it is effective in preventing scratches on the gas barrier layer surface that enters during winding.
  • the protective sheet is not particularly limited, and general “protective sheet” and “release sheet” having a configuration in which a weakly adhesive layer is provided on a resin substrate having a thickness of about 100 ⁇ m can be used.
  • Ca method A method in which metal Ca is vapor-deposited on a gas barrier film and the phenomenon in which metal Ca is corroded by moisture that has permeated through the film. The water vapor transmission rate is calculated from the corrosion area and the time to reach the corrosion area.
  • HTO method (General Atomics, USA) A method of calculating water vapor transmission rate using tritium.
  • the method for measuring water vapor transmission rate is not particularly limited, but in the present invention, the water vapor transmission rate measurement method was measured by the following Ca method.
  • Vapor deposition device JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd.
  • Constant temperature and humidity oven Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular)
  • Water vapor impermeable metal Aluminum ( ⁇ 3-5mm, granular)
  • Preparation of cell for evaluating water vapor barrier property Using a vacuum vapor deposition apparatus (JEOL-made vacuum vapor deposition apparatus JEE-400) on the gas barrier layer surface of the barrier film sample, a portion (12 mm) of the barrier film sample to be vapor-deposited before attaching the transparent conductive film Other than 9 x 12 mm masks, metal calcium was vapor-deposited.
  • the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet.
  • the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • the cell for evaluation was produced by irradiating with ultraviolet rays.
  • a water vapor barrier property evaluation cell was similarly prepared for the barrier film which was not subjected to the bending treatment.
  • the obtained sample with both sides sealed was stored at 60 ° C. and 90% RH under high temperature and high humidity, and permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561. The amount of water was calculated.
  • the barrier film sample instead of the barrier film sample as a comparative sample, a sample in which metallic calcium was deposited using a quartz glass plate having a thickness of 0.2 mm, The same 60 ° C., 90% RH high temperature and high humidity storage was performed, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
  • the water vapor transmission rate of the gas barrier film of the present invention is preferably as low as possible, but is preferably 0.001 to 0.00001 g / m 2 ⁇ 24 h, for example, 0.0001 to 0.00001 g / m 2 ⁇ 24 h. More preferably.
  • the oxygen permeability of the gas barrier film of the present invention is preferably as low as possible. For example, it is more preferably less than 0.001 g / m 2 ⁇ 24 h ⁇ atm (below the detection limit).
  • the gas barrier film of the present invention can be applied to electronic devices. It can be suitably used not only for organic thin film devices such as organic thin film photoelectric conversion elements and organic electroluminescence elements, but also for display electronic devices such as flexible LCDs and electronic papers that include high-temperature processing in the manufacturing process. .
  • the gas barrier film of the present invention can be used as various sealing materials and sealing films.
  • it can be used as a sealing film for organic photoelectric conversion elements.
  • the gas barrier film of the present invention is transparent. Therefore, the gas barrier film is used as a substrate, and sunlight is received from the arrangement side of the gas barrier film.
  • a transparent conductive thin film such as ITO can be provided as a transparent electrode to constitute a resin substrate for organic photoelectric conversion elements.
  • an ITO transparent conductive film provided on the substrate is used as an anode, a porous semiconductor layer is provided thereon, and a cathode made of a metal film is formed to form an organic photoelectric conversion element, on which another seal is formed.
  • the organic photoelectric conversion element can be sealed by stacking a stopper material (although it may be the same) and adhering the gas barrier film substrate to the surroundings and encapsulating the element, thereby allowing moisture such as outside air or oxygen The influence on the organic photoelectric conversion element can be sealed.
  • a resin substrate for an organic photoelectric conversion element can be obtained by forming a transparent conductive film on the gas barrier layer of the gas barrier film thus formed.
  • the transparent conductive film can be formed by using a vacuum deposition method, a sputtering method, or the like, or by a coating method such as a sol-gel method using a metal alkoxide such as indium or tin.
  • the (average) film thickness of the transparent conductive film is preferably a transparent conductive film in the range of 0.1 to 1000 nm.
  • the gas barrier film of the present invention can be used as a substrate for a sealing film.
  • a transparent conductive film is further formed on the gas barrier layer unit, and the layer constituting the organic photoelectric conversion element and the layer serving as the cathode are laminated on the transparent conductive film as an anode.
  • another gas barrier film can be used as a sealing film to be sealed by overlapping.
  • a resin-laminated (polymer film) metal foil cannot be used as a gas barrier film on the light extraction side, but is a low-cost and low moisture-permeable sealing material and does not intend to extract light (transparent) When the property is not required), it is preferable as a sealing film.
  • the metal foil is a metal foil or film formed by rolling or the like, unlike a metal thin film formed by sputtering or vapor deposition, or a conductive film formed from a fluid electrode material such as a conductive paste. Point to.
  • metal foil there is no limitation in particular in the kind of metal, for example, copper (Cu) foil, aluminum (Al) foil, gold (Au) foil, brass foil, nickel (Ni) foil, titanium (Ti) foil, copper alloy Examples thereof include foil, stainless steel foil, tin (Sn) foil, and high nickel alloy foil.
  • a particularly preferred metal foil is an Al foil.
  • the thickness of the metal foil is preferably 6 to 50 ⁇ m. If the thickness is less than 6 ⁇ m, depending on the material used for the metal foil, pinholes may be vacant during use, and required barrier properties (moisture permeability, oxygen permeability) may not be obtained. If it exceeds 50 ⁇ m, the cost may increase depending on the material used for the metal foil, the organic photoelectric conversion element may become thick, or the merit of the film may be reduced.
  • resin film In a metal foil laminated with a resin film (polymer film), as the resin film, various materials described in the new development of functional packaging materials (Toray Research Center, Inc.) can be used.
  • Resin polypropylene resin, polyethylene terephthalate resin, polyamide resin, ethylene-vinyl alcohol copolymer resin, ethylene-vinyl acetate copolymer resin, acrylonitrile-butadiene copolymer resin, cellophane resin, vinylon resin, chloride
  • vinylidene resins examples thereof include vinylidene resins.
  • Resins such as polypropylene resins and nylon resins may be stretched and further coated with a vinylidene chloride resin.
  • a polyethylene resin having a low density or a high density can be used.
  • a method for sealing the two films for example, a method of laminating a commonly used impulse sealer heat-fusible resin layer, fusing with an impulse sealer, and sealing is preferable.
  • sealing between gas barrier films makes it difficult to heat seal with an impulse sealer or the like if the film (average) film thickness exceeds 300 ⁇ m, and the handling of the film during sealing work becomes difficult (average)
  • the film thickness is desirably 300 ⁇ m or less.
  • the inert gas a rare gas such as He and Ar is preferably used in addition to N 2 , but a rare gas in which He and Ar are mixed is also preferable, and the ratio of the inert gas in the gas is 90 to 99.99. It is preferably 9% by volume. Preservability is improved by sealing in an environment purged with an inert gas.
  • a ceramic layer is formed on the metal foil instead of the laminated resin film surface.
  • the layer surface is preferably bonded to the cathode of the organic photoelectric conversion element.
  • a resin film that can be fused with a commonly used impulse sealer for example, ethylene vinyl acetate copolymer (EVA), polypropylene (PP) film, polyethylene (
  • EVA ethylene vinyl acetate copolymer
  • PP polypropylene
  • PE heat-fusible film
  • the dry laminating method is excellent in terms of workability.
  • This method generally uses a curable adhesive layer of about 1.0 to 2.5 ⁇ m.
  • the amount of adhesive applied is preferably 3-5 ⁇ m in dry (average) film thickness. It is preferable to adjust to.
  • Hot melt lamination is a method in which a hot melt adhesive is melted and an adhesive layer is applied to a substrate, and the thickness of the adhesive layer can be generally set in a wide range of 1 to 50 ⁇ m.
  • Commonly used base resins for hot melt adhesives include EVA, EEA, polyethylene, butyl rubber, etc., rosin, xylene resin, terpene resin, styrene resin, etc. as tackifiers, wax etc. It is added as an agent.
  • the extrusion laminating method is a method in which a resin melted at a high temperature is coated on a substrate with a die, and the thickness of the resin layer can generally be set in a wide range of 10 to 50 ⁇ m.
  • LDPE low density polyethylene
  • EVA EVA
  • PP polypropylene
  • Ceramic layer In the gas barrier film of the present invention, as described above, when sealing an organic photoelectric conversion element, it is formed of a compound such as an inorganic oxide, nitride, carbide, etc. from the viewpoint of further enhancing gas barrier properties.
  • a ceramic layer can be provided.
  • SiO x SiO x , Al 2 O 3 , In 2 O 3 , TiO x , ITO (tin / indium oxide), AlN, Si 3 N 4 , SiO x N, TiO x N, SiC, or the like. be able to.
  • the ceramic layer may be laminated by a known method such as a sol-gel method, a vapor deposition method, CVD, PVD, or a sputtering method.
  • it can be formed by the same method as the second barrier layer using polysilazane.
  • it can be formed by applying a composition containing polysilazane to form a polysilazane film and then converting it to ceramic.
  • the ceramic layer according to the present invention can be obtained by selecting conditions such as an organometallic compound, decomposition gas, decomposition temperature, input power, and the like as raw materials (also referred to as raw materials) in an atmospheric pressure plasma method. It is possible to make different compositions such as metal oxides mainly composed of silicon, and mixtures (metal oxynitrides, metal oxide halides, etc.) with metal carbides, metal nitrides, metal sulfides, metal halides, etc. .
  • silicon oxide is generated.
  • silazane or the like is used as a raw material compound, silicon oxynitride is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
  • a raw material for forming such a ceramic layer as long as it is a silicon compound, it may be in a gas, liquid, or solid state at normal temperature and pressure.
  • gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation.
  • a solvent an organic solvent such as methanol, ethanol, n-hexane or a mixed solvent thereof can be used. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
  • silicon compounds include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetrat-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, Diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane Bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide
  • the decomposition gas for decomposing the raw material gas containing silicon to obtain the ceramic layer includes hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, and nitrous oxide gas. Nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, carbon disulfide, chlorine gas and the like.
  • a ceramic layer containing silicon oxide, nitride, carbide or the like can be obtained by appropriately selecting a source gas containing silicon and a decomposition gas.
  • these reactive gases are mixed mainly with a discharge gas that tends to be in a plasma state, and the gas is sent to a plasma discharge generator.
  • a discharge gas nitrogen gas and / or 18th group atom of the periodic table, specifically, helium, neon, argon, krypton, xenon, radon, etc. are used. Among these, nitrogen, helium, and argon are preferably used.
  • the film is formed by mixing the discharge gas and the reactive gas and supplying them as a thin film forming (mixed) gas to an atmospheric pressure plasma discharge generator (plasma generator).
  • plasma generator atmospheric pressure plasma discharge generator
  • the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained, the reactive gas is supplied with the ratio of the discharge gas being 50% or more with respect to the entire mixed gas.
  • the above-mentioned organosilicon compound is further combined with oxygen gas or nitrogen gas at a predetermined ratio, and at least one of O atoms and N atoms is combined.
  • a ceramic layer mainly containing silicon oxide according to the present invention containing Si atoms can be obtained.
  • the thickness of the ceramic layer according to the present invention is preferably in the range of 10 to 2000 nm in consideration of gas barrier properties and light transmittance, but is also well-balanced in consideration of flexibility. In order to exhibit excellent performance, the thickness is preferably 10 to 200 nm.
  • each layer (component layer) of the organic photoelectric conversion element material constituting the organic photoelectric conversion element will be described.
  • the electric power generation layer (The layer which mixed the p-type semiconductor and the n-type semiconductor, the bulk heterojunction layer, and i layer) sandwiched between the anode and the cathode at least 1 is provided. Any element that has more than one layer and generates current when irradiated with light may be used.
  • anode / power generation layer / cathode ii) anode / hole transport layer / power generation layer / cathode
  • anode / hole transport layer / power generation layer / electron transport layer / cathode iii) anode / hole transport layer / power generation layer / electron transport layer / cathode
  • anode / hole transport layer / P-type semiconductor layer / power generation layer / n-type semiconductor layer / electron transport layer / cathode v) anode / hole transport layer / first light emitting layer / electron transport layer / intermediate electrode / hole transport layer / second light emitting layer
  • the power generation layer needs to contain a p-type semiconductor material capable of transporting holes and an n-type semiconductor material capable of transporting electrons, which are substantially two layers and heterojunction. Or a bulk heterojunction that is mixed in one layer may be formed, but a bulk heterojunction configuration is preferable because of higher photoelectric conversion efficiency
  • the efficiency of taking out holes and electrons to the anode / cathode can be increased by sandwiching the power generation layer between the hole transport layer and the electron transport layer. Therefore, the structure having them ((ii), ( iii)) is preferred. Further, in order to improve the rectification of holes and electrons (selection of carrier extraction), the power generation layer itself is sandwiched between layers of a p-type semiconductor material and a single n-type semiconductor material as shown in (iv). A configuration (also referred to as a pin configuration) may be used. Moreover, in order to improve the utilization efficiency of sunlight, the tandem configuration (configuration (v)) in which sunlight of different wavelengths is absorbed by each power generation layer may be employed.
  • a hole transport layer 14 and an electron transport are respectively formed on a pair of comb-like electrodes.
  • a back contact type organic photoelectric conversion element in which the layer 16 is formed and the photoelectric conversion unit 15 is disposed thereon may be configured.
  • FIG. 3 is a cross-sectional view showing an example of a solar cell made of a bulk heterojunction type organic photoelectric conversion element.
  • the bulk heterojunction type organic photoelectric conversion element 10 includes a transparent electrode 12, a hole transport layer 17, a power generation layer 14 of a bulk heterojunction layer, an electron transport layer 18, and a counter electrode 13 in order on one surface of a substrate 11. Are stacked.
  • the substrate 11 is a member that holds the transparent electrode 12, the power generation layer 14, and the counter electrode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member.
  • the substrate 11 for example, a glass substrate or a resin substrate is used.
  • the substrate 11 is not essential.
  • the bulk heterojunction type organic photoelectric conversion element 10 may be configured by forming the transparent electrode 12 and the counter electrode 13 on both surfaces of the power generation layer 14.
  • the power generation layer 14 is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material functions relatively as an electron donor (donor)
  • the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • FIG. 3 light incident from the transparent electrode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the power generation layer 14, and electrons move from the electron donor to the electron acceptor.
  • a hole-electron pair charge separation state
  • the generated electric charge is caused by an internal electric field, for example, when the work functions of the transparent electrode 12 and the counter electrode 13 are different, the electrons pass between the electron acceptors due to the potential difference between the transparent electrode 12 and the counter electrode 13, and the holes are The photocurrent is detected by passing between the donors and being carried to different electrodes. For example, when the work function of the transparent electrode 12 is larger than the work function of the counter electrode 13, electrons are transported to the transparent electrode 12 and holes are transported to the counter electrode 13. If the magnitude of the work function is reversed, electrons and holes are transported in the opposite direction. In addition, by applying a potential between the transparent electrode 12 and the counter electrode 13, the transport direction of electrons and holes can be controlled.
  • a hole blocking layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smooth layer may be included.
  • a more preferable configuration is the configuration shown in FIG. 4 in which the power generation layer 14 has a so-called three-layer configuration of pin.
  • a normal bulk heterojunction layer is a single i layer in which a p-type semiconductor material and an n-type semiconductor layer are mixed.
  • a p-layer 14p made of a single p-type semiconductor material and an n-layer 14n made of a single n-type semiconductor material.
  • FIG. 5 is a cross-sectional view showing an example of a solar cell made of an organic photoelectric conversion element having a tandem bulk heterojunction layer.
  • the transparent electrode 12 and the first power generation layer 14 ′ are sequentially stacked on the substrate 11, the charge recombination layer 15 is stacked, the second power generation layer 16, and then the counter electrode 13 are stacked.
  • the second power generation layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first power generation layer 14 ′ or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum.
  • both the first power generation layer 14 'and the second power generation layer 16 may have the above-described three-layer structure of pin.
  • Organic photoelectric conversion element material P-type semiconductor material
  • examples of the p-type semiconductor material used for the power generation layer include various condensed polycyclic aromatic low molecular compounds, conjugated polymers, and oligomers.
  • condensed polycyclic aromatic low-molecular compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zeslen, Compounds such as heptazethrene, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bis (ethylenedithio) tetrathiafur Examples include valene (BEDT-TTF) -perchloric acid complex, and derivatives and precursors thereof.
  • Examples of the derivative having the above condensed polycycle include WO 03/16599, WO 03/28125, US Pat. No. 6,690,029, JP-A 2004-107216.
  • conjugated polymer examples include polythiophene such as poly-3-hexylthiophene (P3HT) and oligomers thereof, or a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, a polythiophene-thienothiophene copolymer described in p328, a polythiophene-diketopyrrolopyrrole copolymer described in International Publication No. 2008/000664, a polythiophene-thiazolothiazole copolymer described in Adv Mater, 2007 p4160, Nature Mat. , Vol.
  • polypyrrole and its oligomer polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as ⁇ -conjugated polymers such as polysilane and polygermane.
  • oligomeric materials not polymer materials, include thiophene hexamer ⁇ -seccithiophene ⁇ , ⁇ -dihexyl- ⁇ -sexualthiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3 Oligomers such as -butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • the electron transport layer is formed by coating on the power generation layer, there is a problem that the electron transport layer solution dissolves the power generation layer. Therefore, a material that can be insolubilized after coating by a solution process may be used. .
  • Such materials include materials that can be insolubilized by polymerizing the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or by applying energy such as heat as described in US Patent Application Publication No. 2003/136964, Japanese Patent Application Laid-Open No. 2008-16834, etc., the soluble substituent reacts to insolubilize (pigmentation) ) Materials can be mentioned.
  • the n-type semiconductor material used for the bulk heterojunction layer is not particularly limited. Fluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide and other aromatic carboxylic acid anhydrides and imidized compounds thereof Examples thereof include polymer compounds.
  • fullerene derivatives that can perform charge separation with various p-type semiconductor materials at high speed (up to 50 fs) and efficiently are preferable.
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc.
  • PCBM [6,6] -phenyl C61-butyric acid methyl ester
  • PCBnB [6,6] -phenyl C61-butyric acid-n-butyl ester
  • PCBiB [6,6] -phenyl C61-buty Rick acid-isobutyl ester
  • PCBH [6,6] -phenyl C61-butyric acid-n-hexyl ester
  • fullerene derivative having a substituent and having improved solubility such as fullerene having an ether group.
  • the organic photoelectric conversion element 10 can more efficiently extract charges generated in the bulk heterojunction layer, it is preferable to have a hole transport layer 17 between the bulk heterojunction layer and the anode. .
  • the hole transport layer 17 PEDOT such as product name BaytronP manufactured by Stark Vitec Co., polyaniline and its doped material, cyan compounds described in International Publication No. 2006/019270, and the like can be used. it can.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the anode side. It has an electronic block function.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • triarylamine compounds described in JP-A-5-271166 metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used.
  • a layer made of a single p-type semiconductor material used for the bulk heterojunction layer can also be used.
  • the means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming the coating film in the lower layer before forming the bulk heterojunction layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
  • the organic photoelectric conversion element 10 preferably has an electron transport layer 18 between the bulk heterojunction layer and the cathode, since it is possible to more efficiently extract charges generated in the bulk heterojunction layer.
  • octaazaporphyrin and a p-type semiconductor perfluoro can be used as the electron transport layer 18.
  • a HOMO of a p-type semiconductor material used for a bulk heterojunction layer is given a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the cathode side.
  • Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function.
  • Such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • a layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used.
  • the organic photoelectric conversion device may have various intermediate layers in the device for the purpose of improving energy conversion efficiency and device life.
  • the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • the transparent electrode may be either a cathode or an anode, and can be selected according to the configuration of the organic photoelectric conversion element.
  • the transparent electrode is used as the anode.
  • the transparent electrode when used as an anode, it is preferably an electrode that transmits light of 380 to 800 nm.
  • transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal thin films such as gold, silver and platinum, metal nanowires, and carbon nanotubes can be used.
  • Conductive polymers can also be used. A plurality of these conductive compounds can be combined to form a transparent electrode.
  • the counter electrode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination.
  • a material having a low work function (4 eV or less) metal, alloy, electrically conductive compound, or a mixture thereof as an electrode material is used as the conductive material for the counter electrode.
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of these metals and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the counter electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the (average) film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light coming to the counter electrode side is reflected and reflected to the first electrode side, and this light can be reused and is absorbed again by the photoelectric conversion layer, and more photoelectric conversion efficiency Is preferable.
  • the counter electrode 13 may be a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon nanoparticle, nanowire, or nanostructure. If it is a thing, a transparent and highly conductive counter electrode can be formed by the apply
  • a conductive material suitable for the counter electrode such as aluminum and aluminum alloy, silver and silver compound, and the like is manufactured with a thin (average) film thickness of about 1 to 20 nm.
  • a light-transmitting counter electrode can be obtained by providing a film of the conductive light-transmitting material mentioned in the description of the transparent electrode.
  • the material of the intermediate electrode required in the case of the tandem configuration as described in the above (v) (or FIG. 5) is preferably a layer using a compound having both transparency and conductivity.
  • Materials used for transparent electrodes transparent metal oxides such as ITO, AZO, FTO and titanium oxide, very thin metal layers such as Ag, Al and Au, or layers containing nanoparticles / nanowires, PEDOT: PSS,
  • a conductive polymer material such as polyaniline
  • conductive fibers In the organic photoelectric conversion element, conductive fibers can be used. As the conductive fibers, organic fibers or inorganic fibers coated with metal, conductive metal oxide fibers, metal nanowires, carbon fibers, carbon nanotubes, or the like can be used. Although possible, metal nanowires are preferred.
  • a metal nanowire means a linear structure having a metal element as a main component.
  • the metal nanowire in the present invention means a linear structure having a diameter of nm size.
  • the metal nanowire according to the present invention preferably has an average length of 3 ⁇ m or more in order to form a long conductive path with a single metal nanowire and to exhibit appropriate light scattering properties.
  • the thickness is preferably 3 to 500 ⁇ m, particularly preferably 3 to 300 ⁇ m.
  • the relative standard deviation of the length is preferably 40% or less.
  • an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint.
  • the average diameter of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
  • the relative standard deviation of the diameter is preferably 20% or less.
  • the metal composition of the metal nanowire is not particularly limited, and can be composed of one or more metals of a noble metal element and a base metal element, but noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity. In order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable to include silver and at least one metal belonging to a noble metal other than silver. When the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.
  • the means for producing the metal nanowire there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction
  • the metal nanowires come into contact with each other to form a three-dimensional conductive network, exhibiting high conductivity, and allowing light to pass through the window of the conductive network where no metal nanowire exists.
  • the power generation from the organic power generation layer can be efficiently performed by the scattering effect of the metal nanowires. If a metal nanowire is installed in the 1st electrode at the side close
  • the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • the optical functional layer for example, a light condensing layer such as an antireflection film or a microlens array, a light diffusion layer that can scatter the light reflected by the cathode and enter the power generation layer again may be provided. .
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed so as to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and colored, and if it is too large, the thickness becomes too thick.
  • the light scattering layer examples include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed, and a transport layer / electrode include a vapor deposition method and a coating method (including a cast method and a spin coat method).
  • examples of the method for forming the bulk heterojunction layer include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency.
  • the coating method is also excellent in production speed.
  • the coating method used in this case is not limited, and examples thereof include spin coating, casting from a solution, dip coating, blade coating, wire bar coating, gravure coating, and spray coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized, and the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
  • the power generation layer (bulk heterojunction layer) 14 may be composed of a single layer in which an electron acceptor and an electron donor are uniformly mixed, but a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. You may comprise. In this case, it can be formed by using a material that can be insolubilized after coating as described above.
  • the electrode can be patterned by a known method such as mask evaporation at the time of vacuum deposition or etching or lift-off.
  • the pattern may be formed by transferring a pattern formed on another substrate.
  • the configuration of the organic photoelectric conversion element and the solar cell has been described as an example of the use of the gas barrier film according to the present invention.
  • the use of the gas barrier film according to the present invention is not limited thereto, and other organic EL elements and the like.
  • the present invention can also be advantageously applied to other electronic devices.
  • Example 1 Preparation of Sample 1 (Gas Barrier Film) >> [Formation of the first barrier layer 1] Transparent resin with a hard coat layer (intermediate layer) by an atmospheric pressure plasma method using an atmospheric pressure plasma film forming apparatus (described in FIG. 3 of JP-A-2008-56967, roll-to-roll atmospheric pressure plasma CVD apparatus) Base material (polyethylene terephthalate (PET) film with clear hard coat layer (CHC) manufactured by Kimoto Co., Ltd.), hard coat layer is composed of UV curable resin mainly composed of acrylic resin, PET thickness 125 ⁇ m, CHC thickness 6 ⁇ m ), A first barrier layer 1 (100 nm) of silicon oxide was formed under the following thin film formation conditions.
  • PET polyethylene terephthalate
  • CHC clear hard coat layer
  • Second Barrier Layer 1 On the first barrier layer 1 formed by the above method, a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) is dried with a wireless bar. The subsequent (average) film thickness was applied to be 0.10 ⁇ m to obtain a coated sample.
  • a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) is dried with a wireless bar.
  • the subsequent (average) film thickness was applied to be 0.10 ⁇ m to obtain a coated sample.
  • Second Barrier Layer 2 a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was dried on the obtained first barrier layer 2 with a wireless bar. The subsequent (average) film thickness was applied to be 0.10 ⁇ m to obtain a coated sample.
  • Modification B The sample subjected to the dehumidification treatment was subjected to a modification treatment under the following conditions.
  • the dew point temperature during the reforming process was -8 ° C.
  • Preparation of Sample 3 [Formation of the first barrier layer 3] Transparent resin base material (polyethylene terephthalate (PET) film with clear hard coat layer (CHC) manufactured by Kimoto Co., Ltd. (PET thickness 125 ⁇ m, CHC thickness 6 ⁇ m)) using plasma CVD apparatus Model PD-270STP manufactured by Samco On top, the first barrier layer 3 was formed under the following thin film formation conditions.
  • PET polyethylene terephthalate
  • CHC clear hard coat layer
  • Second Barrier Layer 3 Subsequently, a second barrier layer 3 subjected to the same treatment as the formation of the second barrier layer 1 was formed on the obtained first barrier layer 3, and a sample 3 of a gas barrier film was produced.
  • a first barrier layer 4 (100 nm) of silicon oxynitride was formed by the same formation method as that of the first barrier layer 1 in the sample 2.
  • the treatment was carried out using a roll electrode type discharge treatment apparatus.
  • a plurality of rod-shaped electrodes facing the roll electrode are installed in parallel to the film transport direction, and gas and electric power are supplied to each electrode part, and processing is appropriately performed so that the coated surface is irradiated with plasma for 20 seconds as follows. went.
  • covers each said electrode of a plasma discharge processing apparatus used what coat
  • the electrode gap after coating was set to 0.5 mm.
  • the metal base material coated with a dielectric has a stainless steel jacket specification having a cooling function by cooling water, and was performed while controlling the electrode temperature by cooling water during discharge.
  • a high frequency power source 100 kHz
  • a high frequency power source 13.56 MHz
  • Discharge gas N 2 gas Reaction gas: 7% of oxygen gas to the total gas
  • Low frequency side power supply power 100 kHz, 6 W / cm 2
  • High frequency side power supply power 13.56 MHz at 10 W / cm 2
  • Plasma treatment time 20 seconds
  • Second Barrier Layer 5 In the formation of the second barrier layer 1 of the sample 1, the first barrier layer was formed in the same manner except that the film thickness of the second barrier layer was 0.06 ⁇ m and the modification process A was changed to the following modification process D. A second barrier layer 5 was formed on the barrier layer 5 to prepare a sample 5 of a gas barrier film.
  • Modification D The sample subjected to the dehumidification treatment was subjected to a modification treatment under the following conditions to form the second barrier layer 5.
  • the dew point temperature during the reforming process was -8 ° C.
  • UV light intensity 2000 mW / cm 2 (365 nm)
  • Distance between sample and light source 30 mm
  • Stage heating temperature 40 ° C
  • Oxygen concentration in the irradiation device 5%
  • UV irradiation time 180 seconds
  • Sample 8 Comparative Example >> As the planarizing film to be laminated on the barrier film described in the example of Japanese Patent Application Laid-Open No. 2008-235165, the coating conditions used for forming the second barrier layer 1 of the sample 1 are applied, and a modification treatment is further performed. Sample 8 was prepared in the same manner except that the heat treatment was carried out at 10 ° C. for 10 minutes. As a result of observing the cross section of the sample 8 by TEM, the presence of the modified region was not confirmed.
  • Vapor deposition device JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd. Constant temperature and humidity oven: Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation cell)
  • a vacuum deposition device JEOL-made vacuum deposition device JEE-400
  • the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet.
  • the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • the cell for evaluation was produced by irradiating with ultraviolet rays.
  • a water vapor barrier evaluation cell was similarly prepared for the gas barrier film that was not subjected to the bending treatment.
  • the obtained sample with both sides sealed was stored at 60 ° C. and 90% RH under high temperature and high humidity, and permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561. The amount of water was calculated.
  • Water content is less than 1 ⁇ 10 ⁇ 4 g / m 2 / day 4: Water content is 1 ⁇ 10 ⁇ 4 g / m 2 / day or more, and less than 1 ⁇ 10 ⁇ 3 g / m 2 / day 3: Water content Amount of 1 ⁇ 10 ⁇ 3 g / m 2 / day or more, less than 1 ⁇ 10 ⁇ 2 g / m 2 / day 2: Moisture content of 1 ⁇ 10 ⁇ 2 g / m 2 / day or more, 1 ⁇ 10 ⁇ 1 Less than g / m 2 / day 1: Water content is 1 ⁇ 10 ⁇ 1 g / m 2 / day or more [Evaluation of bending resistance] After each gas barrier film was bent 100 times at an angle of 180 degrees so that the radius of curvature was 10 mm, the water vapor transmission rate was measured in the same manner as above, and the water vapor transmission before and after the bending treatment was measured. From
  • Deterioration resistance (water vapor permeability after bending test / water vapor permeability before bending test) ⁇ 100 (%) 5: Deterioration resistance is 90% or more 4: Deterioration resistance is 80% or more and less than 90% 3: Deterioration resistance is 60% or more and less than 80% 2: Deterioration resistance is 30% or more and less than 60% 1: Deterioration resistance is less than 30% [Evaluation of cutting processability] After cutting each gas barrier film into B5 size using a disk cutter DC-230 (CADL), each cut end was observed with a magnifying glass, and the total number of cracks on the four sides was confirmed. Cutting suitability was evaluated.
  • CADL disk cutter DC-230
  • the number of cracks generated was 1 or more and 2 or less 3: The number of cracks generated was 3 or more and 5 or less 2: Number of cracks generated However, it is 6 or more and 10 or less. 1: The number of occurrence of cracks is 11 or more.
  • Tables 1 and 2 show the characteristic values and evaluation results of the respective gas barrier films obtained as described above.
  • the gas barrier films 1 to 5 of the present invention are superior to the gas barrier films 6 to 8 of the comparative example in water vapor barrier properties and have bending resistance and cutting processing. It turns out that it is excellent in aptitude.
  • the gas barrier film 5 has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / m 2 / day
  • the gas barrier film 6 has a water vapor transmission rate of 9 ⁇ 10 ⁇ 3 g / m 2 / day
  • the gas barrier film 7 has a water vapor transmission rate.
  • the transmittance was 7 ⁇ 10 ⁇ 3 g / m 2 / day.
  • Example 2 Production of organic photoelectric conversion element >> The gas barrier films 1 to 8 produced in Example 1 were each deposited with a 150 nm thick indium tin oxide (ITO) transparent conductive film (sheet resistance 10 ⁇ / ⁇ ), and were subjected to normal photolithography technology and wet etching. Was used to form a first electrode by patterning to a width of 2 mm. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
  • ITO indium tin oxide
  • Baytron P4083 manufactured by Starck Vitec, which is a conductive polymer, was applied and dried so that the (average) film thickness was 30 nm, and then heat treated at 150 ° C. for 30 minutes to form a hole transport layer. A film was formed.
  • the substrate was brought into a nitrogen chamber and operated in a nitrogen atmosphere.
  • the substrate was heat-treated at 150 ° C. for 10 minutes in a nitrogen atmosphere.
  • 3.0% by mass of chlorobenzene with P3HT manufactured by Prectronics: regioregular poly-3-hexylthiophene
  • PCBM manufactured by Frontier Carbon: 6,6-phenyl-C61-butyric acid methyl ester
  • a liquid mixed at 1: 0.8 was prepared so that the film thickness was 100 nm and the film was filtered (filtered), and allowed to dry at room temperature.
  • a heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer.
  • the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 ⁇ 10 ⁇ 4 Pa or less, and then fluorinated at a deposition rate of 0.01 nm / second.
  • a second electrode was formed.
  • the obtained organic photoelectric conversion element was moved to a nitrogen chamber and sealed using a sealing cap and a UV curable resin, and organic photoelectric conversion elements 1 to 13 having a light receiving portion of 2 ⁇ 2 mm size were produced.
  • Conversion efficiency remaining rate conversion efficiency after acceleration test / initial conversion efficiency ⁇ 100 (%) 5: Conversion efficiency remaining rate is 90% or more 4: Conversion efficiency remaining rate is 70% or more and less than 90% 3: Conversion efficiency remaining rate is 40% or more and less than 70% 2: Conversion efficiency remaining rate is 20% or more, 40 Less than% 1: The conversion efficiency remaining rate is less than 20%.
  • the organic photoelectric conversion elements 1 to 5 of the present invention produced using the gas barrier film of the present invention have a harsher environment than the organic photoelectric conversion elements 6 to 8 of the comparative examples. It can be seen that performance degradation is unlikely to occur even underneath.
  • Example 3 Production of gas barrier film >> [Preparation of Sample 3-1]
  • the resin base material was changed from polyethylene terephthalate to a polyimide heat-resistant film (Neoprim L3430 manufactured by Mitsubishi Gas Chemical Co., Inc., thickness 200 ⁇ m), and UV cured as an intermediate layer (smooth layer).
  • Type acrylic resin (Opster Z7501 made by JSR Co., Ltd.) is cured with ultraviolet rays and applied to 5 ⁇ m, and cured with UV irradiation of 1 J / cm 2 using a high-pressure mercury lamp in an N 2 purge atmosphere.
  • a gas barrier film was prepared in the same manner as Sample 2 described in Example 1 except that the cured film was provided, and then a 100 nm ITO film was formed on the gas barrier unit by sputtering (at room temperature). In order to lower the rate, heat treatment was performed at 220 ° C. for 1 hr in air to prepare Sample 3-1, which is a gas barrier film. When the surface specific resistance of the ITO surface was measured after the heat treatment, it was 20 ⁇ / ⁇ , and it was confirmed that the surface had a low resistance.
  • Sample 3-2 which is a gas barrier film, was prepared in the same manner as in the preparation of Sample 3-1, except that the intermediate layer was formed using the following intermediate layer coating solution.
  • the prepared intermediate layer coating solution was applied so that the film thickness after drying was 4.0 ⁇ m, and then dried at 80 ° C. for 3 minutes. . Further, heat treatment was performed at 120 ° C. for 10 minutes to form the intermediate layer 1.
  • the surface roughness of the obtained intermediate layer 1 was about 20 nm in Rz defined by JIS B 0601.
  • the surface roughness was measured using an AFM (Atomic Force Microscope) SPI3800N DFM manufactured by SII.
  • the measurement range at one time was 80 ⁇ m ⁇ 80 ⁇ m, and the measurement location was changed three times, and the average of the Rt values obtained in each measurement was taken as the measurement value.
  • Sample 3-5 In the preparation of Sample 3-4, the gas barrier film was formed in the same manner except that the intermediate layer 2 was formed in the same manner as the intermediate layer 1 on the surface opposite to the surface on which the intermediate layer 1 was formed. Sample 3-5 was prepared.
  • Sample 3-6 In the preparation of the sample 3-2, instead of the intermediate layer 1, a thermosetting epoxy resin (EPICLON EXA-4710 manufactured by DIC Corporation, 2 phr of a curing agent imidazole (2E4MZ) was added) and the curing conditions were 200. Sample 3-6, which is a gas barrier film, was produced in the same manner except that the intermediate layer 3 at 1 ° C. was used.
  • a thermosetting epoxy resin EPICLON EXA-4710 manufactured by DIC Corporation, 2 phr of a curing agent imidazole (2E4MZ) was added
  • Sample 3-7 In the production of Sample 3-6, the gas barrier film was prepared in the same manner except that the intermediate layer 4 was formed on the surface opposite to the surface on which the intermediate layer 3 was formed. Sample 3-7 was prepared.
  • the surface roughness was measured using an AFM (Atomic Force Microscope) SPI3800N DFM manufactured by SII.
  • the measurement range at one time was 80 ⁇ m ⁇ 80 ⁇ m, and the measurement location was changed three times, and the average of the Rt values obtained in each measurement was taken as the measurement value.
  • Table 4 shows the configuration and characteristic values of Samples 3-1 to 3-7, and Table 5 shows the evaluation results.
  • photoelectric conversion elements 3-1 to 3-7 were produced in the same manner as described in Example 2.
  • the produced photoelectric conversion elements 3-1 to 3-7 were subjected to a temperature and humidity cycle test under conditions conforming to JIS C8938 (1995), and after adjusting the humidity at 60 ° C. and 90% RH for 1000 hours, the photoelectric conversion efficiency was measured and implemented.
  • the degree of conversion efficiency deterioration (durability 2) before and after the temperature and humidity cycle test was evaluated, and the results obtained are shown in Table 6.
  • Example 4 Temperature / humidity cycle test of photoelectric conversion elements 3-1 to 3-7 produced using samples 3-1 to 3-7, which are gas barrier films produced in Example 3, under conditions in accordance with JIS C8938 (1995) After adjusting the humidity at 25 ° C. and 50% RH for 15 hours, the photoelectric conversion efficiency is measured, and the degree of deterioration of the conversion efficiency (durability 3) before and after the temperature and humidity cycle test is the same as the method described in Example 2. The results obtained are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

【課題】高いバリア性能を有し、折り曲げ耐性、平滑性とともに断裁加工適性に優れるガスバリア性フィルムとその製造方法と、それを用いた電子デバイスを提供する。 【解決手段】基材の少なくとも一方の面側にガスバリア層ユニットを有し、該ガスバリア層ユニットは、化学蒸着法で形成された第1のバリア層と、該第1のバリア層上に珪素化合物を塗布して形成された塗膜に改質処理が施された第2のバリア層とを有し、かつ該第1のバリア層と該基材の間に中間層を有することを特徴とするガスバリア性フィルム。

Description

ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
 本発明は、ガスバリア性フィルムと、その製造方法及びガスバリア性フィルムを用いた電子デバイスに関し、より詳しくは、主に電子デバイス等のパッケージ、太陽電池や有機EL素子、液晶等のプラスチック基板といったディスプレイ材料に用いられるガスバリア性フィルム、その製造方法及びガスバリア性フィルムを用いた電子デバイスに関するものである。
 従来、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装用途や、食品、工業用品及び医薬品等の変質を防止するための包装用途で広く用いられている。また、上記包装用途以外にも、液晶表示素子、太陽電池、有機エレクトロルミネッセンス(EL)基板等で使用されている。
 このようなガスバリア性フィルムを製造する方法としては、主には、プラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)によりガスバリア層を形成する方法や、ポリシラザンを主成分とする塗布液を塗布した後、表面処理を施す方法、あるいはそれらを併用する方法が知られている(例えば、特許文献1~3参照。)。
 特許文献1に記載の発明では、高いガスバリア性のための厚膜化とクラックの抑制の両立を、250nm以下の膜厚のポリシラザン膜を湿式法で形成し、次いで真空紫外光を照射することを2回以上繰り返すことによる積層形成方法により達成することが開示されている。
 しかしながら、特許文献1に記載の方法では、より高いガスバリア性を得ようと単に積層を繰り返していくと、屈曲性については必ずしも十分とはいえないという課題が残った。さらに、断裁加工する際に加えられる応力によって、断裁の端部がガラスのように勢いよくフィルムごと割れる現象が発生し、断裁面のクラックから製品として有効な面積が少なくなり、生産性が悪いという問題を抱えていることが新たに判明した。
 また、特許文献2に記載された発明では、樹脂基材上に真空プラズマCVD法で形成されたガスバリア層にポリシラザンを積層塗布し、熱処理によりガスバリア層を補修することにより、更にバリア性能を高める方法が開示されている。しかしながら、有機光電変換素子等のガスバリア層としての機能は不十分であり、現在では、水蒸気透過率としても、1×10-2g/m・dayを大きく下回る様なレベルのガスバリア性を備えたガスバリア層の開発が求められている。加えて、ポリシラザンの熱処理には、160℃で1時間も要するため、その適用範囲が耐熱性に優れる樹脂基材に限定されてしまう難点があった。
 また、特許文献3に記載の発明では、大気圧プラズマCVD法で得られるガスバリア層にポリシラザンを塗布して平滑化したのち、導電膜を製膜する製造方法が開示されている。この方式に関しては、高いバリア性と表面の平滑性との両立は達成できるものの、屈曲時に加わる応力が形成したガスバリア層に集中し、緩和されない応力によりガスバリア層が破壊されてしまい、屈曲性に劣る難点を抱えているのが現状である。
特開2009-255040号公報 特許第3511325号公報 特開2008-235165号公報
 本発明は、上記課題に鑑みなされたものであり、その目的は、高いバリア性能を有し、折り曲げ耐性、平滑性に優れ、かつ断裁加工適性を有するガスバリア性フィルムとその製造方法及びそのガスバリア性フィルムを用いた電子デバイスを提供することにある。
 本発明の上記目的は、以下の構成により達成される。
 1.基材の少なくとも一方の面側にガスバリア層ユニットを有し、該ガスバリア層ユニットは、化学蒸着法で形成された第1のバリア層と、該第1のバリア層上に珪素化合物を塗布して形成された塗膜に改質処理が施された第2のバリア層とを有し、かつ該第1のバリア層と該基材の間に中間層を有するガスバリア性フィルム。
 2.前記化学蒸着法で形成された第1のバリア層が、酸化珪素、酸窒化珪素及び窒化珪素から選ばれる少なくとも1種を有する、前記1に記載のガスバリア性フィルム。
 3.前記第1のバリア層上に形成される前記第2のバリア層が、ポリシラザン含有液を塗布して形成された塗膜に改質処理が施されたもので、前記基材面側に非改質領域を、表層側に改質領域を有する、前記1または2に記載のガスバリア性フィルム。
 4.前記第2のバリア層の表層側に位置する改質領域の厚みが、該第2のバリア層の全膜厚に対し、厚み比率で0.2以上、0.9以下である、前記3に記載のガスバリア性フィルム。
 5.前記化学蒸着法で形成された第1のバリア層が、酸化珪素または酸窒化珪素を有し、該第1のバリア層の弾性率をE1とし、前記第2のバリア層における改質領域の弾性率をE2とし、前記第2のバリア層における非改質領域の弾性率をE3としたときに、E1>E2>E3の関係を満たす、前記3または4に記載のガスバリア性フィルム。
 6.前記3から5のいずれか1項に記載のガスバリア性フィルムを製造するガスバリア性フィルムの製造方法であって、第2のバリア層を形成する際に施される改質処理が、180nm以下の波長成分を有する真空紫外線を照射する処理である、ガスバリア性フィルムの製造方法。
 7.前記1から5のいずれか1項に記載のガスバリア性フィルムを用いる電子デバイス。
 本発明により、バリア層と基材との接着性が向上し、高いバリア性能を有し、折り曲げ耐性、平滑性に優れ、かつ断裁加工適性を有するガスバリア性フィルムとその製造方法及びそのガスバリア性フィルムを用いた電子デバイスを提供することができた。
本発明のガスバリア性フィルムの好ましい層構成の一例を示す概略断面図である。 本発明で使用できるプラズマCVD装置の一例を示す概略断面図である。 バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の構成の一例を示す断面図である。 タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池の構成の一例を示す断面図である。 タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池の構成の他の一例を示す断面図である。
 以下、本発明を実施するための形態について詳細に説明する。
 本発明者は、上記課題に鑑み鋭意検討を行った結果、基材の少なくとも一方の面側にガスバリア層ユニットを有し、該ガスバリア層ユニットは、化学蒸着法で形成された第1のバリア層と、該第1のバリア層上に珪素化合物を塗布して形成された塗膜に改質処理が施された第2のバリア層とを有し、かつ該第1のバリア層と該基材の間に中間層を有することを特徴とするガスバリア性フィルムにより、バリア層と基材との接着性が向上し、さらには高いバリア性能を備え、折り曲げ耐性、平滑性に優れ、かつ断裁加工適性を有するガスバリア性フィルムを実現することができることを見出し、本発明に至った次第である。
 また、本発明の態様としては、基材の少なくとも一方の面側にガスバリア層ユニットを有し、該ガスバリア層ユニットが化学蒸着法で形成された第1のバリア層と、該第1のバリア層上にポリシラザン含有液を塗布して形成された後、改質処理が施された第2のバリア層を有し、かつ該第1のバリア層と前記基材の間に中間層を有し、さらに該第2のバリア層は、基材面側に非改質領域を、表層側に改質領域を有する構成であることが好ましい。これにより、更に、高いバリア性能と、折り曲げ耐性、平滑性に優れ、かつ断裁加工適性を有するガスバリア性フィルムを実現することができる。
 また、本発明に係る化学蒸着法としては、大気圧プラズマCVD法でも良く、真空プラズマCVD法や触媒化学気相堆積法でも良く、適宜選択することができる。更に、本発明に係る化学蒸着法で形成された第1のバリア層は、酸化珪素、酸窒化珪素及び窒化珪素から選ばれる少なくとも1種を有することが好ましい。
 更に、第1のバリア層を化学蒸着法により成膜開始温度が50℃以上で成膜された窒化珪素を主成分とするSiN層上へ、成膜開始温度が170℃以下で形成された窒化珪素を主成分とするSiN層を積層する方法で形成した2層構成とすることが、該バリア層上にポリシラザン含有液を塗布し、改質処理を施した第2のバリア層を形成した際にバリア性能が大幅に向上するため、より好ましい。
 以下、本発明のガスバリア性フィルムの構成を、図を交えて説明する。
 図1は、本発明のガスバリア性フィルムの層構成の一例を示す概略断面図である。
 図1において、本発明のガスバリア性フィルム1は、基材2上に中間層3を有し、該中間層3上に化学蒸着法で形成された第1のバリア層4Bと、その上にポリシラザン含有液を塗布した後改質処理することにより形成された第2のバリア層4Aから構成されるガスバリア層ユニット4を有する構成からなる。
 第2のバリア層4Aは、第1のバリア層4B上に形成した後、上部より改質処理手段L、例えば、180nm以下の波長成分を有する真空紫外線の照射等を用いて改質処理が施されることによって得られる。
 改質処理が施された第2のバリア層4A内では、改質処理手段L側の表層面側では改質が進行し、第1のバリア層4B面側では改質が進まないか、あるいは改質が起こらないこととなり、層内で改質が施された改質領域と、改質がなされていない非改質領域とが形成される。
 本発明において、第2のバリア層4Aに改質処理を施した後、改質が施された改質領域と、改質がなされていない非改質領域とを確認する方法としては、第2のバリア層4Aを深さ方向で、トリミングを行いながら、特性値、例えば、密度、弾性率、組成比率(例えば、SiOxにおけるxの比率)を順次測定を行い、特性値の屈曲点を求め、それを改質領域と非改質領域との界面として求めることができる。更に、最も有効な方法としては、作製したガスバリア性フィルムの断面をミクロトームにより切り出し、得られた超薄切片を透過型電子顕微鏡により観察する。この際、観察時に電子線を照射することにより、改質領域と非改質領域との界面が明確に現れ、その位置を確定することにより、改質領域の厚さと非改質領域の厚さを容易に求めることができる。透過型電子顕微鏡により観察して改質領域を確認する方法については、後述する。
 本発明に係るガスバリア層の好ましい態様においては、化学蒸着法により形成された第1のバリア層4Bと、改質処理が施され非改質領域及び改質領域を有する第2のバリア層4Aとを有する。緻密な第1のバリア層4Bと第2のバリア層4Aの改質領域との間に、非改質領域を存在させる構成とすることにより、特定の層への折り曲げ時の応力集中を抑制でき、折り曲げ耐性が飛躍的に向上することが判明し、本発明に至った次第である。
 更には、本発明に係る第2のバリア層4Aの表面側に形成される改質領域の厚みが、第2のバリア層4Aの全膜厚に対し、0.2以上、0.9以下の膜厚比率であることが好ましく、0.3以上、0.9以下であることがより好ましく、さらには0.4以上、0.8以下であることが好ましい。
 また、本発明に係る化学蒸着法で形成された第1のバリア層4Bは、酸化珪素または酸窒化珪素を有し、第1のバリア層4Bの弾性率をE1とし、第2のバリア層4Aにおける改質領域の弾性率をE2とし、第2のバリア層4Aにおける非改質領域の弾性率をE3としたときに、E1>E2>E3の関係を満たすことが好ましい。
 本発明のガスバリア性フィルムの製造方法においては、好ましくは、第2のバリア層に施す改質処理が、180nm以下の波長成分を有する真空紫外線を照射する処理を有する。
 本発明に係る電子デバイスにおいては、本発明のガスバリア性フィルムを用いる。
 以下、本発明のガスバリア性フィルムの構成要素の詳細について説明する。
 《ガスバリア性フィルム》
 本発明のガスバリア性フィルムでは、基材の少なくとも一方の面側に、ガスバリア層ユニットを有する。
 なお、本発明でいうガスバリア層ユニットとは、化学蒸着法で形成された第1のバリア層と、該第1のバリア層上にポリシラザン含有液を塗布し、改質処理が施された第2のバリア層を有する。該ガスバリア層ユニットを複数のユニットで構成することによりガスバリア性を更に向上させることもできる。この場合、複数のガスバリア層ユニットは、同一であってもあるいは異なるものであってもよい。また本発明においては、基材の両面に、ガスバリア層ユニットを配置させた構成であることが好ましい。この場合にも、基材の両面に形成されるガスバリア層ユニットは、同一であってもあるいは異なるものであってもよい。両面にガスバリア性ユニットが形成されることにより、高温高湿の過酷な条件下での基材フィルム自身の吸脱湿による寸法変化が抑制され、ガスバリア性ユニットへのストレスが軽減し、デバイスの耐久性が向上する。また、耐熱性樹脂を基材に用いる場合、表裏側両面にガスバリア性ユニットを設ける効果が大きいため、好ましい。すなわち、ポリイミドやポリエーテルイミドに代表される耐熱性樹脂は非結晶性のため、結晶性のPETやPENと比較して吸水率は大きな値となり、湿度による基材の寸法変化がより大きくなってしまう。基材の表裏側両面にガスバリア性ユニットを設けることで、高温及び高湿の両方での基材の寸法変化を抑制できる。
 特に、フレキシブルディスプレイ用途として用いる場合、アレイ作製工程でプロセス温度が200℃を超える場合があり、高耐熱基材を用いることが好ましい。さらには、高耐熱基材に加えて、本発明に係る中間層として熱硬化性樹脂を用いることが特に好ましい。
 また、本発明でいう「ガスバリア性」とは、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(水蒸気透過率)(60±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下である場合にガスバリア性があると定義する。また、ガスバリア性フィルムのJIS K 7126-1987に準拠した方法で測定された酸素透過度(酸素透過率)が、1×10-3ml/m・24h・atm以下(1atmとは、1.01325×10Paである)であると好ましい。
 〔第1のバリア層〕
 本発明においては、本発明のガスバリア性フィルムを構成する第1のバリア層が、化学蒸着法で形成されたことを特徴の1つとする。第1のバリア層の存在により、基材からの水分移行を妨げることができ、第2のバリア層を形成する際の改質処理が進行しやすくなる。
 一般に、基材上に機能性薄膜を形成する方法としては、大別して、物理気相成長法及び化学気相成長法(化学蒸着法)が挙げられ、物理的気相成長法は、気相中で物質の表面に物理的手法により、目的とする物質、例えば、炭素膜等の薄膜を堆積する方法であり、これらの方法としては、蒸着(抵抗加熱法、電子ビーム蒸着、分子線エピタキシー)法、イオンプレーティング法、スパッタ法等がある。一方、化学気相成長法(化学蒸着法、Chemical Vapor Deposition)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基板表面或いは気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられるが、本発明においては、いずれも有利に用いることができる。特に限定されるものではないが、製膜速度や処理面積の観点から、プラズマCVD法を適用することが好ましい。化学蒸着法により第1のバリア層を形成すると、ガスバリア性の点で有利である。
 プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られるガスバリア層は、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、金属炭化物、金属窒化物、金属酸化物、金属硫化物、金属ハロゲン化物、またこれらの混合物(金属酸窒化物、金属酸化ハロゲン化物、金属窒化炭化物など)も作り分けることができるため好ましい。
 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素酸化物が生成する。また、亜鉛化合物を原料化合物として用い、分解ガスに二硫化炭素を用いれば、硫化亜鉛が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。
 このような原料としては、典型または遷移金属元素を有していれば、常温常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。又、溶媒によって希釈して使用してもよく、溶媒は、メタノール,エタノール,n-ヘキサンなどの有機溶媒及びこれらの混合溶媒が使用出来る。尚、これらの希釈溶媒は、プラズマ放電処理中において、分子状、原子状に分解されるため、影響は殆ど無視することができる。
 しかし、好ましくは大気圧下0℃~250℃の温度域で蒸気圧を有する化合物であり、さらに好ましくは0℃~250℃の温度域に液体状態を呈する化合物である。これはプラズマ製膜室内が大気圧近傍の圧力であるために、大気圧下で気化できないとプラズマ製膜室内にガスを送り込むことが難しく、また原料化合物が液体の方が、プラズマ製膜室内に送りこむ量を精度良く管理できるためである。なおガスバリア層を製膜するプラスチックフィルムの耐熱性が270℃以下の場合は、プラスチックフィルム耐熱温度からさらに20℃以下の温度で蒸気圧を有する化合物であることが好ましい。
 このような金属化合物としては、特に制限されないが、例えば、ケイ素化合物、チタン化合物、ジルコニウム化合物、アルミニウム化合物、硼素化合物、錫化合物、有機金属化合物などが挙げられる。
 これらのうち、ケイ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。
 チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソポロポキシド、チタンn-ブトキシド、チタンジイソプロポキシド(ビス-2,4-ペンタンジオネート)、チタンジイソプロポキシド(ビス-2,4-エチルアセトアセテート)、チタンジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、チタンアセチルアセトネート、ブチルチタネートダイマー等が挙げられる。
 ジルコニウム化合物としては、ジルコニウムn-プロポキシド、ジルコニウムn-ブトキシド、ジルコニウムt-ブトキシド、ジルコニウムトリ-n-ブトキシドアセチルアセトネート、ジルコニウムジ-n-ブトキシドビスアセチルアセトネート、ジルコニウムアセチルアセトネート、ジルコニウムアセテート、ジルコニウムヘキサフルオロペンタンジオネート等が挙げられる。
 アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムs-ブトキシド、アルミニウムt-ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ-s-ブトキシド等が挙げられる。
 硼素化合物としては、ジボラン、テトラボラン、フッ化硼素、塩化硼素、臭化硼素、ボラン-ジエチルエーテル錯体、ボラン-THF錯体、ボラン-ジメチルスルフィド錯体、三フッ化硼素ジエチルエーテル錯体、トリエチルボラン、トリメトキシボラン、トリエトキシボラン、トリ(イソプロポキシ)ボラン、ボラゾール、トリメチルボラゾール、トリエチルボラゾール、トリイソプロピルボラゾール、等が挙げられる。
 錫化合物としては、テトラエチル錫、テトラメチル錫、二酢酸ジ-n-ブチル錫、テトラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジエチルジエトキシ錫、トリイソプロピルエトキシ錫、ジエチル錫、ジメチル錫、ジイソプロピル錫、ジブチル錫、ジエトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、錫ジブチラート、錫ジアセトアセトナート、エチル錫アセトアセトナート、エトキシ錫アセトアセトナート、ジメチル錫ジアセトアセトナート等、錫水素化合物等、ハロゲン化錫としては、二塩化錫、四塩化錫等が挙げられる。
 また、有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエトキシド、バリウム2,2,6,6-テトラメチルヘプタンジオネート、ベリリウムアセチルアセトナート、ビスマスヘキサフルオロペンタンジオネート、ジメチルカドミウム、カルシウム2,2,6,6-テトラメチルヘプタンジオネート、クロムトリフルオロペンタンジオネート、コバルトアセチルアセトナート、銅ヘキサフルオロペンタンジオネート、マグネシウムヘキサフルオロペンタンジオネート-ジメチルエーテル錯体、ガリウムエトキシド、テトラエトキシゲルマニウム、テトラメトキシゲルマニウム、ハフニウムt-ブドキシド、ハフニウムエトキシド、インジウムアセチルアセトナート、インジウム2,6-ジメチルアミノヘプタンジオネート、フェロセン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジウムアセチルアセトナート、白金ヘキサフルオロペンタンジオネート、トリメチルシクロペンタジエニル白金、ロジウムジカルボニルアセチルアセトナート、ストロンチウム2,2,6,6-テトラメチルヘプタンジオネート、タンタルメトキシド、タンタルトリフルオロエトキシド、テルルエトキシド、タングステンエトキシド、バナジウムトリイソプロポキシドオキシド、マグネシウムヘキサフルオロアセチルアセトナート、亜鉛アセチルアセトナート、ジエチル亜鉛、などが挙げられる。
 また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルオロアルコール、トリフルオロトルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガス、などが挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガスなどの不活性ガスと混合してもよい。
 金属元素を含む原料ガスと、分解ガスを適宜選択することで所望のバリア層を得ることができる。化学蒸着法により形成される第1のバリア層は、透過性の観点から、金属炭化物、金属窒化物、金属酸化物、金属ハロゲン化物、金属硫化物またはこれらの複合化合物であることが好ましい。具体的には、第1のバリア層は、例えば、酸化珪素、酸窒化珪素、窒化珪素、酸化アルミニウムなどから構成され、ガスバリア性及び透明性の点で酸化珪素、酸窒化珪素または窒化珪素からからから選ばれる少なくとも1種を有することが好ましく、酸化珪素または酸窒化珪素からから選ばれる少なくとも1種を有すること好ましい。また、第1のバリア層は実質的にもしくは完全に無機層として形成されているのが望ましい。
 ここで、第1のバリア層の膜厚は、特に制限されないが、50~600nmであること好ましく、100~500nmであることがより好ましい。このような範囲であれば、高いガスバリア性能、折り曲げ耐性、断裁加工適性に優れる。
 以下、プラズマCVD法について具体的に説明する。
 図2は、本発明で使用できるプラズマCVD装置の一例を示す概略断面図である。
 図2において、プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。
 真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。
 真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。
 熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサーと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。
 加熱冷却装置160は、熱媒体の温度を測定し、熱媒体を記憶された設定温度まで加熱又は冷却し、サセプタ105に供給するように構成されている。供給された熱媒体はサセプタ105の内部を流れ、サセプタ105を加熱又は冷却して加熱冷却装置160に戻る。このとき、熱媒体の温度は、設定温度よりも高温又は低温になっており、加熱冷却装置160は熱媒体を設定温度まで加熱又は冷却し、サセプタ105に供給する。かくて冷却媒体はサセプタと加熱冷却装置160の間を循環し、サセプタ105は、供給された設定温度の熱媒体によって加熱又は冷却される。
 真空槽102は真空排気系107に接続されており、このプラズマCVD装置101によって成膜処理を開始する前に、予め真空槽102の内部を真空排気すると共に、熱媒体を加熱して室温から設定温度まで昇温させておき、設定温度の熱媒体をサセプタ105に供給する。サセプタ105は使用開始時には室温であり、設定温度の熱媒体が供給されると、サセプタ105は昇温される。
 一定時間、設定温度の熱媒体を循環させた後、真空槽102内の真空雰囲気を維持しながら真空槽102内に成膜対象の基板110を搬入し、サセプタ105上に配置する。
 カソード電極103のサセプタ105に対面する面には、多数のノズル(孔)が形成されている。
 カソード電極103はガス導入系108に接続されており、ガス導入系108からカソード電極103にCVDガスを導入すると、カソード電極103のノズルから真空雰囲気の真空槽102内にCVDガスが噴出される。
 カソード電極103は高周波電源109に接続されており、サセプタ105と真空槽102とは接地電位に接続されている。
 ガス導入系108から真空槽102内にCVDガスを供給し、加熱冷却装置160から一定温度の熱媒体をサセプタ105に供給しながら高周波電源109を起動し、カソード電極103に高周波電圧を印加すると、導入されたCVDガスのプラズマが形成される。
 プラズマ中で活性化されたCVDガスがサセプタ105上の基板110の表面に到達すると、基板110の表面に薄膜が成長する。
 薄膜成長中は、加熱冷却装置160から一定温度の熱媒体がサセプタ105に供給されており、サセプタ105は、熱媒体によって加熱又は冷却され、一定温度に維持された状態で薄膜が形成される。一般に、薄膜を形成する際の成長温度の下限温度は、薄膜の膜質から決まっており、上限温度は基板110上に既に形成されている薄膜のダメージの許容範囲で決まっている。
 下限温度や上限温度は形成する薄膜の材質や、既に形成されている薄膜の材質等によって異なるが、ハイバリアフィルム等に用いられるSiN膜やSiON膜を形成する場合は、膜質を確保するために下限温度が50℃であり、上限温度は基材の耐熱温度以下である。
 プラズマCVD方法で形成される薄膜の膜質と成膜温度の相関関係と、成膜対象物(基板110)が受けるダメージと成膜温度の相関関係とは予め求めておく。例えば、プラズマCVDプロセス中の基板110の下限温度は50℃、上限温度は250℃。
 更に、カソード電極103に13.56MHz以上の高周波電圧を印加してプラズマを形成した場合、サセプタ105に供給する熱媒体の温度と基板110の温度の関係が予め測定されており、プラズマCVDプロセス中に基板110の温度を、下限温度以上、上限温度以下に維持するために、サセプタ105に供給する熱媒体の温度が求められている。
 例えば、下限温度(ここでは50℃)が記憶され、下限温度以上の温度に温度制御された熱媒体がサセプタ105に供給されるように設定されている。サセプタ105から還流された熱媒体は、加熱又は冷却され、50℃の設定温度の熱媒体がサセプタ105に供給される。例えば、CVDガスとして、シランガスとアンモニアガスと窒素ガスまたは水素ガスの混合ガスが供給され、基板110が、下限温度以上、上限温度以下の温度に維持された状態でSiN膜が形成される。
 プラズマCVD装置101の起動直後は、サセプタ105は室温であり、サセプタ105から加熱冷却装置160に還流された熱媒体の温度は設定温度よりも低い。従って、起動直後は、加熱冷却装置160は還流された熱媒体を加熱して設定温度に昇温させ、サセプタ105に供給することになる。この場合、サセプタ105及び基板110は熱媒体によって加熱、昇温され、基板110は下限温度以上、上限温度以下の範囲に維持される。
 複数枚の基板110に連続して薄膜を形成すると、プラズマから流入する熱によってサセプタ105が昇温する。この場合、サセプタ105から加熱冷却装置160に還流される熱媒体は下限温度(50℃)よりも高温になっているため、加熱冷却装置160は熱媒体を冷却し、設定温度の熱媒体をサセプタ105に供給する。これにより、基板110を下限温度以上、上限温度以下の範囲に維持しながら薄膜を形成することができる。
 このように、加熱冷却装置160は、還流された熱媒体の温度が設定温度よりも低温の場合には熱媒体を加熱し、設定温度よりも高温の場合は熱媒体を冷却し、いずれの場合も設定温度の熱媒体をサセプタに供給しており、その結果、基板110は下限温度以上、上限温度以下の温度範囲が維持される。
 薄膜が所定膜厚に形成されたら、基板110を真空槽102の外部に搬出し、未成膜の基板110を真空槽102内に搬入し、上記と同様に、設定温度の熱媒体を供給しながら薄膜を形成する。
 以上、真空プラズマCVD法による第1のバリア層の形成方法について一例を挙げたが、第1のバリア層の形成方法としては、真空を必要としないプラズマCVD法が好ましく、大気圧プラズマCVD法がさらに好ましい。
 大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、更には通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
 大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
 〈異なる周波数の電界を二つ以上重畳した大気圧プラズマ処理〉
 次に、大気圧プラズマ処理について好ましい形態を説明する。
 大気圧プラズマ処理は、具体的には、国際公開第2007/026545号に記載されるように、放電空間に異なる周波数の電界を2つ以上形成したもので、第1の高周波電界と第2の高周波電界とを重畳した電界を形成する方式を用いることが好ましい。
 具体的には、第1の高周波電界の周波数ω1より第2の高周波電界の周波数ω2が高く、かつ、第1の高周波電界の強さV1と、第2の高周波電界の強さV2と、放電開始電界の強さIVとの関係が、
   V1≧IV>V2 または V1>IV≧V2
を満たし、第2の高周波電界の出力密度が、1W/cm以上であることが好ましい。
 このような放電条件を採用することにより、例えば、窒素ガスのように放電開始電界強度が高い放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を維持でき、高性能な薄膜形成を行うことができる。
 上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度IV(1/2Vp-p)は3.7kV/mm程度であり、従って、上記の関係において、第1の印加電界強度を、V1≧3.7kV/mmとして印加することによって窒素ガスを励起し、プラズマ状態にすることができる。
 ここで、第1電源の周波数としては、200kHz以下が好ましく用いることができる。またこの電界波形としては、連続波でもパルス波でもよい。下限は1kHz程度が望ましい。
 一方、第2電源の周波数としては、800kHz以上が好ましく用いられる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。
 このような2つの電源から高周波電界を形成することは、第1の高周波電界によって高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また第2の高周波電界の高い周波数及び高い出力密度によりプラズマ密度を高くして緻密で良質な薄膜を形成することができる。
 本発明でいう大気圧もしくはその近傍の圧力とは、20kPa~110kPa程度であり、本発明に記載の良好な効果を得るためには、93kPa~104kPaが好ましい。
 また、本発明でいう励起したガスとは、エネルギーを得ることによって、ガス中の分子の少なくとも一部が、今ある状態からより高い状態へ移ることをいい、励起ガス分子、ラジカル化したガス分子、イオン化したガス分子を含むガスがこれに該当する。
 本発明に係る第1のバリア層は、大気圧もしくはその近傍の圧力下で、高周波電界を発生させた放電空間に、珪素を含有する原料ガスを含有するガスを、励起した放電ガスと混合して二次励起ガスを形成し、基材をこの二次励起ガスに晒すことにより無機膜を形成する方法であることが好ましい。
 すなわち、第1ステップとして、対向電極間(放電空間)を、大気圧もしくはその近傍の圧力とし、放電ガスを対向電極間に導入し、高周波電圧を対向電極間に印加して、放電ガスをプラズマ状態とし、続いてプラズマ状態になった放電ガスと原料ガスとを、放電空間外で混合させて、この混合ガス(二次励起ガス)に基材を晒して、基材上に第1のバリア層を形成する。
 〔第2のバリア層〕
 本発明に係る第2のバリア層は、化学蒸着法で形成した第1のバリア層上に珪素化合物を含有する塗布液を用いて積層塗布した後、改質処理することによって形成される。
 珪素化合物の塗布方法としては、任意の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。塗布膜厚は、目的に応じて適切に設定され得る。例えば、塗布膜厚は、乾燥後の厚さが好ましくは1nm~100μm程度、さらに好ましくは10nm~10μm程度、最も好ましくは10nm~1μm程度となるように適宜設定される。
 (珪素化合物)
 本発明に係る珪素化合物としては、珪素化合物を含有する塗布液の調製が可能であれば特に限定はされないが、成膜性、クラック等の欠陥が少ない事、残留有機物の少なさの点で、パーヒドロポリシラザン、オルガノポリシラザン等のポリシラザン;シルセスキオキサン等のポリシロキサン等が好ましい。
 本発明に係る珪素化合物としては、例えば、パーヒドロポリシラザン、オルガノポリシラザン、シルセスキオキサン、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラメトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、1,1-ジメチル-1-シラシクロブタン、トリメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、エチルトリメトキシシラン、ジメチルジビニルシラン、ジメチルエトキシエチニルシラン、ジアセトキシジメチルシラン、ジメトキシメチル-3,3,3-トリフルオロプロピルシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、アリールトリメトキシシラン、エトキシジメチルビニルシラン、アリールアミノトリメトキシシラン、N-メチル-N-トリメチルシリルアセトアミド、3-アミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジアセトキシメチルビニルシラン、メチルトリアセトキシシラン、アリールオキシジメチルビニルシラン、ジエチルビニルシラン、ブチルトリメトキシシラン、3-アミノプロピルジメチルエトキシシラン、テトラビニルシラン、トリアセトキシビニルシラン、テトラアセトキシシラン、3-トリフルオロアセトキシプロピルトリメトキシシラン、ジアリールジメトキシシラン、ブチルジメトキシビニルシラン、トリメチル-3-ビニルチオプロピルシラン、フェニルトリメチルシラン、ジメトキシメチルフェニルシラン、フェニルトリメトキシシラン、3-アクリロキシプロピルジメトキシメチルシラン、3-アクリロキシプロピルトリメトキシシラン、ジメチルイソペンチロキシビニルシラン、2-アリールオキシエチルチオメトキシトリメチルシラン、3-グリシドキシプロピルトリメトキシシラン、3-アリールアミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ジメチルエチキシフェニルシラン、ベンゾイロキシトリメチルシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、ジメチルエトキシ-3-グリシドキシプロピルシラン、ジブトキシジメチルシラン、3-ブチルアミノプロピルトリメチルシラン、3-ジメチルアミノプロピルジエトキシメチルシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、ビス(ブチルアミノ)ジメチルシラン、ジビニルメチルフェニルシラン、ジアセトキシメチルフェニルシラン、ジメチル-p-トリルビニルシラン、p-スチリルトリメトキシシラン、ジエチルメチルフェニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフェニルシラン、デシルメチルジメトキシシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、オクチロキシトリメチルシラン、フェニルトリビニルシラン、テトラアリールオキシシラン、ドデシルトリメチルシラン、ジアリールメチルフェニルシラン、ジフェニルメチルビニルシラン、ジフェニルエトキシメチルシラン、ジアセトキシジフェニルシラン、ジベンジルジメチルシラン、ジアリールジフェニルシラン、オクタデシルトリメチルシラン、メチルオクタデシルジメチルシラン、ドコシルメチルジメチルシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,4-ビス(ジメチルビニルシリル)ベンゼン、1,3-ビス(3-アセトキシプロピル)テトラメチルジシロキサン、1,3,5-トリメチル-1,3,5-トリビニルシクロトリシロキサン、1,3,5-トリス(3,3,3-トリフルオロプロピル)-1,3,5-トリメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラエトキシ-1,3,5,7-テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等を挙げることができる。
 シルセスキオキサンとしては、例えば、Mayaterials製Q8シリーズのOctakis(tetramethylammonium)pentacyclo-octasiloxane-octakis(yloxide)hydrate;Octa(tetramethylammonium)silsesquioxane、Octakis(dimethylsiloxy)octasilsesquioxane、Octa[[3-[(3-ethyl-3-oxetanyl)methoxy]propyl]dimethylsiloxy]octasilsesquioxane;Octaallyloxetane silsesquioxane、Octa[(3-Propylglycidylether)dimethylsiloxy]silsesquioxane;Octakis[[3-(2,3-epoxypropoxy)propyl]dimethylsiloxy]octasilsesquioxane、Octakis[[2-(3,4-epoxycyclohexyl)ethyl]dimethylsiloxy]octasilsesquioxane、Octakis[2-(vinyl)dimethylsiloxy]silsesquioxane;Octakis(dimethylvinylsiloxy)octasilsesquioxane、Octakis[(3-hydroxypropyl)dimethylsiloxy]octasilsesquioxane、Octa[(methacryloylpropyl)dimethylsilyloxy]silsesquioxane、Octakis[(3-methacryloxypropyl)dimethylsiloxy]octasilsesquioxane及び有機基を含まない水素化シルセスキオキサン等が挙げられる。
 特に、中でも無機ケイ素化合物が好ましく、常温で固体である無機ケイ素化合物がより好ましい。パーヒドロポリシラザン、水素化シルセスキオキサン等がより好ましく用いられる。
 「ポリシラザン」とは、珪素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
 フィルム基材を損なわないように塗布するためには、比較的低温でセラミック化してシリカに変性する化合物(低温セラミックス化ポリシラザン)がよく、例えば、特開平8-112879号公報に記載の下記一般式(1)で表される単位からなる主骨格を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R、R及びRは、それぞれ独立に、水素原子、アルキル基(好ましくは炭素原子数1~30、より好ましくは炭素原子数1~20のアルキル基)、アルケニル基(好ましくは、炭素原子数2~20のアルケニル基)、シクロアルキル基(好ましくは炭素原子数3~10のシクロアルキル基)、アリール基(好ましくは炭素原子数6~30のアリール基)、シリル基(好ましくは炭素原子数3~20のシリル基)、アルキルアミノ基(好ましくは炭素原子数1~40、より好ましくは炭素原子数1~20のアルキルアミノ基)またはアルコキシ基(好ましくは炭素原子数1~30のアルコキシ基)を表す。ただし、R、R及びRの少なくとも1つは水素原子であることが好ましい。
 上記R、R及びRにおけるアルキル基は、直鎖または分岐鎖のアルキル基である。炭素原子数1~30のアルキル基としては、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、1,3-ジメチルブチル基、1-イソプロピルプロピル基、1,2-ジメチルブチル基、n-ヘプチル基、1,4-ジメチルペンチル基、3-エチルペンチル基、2-メチル-1-イソプロピルプロピル基、1-エチル-3-メチルブチル基、n-オクチル基、2-エチルヘキシル基、3-メチル-1-イソプロピルブチル基、2-メチル-1-イソプロピル基、1-t-ブチル-2-メチルプロピル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基、イソデシル基、n-ウンデシル基、1-メチルデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基、n-ヘンエイコシル基、n-ドコシル基、n-トリコシル基、n-テトラコシル基、n-ペンタコシル基、n-ヘキサコシル基、n-ヘプタコシル基、n-オクタコシル基、n-トリアコンチル基などが挙げられる。
 炭素原子数2~20のアルケニル基としては、ビニル基、1-プロペニル基、アリル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基などが挙げられる。
 炭素原子数3~10のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基などが挙げられる。
 炭素原子数6~30のアリール基としては、特に制限はないが、例えば、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。
 炭素原子数3~20のシリル基としては、アルキル/アリールシリル基が挙げられ、具体的にはトリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、メチルジフェニルシリル基、t-ブチルジフェニルシリル基等が挙げられる。
 炭素原子数1~40のアルキルアミノ基としては、特に制限はないが、例えば、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、メチル-tert-ブチルアミノ基、ジオクチルアミノ基、ジデシルアミノ基、ジヘキサデシルアミノ基、ジ2-エチルヘキシルアミノ基、ジ2-ヘキシルデシルアミノ基などが挙げられる。
 炭素原子数1~30のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基、エイコシルオキシ基、ヘンエイコシルオキシ基、ドコシルオキシ基、トリコシルオキシ基、テトラコシルオキシ基、ペンタコシルオキシ基、ヘキサコシルオキシ基、ヘプタコシルオキシ基、オクタコシルオキシ基、トリアコンチルオキシ基などが挙げられる。
 本発明では、得られるガスバリア膜としての緻密性の観点からは、R1、、及びRの全てが水素原子である前記パーヒドロポリシラザンが特に好ましい。
 上記一般式(1)で表される単位からなる主骨格を有する化合物は、数平均分子量は100~5万であることが好ましい。数平均分子量はゲル浸透クロマトグラフ(GPC)によって測定することができる。
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
 パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。
 低温でセラミック化するポリシラザンの他の例としては、上記一般式(1)で表される単位からなる主骨格を有するポリシラザンに、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報参照)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報参照)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報参照)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報参照)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報参照)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報参照)等が挙げられる。または、ポリシラザンは、市販品を使用してもよい。
 ポリシラザンを含有する塗布液を調製するのに用いることのできる有機溶媒としては、ポリシラザンと容易に反応するようなアルコール系や水分を含有するものを用いることは好ましくない。従って、具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒や、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。詳しくは、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリコロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの有機溶媒は、ポリシラザンの溶解度や有機溶媒の蒸発速度等の特性にあわせて選択し、複数の有機溶媒を混合してもよい。
 ポリシラザン含有の塗布液中におけるポリシラザン濃度は、目的とする第2のバリア層の膜厚や塗布液のポットライフによっても異なるが、0.2~35質量%程度であることが好ましい。
 ポリシラザン含有の塗布液中には、酸化珪素化合物への転化を促進するため、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製のアクアミカ NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140等が挙げられる。
 (珪素化合物を塗布して形成された塗膜の有機溶媒、水分除去操作)
 ポリシラザン含有の塗布液等により形成された珪素化合物を塗布して形成された塗膜(以下、単に珪素化合物塗膜とする)は、改質処理前または改質処理中に水分が除去されていることが好ましい。そのために、第2のバリア層の製造においては、珪素化合物塗膜中の有機溶媒の除去を目的とする第一工程と、それに続く珪素化合物塗膜中の水分の除去を目的とする第二工程とを含むことが好ましい。改質処理前または改質処理中に水分が除去されることによって、その後の改質処理の効率が向上する。
 第一工程においては、主に有機溶媒を取り除くため、乾燥条件を熱処理等の方法で適宜決めることができ、このときに水分が除去される条件にあってもよい。熱処理温度は迅速処理の観点から高い温度であることが好ましいが、樹脂フィルム基材に対する熱ダメージを考慮し、温度と処理時間を適宜決定することが好ましい。例えば、樹脂基材として、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を用いる場合には、熱処理温度は200℃以下に設定することができる。処理時間は溶媒が除去され、かつ基材への熱ダメージが少なくなるように短時間に設定することが好ましく、熱処理温度が200℃以下であれば30分以内に設定することができる。
 第二工程は、珪素化合物塗膜中の水分を取り除くための工程で、水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-8℃(温度25℃/湿度10%)以下、さらに好ましい露点温度は-31℃(温度25℃/湿度1%)以下であり、維持される時間は第2のバリア層の膜厚によって適宜設定することが好ましい。第2のバリア層の膜厚が1.0μm以下の条件においては、露点温度は-8℃以下で、維持される時間は5分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上であり、-40℃以上であることが好ましい。第2のバリア層の膜厚が1.0μm以下の条件においては、露点温度は-8℃以下で、維持される時間は5分以上であることが好ましい。また、水分を取り除きやすくするため、減圧乾燥してもよい。減圧乾燥における圧力は常圧~0.1MPaを選ぶことができる。
 第一工程の条件に対する第二工程の好ましい条件としては、例えば、第一工程において温度60~150℃、処理時間1分~30分間で溶媒を除去したときには、第二工程の露点は4℃以下で、処理時間は5分~120分により水分を除去する条件を選ぶことができる。第一工程と第二工程の区分は露点の変化で区別することができ、工程環境の露点の差が10℃以上変わることで区分ができる。
 珪素化合物塗膜は、第二工程により水分が取り除かれた後も、その状態を維持しながら改質処理を施すことが好ましい。
 (珪素化合物塗膜の含水量)
 珪素化合物塗膜の含水率は、以下に示す分析方法に従って測定することができる。
 ヘッドスペース-ガスクロマトグラフ/質量分析法
 装置:HP6890GC/HP5973MSD
 オーブン:40℃(2min)、その後、10℃/minの速度で150℃まで昇温
 カラム:DB-624(0.25mmid×30m)
 注入口:230℃
 検出器:SIM m/z=18
 HS条件:190℃・30min
 珪素化合物塗膜中の含水率は、上記の分析方法により得られる含水量(g)から、第2のバリア層の体積(L)で除した値として定義され、第二工程により水分が取り除かれた状態においては、好ましくは0.1%(g/L)以下であり、さらに好ましい含水率は、0.01%(g/L)以下(検出限界以下)である。
 本発明においては、改質処理前、あるいは改質処理中に水分を除去することが、シラノールに転化した第2のバリア層の脱水反応を促進する観点から好ましい形態である。
 〔第2のバリア層の改質処理〕
 本発明における改質処理とは、珪素化合物の酸化ケイ素または酸化窒化珪素への転化反応を指し、具体的には本発明のガスバリア性フィルムが全体としてガスバリア性(水蒸気透過率が、1×10-3g/(m・24h)以下)を発現するに貢献できるレベルの無機薄膜を形成する処理をいう。
 珪素化合物の酸化ケイ素または酸化窒化珪素への転化反応は、第2のバリア層の転化反応に基づく公知の方法を選ぶことができる。珪素化合物の置換反応による酸化ケイ素膜または酸化窒化珪素層の形成には450℃以上の高温が必要であり、プラスチック等のフレキシブル基板においては、適応が難しい。
 従って、本発明のガスバリア性フィルムを作製に際しては、プラスチック基板への適応という観点から、より低温で、転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。
 (プラズマ処理)
 本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは前述の大気圧プラズマ処理等をあげることが出来る。
 (熱処理)
 珪素化合物を含有する塗膜を後述するエキシマ照射処理等と組み合わせて、加熱処理することで、前記改質処理を行うことが出来る。
 加熱処理としては、例えば、ヒートブロック等の発熱体に基板を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターの様な赤外領域の光を用いた方法等が上げられるが特に限定はされない。また、珪素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。
 加熱処理時の塗膜の温度としては、50℃~250℃の範囲に適宜調整することが好ましく、更に好ましくは100℃~200℃の範囲である。
 また、加熱時間としては、1秒~10時間の範囲が好ましく、更に好ましくは、10秒~1時間の範囲が好ましい。
 本発明に於いて、好ましくは珪素化合物を有する塗膜から形成した層(第2のバリア層)自身がガスバリア性(水蒸気透過率が、1×10-3g/(m・24h)以下)を発現しており、かような第2のバリア層を得るための改質手段としては、後述するエキシマ光処理が特に好ましい。
 (紫外線照射処理)
 本発明において、改質処理の方法の1つとして、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸化窒化珪素膜を形成することが可能である。
 この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られるセラミックス膜が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。
 本発明に係る方法では、常用されているいずれの紫外線発生装置を使用することも可能である。
 なお、本発明でいう紫外線とは、一般には、10~400nmの波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)処理以外の紫外線照射処理の場合は、好ましくは210~375nmの紫外線を用いる。
 紫外線の照射は、照射される第2のバリア層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。
 基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように基材-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。
 一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムや、金属等の基板の場合には、より高温での改質処理が可能である。従って、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。
 このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機(株)製)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線を第2のバリア層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから第2のバリア層に当てることが望ましい。
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、第2のバリア層を表面に有する基材(例、シリコンウェハー)を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス(株)製の紫外線焼成炉を使用することができる。また、第2のバリア層を表面に有する基材が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材や第2のバリア層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。
 (真空紫外線照射処理:エキシマ照射処理)
 本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化珪素膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、上述したように熱処理を併用することが好ましく、その際の熱処理条件の詳細は上述したとおりである。
 これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。
 Xe、Kr、Ar、Ne等の希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には
  e+Xe→e+Xe
  Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
 エキシマ発光を得るには、誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる、雷に似た非常に細いmicro dischargeと呼ばれる放電で、micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。このmicro dischargeが管壁全体に広がり、生成・消滅を繰り返している放電である。このため肉眼でも分る光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
 効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外には無電極電界放電でも可能である。
 容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極及びその配置は、基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキがない長寿命のランプが得られる。
 誘電体バリア放電の場合は、micro dischargeが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。このため細い金属線を網状にした電極が用いられる。この電極は光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾン等により損傷しやすい。
 これを防ぐためにはランプの周囲、すなわち照射装置内を窒素等の不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
 二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。従って仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。
 無電極電界放電を用いた場合には、外部電極を網状にする必要はない。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には、通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリア放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
 細管エキシマランプの最大の特徴は、構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。従って、非常に安価な光源を提供できる。
 二重円筒型ランプは、内外管の両端を接続して閉じる加工をしているため、細管ランプに比べ取り扱いや輸送で破損しやすい。細管ランプの管の外径は6~12mm程度で、あまり太いと始動に高い電圧が必要になる。
 放電の形態は、誘電体バリア放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であってもよいが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。
 Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン膜の改質を実現できる。従って、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板等への照射を可能としている。
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を有する。このため、熱の影響を受けやすいとされるポリエチレンテレフタレート等のフレシキブルフィルム材料に適している。
 〔第2のバリア層内における改質領域の確認〕
 図1に示す如く本発明の好ましい態様においては、第2のバリア層4Aは基材2面側に低改質領域(非改質領域)を、また表層側に高改質領域(改質領域)を有するが、改質処理によって形成される改質領域は、様々な方法で確認することができる。改質処理後の第2のバリア層の断面を透過型電子顕微鏡(TEM)により観察することにより確認する方法が最も有効である。
 (断面TEM観察)
 ガスバリア性フィルムを、以下のFIB加工装置により薄片を作製した後、断面TEM観察を行う。このとき試料に電子線を照射し続けると、電子線ダメージを受ける部分とそうでない部分にコントラスト差が現れる。本発明に係る改質領域は、改質処理によって緻密化するために電子線ダメージを受けにくいが、非改質領域では電子線ダメージを受け変質が確認される。このようにして確認できた断面TEM観察により、改質領域と非改質領域の膜厚の算出が可能になる。
 〈FIB加工〉
 装置:SII製SMI2050
 加工イオン:(Ga 30kV)
 試料厚み:100nm~200nm
 〈TEM観察〉
 装置:日本電子製JEM2000FX(加速電圧:200kV)
 電子線照射時間:5秒から60秒
 このようにして見積もる改質領域の膜厚は、第2のバリア層4Aの厚みに対する膜厚比率として、0.2以上、0.9以下であることが好ましい。より好ましくは0.3以上、0.9以下であり、さらに好ましくは0.4以上、0.8以下である。第2のバリア層4Aの総膜厚に対する改質領域の膜厚が、0.2以上であると、第2のバリア層のバリア性能および屈曲性が向上し、0.9以下であると、バリア性能および屈曲性が向上するため好ましい。
 本発明のように、第2のバリア層に改質処理を施すことにより得られるガスバリア層は、第2のバリア層における改質領域の比率を上記で規定する範囲にすることで、応力集中による割れ(クラック)を防ぎ、高いバリア性と応力緩和機能を両立できることができる。特に、改質処理方法として真空紫外処理を採用することにより、真空紫外光で短時間に効率よく表面処理ができるため、本発明の効果が顕著に現れるので好ましい。
 (弾性率測定の方法:ナノインデンテーション)
 本発明のガスバリア性フィルムの好ましい態様においては、化学蒸着法で形成された第1のバリア層4Bが、酸化珪素または酸窒化珪素から構成され、第1のバリア層4Bの弾性率をE1とし、第2のバリア層4Aにおける改質領域の弾性率をE2とし、第2のバリア層4Aにおける非改質領域の弾性率をE3としたときに、E1>E2>E3の関係を満たすことが好ましい。
 上記第1のバリア層、第2のバリア層における改質領域及び非改質領域の弾性率は、従来公知の弾性率測定方法により求めることができ、例えば、オリエンテック社製のバイブロンDDV-2を用いて一定の歪みを一定の周波数(Hz)で掛ける条件下で測定する方法、測定装置としてRSA-II(レオメトリックス社製)を用い、透明基材上に第2のバリア層を形成した後、一定周波数で印加歪を変化させたときに得られる測定値により求める方法、あるいは、ナノインデンション法を適用したナノインデンター、例えば、MTSシステム社製のナノインデンター(Nano Indenter TMXP/DCM)を用いて測定する方法がある。
 本発明に係る極めて薄い各層の弾性率を高い精度で測定できる観点から、ナノインデンターを用いて測定して求める方法が好ましい。
 ここでいう「ナノインデンション法」とは、測定対象物である透明基材上に設けた第2のバリア層に対し、超微小な荷重で先端半径が0.1~1μm程度の三角錐の圧子を押し込んで負荷を付与した後、圧子を戻して除荷し、荷重-変位曲線を作成し、荷重-変位曲線から得られた負荷荷重と押し込み深さより、弾性率(Reduced modulus)を測定する方法である。このナノインデンション法では、超低荷重、例えば、最大荷重20mN、荷重分解能1nNのヘッドアセンブリを用いて、変位分解能として0.01nmの高精度で測定することができる。
 特に、本発明のような、断面方向に異なる弾性率を有する第2のバリア層に関しては、断面部より超微小な三角錐の圧子を押し込んで、断面部における基材側と反対側の弾性率を測定する方法が好ましく、この様な場合には、より精度を高める観点から走査型電子顕微鏡内で作動するナノインデンターも開発されており、それらを適用して求めることもできる。
 上記の弾性率の測定値から、各層の弾性率の関係はE1>E2>E3の関係を満たすことが好ましい。この関係を満たすことで、改質処理側にある改質領域(E2)と第1のバリア層(E1)に、折り曲げ時の応力集中を抑制でき、折り曲げ耐性が飛躍的に向上する。弾性率値としてのE1は第1のバリア層を構成する材質にもよるが、例えば、酸化珪素あるいは酸窒化珪素である場合には、好ましくは10~100GPa、さらに好ましくは20~50GPaであり、上記の関係式を満たす範囲で第2のバリア層のE2、E3を改質処理の条件で任意に調整できる。
 〔第2のバリア層の膜密度〕
 本発明においては、好ましくは第1のバリア層が珪素酸化物、珪素窒化物または酸化窒化珪素化合物を有する膜から形成されており、第2のバリア層の処理表面側の改質領域の膜密度d1と、改質されていない非改質領域の膜密度d2は、以下の方法に従って求めることができる。
 (膜密度分布のX線反射率測定)
 ・X線反射率測定装置:理学電気製薄膜構造評価装置ATX-G
 ・X線源ターゲット:銅(1.2kW)
 ・測定:4結晶モノクロメータを用いてX線反射率曲線を測定し、密度分布プロファイルのモデルを作成、フィッティングを行い、膜厚方向の密度分布を算出。
 本発明における上記膜密度d1とd2との数値の序列は、d1>d2の関係を満たすことが好ましい。
 本発明の好ましい態様に係る第2のバリア層では、改質領域が存在し、さらに、該改質領域は、以下の特性を有する。
 1)本発明に係る第2のバリア層は、その断面の超高解像透過型電子顕微鏡(Transmission Electron Microscope;TEM)による転位線観察において、性質が異なる領域の明確な界面が観察されない。
 一方、性質の異なる領域を蒸着法により積層しようとすると、その性質上必ず界面が存在する。そして界面で起きる微小な不均一が原因で、積層方向における気相分子の堆積時にらせん転位、刃状転位等の転位線が発生し、超高解像TEMにより観察される。
 本発明の好ましい態様に係る第2のバリア層は、塗布膜の改質処理であるため、気相分子の堆積時に発生しやすい転位線を発生させることなく、無界面で性質の異なる領域を形成できると推察される。
 2)本発明の好ましい態様に係る第2のバリア層のうち、改質領域には密度の高い領域が形成されるが、さらに、深さ方向のFT-IR分析から密度の高い領域のSi-O原子間距離を測定すると、微結晶領域が確認され、最も密度の高い領域には結晶化領域が確認される。
 SiOは、通常では、1000℃以上の熱処理で結晶化が確認されるのに対し、本発明に係る第2のバリア層の表面領域SiOは、樹脂基材上で200℃以下の低温処理でも結晶化が達成できる。明確な理由は不明であるが、本発明者らは、ポリシラザンに含まれる3~5の環状構造が、結晶構造を形成するのに有利な原子間距離をとっているためで、通常の1000℃以上での溶解・再配列・結晶化のプロセスが不要で、既にある短距離秩序に改質処理が関与し、少ないエネルギーで秩序化できるためと推察している。特に真空紫外線を照射する処理においては、真空紫外線照射によるSi-OH等の化学結合の切断と、照射空間で生成されるオゾンによる酸化処理とを併用すると効率的な処理ができるために好ましい。
 特に、本発明の好ましい態様における第2のバリア層の改質処理において、改質領域を形成する上で真空紫外線照射による改質処理が最も好ましい。この改質領域が形成される機構は明確にはなっていないが、本発明者は光エネルギーによるシラザン化合物の直接切断と、気相で生成する活性酸素やオゾンによる表面酸化反応が同時に進行し、改質処理の表面側と内側で改質速度差が生じ、その結果、改質領域が形成されるものと推定している。さらに、その改質速度差を積極的に制御するための手段として、気相で生成する活性酸素やオゾンによる表面酸化反応をコントロールすることが挙げられる。すなわち、酸素濃度や処理温度、湿度、照射距離、照射時間等の表面酸化反応に寄与する因子を照射途中で条件変更することで、改質領域の所望の組成と膜厚と密度を得ることができる。特に、酸素濃度を照射途中で条件変更する形態が好ましく、条件変更に伴い酸素濃度を上げることで表面側の窒素含有量を減らし、膜厚を上げることができる。
 上記の改質処理条件として、例えば、第2のバリア層の膜厚が50~1000nmにおいては、真空紫外照度10~200mJ/cm、照射距離0.1~10mm、酸素濃度0~5%、露点温度10~-50℃、温度25~200℃、処理時間0.1~150secから選択できる。温度は好ましくは、50~200℃、より好ましくは、70~200℃である。
 なお、照射強度が高ければ、光子とポリシラザン内の化学結合が衝突する確率が増え、改質反応を短時間化することができる。また、内部まで侵入する光子の数も増加するため改質膜厚も増加および/または膜質の良化(高密度化)が可能である。但し、照射時間を長くしすぎると平面性の劣化やバリア性フィルムの他の材料にダメージを与える場合がある。一般的には、照射強度と照射時間の積で表される積算光量で反応進行具合を考えるが、酸化珪素の様に組成は同一でも、様々な構造形態をとる材料に於いては、照射強度の絶対値が重要になる場合もある。
 従って、本発明では真空紫外線照射工程において、少なくとも1回は100~200mW/cmの最大照射強度を与える改質処理を行うことが好ましい。100mW/cm以上とすることにより、急激に改質効率が劣化することなく、処理時間を短期間にでき、200mW/cm以下とすることにより、ガスバリア性能を効率よく持たせることができ(200mW/cmを超えて照射してもガスバリア性の上昇は鈍化する)、基板へのダメージばかりでなく、ランプやランプユニットのその他の部材へのダメージも抑えることができ、ランプ自体の寿命も長期化できる。
 (表面粗さ:平滑性)
 本発明に係る第2のバリア層の改質処理側の表面の表面粗さ(Ra)は、2nm以下であることが好ましく、さらに好ましくは1nm以下である。表面粗さが上記で規定する範囲にあることで、電子デバイス用の樹脂基材として使用する際に、凹凸が少ない平滑な膜面により光透過効率の向上と、電極間リーク電流の低減によりエネルギー変換効率が向上するので好ましい。本発明に係るガスバリア層の表面粗さ(Ra)は以下の方法で測定することができる。
 〈表面粗さ測定の方法:AFM測定〉
 表面粗さは、AFM(原子間力顕微鏡)、例えば、Digital Instruments社製DI3100で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
 (断裁加工性)
 本発明のガスバリア性フィルムは、断裁加工適性に優れる。すなわち、断裁しても断裁面でのほつれや破断等がなく、有効な面積を稼げる。
 従来のガスバリア性フィルムは、断裁加工する際に、加えられる応力によって、断裁の端部がガラスのように勢いよくフィルムごと割れる現象が発生し、断裁面のクラックから製品として有効な面積が少なくなり、生産性が悪いという問題があった。本発明者は、従来のガスバリア性フィルムが断裁時にガラスのように勢いよく割れる原因を鋭意追究したが、そのメカニズムは明らかにすることはできなかった。しかし、本発明の好ましい態様においては、特に、第2のバリア層の改質処理で、改質領域と非改質領域を有する第2のバリア層を用いることで、断裁加工時の端部にかかる応力を分散し、ガラスのように勢いよく割れる現象を改善できることを見出し、本発明に至った。
 (断裁の方法)
 断裁の方法として、特に限定するところではないが、紫外線レーザー(例えば、波長266nm)、赤外線レーザー、炭酸ガスレーザー等の高エネルギーレーザーによるアブレーション加工で行うことが好ましい。ガスバリア性フィルムは、割れやすい無機薄膜を有しているため、通常のカッターで断裁すると断細部で亀裂が発生することがある。さらには第1のバリア層表面に有機成分を含む保護層を設置することでも、断裁時のヒビ割れを抑制することが可能である。
 〔ガスバリア性フィルムの構成〕
 (基材:基材)
 本発明のガスバリア性フィルムの基材(以下、基材ともいう)としては、ガスバリア性を有するガスバリア層(第1のバリア層+第2のバリア層)を保持することができる有機材料で形成されたものであれば特に限定されるものではない。
 例えば、アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、さらには前記樹脂を2層以上積層して成る樹脂フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等が好ましく用いられ、また、光学的透明性、耐熱性、第1のバリア層、ガスバリア層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムが好ましく用いることができる。その他にも、耐熱基材としてポリイミド等を用いることも好ましい。これは、耐熱基材(ex.Tg>200℃)を用いることにより、デバイス作製工程で200℃以上の温度での加熱が可能となり、デバイスの大面積化やデバイスの動作効率向上のために必要な透明導電層若しくは金属ナノ粒子によるパターン層の低抵抗化が達成可能となる。すなわちデバイスの初期特性が大幅に改善することが可能となるからである。また、基材の厚さは5~500μm程度が好ましく、さらに好ましくは15~250μmである。
 また、本発明に係る基材は、透明であることが好ましい。基材が透明であり、基材上に形成する層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
 また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
 本発明に用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。
 また、本発明に係る基材においては、第1のバリア層を形成する前にコロナ処理してもよい。
 (中間層)
 本発明のガスバリア性フィルムにおいては、基材と第1のバリア層との間に中間層を有していることを特徴の一つとする。
 本発明に係る中間層とは、樹脂を主成分とし、層構成になっていれば特に限定されない。ここで主成分とは、層全体の50質量%以上、好ましくは75質量%以上、より好ましくは100質量%占めることを意味する。中間層が存在することで、第2バリア層形成時の収縮応力を第1バリア層へ集中する事を防ぐことができる。
 また、中間層に用いられる樹脂としては、特に限定されるものではないが、UV硬化性樹脂、熱硬化性樹脂等を用いることができるが、ガスバリア性の向上/層間密着性の向上による耐久性の向上の観点から熱硬化性樹脂を有することが好ましい。中間層に熱硬化性樹脂を用いることで、200℃以上の高温で加熱を行っても、中間層の変色や基材あるいは第1のバリア層との剥離を抑制することが可能となるからである。さらには、200℃以上の高温加熱が可能となることで、第1のバリア層(CVD層)と第2のバリア層(TFB層)の層間密着性が向上し、かつガスバリア性能も向上する。弾性率分析の結果から、高温加熱後の第2のバリア層の改質領域及び非改質領域とも弾性率が高くなっていることから、より緻密な膜に変化し、ガスバリア性が向上すると同時に、第1のバリア層と第2のバリア層の界面での重合反応が進行し、密着性も向上したと推察している。
 中間層に適用可能な熱硬化性樹脂としては、特に限定はされないが、例えば、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂(有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした樹脂等)等が挙げられる。この中でも特にエポキシ樹脂、シリコン樹脂であることが好ましく、エポキシ樹脂であることがより好ましい。
 また、中間層に用いられるUV硬化性樹脂としては、アクリレート系の官能基を有する化合物が好ましく用いられる。アクリレート系の官能基を有する化合物としては、例えば、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール樹脂等の多官能(メタ)アクリレートのオリゴマー、プレポリマー等が挙げられる。
 また、中間層としては、例えば、アンカーコート層、平滑層、ブリードアウト層、ハードコート層等の名称で一般的に使用されるものを挙げることができる。しかしながら、中間層とはその名称に拘泥することなく、バインダー樹脂(例えば、熱硬化性樹脂、UV硬化性樹脂)を含む層であればよい。
 〈アンカーコート層〉
 本発明に係る基材表面には、第1のバリア層との密着性の向上を目的として、中間層としてアンカーコート層を形成することが好ましい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、及びアルキルチタネート等を、1または2種以上併せて使用することができる。この中でも特にエポキシ樹脂が好ましい。これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5g/m(乾燥状態)程度が好ましい。
 〈平滑層〉
 さらに、本発明に係る基材表面には、中間層として平滑層を設けることが望ましい。特に表面が、JIS K 5600-5-4で規定する鉛筆硬度がH以上であることが好ましい。また、中間層の表面粗さがJIS B 0601:2001で規定される最大断面高さRt(p)で10nm<Rt(p)<30nmとなる様な平滑層を設けることが好ましい。
 平滑層の膜厚は制限されないが、樹脂基材表面の凹凸を覆って平滑な表面を形成しかつフレキシビリティを確保するには、平滑層の膜厚は0.1μm~10μmが好ましく、0.5μm~6μmが更に好ましい範囲である。
 特に、本発明の様に化学蒸着による第1バリア層上に珪素化合物の塗布膜を改質して第2バリア層を形成する場合、第2バリア層は、第1バリア層の欠陥補修や表面の平滑化と言うメリットを持つ反面、塗布膜から高いガスバリア性を持つ高密度無機膜への改質過程で収縮を伴うことにより、第1バリア層がその応力を受ける事で欠陥が発生してしまうことがあり、本発明の構成を十分生かしきれない場合があるというデメリットも存在する。
 本発明者らが鋭意検討した結果、第1バリア層下部の層が表面最大高低差Rtが10nm<Rt<30nmとなる様な平滑層を設けることで、第2バリア層形成時の収縮応力を第1バリア層へ集中する事を防ぎ、本発明の構成の効果を最も発揮できることが分かった。
 さらに、平滑層の無機成分が高い方が、第1バリア層と基材の密着性の観点及び平滑層の硬度アップの観点で好ましく、平滑層全体の組成比率で10質量%以上とすることが好ましく、20質量%以上が更に好ましい。平滑層は有機樹脂バインダー(感光性樹脂)と無機粒子の混合の様な有機無機ハイブリッド組成でも良いし、ゾルゲル法等で形成可能な無機層であっても良い。
 平滑層は、また、突起等が存在する透明樹脂フィルム基材の粗面を平坦化し、あるいは、透明樹脂フィルム基材に存在する突起により、透明の第1のバリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には熱硬化性樹脂や感光性樹脂を硬化させて形成される。
 平滑層の形成に用いる熱硬化性樹脂としては、特に限定はされないが、例えば、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂(有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした樹脂等)等が挙げられる。この中でもエポキシ樹脂、シリコン樹脂が好ましく、特にエポキシ樹脂であることが好ましい。
 また平滑層の形成に用いる感光性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
 光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2-エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-ヘキサジオールジアクリレート、1,3-プロパンジオールアクリレート、1,4-シクロヘキサンジオールジアクリレート、2,2-ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4-ブタンジオールトリアクリレート、2,2,4-トリメチル-1,3-ペンタジオールジアクリレート、ジアリルフマレート、1,10-デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、及び、上記のアクリレートをメタクリレートに換えたもの、γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいは、その他の化合物との混合物として使用することができる。
 感光性樹脂の組成物としては、光重合開始剤を含有する。
 光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4-ビス(ジメチルアミン)ベンゾフェノン、4,4-ビス(ジエチルアミン)ベンゾフェノン、α-アミノ・アセトフェノン、4,4-ジクロロベンゾフェノン、4-ベンゾイル-4-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-tert-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-tert-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンジルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、2-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル[4-(メチルチオ)フェニル]-2-モノフォリノ-1-プロパン、2-ベンジル-2-ジメチルアミノ-1-(4-モノフォリノフェニル)-ブタノン-1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n-フェニルチオアクリドン、4,4-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。
 平滑層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。
 平滑層の形成では、上述の感光性樹脂に、必要に応じて、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
 感光性樹脂を溶媒に溶解または分散させた塗布液を用いて平滑層を形成する際に使用する溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α-もしくはβ-テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン、ジエチルケトン、2-ヘプタノン、4-ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2-メトキシエチルアセテート、シクロヘキシルアセテート、2-エトキシエチルアセテート、3-メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3-エトキシプロピオン酸エチル、安息香酸メチル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等を挙げることができる。
 前記のように、平滑層の平滑性は、JIS B 0601で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。10nmよりも小さい場合には、後述のケイ素化合物を塗布する段階で、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合に、塗布性が損なわれる場合がある。また、30nmよりも大きい場合には、ケイ素化合物を塗布した後の、凹凸を平滑化することが難しくなる場合がある。
 表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。具体的には、一回の測定範囲は80μm×80μmとし、測定箇所を変えて三回の測定を行う。
 平滑層の好ましい態様のひとつは、添加剤として、例えば、平滑層として光感光性樹脂を用いる場合、感光性樹脂中に表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)を含むものである。ここで、光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基等を挙げることができる。また感光性樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する不飽和有機化合物を含むものであってもよい。また感光性樹脂としては、このような反応性シリカ粒子や重合性不飽和基を有する不飽和有機化合物に適宜汎用の希釈溶剤を混合することによって固形分を調整したものを用いることができる。
 ここで、反応性シリカ粒子の平均粒子径としては、0.001~0.1μmの平均粒子径であることが好ましい。平均粒子径をこのような範囲にすることにより、後述する平均粒子径1~10μmの無機粒子からなるマット剤と組合せて用いることによって、本発明の効果である防眩性と解像性とをバランスよく満たす光学特性と、ハードコート性とを兼ね備えた平滑層を形成し易くなる。なお、このような効果をより得易くする観点からは、さらに平均粒子径として0.001~0.01μmのものを用いることがより好ましい。
 本発明に用いられる平滑層中には、上述の様な無機粒子を質量比として10%以上含有することが好ましい。更に20%以上含有することが好ましい。10%以上添加することで、ガスバリア層との密着性が向上する。
 本発明では、重合性不飽和基修飾加水分解性シランが、加水分解性シリル基の加水分解反応によって、シリカ粒子との間に、シリルオキシ基を生成して化学的に結合しているようなものを、反応性シリカ粒子として用いることができる。
 加水分解性シリル基としては、例えば、アルコキシリル基、アセトキシリル基等のカルボキシリレートシリル基、クロシリル基等のハロゲン化シリル基、アミノシリル基、オキシムシリル基、ヒドリドシリル基等が挙げられる。
 重合性不飽和基としては、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニイル基、シンナモイル基、マレート基、アクリルアミド基等が挙げられる。
 本発明において、平滑層の厚さとしては、0.1~10μm、好ましくは1~6μmであることが望ましい。1μm以上にすることにより、平滑層を有するフィルムとしての平滑性を十分なものにし、表面硬度も向上させやすくなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、平滑層を透明高分子フィルムの一方の面にのみ設けた場合における平滑フィルムのカールを抑え易くすることができるようになる。
 〈ブリードアウト防止層〉
 本発明のガスバリア性フィルムにおいては、中間層としてブリードアウト防止層を設けることができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
 また、改質処理を行う際、大きな膜収縮を伴うため、その横方向の変形を抑制しひび割れを防止することが好ましい。そのためには、表面硬度、若しくは弾性率が高い、所謂ハードコート層を設けることができるが、上記のブリードアウト防止層がハードコート層の役割を兼ねることができる。
 ブリードアウト防止層に含ませることが可能な、重合性不飽和基を有する不飽和有機化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。
 ここで、多価不飽和有機化合物としては、例え、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
 また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2-メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
 その他の添加剤として、マット剤を含有してもよい。マット剤としては、平均粒子径が0.1~5μm程度の無機粒子が好ましい。
 このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。
 ここで、無機粒子からなるマット剤は、ハードコート剤の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが望ましい。
 また、ブリードアウト防止層には、ハードコート剤及びマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。特に熱硬化性樹脂を含有させることが好ましい。
 熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。
 また、熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
 また、電離放射線硬化性樹脂としては、光重合性プレポリマーもしくは光重合性モノマー等の1種または2種以上を混合した電離放射線硬化塗料に、電離放射線(紫外線または電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。
 また、光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-(4-モルフォリニル)-1-プロパン、α-アシロキシムエステル、チオキサンソン類等が挙げられる。
 以上のようなブリードアウト防止層は、ハードコート剤、マット剤、及び必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、塗布液を基材フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100~400nm、好ましくは200~400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
 本発明におけるブリードアウト防止層の厚さとしては、1~10μm、好ましくは2~7μmであることが望ましい。1μm以上にすることにより、フィルムとしての耐熱性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、平滑層を透明高分子フィルムの一方の面に設けた場合におけるバリアフィルムのカールを抑え易くすることができるようになる。
 《ガスバリア性フィルムの包装形態》
 本発明のガスバリア性フィルムは、連続生産しロール形態に巻き取ることができる(いわゆるロール・トゥ・ロール生産)。その際、ガスバリア層を形成した面に保護シートを貼合して巻き取ることが好ましい。特に、本発明のガスバリア性フィルムを有機薄膜デバイスの封止材として用いる場合、表面に付着したゴミ(例えば、パーティクル)が原因で欠陥となる場合が多く、クリーン度の高い場所で保護シートを貼合してゴミの付着を防止することは非常に有効である。併せて、巻取り時に入るガスバリア層表面への傷の防止に有効である。
 保護シートとしては、特に限定するものではないが、膜厚100μm程度の樹脂基板に弱粘着性の接着層を付与した構成の一般的な「保護シート」、「剥離シート」を用いることができる。
 《ガスバリア性フィルムの特性値の測定方法》
 本発明のガスバリア性フィルムの各特性値は、下記の方法に従って測定することができる。
 〔水蒸気透過率の測定〕
 前述のJIS K 7129(1992年)に記載のB法に従って水蒸気透過率を測定するには、種々の方法が提案されている。例えば、カップ法、乾湿センサー法(Lassy法)、赤外線センサー法(mocon法)が代表として挙げられるが、ガスバリア性が向上するに伴って、これらの方法では測定限界に達する場合があり、以下に示す方法も提案されている。
 〈上記以外の水蒸気透過率測定方法〉
 1.Ca法
 ガスバリア性フィルムに金属Caを蒸着し、該フィルムを透過した水分で金属Caが腐食される現象を利用する方法。腐食面積とそこに到達する時間から水蒸気透過率を算出する。
 2.(株)MORESCOの提案する方法(平成21年12月8日NewsRelease) 大気圧下の試料空間と超高真空中の質量分析計の間で水蒸気の冷却トラップを介して受け渡す方法。
 3.HTO法(米General Atomics社) 三重水素を用いて水蒸気透過率を算出する方法。
 4.A-Star(シンガポール)の提案する方法(国際公開第2005/95924号) 水蒸気または酸素により電気抵抗が変化する材料(例えば、Ca、Mg)をセンサーに用いて、電気抵抗変化とそれに内在する1/f揺らぎ成分から水蒸気透過率を算出する方法。
 本発明のガスバリア性フィルムにおいて、水蒸気透過率の測定方法は特に限定するところではないが、本発明においては水蒸気透過率測定方法として、下記Ca法による測定を行った。
 〈本発明で用いたCa法〉
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 水蒸気バリア性評価用セルの作製
 バリアフィルム試料のガスバリア層面に、真空蒸着装置(日本電子製真空蒸着装置JEE-400)を用い、透明導電膜を付ける前のバリアフィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、屈曲前後のガスバリア性の変化を確認するために、上記屈曲の処理を行わなかったバリアフィルムについても同様に、水蒸気バリア性評価用セルを作製した。
 得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、特開2005-283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。
 なお、バリアフィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてバリアフィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。
 本発明のガスバリア性フィルムの水蒸気透過率は、低いほど好ましいが、例えば、0.001~0.00001g/m・24hであることが好ましく、0.0001~0.00001g/m・24hであることがより好ましい。
 〔酸素透過率の測定〕
 温度23℃、湿度0%RHの条件で、米国、モコン(MOCON)社製の酸素透過率測定装置(機種名、“オキシトラン”(登録商標)(“OXTRAN”2/20))を使用して、JIS K7126(1987年)に記載のB法(等圧法)に基づいて測定する。また、2枚の試験片について測定を各々1回行い、2つの測定値の平均値を酸素透過率の値とする。
 本発明のガスバリア性フィルムの酸素透過率は、低いほど好ましいが、例えば、0.001g/m・24h・atm未満(検出限界以下)であることがより好ましい。
 《電子デバイス》
 本発明のガスバリア性フィルムは、電子デバイスに適用することができる。有機薄膜光電変換素子や有機エレクトロルミネッセンス素子の様な有機薄膜デバイスばかりでなく、製造工程に高温処理が含まれるようなフレキシブルLCDや電子ペーパー等のディスプレイ電子デバイスにも好適に用いることが可能である。
 〔有機光電変換素子〕
 本発明のガスバリア性フィルムは、種々の封止用材料、封止用フィルムとして用いることができ、例えば、有機光電変換素子の封止用フィルムに用いることができる。
 有機光電変換素子に本発明のガスバリア性フィルムを用いる際、本発明のガスバリア性フィルムは透明であるため、このガスバリア性フィルムを基材として用いて、このガスバリア性フィルムの配置側から太陽光の受光を行うように構成できる。即ち、このガスバリア性フィルム上に、例えば、ITO等の透明導電性薄膜を透明電極として設け、有機光電変換素子用樹脂基材を構成することができる。そして、基材上に設けられたITO透明導電膜を陽極としてこの上に多孔質半導体層を設け、さらに金属膜からなる陰極を形成して有機光電変換素子を形成し、この上に別の封止材料を(同じでもよいが)重ねて前記ガスバリア性フィルム基材と周囲を接着、素子を封じ込めることで有機光電変換素子を封止することができ、これにより外気の湿気や酸素等のガスによる有機光電変換素子への影響を封じることができる。
 有機光電変換素子用の樹脂基材は、このようにして形成されたガスバリア性フィルムのガスバリア層上に、透明導電性膜を形成することによって得られる。
 透明導電膜の形成は、真空蒸着法やスパッタリング法等を用いることにより、また、インジウム、スズ等の金属アルコキシド等を用いたゾルゲル法等塗布法によっても製造できる。透明導電膜の(平均)膜厚としては、0.1~1000nmの範囲の透明導電膜が好ましい。
 次いで、本発明のガスバリア性フィルム、またこれに透明導電膜が形成された有機光電変換素子用樹脂基材を用いた有機光電変換素子について説明する。
 〔封止フィルムとその製造方法〕
 本発明において、封止フィルムに、本発明のガスバリア性フィルムを基板として用いることができる。
 本発明のガスバリア性フィルムにおいて、ガスバリア層ユニット上にさらに透明導電膜を形成し、これを陽極としてこの上に、有機光電変換素子を構成する層、陰極となる層とを積層し、この上にさらにもう一つのガスバリア性フィルムを封止フィルムとして、重ね接着することで封止することができる。
 また、特に、樹脂ラミネート(ポリマー膜)された金属箔は、光取り出し側のガスバリア性フィルムとして用いることはできないが、低コストでさらに透湿性の低い封止材料であり光取り出しを意図しない(透明性を要求されない)場合、封止フィルムとして好ましい。
 本発明において、金属箔とは、スパッタや蒸着等で形成された金属薄膜や、導電性ペースト等の流動性電極材料から形成された導電膜と異なり、圧延等で形成された金属の箔またはフィルムを指す。
 金属箔としては、金属の種類に特に限定はなく、例えば銅(Cu)箔、アルミニウム(Al)箔、金(Au)箔、黄銅箔、ニッケル(Ni)箔、チタン(Ti)箔、銅合金箔、ステンレス箔、スズ(Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で特に好ましい金属箔としてはAl箔が挙げられる。
 金属箔の厚さは6~50μmが好ましい。6μm未満の場合は、金属箔に用いる材料によっては使用時にピンホールが空き、必要とするバリア性(透湿度、酸素透過率)が得られなくなる場合がある。50μmを越えた場合は、金属箔に用いる材料によってはコストが高くなったり、有機光電変換素子が厚くなったりフィルムのメリットが少なくなる場合がある。
 樹脂フィルム(ポリマー膜)がラミネートされた金属箔において、樹脂フィルムとしては、機能性包装材料の新展開(株式会社 東レリサーチセンター)に記載の各種材料を使用することが可能であり、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリアミド系樹脂、エチレン-ビニルアルコール共重合体系樹脂、エチレン-酢酸ビニル共重合体系樹脂、アクリロニトリル-ブタジエン共重合体系樹脂、セロハン系樹脂、ビニロン系樹脂、塩化ビニリデン系樹脂等が挙げられる。ポリプロピレン系樹脂、ナイロン系樹脂等の樹脂は、延伸されていてもよく、さらに塩化ビニリデン系樹脂をコートされていてもよい。また、ポリエチレン系樹脂は、低密度あるいは高密度のものも用いることができる。
 後述するが、2つのフィルムの封止方法としては、例えば、一般に使用されるインパルスシーラー熱融着性の樹脂層をラミネートして、インパルスシーラーで融着させ、封止する方法が好ましく、この場合、ガスバリア性フィルム同士の封止は、フィルム(平均)膜厚が300μmを超えると封止作業時のフィルムの取り扱い性が悪化するのとインパルスシーラー等による熱融着が困難となるため(平均)膜厚としては300μm以下が望ましい。
 〔有機光電変換素子の封止〕
 本発明では、本発明のガスバリア層ユニットを有する樹脂フィルム(ガスバリア性フィルム)上に透明導電膜を形成し、作製した有機光電変換素子用樹脂基材上に、有機光電変換素子各層を形成した後、上記封止フィルムを用いて、不活性ガスによりパージされた環境下で、上記封止フィルムで陰極面を覆うようにして、有機光電変換素子を封止することができる。
 不活性ガスとしては、Nの他、He、Ar等の希ガスが好ましく用いられるが、HeとArを混合した希ガスも好ましく、気体中に占める不活性ガスの割合は、90~99.9体積%であることが好ましい。不活性ガスによりパージされた環境下で封止することにより、保存性が改良される。
 また、樹脂フィルム(ポリマー膜)がラミネートされた金属箔を用いて、有機光電変換素子を封止するにあたっては、ラミネートされた樹脂フィルム面ではなく、金属箔上にセラミック層を形成し、このセラミック層面を有機光電変換素子の陰極に貼り合わせることが好ましい。封止フィルムのポリマー膜面を有機光電変換素子の陰極に貼り合わせると、部分的に導通が発生することがある。
 封止フィルムを有機光電変換素子の陰極に貼り合わせる封止方法としては、一般に使用されるインパルスシーラーで融着可能な樹脂フィルム、例えばエチレン酢酸ビニルコポリマー(EVA)やポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム等の熱融着性フィルムを積層して、インパルスシーラーで融着させ封止する方法がある。
 接着方法としてはドライラミネート方式が作業性の面で優れている。この方法は一般には1.0~2.5μm程度の硬化性の接着剤層を使用する。ただし接着剤の塗設量が多すぎる場合には、トンネル、浸み出し、縮緬皺等が発生することがあるため、好ましくは接着剤量を乾燥(平均)膜厚で3~5μmになるように調節することが好ましい。
 ホットメルトラミネーションとは、ホットメルト接着剤を溶融し基材に接着層を塗設する方法であるが、接着剤層の厚さは一般に1~50μmと広い範囲で設定可能な方法である。一般に使用されるホットメルト接着剤のベースレジンとしては、EVA、EEA、ポリエチレン、ブチルラバー等が使用され、ロジン、キシレン樹脂、テルペン系樹脂、スチレン系樹脂等が粘着付与剤として、ワックス等が可塑剤として添加される。
 エクストルージョンラミネート法とは、高温で溶融した樹脂をダイスにより基材上に塗設する方法であり、樹脂層の厚さは一般に10~50μmと広い範囲で設定可能である。
 エクストルージョンラミネートに使用される樹脂としては一般に、LDPE、EVA、PP等が使用される。
 〔セラミック層〕
 本発明のガスバリア性フィルムにおいては、上述のように、有機光電変換素子を封止するにあたって、ガスバリア性を一層高める等の観点から、無機酸化物、窒化物、炭化物、等による化合物により形成されるセラミック層を設けることができる。
 具体的には、SiO、Al、In、TiO、ITO(スズ・インジウム酸化物)、AlN、Si、SiON、TiON、SiC等により形成することができる。
 セラミック層は、ゾルゲル法、蒸着法、CVD、PVD、スパッタリング法、等の公知な手法により積層されていて構わない。
 例えば、ポリシラザンを用いて、第2のバリア層と同様の方法により形成することもできる。この場合、ポリシラザンを含有する組成物を塗布し、ポリシラザン被膜を形成した後、セラミックに転化させることにより形成することができる。
 また、本発明に係るセラミック層は、大気圧プラズマ法において、原料(原材料ともいう。)である有機金属化合物、分解ガス、分解温度、投入電力等の条件を選ぶことで、酸化珪素、また酸化珪素を主体とした金属酸化物、また、金属炭化物、金属窒化物、金属硫化物、金属ハロゲン化物等との混合物(金属酸窒化物、金属酸化ハロゲン化物等)等の組成を作り分けることができる。
 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素酸化物が生成する。また、シラザン等を原料化合物として用いれば、酸化窒化珪素が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。
 このようなセラミック層の形成原料としては、珪素化合物であれば、常温常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。また、溶媒によって希釈して使用してもよく、溶媒は、メタノール、エタノール、n-ヘキサン等の有機溶媒及びこれらの混合溶媒が使用できる。なお、これらの希釈溶媒は、プラズマ放電処理中において、分子状、原子状に分解されるため、影響は殆ど無視することができる。
 このような珪素化合物としては、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。
 また、これら珪素を含む原料ガスを分解してセラミック層を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルオロアルコール、トリフルオロトルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガス等が挙げられる。
 珪素を含む原料ガスと、分解ガスを適宜選択することで、酸化珪素、また、窒化物、炭化物等を含有するセラミック層を得ることができる。
 大気圧プラズマ法においては、これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、プラズマ放電発生装置にガスを送りこむ。このような放電ガスとしては、窒素ガス及び/または周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも特に、窒素、ヘリウム、アルゴンが好ましく用いられる。
 上記放電ガスと反応性ガスを混合し、薄膜形成(混合)ガスとして大気圧プラズマ放電発生装置(プラズマ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得ようとする膜の性質によって異なるが、混合ガス全体に対し、放電ガスの割合を50%以上として反応性ガスを供給する。
 本発明に係るガスバリア性樹脂基材を構成する積層されたセラミック層においては、例えば、上記有機珪素化合物に、さらに酸素ガスや窒素ガスを所定割合で組み合わせて、O原子とN原子の少なくともいずれかと、Si原子とを含む本発明に係る酸化珪素を主体としたセラミック層を得ることができる。
 本発明に係るセラミック層の厚さとしては、ガスバリア性と光透過性とを考慮すれば、10~2000nmの範囲内であることが望ましいが、さらに可撓性も考慮し、全てにおいてバランス良く好適な性能を発揮するためには、10~200nmであることが好ましい。
 次いで、有機光電変換素子を構成する有機光電変換素子材料各層(構成層)について説明する。
 〔有機光電変換素子及び太陽電池の構成〕
 本発明の有機光電変換素子の好ましい態様を説明するが、これに限定されるものではない。
 有機光電変換素子としては特に制限がなく、陽極と陰極と、両者に挟まれた発電層(p型半導体とn型半導体が混合された層、バルクヘテロジャンクション層、i層ともいう。)が少なくとも1層以上あり、光を照射すると電流を発生する素子であればよい。
 有機光電変換素子の層構成の好ましい具体例を以下に示す。(i)陽極/発電層/陰極(ii)陽極/正孔輸送層/発電層/陰極(iii)陽極/正孔輸送層/発電層/電子輸送層/陰極(iv)陽極/正孔輸送層/p型半導体層/発電層/n型半導体層/電子輸送層/陰極(v)陽極/正孔輸送層/第1発光層/電子輸送層/中間電極/正孔輸送層/第2発光層/電子輸送層/陰極
 ここで、発電層は、正孔を輸送できるp型半導体材料と電子を輸送できるn型半導体材料を含有していることが必要であり、これらは実質2層でヘテロジャンクションを形成していてもよいし、1層の内部で混合された状態となっているバルクヘテロジャンクションを形成してもよいが、バルクヘテロジャンクション構成の方が、光電変換効率が高いため、好ましい。発電層に用いられるp型半導体材料、n型半導体材料については後述する。
 有機EL素子同様、発電層を正孔輸送層、電子輸送層で挟み込むことで、正孔及び電子の陽極・陰極への取り出し効率を高めることができるため、それらを有する構成((ii)、(iii))の方が好ましい。また、発電層自体も正孔と電子の整流性(キャリア取り出しの選択性)を高めるため、(iv)のようにp型半導体材料とn型半導体材料単体からなる層で発電層を挟み込むような構成(p-i-n構成ともいう)であってもよい。また、太陽光の利用効率を高めるため、異なる波長の太陽光をそれぞれの発電層で吸収するような、タンデム構成((v)の構成)であってもよい。
 太陽光利用率(光電変換効率)の向上を目的として、後述の図3に示す有機光電変換素子10におけるサンドイッチ構造に替わって、一対の櫛歯状電極上にそれぞれ正孔輸送層14、電子輸送層16を形成し、その上に光電変換部15を配置するといった、バックコンタクト型の有機光電変換素子が構成とすることもできる。
 さらに、詳細な本発明に係る有機光電変換素子の好ましい態様を下記に説明する。
 図3は、バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。
 図3において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、透明電極12、正孔輸送層17、バルクヘテロジャンクション層の発電層14、電子輸送層18及び対極13が順次積層されている。
 基板11は、順次積層された透明電極12、発電層14及び対極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、発電層14の両面に透明電極12及び対極13を形成することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。
 発電層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。
 図3において、基板11を介して透明電極12から入射された光は、発電層14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、透明電極12と対極13の仕事関数が異なる場合では透明電極12と対極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、透明電極12の仕事関数が対極13の仕事関数よりも大きい場合では、電子は、透明電極12へ、正孔は、対極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、透明電極12と対極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。
 なお、図3には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑層等の他の層を有していてもよい。
 さらに好ましい構成としては、前記発電層14が、いわゆるp-i-nの三層構成となっている図4に記載の構成である。通常のバルクヘテロジャンクション層は、p型半導体材料とn型半導体層が混合した、i層単体であるが、p型半導体材料単体からなるp層14p、及びn型半導体材料単体からなるn層14nでi層14iを挟むことにより、正孔及び電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。
 さらに、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。
 図5は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池の一例を示す断面図である。
 タンデム型構成の場合、基板11上に、順次透明電極12、第1の発電層14′を積層した後、電荷再結合層15を積層した後、第2の発電層16、次いで対電極13を積層することで、タンデム型の構成とすることができる。第2の発電層16は、第1の発電層14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また第1の発電層14′、第2の発電層16がともに前述のp-i-nの三層構成であってもよい。
 以下に、これらの層を構成する材料について述べる。
 〔有機光電変換素子材料〕
 (p型半導体材料)
 有機光電変換素子において、発電層(バルクヘテロジャンクション層)に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマーやオリゴマーが挙げられる。
 縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビス(エチレンジチオ)テトラチアフルバレン(BEDT-TTF)-過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。
 また、上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号、国際公開第03/28125号明細書、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
 共役系ポリマーとしては、例えば、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC-17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、国際公開第2008/000664号に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,Nature Mat.,vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー等のポリマー材料が挙げられる。
 また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。
 これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。
 また、発電層上に電子輸送層を塗布で製膜する場合、電子輸送層溶液が発電層を溶かしてしまうという課題があるため、溶液プロセスで塗布した後に不溶化できるような材料を用いてもよい。
 このような材料としては、Technical Digest of the International PVSEC-17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、及び特開2008-16834号公報等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料等を挙げることができる。
 (n型半導体材料)
 有機光電変換素子において、バルクヘテロジャンクション層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
 しかし、各種のp型半導体材料と高速(~50fs)かつ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、及びこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
 中でも[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。
 (正孔輸送層・電子ブロック層)
 有機光電変換素子10は、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、バルクヘテロジャンクション層と陽極との中間には正孔輸送層17を有していることが好ましい。
 例えば、正孔輸送層17としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、国際公開第2006/019270号明細書等に記載のシアン化合物、等を用いることができる。なお、バルクヘテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクヘテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうが好ましい。このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクヘテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。
 (電子輸送層・正孔ブロック層)
 有機光電変換素子10は、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、バルクヘテロジャンクション層と陰極との中間には電子輸送層18を有していることが好ましい。
 電子輸送層18としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、バルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクヘテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
 (その他の層)
 有機光電変換素子においては、エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層等を挙げることができる。
 (透明電極:第1電極)
 有機光電変換素子において、透明電極は、陰極あるいは陽極のいずれあっても良く、有機光電変換素子構成により選択することができるが、好ましくは透明電極を陽極として用いることである。例えば、陽極として用いる場合、好ましくは380~800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤ、カーボンナノチューブ用いることができる。
 また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて透明電極とすることもできる。
 (対電極:第2電極)
 対電極は、導電材料の単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。対電極の導電材料としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。対電極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、(平均)膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 対電極の導電材として金属材料を用いれば対電極側に来た光は反射されて第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。
 また、対電極13は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤ、ナノ構造体であってもよく、ナノワイヤの分散物であれば、透明で導電性の高い対電極を塗布法により形成でき好ましい。
 また、対電極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の対電極に適した導電性材料を薄く1~20nm程度の(平均)膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性対電極とすることができる。
 (中間電極)
 また、前記(v)(または図5)に記載したようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層またはナノ粒子・ナノワイヤを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
 なお前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると一層形成する工程を省くことができ好ましい。
 (金属ナノワイヤ)
 有機光電変換素子では導電性繊維を用いることができ、導電性繊維としては、金属でコーティングした有機繊維や無機繊維、導電性金属酸化物繊維、金属ナノワイヤ、炭素繊維、カーボンナノチューブ等を用いることができるが、金属ナノワイヤが好ましい。
 一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする線状構造体のことをいう。特に、本発明における金属ナノワイヤとはnmサイズの直径を有する線状構造体を意味する。
 本発明に係る金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、また、適度な光散乱性を発現するために、平均長さが3μm以上であることが好ましく、さらには3~500μmが好ましく、特に3~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10~300nmが好ましく、30~200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。
 本発明において、金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。本発明に係る金属ナノワイヤが2種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。
 本発明において、金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837;Chem.Mater.,2002,14,4736~4745等、Auナノワイヤの製造方法としては特開2006-233252号公報等、Cuナノワイヤの製造方法としては特開2002-266007号公報等、Coナノワイヤの製造方法としては特開2004-149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。
 本発明においては、金属ナノワイヤが互いに接触し合うことにより3次元的な導電ネットワークを形成し、高い導電性を発現するとともに、金属ナノワイヤが存在しない導電ネットワークの窓部を光が透過することが可能となり、さらに、金属ナノワイヤの散乱効果によって、有機発電層部からの発電を効率的に行うことが可能となる。第1電極において金属ナノワイヤを有機発電層部に近い側に設置すれば、この散乱効果がより有効に利用できるのでより好ましい実施形態である。
 (光学機能層)
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層等を設けてもよい。
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚さが厚くなり好ましくない。
 また、光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物等のナノ粒子・ナノワイヤ等を無色透明なポリマーに分散した層等を挙げることができる。
 (製膜方法・表面処理方法)
 〈各種の層の形成方法〉
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層、及び輸送層・電極の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、バルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
 この際に使用する塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。
 発電層(バルクヘテロジャンクション層)14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで形成することが可能となる。
 〈パターニング〉
 本発明の有機光電変換素子の製造において、電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
 バルクヘテロジャンクション層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。
 電極材料等の不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行うこと、あるいはエッチングまたはリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。
 以上、本発明に係るガスバリア性フィルムの用途の一例として、有機光電変換素子及び太陽電池の構成について説明したが、本発明に係るガスバリア性フィルムの用途はこれに限られず、有機EL素子等の他の電子デバイスにも有利に適用することができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 《試料1(ガスバリア性フィルム)の作製》
 〔第1のバリア層1の形成〕
 大気圧プラズマ製膜装置(特開2008-56967号の図3に記載、ロールツーロール形態の大気圧プラズマCVD装置)を用いて、大気圧プラズマ法により、ハードコート層(中間層)付き透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、、ハードコート層はアクリル樹脂を主成分としたUV硬化樹脂より構成、PETの厚さ125μm、CHCの厚さ6μm)上に、以下の薄膜形成条件で酸化珪素の第1のバリア層1(100nm)を形成した。
 (混合ガス組成物)
  放電ガス:窒素ガス 94.9体積%
  薄膜形成ガス:テトラエトキシシラン 0.1体積%
  添加ガス:酸素ガス 5.0体積%
 (成膜条件)
 〈第1電極側〉
  電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
  周波数 :100kHz
  出力密度:10W/cm
  電極温度:120℃
 〈第2電極側〉
  電源種類:パール工業 13.56MHz CF-5000-13M
  周波数 :13.56MHz
  出力密度:10W/cm
  電極温度:90℃
 上記方法に従って形成した第1のバリア層1は、酸化珪素(SiO)で構成され、膜厚は100nmであり、弾性率E1は、膜厚方向で一様に30GPaであった。
 〔第2のバリア層1の形成〕
 上記方法で形成した第1のバリア層1上に、パーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液をワイヤレスバーにて、乾燥後の(平均)膜厚が、0.10μmとなるように塗布し、塗布試料を得た。
 〔第一工程:乾燥処理〕
 得られた塗布試料を、温度85℃、湿度55%RHの雰囲気下で1分間処理し、乾燥試料を得た。
 〔第二工程:除湿処理〕
 乾燥試料をさらに温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行った。このようにして得られた層の含水率は、0.01%以下(検出限界以下)であった。
 〔改質処理A〕
 除湿処理を行った試料に対し、下記の条件で改質処理を施した。改質処理時の露点温度は-8℃で実施した。
 (改質処理装置)
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長:172nm
 ランプ封入ガス:Xe
 (改質処理条件)
 稼動ステージ上に固定した試料を、以下の条件で改質処理を行って、第2のバリア層1を形成した。
 エキシマ光強度   :130mW/cm(172nm)
 試料と光源の距離  :1mm
 ステージ加熱温度  :70℃
 照射装置内の酸素濃度:1.0%
 エキシマ照射時間  :5秒
 以上により、ガスバリア性フィルムである試料1を作製した。
 〔改質領域の確認〕
 上記作製した試料1を、後述の方法に従って断面のTEMによる観察を行った結果、第2のバリア層1において、改質領域が表面から深さ方向で30nmまで存在していることを確認した。
 《試料2の作製》
 〔第1のバリア層2の形成〕
 上記試料1におけるバリア層1の形成において、製膜条件を下記のように代えた以外は同様にして、酸窒化珪素の第1のバリア層2(100nm)を形成した。
 (混合ガス組成物)
  放電ガス:窒素ガス 94.9体積%
  薄膜形成ガス:テトラエトキシシラン 0.1体積%
  添加ガス:水素ガス 1.0体積%
 (成膜条件)
 〈第1電極側〉
  電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
  周波数 :100kHz
  出力密度:12W/cm
  電極温度:120℃
 〈第2電極側〉
  電源種類:パール工業 13.56MHz CF-5000-13M
  周波数 :13.56MHz
  出力密度:12W/cm
  電極温度:90℃
 得られた第1のバリア層2は酸窒化珪素(SiON)で、膜厚は100nmであり、窒素含有率は元素比率で0.8%であった。弾性率は、膜厚方向で一様に45GPa(=E1)であった。
 〔第2のバリア層2の形成〕
 引き続き、得られた第1のバリア層2上に、パーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液をワイヤレスバーにて、乾燥後の(平均)膜厚が、0.10μmとなるように塗布し、塗布試料を得た。
 〔第一工程:乾燥処理〕
 得られた塗布試料を、温度85℃、湿度55%RHの雰囲気下で1分間処理し、乾燥試料を得た。
 〔第二工程:除湿処理〕
 乾燥試料を、さらに温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行った。このようにして得られた層の含水率は、0.01%以下(検出限界以下)であった。
 〔改質処理B〕
 除湿処理を行った試料に対し、下記の条件で改質処理を施した。改質処理時の露点温度は-8℃で実施した。
 (改質処理装置)
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長:172nm
 ランプ封入ガス:Xe
 (改質処理条件)
 稼動ステージ上に固定した試料を以下の条件で改質処理を行って、第2のバリア層2を形成した。
 エキシマ光強度   :130mW/cm(172nm)
 試料と光源の距離  :1mm
 ステージ加熱温度  :90℃
 照射装置内の酸素濃度:0.1%
 エキシマ照射時間  :3秒
 以上により、ガスバリア性フィルムの試料2を作製した。
 試料2の断面をTEMにより観察した結果、第2のバリア層2の表面から60nmの厚みで改質領域が形成されていることが確認された。
 《試料3の作製》
 〔第1のバリア層3の形成〕
 サムコ社製プラズマCVD装置Model PD-270STPを用いて、透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム(PETの厚さ125μm、CHCの厚さ6μm))上に、以下の薄膜形成条件で第1のバリア層3を形成した。
 (薄膜形成条件)
 酸素圧力:53.2Pa
 反応ガス:テトラエトキシシラン(TEOS)5sccm(standard cubic centimeter per minute)濃度0.5%
 電力:13.56MHzで100W
 基材保持温度:120℃
 得られた第1のバリア層3は、酸化珪素(SiO)で、膜厚は100nmであり、弾性率は膜厚方向で一様に30GPa(=E1)であった。
 〔第2のバリア層3の形成〕
 引き続き、得られた第1のバリア層3に、第2のバリア層1の形成と同様の処理を施した第2のバリア層3を形成し、ガスバリア性フィルムの試料3を作製した。
 試料3の断面をTEMにより観察した結果、第2のバリア層3の表面より深さ30nmの領域で、改質領域が形成されていることを確認した。
 《試料4の作製》
 〔第1のバリア層4の形成〕
 試料2における第1のバリア層1と同様の形成方法より、酸窒化珪素の第1のバリア層4(100nm)を形成した。
 〔第2のバリア層4の形成〕
 試料1の作製において、第2のバリア層1の改質処理で用いた改質処理Aを、下記の改質処理Cに変更したした以外は同様にして、第1のバリア層4上に第2のバリア層4を形成し、ガスバリア性フィルムの試料4を作製した。
 〔改質処理C〕
 除湿処理を行った試料を下記の条件でプラズマ処理を行い、第2のバリア層4を形成した。また、製膜時の基材保持温度は、120℃とした。
 ロール電極型放電処理装置を用いて処理を実施した。ロール電極に対向する棒状電極を複数個フィルムの搬送方向に対し平行に設置し、各電極部にガス及び電力を投入し以下のように、塗工面が20秒間プラズマ照射されるように適宜処理を行った。
 なお、プラズマ放電処理装置の上記の各電極を被覆する誘電体は、対向する両電極共に、セラミック溶射加工により片肉で1mm厚のアルミナを被覆したものを使用した。
 また、被覆後の電極間隙は、0.5mmに設定した。また誘電体を被覆した金属母材は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中は冷却水による電極温度コントロールを行いながら実施した。ここで使用する電源は、応用電機製高周波電源(100kHz)、パール工業製高周波電源(13.56MHz)を使用した。
 放電ガス:Nガス
 反応ガス:酸素ガスを全ガスに対し7%
 低周波側電源電力:100kHzを6W/cm
 高周波側電源電力:13.56MHzを10W/cm
 プラズマ処理時間;20秒
 試料4の断面をTEMにより観察を行った結果、第2のバリア層4の表面より深さ方向で10nmの領域で改質領域が存在していることを確認した。
 《試料5の作製》
 〔第1のバリア層5の形成〕
 試料2における第1のバリア層1の形成と同様にして、酸窒化珪素の第1のバリア層5(100nm)を形成した。
 〔第2のバリア層5の形成〕
 試料1の第2のバリア層1の形成において、第2のバリア層の膜厚を0.06μmとし、改質処理Aを下記の改質処理Dに変更した以外は同様にして、第1のバリア層5上に第2のバリア層5を形成し、ガスバリア性フィルムの試料5を作製した。
 〔改質処理D〕
 除湿処理を行った試料を下記の条件で改質処理を行い、第2のバリア層5を形成した。改質処理時の露点温度は-8℃で実施した。
 〈改質処理装置〉
 装置:株式会社 ウシオ電機製、紫外照射装置 型式UVH-0252C
 〈改質処理条件〉
 稼動ステージ上に固定した試料を以下の条件で改質処理を行った。
 UV光強度     :2000mW/cm(365nm)
 試料と光源の距離  :30mm
 ステージ加熱温度  :40℃
 照射装置内の酸素濃度:5%
 UV照射時間    :180秒
 試料5の断面をTEMにより観察した結果、第2のバリア層5における改質領域が、表面から深さ方向で55nmの厚みで存在していることが確認された。
 《試料6の作製:比較例》
 特開2009-255040号公報に記載の実施例1の条件で、厚さ100nmの第2のバリア層を2層積層し、これを試料6とした。試料6には、断面をTEMにより観察した結果、改質領域は確認されなかった。
 《試料7の作製:比較例》
 特許第3511325号公報の実施例1に記載の条件で、プラズマCVD法により厚さ100nmの第1のバリア層(酸化珪素)を形成し、第1のバリア層上に、同様に第2のバリア層を0.1μmの厚さで形成し、試料7を得た。試料7の断面をTEMにより観察した結果、改質領域の存在は確認されなかった。
 《試料8の作製:比較例》
 特開2008-235165号公報の実施例に記載のバリア膜に積層する平坦化膜として、前記試料1の第2のバリア層1の形成に用いた塗布条件を適用し、更に改質処理を90℃で10分間の加熱処理とした以外は同様にして、試料8とした。試料8の断面をTEMにより観察した結果、改質領域の存在は確認されなかった。
 《ガスバリア性フィルムの特性値の測定及び性能評価》
 上記作製した各ガスバリア性フィルムである各試料について、以下の方法で特性値の測定と性能評価を行った。
 〔改質領域の膜厚測定〕
 上記作製した各ガスバリア性フィルムについて、以下のFIB加工装置により超薄切片を作製した後、TEM観察を行った。このとき、試料に電子線を照射し続けると、電子線によりダメージを受ける部分(非改質領域)とそうでない部分(改質領域)にコントラスト差が現れるため、その領域を測定することで、改質領域の厚さを算出した。
 (FIB加工)
 装置:SII製SMI2050
 加工イオン:(Ga 30kV)
 試料厚み:200nm
 (TEM観察)
 装置:日本電子製JEM2000FX(加速電圧:200kV)
 電子線照射時間:30秒
 〔第1のバリア層、第2のバリア層における改質領域及び非改質領域の弾性率の測定〕
 上記と同様にして、FIB加工により、各ガスバリア性フィルムの断面を露出させた後、MTSシステム社製のナノインデンター(Nano Indenter TMXP/DCM)を用いて、断面部の各領域に対し、超微小な三角錐の圧子を押し込んで、第1のバリア層、第2のバリア層における改質領域、非改質領域の弾性率を測定した。
 〔水蒸気バリア性の評価〕
 以下の測定方法に従って、各ガスバリア性フィルムの水蒸気バリア性を評価した。
 (装置)
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリア性評価用セルの作製)
 試料のガスバリア層面に、真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、透明導電膜を付ける前のガスバリア性フィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、屈曲前後のガスバリア性の変化を確認するために、上記屈曲の処理を行わなかったガスバリア性フィルムについても同様に、水蒸気バリア性評価用セルを作製した。
 得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、特開2005-283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。
 なお、バリアフィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。
 以上により測定された各ガスバリア性フィルムの水分量を下記の5段階に分類し、水蒸気バリア性を評価した。
 5:水分量が1×10-4g/m/day未満
 4:水分量が1×10-4g/m/day以上、1×10-3g/m/day未満
 3:水分量が1×10-3g/m/day以上、1×10-2g/m/day未満
 2:水分量が1×10-2g/m/day以上、1×10-1g/m/day未満
 1:水分量が1×10-1g/m/day以上
 〔折り曲げ耐性の評価〕
 各ガスバリア性フィルムを、半径が10mmの曲率になるように、180度の角度で100回の屈曲を繰り返した後、上記と同様の方法で水蒸気透過率を測定し、屈曲処理前後での水蒸気透過率の変化より、下式に従って耐劣化度を測定し、下記の基準に従って折り曲げ耐性を評価した。
 耐劣化度=(屈曲試験後の水蒸気透過度/屈曲試験前の水蒸気透過度)×100(%)
 5:耐劣化度が、90%以上である
 4:耐劣化度が、80%以上、90%未満である
 3:耐劣化度が、60%以上、80%未満である
 2:耐劣化度が、30%以上、60%未満である
 1:耐劣化度が、30%未満である
 〔断裁加工適性の評価〕
 各ガスバリア性フィルムを、ディスクカッターDC-230(CADL社)を用いてB5サイズに断裁した後、断裁した各端部をルーペ観察し、四辺のクラックの総発生数を確認し、下記の基準に従って断裁加工適性を評価した。
 5:クラック発生が全く認められなかった
 4:クラックの発生数が、1本以上、2本以下である
 3:クラックの発生数が、3本以上、5本以下である
 2:クラックの発生数が、6本以上、10本以下である
 1:クラックの発生数が、11本以上である。
 以上により得られた各ガスバリア性フィルムの特性値及び評価結果を表1、表2に示す。
[規則26に基づく補充 20.12.2011] 
Figure WO-DOC-TABLE-1
Figure JPOXMLDOC01-appb-T000003
 表1、表2に記載の結果より明らかなように、本発明のガスバリア性フィルム1~5は、比較例のガスバリア性フィルム6~8に較べ、水蒸気バリア性に優れ、かつ折り曲げ耐性と断裁加工適性に優れていることが分る。なお、ガスバリア性フィルム5の水蒸気透過率は1×10-3g/m/day、ガスバリア性フィルム6の水蒸気透過率は9×10-3g/m/day、ガスバリア性フィルム7の水蒸気透過率は7×10-3g/m/dayであった。
 実施例2
 《有機光電変換素子の作製》
 実施例1で作製したガスバリア性フィルム1~8に、それぞれ、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗10Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて2mm幅にパターニングして第1電極を形成した。パターン形成した第1電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を(平均)膜厚が30nmになるように塗布乾燥した後、150℃で30分間熱処理させ正孔輸送層を製膜した。
 これ以降は、基板を窒素チャンバー中に持ち込み、窒素雰囲気下で操作を行った。
 まず、窒素雰囲気下で上記基板を150℃で10分間加熱処理した。次に、クロロベンゼンに、P3HT(プレクトロニクス社製:レジオレギュラーポリ-3-ヘキシルチオフェン)とPCBM(フロンティアカーボン社製:6,6-フェニル-C61-ブチリックアシッドメチルエステル)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタでろ過しながら(平均)膜厚が100nmになるように塗布を行い、室温で放置して乾燥させた。続けて、150℃で15分間加熱処理を行い、光電変換層を製膜した。
 次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10-4Pa以下まで真空蒸着装置内を減圧した後、蒸着速度0.01nm/秒でフッ化リチウムを0.6nm積層し、さらに続けて、2mm幅のシャドウマスクを通して(受光部が2×2mmに成るように直行させて蒸着)、蒸着速度0.2nm/秒でAlメタルを100nm積層することで第2電極を形成した。得られた有機光電変換素子を窒素チャンバーに移動し、封止用キャップとUV硬化樹脂を用いて封止を行って、受光部が2×2mmサイズの有機光電変換素子1~13を作製した。
 〔有機光電変換素子の封止〕
 窒素ガス(不活性ガス)によりパージされた環境下で、ガスバリアフィルム1~8の二枚を用い、ガスバリア層を設けた面に、シール材としてエポキシ系光硬化型接着剤を塗布した。上述した方法によって得られたガスバリアフィルム1~8に対応する有機光電変換素子を、上記接着剤を塗布した二枚のガスバリアフィルム1~8の接着剤塗布面の間に挟み込んで密着させた後、片側の基板側からUV光を照射して硬化させ、それぞれ有機光電変換素子1~8とした。
 《有機光電変換素子の評価》
 上記作製した有機光電変換素子について、以下の方法で耐久性の評価を行った。
 〔耐久性の評価〕
 〈エネルギー変換効率〉
 ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、IV特性を評価することで、短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)及びフィルファクターFF(%)を、同素子上に形成した4箇所の受光部をそれぞれ測定し、下記式1に従って求めたエネルギー変換効率PCE(%)の4点平均値を見積もった。
 式1
 PCE(%)=〔Jsc(mA/cm)×Voc(V)×FF(%)〕/100mW/cm
 初期電池特性としての変換効率を測定し、性能の経時的低下の度合いを温度60℃、湿度90%RH環境で1000時間保存した加速試験後の変換効率残存率により評価した。
 変換効率残存率=加速試験後の変換効率/初期変換効率×100(%)
 5:変換効率残存率が90%以上
 4:変換効率残存率が70%以上、90%未満
 3:変換効率残存率が40%以上、70%未満
 2:変換効率残存率が20%以上、40%未満
 1:変換効率残存率が20%未満
 以上により得られた結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3に記載の結果より明らかなように、本発明のガスバリア性フィルムを用いて作製した本発明の有機光電変換素子1~5は、比較例の有機光電変換素子6~8に較べ過酷な環境下でも性能劣化が発生し難いことが分かる。
 実施例3
 《ガスバリア性フィルムの作製》
 〔試料3-1の作製〕
 実施例1に記載の試料2の作製において、樹脂基材をポリエチレンテレフタレートからポリイミド系耐熱フィルム(三菱瓦斯化学(株)製ネオプリムL3430、厚み200μm)に変更し、中間層(平滑層)としてUV硬化型のアクリル樹脂((株)JSR製オプスターZ7501)を紫外線により硬化後、5μmとなる様に塗布し、Nパージ雰囲気中で、高圧水銀ランプを用いて1J/cmのUV光照射により硬化した硬化膜を設けた以外は実施例1に記載の試料2と同様にしてガスバリア性フィルムを作製した後、ガスバリア性ユニットの上にスパッタ法(室温)によりITOを100nm成膜し、ITOの抵抗率を下げるため空気中で220℃1hrの熱処理を行って、ガスバリア性フィルムである試料3-1を作製した。加熱処理後にITO表面の表面比抵抗を測定したところ20Ω/□であり、低抵抗な表面になっている事を確認した。
 〔試料3-2の作製〕
 上記試料3-1の作製において、中間層を以下の中間層塗布液を用いて形成した以外は同様にしてガスバリア性フィルムである試料3-2を作製した。
 〈中間層塗布液の作製〉
 トリメチロールプロパントリグリシジルエーテル(エポライト100MF 共栄社化学社製)を8.0g、エチレングリコールジグリシジルエーテル(エポライト40E 共栄社化学社製)を5.0g、オキセタニル基を有するシルセスキオキサン:OX-SQ-H(東亞合成社製)(熱硬化により有機無機ハイブリッド樹脂となる)を12.0g、3-グリシドキシプロピルトリメトキシシランを32.5g、Al(III)アセチルアセトネートを2.2g、メタノールシリカゾル(日産化学社製、固形分濃度30質量%)134.0g、BYK333(BYKケミー社製)を0.1g、ブチルセロソルブを125.0g、0.1モル/Lの塩酸水15.0gを混合し、充分に攪拌した。これを室温でさらに静置脱気して、中間層塗布液を得た。
 〈中間層1の形成〉
 上記基材の片面に、定法によりコロナ放電処理を行った後、上記調製した中間層塗布液を、乾燥後の膜厚が4.0μmになるように塗布した後、80℃で3分間乾燥した。さらに120℃で10分間加熱処理を行って、中間層1を形成した。
 〈中間層の表面粗さ〉
 得られた中間層1の表面粗さは、JIS B 0601で規定されるRzで約20nmであった。
 表面粗さは、SII社製のAFM(原子間力顕微鏡)SPI3800N DFMを用いて測定した。一回の測定範囲は80μm×80μmとし、測定箇所を変えて三回の測定を行って、それぞれの測定で得られたRtの値を平均したものを測定値とした。
 〔試料3-3の作製〕
 上記試料3-2の作製において、基材の中間層1を形成した面とは反対側の面にも、中間層1と同様にして中間層2を形成した以外は同様にして、ガスバリア性フィルムである試料3-3を作製した。
 〔試料3-4の作製〕
 上記試料3-2の作製において、フィルム基材を高透明性ポリイミド系耐熱フィルム(東洋紡(株)製 タイプHM、Tg=225℃、厚み18μm)に変更した以外は同様にして、ガスバリア性フィルムである試料3-4を作製した。
 〔試料3-5の作製〕
 上記試料3-4の作製において、基材の中間層1を形成した面とは反対側の面にも、中間層1と同様にして中間層2を形成した以外は同様にして、ガスバリア性フィルムである試料3-5を作製した。
 〔試料3-6の作製〕
 上記試料3-2の作製において、中間層1に代えて、熱硬化型エポキシ系樹脂(DIC(株)製EPICLON EXA-4710、硬化剤イミダゾール(2E4MZ)2phr添加)に変更し、硬化条件を200℃1hrとした中間層3を用いた以外は同様にして、ガスバリア性フィルムである試料3-6を作製した。
 〔試料3-7の作製〕
 上記試料3-6の作製において、基材の中間層3を形成した面とは反対側の面にも、中間層3と同様にして中間層4を形成した以外は同様にして、ガスバリア性フィルムである試料3-7を作製した。
 〈中間層3、4の表面粗さ〉
 形成した中間層3および中間層4の表面粗さは、JIS B 0601で規定されるRzで約25nmであった。
 表面粗さは、SII社製のAFM(原子間力顕微鏡)SPI3800N DFMを用いて測定した。一回の測定範囲は80μm×80μmとし、測定箇所を変えて三回の測定を行って、それぞれの測定で得られたRtの値を平均したものを測定値とした。
 《ガスバリア性フィルムの評価》
 上記作製した各試料について、実施例1に記載の方法と同様にして、改質領域の膜厚測定、弾性率の測定と、水蒸気バリア性、折り曲げ耐性及び断裁加工適性の評価と共に、下記の膜面耐久性の評価を行った。
 (膜面耐久性の評価)
 各試料を220℃の熱処理を行った前後で、目視による膜面品質(層間剥離、変形、変色、ひび割れ)の評価を行い、下記の基準に従って膜面耐久性を評価した。
○:熱処理前後でいずれの項目劣化が殆ど認められない。
△:熱処理前後で若干ではあるが劣化した項目がある。
×:目視で明らかに劣化した項目が1つ以上ある。
 試料3-1~3-7の構成、特性値を表4に、各評価結果を表5に示す。
[規則26に基づく補充 20.12.2011] 
Figure WO-DOC-TABLE-4
Figure JPOXMLDOC01-appb-T000006
 《光電変換素子の作製》
 上記方法により作製したガスバリア性フィルムである試料3-1~3-7を用いて、実施例2に記載の方法と同様にして光電変換素子3-1~3-7を作製した。作製した光電変換素子3-1~3-7を、JIS C8938(1995)に準拠した条件で温湿度サイクル試験を行い、60℃90%RHで1000hr調湿後、光電変換効率を測定し、実施例2に記載の方法と同様にして、温湿度サイクル試験前後の変換効率の劣化度合い(耐久性2)を評価し、得られた結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
 表6に記載の結果より明らかなように、本発明のガスバリア性フィルムを用いて作製した光電変換素子は、耐久性2に優れていることが分かる。
 実施例4
 実施例3で作製したガスバリア性フィルムである試料3-1~3-7を用いて作製した光電変換素子3-1~3-7を、JIS C8938(1995)に準拠した条件で温湿度サイクル試験を行い、25℃50%RHで15hr調湿後、光電変換効率を測定し、温湿度サイクル試験前後の変換効率の劣化度合い(耐久性3)を、実施例2に記載の方法と同様にして評価し、得られた結果を表7に示す。
Figure JPOXMLDOC01-appb-T000008
 表7に記載の結果より明らかなように、本発明のガスバリア性フィルムを用いて作製した光電変換素子は、耐久性に優れていることが分かる。
 以上の各評価において、実施例3及び4の結果から明らかなように、耐熱基材、熱硬化性平滑層を用いることで、導電層の低抵抗化によりデバイスの初期特性が向上するばかりでなく、ガスバリア性及び層間密着性の向上によりデバイスの耐久性も同時に向上することが可能であることがわかった。更に基材の表裏側両面にガスバリア性層を設けることで、高温高湿の様な過酷な環境下での耐久性が向上することも分かった。
 本出願は、2010年12月6日に出願された日本特許出願番号2010-271234号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
 1 ガスバリア性フィルム
 2 基材
 3 中間層
 4 ガスバリア層ユニット
 4A 第2のバリア層
 4B 第1のバリア層
 L 改質処理手段
 10 バルクヘテロジャンクション型の有機光電変換素子
 11 基板
 12 透明電極
 13 対極
 14 発電層
 14p p層
 14i i層
 14n n層
 14′ 第1の発電層
 15 電荷再結合層
 16 第2の発電層
 17 正孔輸送層
 18 電子輸送層
 101 本発明で使用できるプラズマCVD装置
 102 真空槽
 103 カソード電極
 105 サセプタ
 106 熱媒体循環系
 107 真空排気系
 108 ガス導入系
 109 高周波電源
 110 基板
 160 加熱冷却装置

Claims (7)

  1.  基材の少なくとも一方の面側にガスバリア層ユニットを有し、該ガスバリア層ユニットは、化学蒸着法で形成された第1のバリア層と、該第1のバリア層上に珪素化合物を塗布して形成された塗膜に改質処理が施された第2のバリア層とを有し、かつ該第1のバリア層と該基材との間に中間層を有するガスバリア性フィルム。
  2.  前記化学蒸着法で形成された第1のバリア層が、酸化珪素、酸窒化珪素及び窒化珪素から選ばれる少なくとも1種を有する、請求項1に記載のガスバリア性フィルム。
  3.  前記第1のバリア層上に形成される前記第2のバリア層が、ポリシラザン含有液を塗布して形成された塗膜に改質処理が施されたもので、前記基材面側に非改質領域を、表層側に改質領域を有する、請求項1または2に記載のガスバリア性フィルム。
  4.  前記第2のバリア層の表層側に位置する改質領域の厚みが、該第2のバリア層の全膜厚に対し、厚み比率で0.2以上、0.9以下である、請求項3に記載のガスバリア性フィルム。
  5.  前記化学蒸着法で形成された第1のバリア層が、酸化珪素または酸窒化珪素を有し、該第1のバリア層の弾性率をE1とし、前記第2のバリア層における改質領域の弾性率をE2とし、前記第2のバリア層における非改質領域の弾性率をE3としたときに、E1>E2>E3の関係を満たす、請求項3または4に記載のガスバリア性フィルム。
  6.  請求項3から5のいずれか1項に記載のガスバリア性フィルムを製造するガスバリア性フィルムの製造方法であって、第2のバリア層を形成する際に施される改質処理が、180nm以下の波長成分を有する真空紫外線を照射する処理である、ガスバリア性フィルムの製造方法。
  7.  請求項1から5のいずれか1項に記載のガスバリア性フィルムを用いる電子デバイス。
PCT/JP2011/077668 2010-12-06 2011-11-30 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス WO2012077553A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800583527A CN103237657A (zh) 2010-12-06 2011-11-30 气体阻隔性膜、气体阻隔性膜的制造方法及电子器件
US13/988,455 US20130236710A1 (en) 2010-12-06 2011-11-30 Gas-barrier film, method for producing gas-barrier film, and electronic device
EP11846279.5A EP2650121A4 (en) 2010-12-06 2011-11-30 GASPERRFILM, METHOD FOR THE PRODUCTION OF GASPERRFILMS AND ELECTRONIC DEVICE
KR1020137014011A KR101526083B1 (ko) 2010-12-06 2011-11-30 가스 배리어성 필름, 가스 배리어성 필름의 제조 방법 및 전자 디바이스
JP2012547803A JP5803937B2 (ja) 2010-12-06 2011-11-30 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-271234 2010-12-06
JP2010271234 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012077553A1 true WO2012077553A1 (ja) 2012-06-14

Family

ID=46207043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077668 WO2012077553A1 (ja) 2010-12-06 2011-11-30 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス

Country Status (6)

Country Link
US (1) US20130236710A1 (ja)
EP (1) EP2650121A4 (ja)
JP (1) JP5803937B2 (ja)
KR (1) KR101526083B1 (ja)
CN (1) CN103237657A (ja)
WO (1) WO2012077553A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012014653A1 (ja) * 2010-07-27 2013-09-12 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP2014168934A (ja) * 2013-03-05 2014-09-18 Konica Minolta Inc ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
WO2014203892A1 (ja) * 2013-06-20 2014-12-24 コニカミノルタ株式会社 ガスバリア性フィルム、およびその製造方法
WO2015060394A1 (ja) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 ガスバリア性フィルム
US20160035999A1 (en) * 2013-03-11 2016-02-04 Konica Minolta, Inc. Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
WO2019167906A1 (ja) * 2018-02-28 2019-09-06 リンテック株式会社 ガスバリア性フィルム
WO2020137783A1 (ja) * 2018-12-28 2020-07-02 Jfeスチール株式会社 フィルムラミネート金属板、フレキシブルデバイス用基板、及び有機elデバイス用基板
WO2022180978A1 (ja) * 2021-02-26 2022-09-01 ウシオ電機株式会社 光改質装置及び光改質方法
WO2022180960A1 (ja) * 2021-02-26 2022-09-01 ウシオ電機株式会社 光改質装置及び光改質方法
KR20240023485A (ko) 2022-08-15 2024-02-22 우시오덴키 가부시키가이샤 광 처리 장치

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2553145B1 (en) * 2010-03-29 2022-09-21 Pibond Oy Etch resistant alumina based coatings
FR2980394B1 (fr) * 2011-09-26 2013-10-18 Commissariat Energie Atomique Structure multicouche offrant une etancheite aux gaz amelioree
CN103487857A (zh) * 2013-10-11 2014-01-01 张家港康得新光电材料有限公司 量子点薄膜及背光模组
CN105637705B (zh) * 2013-10-16 2019-04-19 Agc株式会社 供电结构、窗用树脂制板状体及其制造方法
CN105684161B (zh) * 2013-11-04 2018-10-12 陶氏环球技术有限责任公司 多层降频转换封装膜及包括其的电子器件
JP2017510994A (ja) * 2013-12-19 2017-04-13 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 機能性有機層を含む透明ナノワイヤー電極
US9070634B1 (en) * 2013-12-26 2015-06-30 Macronix International Co., Ltd. Semiconductor device comprising a surface portion implanted with nitrogen and fluorine
TWI658943B (zh) * 2014-06-04 2019-05-11 日商琳得科股份有限公司 氣阻性層積體及其製造方法、電子裝置用元件以及電子裝置
WO2016061468A2 (en) * 2014-10-17 2016-04-21 Lotus Applied Technology, Llc High-speed deposition of mixed oxide barrier films
DE102015102535B4 (de) * 2015-02-23 2023-08-03 Infineon Technologies Ag Verbundsystem und Verfahren zum haftenden Verbinden eines hygroskopischen Materials
KR20170129883A (ko) * 2015-04-24 2017-11-27 코니카 미놀타 가부시키가이샤 투명 도전성 필름 및 투명 도전성 필름의 제조 방법
KR20170036847A (ko) * 2015-09-18 2017-04-03 주식회사 상보 가스 배리어 필름 및 코팅액 제조
KR102330884B1 (ko) * 2016-03-29 2021-11-25 린텍 가부시키가이샤 가스 배리어성 적층체, 전자 디바이스용 부재 및 전자 디바이스
JP6983039B2 (ja) * 2016-11-29 2021-12-17 住友化学株式会社 ガスバリア性フィルム及びフレキシブル電子デバイス
CN108658129A (zh) * 2018-08-02 2018-10-16 宁波高新区诠宝绶新材料科技有限公司 一种使用铋掺杂耐低温材料的六氟化钨纯化装置
KR102294026B1 (ko) * 2018-10-26 2021-08-27 주식회사 엘지화학 배리어 필름
KR102294027B1 (ko) * 2018-10-26 2021-08-27 주식회사 엘지화학 배리어 필름
CN109860413B (zh) * 2018-11-21 2021-06-08 信利半导体有限公司 柔性显示面板、装置及柔性显示面板的制备方法
JP7363056B2 (ja) * 2019-03-01 2023-10-18 株式会社ニデック ハードコート付きレンズの製造方法
CN110333272A (zh) * 2019-08-21 2019-10-15 业成科技(成都)有限公司 湿度感测器及其制造方法
KR102583695B1 (ko) * 2021-06-23 2023-09-27 인네이처 주식회사 전기 변색 필름용 투명 전도성 필름 및 그 제조 방법
CN116043173A (zh) * 2023-03-31 2023-05-02 山东永聚医药科技有限公司 真空镀氧化硅超薄聚酯膜材的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511325B2 (ja) * 1995-04-19 2004-03-29 三井化学株式会社 ガスバリヤー性フィルム
WO2011007543A1 (ja) * 2009-07-17 2011-01-20 三井化学株式会社 積層体およびその製造方法
WO2012014653A1 (ja) * 2010-07-27 2012-02-02 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696939B2 (ja) * 1995-08-11 2005-09-21 東京応化工業株式会社 シリカ系被膜の形成方法
KR100317501B1 (ko) * 1998-12-29 2002-02-19 박종섭 플래쉬메모리장치제조방법
TW200510790A (en) * 1999-04-15 2005-03-16 Konishiroku Photo Ind Manufacturing method of protective film for polarizing plate
WO2004101276A1 (ja) * 2003-05-16 2004-11-25 Toppan Printing Co., Ltd. 透明ガスバリア積層フィルム、これを用いたエレクトロルミネッセンス発光素子、エレクトロルミネッセンス表示装置、及び電気泳動式表示パネル
JP2005132416A (ja) * 2003-10-30 2005-05-26 Toppan Printing Co Ltd 酸化珪素薄膜コーティング中空容器
JP2006305752A (ja) * 2005-04-26 2006-11-09 Konica Minolta Holdings Inc ガスバリア性フィルム、有機エレクトロルミネッセンス用樹脂基材及び有機エレクトロルミネッセンス素子
EP2080613B1 (en) * 2006-11-16 2016-03-16 Mitsubishi Plastics, Inc. Gas barrier film laminate
JP2009133000A (ja) * 2007-10-30 2009-06-18 Fujifilm Corp シリコン窒化物膜及びそれを用いたガスバリア膜、薄膜素子
JP2009255040A (ja) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd フレキシブルガスバリアフィルムおよびその製造方法
JP5217571B2 (ja) * 2008-03-31 2013-06-19 大日本印刷株式会社 ガスバリアフィルム
JP5213522B2 (ja) * 2008-05-16 2013-06-19 三菱樹脂株式会社 有機デバイス用ガスバリア性積層フィルム
JP5223466B2 (ja) * 2008-05-30 2013-06-26 大日本印刷株式会社 ガスバリア性フィルム及びその製造方法
JP5520528B2 (ja) * 2008-07-10 2014-06-11 東レ・ダウコーニング株式会社 ガスバリアー性硬化オルガノポリシロキサン樹脂フィルム及びその製造方法
JP5305476B2 (ja) * 2008-08-29 2013-10-02 独立行政法人産業技術総合研究所 酸化ケイ素薄膜または酸窒化ケイ素化合物薄膜の製造方法およびこの方法で得られる薄膜
WO2011027619A1 (ja) * 2009-09-02 2011-03-10 コニカミノルタホールディングス株式会社 バリアフィルム及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511325B2 (ja) * 1995-04-19 2004-03-29 三井化学株式会社 ガスバリヤー性フィルム
WO2011007543A1 (ja) * 2009-07-17 2011-01-20 三井化学株式会社 積層体およびその製造方法
WO2012014653A1 (ja) * 2010-07-27 2012-02-02 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650121A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862565B2 (ja) * 2010-07-27 2016-02-16 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JPWO2012014653A1 (ja) * 2010-07-27 2013-09-12 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP2016137710A (ja) * 2010-07-27 2016-08-04 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP2014168934A (ja) * 2013-03-05 2014-09-18 Konica Minolta Inc ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
US9640780B2 (en) * 2013-03-11 2017-05-02 Konica Minolta, Inc. Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
US20160035999A1 (en) * 2013-03-11 2016-02-04 Konica Minolta, Inc. Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
WO2014203892A1 (ja) * 2013-06-20 2014-12-24 コニカミノルタ株式会社 ガスバリア性フィルム、およびその製造方法
WO2015060394A1 (ja) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 ガスバリア性フィルム
JPWO2015060394A1 (ja) * 2013-10-24 2017-03-09 コニカミノルタ株式会社 ガスバリア性フィルム
JPWO2019167906A1 (ja) * 2018-02-28 2021-02-04 リンテック株式会社 ガスバリア性フィルム
WO2019167906A1 (ja) * 2018-02-28 2019-09-06 リンテック株式会社 ガスバリア性フィルム
JP7218346B2 (ja) 2018-02-28 2023-02-06 リンテック株式会社 ガスバリア性フィルム
WO2020137783A1 (ja) * 2018-12-28 2020-07-02 Jfeスチール株式会社 フィルムラミネート金属板、フレキシブルデバイス用基板、及び有機elデバイス用基板
JPWO2020137783A1 (ja) * 2018-12-28 2021-02-18 Jfeスチール株式会社 フィルムラミネート金属板、フレキシブルデバイス用基板、及び有機elデバイス用基板
JP7004071B2 (ja) 2018-12-28 2022-01-21 Jfeスチール株式会社 フィルムラミネート金属板、フレキシブルデバイス用基板、及び有機elデバイス用基板
WO2022180978A1 (ja) * 2021-02-26 2022-09-01 ウシオ電機株式会社 光改質装置及び光改質方法
WO2022180960A1 (ja) * 2021-02-26 2022-09-01 ウシオ電機株式会社 光改質装置及び光改質方法
KR20240023485A (ko) 2022-08-15 2024-02-22 우시오덴키 가부시키가이샤 광 처리 장치

Also Published As

Publication number Publication date
US20130236710A1 (en) 2013-09-12
CN103237657A (zh) 2013-08-07
EP2650121A4 (en) 2014-05-07
EP2650121A1 (en) 2013-10-16
JP5803937B2 (ja) 2015-11-04
KR101526083B1 (ko) 2015-06-04
JPWO2012077553A1 (ja) 2014-05-19
KR20130106859A (ko) 2013-09-30

Similar Documents

Publication Publication Date Title
JP5803937B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP6041039B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP6056854B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP5585267B2 (ja) ガスバリア性フィルム、その製造方法、及びそれを用いた有機光電変換素子
JP5447022B2 (ja) ガスバリア性フィルム、その製造方法及びそのガスバリア性フィルムを用いた有機光電変換素子
WO2012026362A1 (ja) ガスバリア性フィルムの製造方法及び有機光電変換素子
WO2011074363A1 (ja) バリアフィルム、その製造方法および有機光電変換素子
JP5712509B2 (ja) バリアフィルムの製造方法
JP5516582B2 (ja) バリアフィルム、有機光電変換素子及びバリアフィルムの製造方法
JP5636646B2 (ja) バリアフィルムの製造方法、バリアフィルム及び有機光電変換素子の製造方法
JP5640976B2 (ja) ガスバリアフィルムとその製造方法、これを用いた光電変換素子
JP2011143551A (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び有機光電変換素子
WO2011062100A1 (ja) ガスバリア性フィルム、その製造方法、それを用いた有機光電変換素子及び有機エレクトロルミネッセンス素子
JP5861376B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法、及びガスバリア性フィルムを有する電子デバイス
JP5736644B2 (ja) ガスバリア性フィルム、その製造方法及びそれを用いた有機光電変換素子
JP5975142B2 (ja) ガスバリア性フィルム、その製造方法及びそれを用いた有機光電変換素子
WO2011074441A1 (ja) 有機光電変換素子
JP5888314B2 (ja) ガスバリア性フィルム及びそのガスバリア性フィルムを用いた電子デバイス
JP5578270B2 (ja) ガスバリア性フィルム、その製造方法及びそのガスバリア性フィルムを用いた有機光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13988455

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012547803

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137014011

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE