CN1035855A - 淀积主要由碳组成的薄膜的方法 - Google Patents

淀积主要由碳组成的薄膜的方法 Download PDF

Info

Publication number
CN1035855A
CN1035855A CN89101005A CN89101005A CN1035855A CN 1035855 A CN1035855 A CN 1035855A CN 89101005 A CN89101005 A CN 89101005A CN 89101005 A CN89101005 A CN 89101005A CN 1035855 A CN1035855 A CN 1035855A
Authority
CN
China
Prior art keywords
carbon
film
hardness
coating
carbon coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN89101005A
Other languages
English (en)
Other versions
CN1028117C (zh
Inventor
伊藤健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1035855A publication Critical patent/CN1035855A/zh
Application granted granted Critical
Publication of CN1028117C publication Critical patent/CN1028117C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

当以碳涂层涂敷基底的CVD(化学汽相淀积)法和加强的CVD法在最近引起极大的兴趣的时候,至今存在着碳涂层由于不同的热膨胀或热收缩而从下面的基底擦掉的情况。本发明公开了一种碳淀积的传统CVD工艺规程的改进,根据本发明淀积条件是变化的,旨在使涂层和下面的基底之间的界面处的碳涂层硬度低于在涂层的外表面处的硬度。

Description

本发明涉及一种淀积主要由碳组成的薄膜的方法。
碳薄膜是非常适宜于使表面制成耐磨的、光滑的或高导热性的。这样一种碳膜是通过使用化学汽相反应淀积而成的。等离子体状态是用反应气体通过在一对电极之间施加高频电能在其所界定的淀积空间产生的,在淀积空间内,碳氢化合物气体和氢气载体被激发成等离子体气体,而碳膜就淀积在表面上。在淀积的过程中,例如氢离子的正离子通过在该对电极之间的自偏电压而向该表面漂移,并溅射该淀积的表面。溅射作用减少了以SP轨道和SP2轨道为基准的碳键的形成和增加了以SP3轨道为基准的碳键的比例,从而使碳膜以金刚石结构方式增长。
有二种方法可以增加在电极对之间建立起来的偏压。一种方法是减小在淀积空间内反应气体的压力。供给反应气体的相对能量是按反应室内反应气体的减少的比例而增加的。当压力减小时离子对非离子的克分子比增加。这些离子易于逗留在电极的周围而在电极之间产生自偏压。另一种方法是增加高频电能的输入功率,而直接增加正离子的数目。
但是,溅射易于使待涂覆的表面受损,而使表面和薄膜之间的界面的性能变坏。除此之外,高度坚硬本身会带来内在的缺点。在由于例如温度变化产生膨胀或收缩时,该界面因坚硬而不能承受由薄膜和下面的表面之间的膨胀或收缩比之差所引起的张力,而最后使该薄膜从表面上脱落。
因此,本发明的一个目的是提供一种优越的碳淀积方法,该方法能在不损害下面的基底的情况下实施。
本发明的另一个目的是提供一种用以淀积优越的碳涂层的方法,碳涂层在其外表面有高的硬度,对下面的基底则有高的附着力。
为了达到上述和其他的目的,本发明提出了碳在基底上的淀积,最初是在淀积硬度比较低的碳制品的条件下进行,最后是在淀积高硬度的碳制品的条件下实现的。
根据本发明的一个最佳实施例,碳制品的能带宽度不低于1.0电子伏特,最好是1.5至5.5电子伏特;在碳涂层的外表面的维克斯硬度不低于2000仟克/毫米2,最好不低于4500仟克/毫米2;以及制品的热导率不低于2.5瓦/厘米·度,最好4.0至6.0瓦/厘米·度。当用作经常经受摩擦作用的热探头时,光滑而坚硬的碳膜表面是非常适用的。当使用于集成电路或半导体器件时,高热导率有助于耗散在集成电路或半导体器件中产生的热,防止温度上升超过不可容忍的程度。
图1是说明根据本发明的一种化学汽相淀积(CVD)装置的示意图。
图2是说明淀积在起阳极作用的基底上的碳制品和淀积在起阴极作用的基底上的碳制品的特性之间的差异的示意图表。
图3是说明根据本发明高频电能的输入功率和淀积的薄膜的性能之间的关系的曲线示意图。
图4是说明根据本发明反应气体的压力和淀积的薄膜的性能之间的关系的曲线示意图。
图5是说明根据本发明自偏压电平和高频电能的输入功率以及反应气体的压力之间的关系的曲线示意图。
图6(A)和6(B)是说明根据本发明的薄膜通过其深度的硬度变化的曲线示意图。
参阅图1,其中示出了根据本发明的教导用以在基底上淀积碳材料的一种等离子体化学汽相淀积装置。待涂覆的表面可以由例如半导体、玻璃、金属、陶瓷、有机树脂和磁性物质等等制成。
该装置包括:在其中界定一反应空间20的一反应室8;第一和第二电极11和12;通过一匹配变压器14以供应电功率的一高频电功率源13;串联连接在电极11和12之间的直流偏压源15;一供气系统1,由各配备有流量表7和阀门6的四个通路组成;一微波能量供给源10,用以激发来自供气系统1的气体;一喷嘴9,由微波能量供给源10激发的气体通过该喷嘴9被引入到反应空间20;以及一包括压力控制阀17、涡轮分子泵18和回转泵19的排气系统16。两电极是设计得使(第一电极11的面积)/(第二电极12的面积)<1。
在这装置的操作过程中,来自供气通路2的氢气载体和来自供气通路3的例如甲烷或乙烯的碳氢化合物反应气体被引入到反应空间20。氢和碳氢化合物气体引入速率是相等的。除此之外,例如NH3或PH3的V族掺杂气体或者Ⅲ族掺杂气体,可以通过供气通路4或5被输入到反应空间20,以便形成杂质半导体。预激发可以由微波能量供给源来完成。反应空间内的压力被维持在0.001至10托之间,最好是0.01至0.5托的范围内。高频电能以不低于1千兆赫的频率,最好以2.45千兆赫在0.1至5千瓦的条件下施加于反应气体,用以破坏C-H键。当频率选成0.1至50兆赫时,C=C键能被破裂,而转变成-C-C-键。由于这种反应,碳原子以一种结构在其中至少局部出现金刚石结构的方式淀积原子。
在直流偏压源15处设定一例如-200至600伏的偏压。在源15的偏压电平为零的情况下,当一-200伏的自偏压电平自发地施加于电极11和12之间时,有效偏压电平大体上为-400至400伏。
通常,高频输入功率被选择在10瓦和5千瓦之间,最好在50瓦至1仟瓦之间。这输入功率在等离子体能量方面相当于0.03至3瓦/厘米2
在基底被用作阳极的淀积条件下和在基底被用作阴极的条件下,淀积了薄膜。淀积的条件为:60瓦(高频输入功率)、0.015托(淀积空间内的压力)、100SCCM(标准条件下每分钟的立方厘米数)〔甲烷(或氢)的引入速率〕、室温(基底温度)和180分钟(淀积时间)。在图2中,圆形、三角形、菱形和六角形分别表示在二种条件下淀积成的薄膜的由针接触型测试器测得的不平度、由硬度表测得维克斯硬度、和由椭圆仪测得的薄膜厚度和折射率。
图3表示在不同的功率电平下由输入高频电能淀积成的薄膜的淀积速度和维克斯硬度。从图可以看到,较硬的薄膜由较高的输入功率能量淀积而成。图4表示在不同的压力水平下在反应空间内淀积成的薄膜的淀积速度和维克斯硬度,图中较硬的薄膜是由较低的压力淀积成的。在图3和4中与图2中使用的一样,相同的记号表示相同的特征。图5表示在反应空间内的不同压力下输入功率以及电极间自偏压之间的关系。括号内的数字是等效功率密度(瓦/厘米2)。可以清楚地看到,高频功率的输入功率电平愈高,或者反应室的压力愈低,则施加于电极的负自偏压愈强。图5中使用的记号与图2、3和4使用的是不一致的。比较图2至5,可以认识到较高度数的维克斯硬度可以通过增加输入功率电平或减小反应空间的压力来获得。
根据本发明的教导,基底是在淀积条件改变时涂以碳涂层的,旨在使最初淀积在基底上的碳的硬度比较低而最后淀积在基底上的硬度变成非常高,以便形成一硬的外表面。这工艺过程可以用两种方法实现。如图6(A)可见,根据上面的说明硬度可以以逐步的方式改变淀积条件来改变。另一方面,从图6(B)可见,硬度可以从碳涂层的内表面到外表面连续地改变。
实验1:
碳膜是在不同的淀积条件下淀积在硅基底上。第一薄膜是在压力为0.3托、输入功率为50瓦和室温(基底温度)的条件下淀积在基底上。淀积时间为150分钟。在这条件下,自偏电压为-200伏。测得的维克斯硬度为2200千克/毫米2。第二薄膜在0.3托、100瓦和150℃的条件下淀积在第一薄膜上。淀积时间为150分钟。在此条件下,自偏电压为-150伏,维克斯硬度测得为3500千克/毫米2。此外,第三碳膜在0.015托、2000瓦和室温的条件下淀积在第二薄膜上。淀积时间为60分钟。自偏电压-280伏。测得的维克斯硬度为4200千克/毫米2。其他的淀积条件是与上述说明中叙述的一样。
实验2:
碳淀积是通过以100 SCCM的速率引入甲烷及氢经150分钟来实现,以便形成第一碳膜。反应空间的压力为0.03托。输入功率为50瓦。其他的淀积条件与实验1中第一薄膜的淀积条件相同。第二碳膜除了输入功率为150瓦外,以同样的方式淀积在第一薄膜上。同样地,第三碳膜除了输入功率为300瓦和淀积时间为60分钟外,以同样的方式淀积在第二薄膜上。结果,形成了叠层的碳膜,其维克硬度在恰好邻接下面的硅基底处为2200千克/毫米2、在中间深度处为3500千克/毫米2和在外表面处为5000千克/毫米2
实验3:
这个实验的实现是为了形成一种硬度在其厚度上变化的碳膜。碳淀积是在按照上面对于实验1的第一薄膜所规定的淀积条件下开始的。此后,输入功率以0.7至2瓦/分钟的速率逐渐地增至300瓦。结果,形成了一种碳膜,其维克斯硬度从在基底的接触表面处的2200千克/毫米2逐渐增加至在碳膜的外表面处的4000千克/毫米2
当待涂敷的基底在碳淀积之前经受在1至10托条件下氢等离子体的处理,以便从待涂敷的表面消除例如碳化合物或氮化合物的杂质时,碳涂层和下面的基底之间的接触可进一步改善。等离子体压力选得不低于10-3托,最好在0.01至200托的范围内。氢等离子体由0.1至100兆赫的高频电功率或由以10至1000瓦的1至10千兆的微波来激发。
尽管已经对几个实施例作出说明,本发明只受所附的权利要求书限定,而不应受特殊的实例的限制,且根据本发明可以使技工作某些修改或变更。例如,已经证明将氢、卤素、硼、氮、磷或诸如此类的物质加进碳涂层是有效的。最好,氢或卤素的比例不高于25原子百分比和其他添加剂的比例不高于5%。同样地,虽然实验是完成在半导体基底上淀积碳涂层,但碳涂层也能淀积在由例如聚对苯二甲酸乙二醇脂、聚酯、聚甲基丙烯酸甲酯、特氟隆、环氧树脂和聚酰亚胺的有机树脂、金属网络、纸、玻璃、金属、陶瓷和其他物质制成的基底上。
根据本发明淀积的碳涂层的型式包括无定形的、多晶体(包括金刚石粉末)、金刚石薄膜。对于双层薄膜,下面的和上面的薄膜可以分别为无定形的和无定形的(有不同的硬度)、无定形的和多晶体、多晶体和多晶体或多晶体和金刚石薄膜。

Claims (11)

1、一种在基底上淀积主要由碳组成的薄膜的方法,其特征在于,所述的方法包括下列步骤:
将物体放置在反应室内;
将包括碳的生产气体引进所述反应室;以及
将能量输进所述反应室,以便分解所述碳化合物气体和将分解的碳制品淀积在所述物体的表面,
其中所述碳涂层的淀积条件是变化的,旨在使最初淀积在所述表面上的碳制品的硬度低于最后淀积的碳制品的硬度,以形成所述碳涂层的外表面。
2、根据权利要求1所述的方法,其特征在于,所述能量是用一对电极供给所述反应室,电能是在一对电极之间供应的,所述物体起所述电极中的一个电极的作用。
3、根据权利要求1所述的方法,其特征在于,供给至所述电极的能量是可调节的,以便使所述电极间的微分电位平均地从淀积的最初阶段增加至淀积的最后阶段。
4、根据权利要求3所述的方法,其特征在于,所述物体的平均电位是低于另一电极的平均电位。
5、根据权利要求4所述的方法,其特征在于,所述微分电位是逐步增加的,旨在使所述碳涂层包括一具有较低硬度的下层薄膜和一具有较高硬度的上层薄膜。
6、根据权利要求4所述的方法,其特征在于,所述微分电位逐渐地降低,以便形成一碳涂层,其硬度从所述碳涂层和所述基底之间的界面至所述碳涂层的外表面是连续地增加。
7、根据权利要求3所述的方法,其特征在于,所述微分电位是通过在淀积工序中减小所述反应室内的压力来增加的。
8、根据权利要求7所述的方法,其特征在于,所述压力是逐步减小的,旨在使所述碳涂层包括一具有较低硬度的下层薄膜和一具有较高硬度的上层薄膜。
9、根据权利要求7所述的方法,其特征在于,所述压力是逐渐地减小,以便形成一碳涂层,其硬度从所述碳涂层和所述基底之间的界面至所述碳涂层的外表面是连续地增加的。
10、根据权利要求3所述的方法,其特征在于,所述微分电位是通过增加供应给所述电极的所述电能的输入电平来增加的。
11、一种在基底上的碳薄膜涂层,其特征在于,该碳薄膜涂层在所述碳薄膜和所述基底之间的界面附近的硬度较低而在所述涂层的外表面处的硬度较高。
CN89101005A 1988-02-26 1989-02-25 淀积主要由碳组成的薄膜的方法 Expired - Fee Related CN1028117C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4341488 1988-02-26
JP43414/88 1988-02-26
JP50397/88 1988-03-02
JP63050397A JP2610469B2 (ja) 1988-02-26 1988-03-02 炭素または炭素を主成分とする被膜を形成する方法

Publications (2)

Publication Number Publication Date
CN1035855A true CN1035855A (zh) 1989-09-27
CN1028117C CN1028117C (zh) 1995-04-05

Family

ID=26383172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89101005A Expired - Fee Related CN1028117C (zh) 1988-02-26 1989-02-25 淀积主要由碳组成的薄膜的方法

Country Status (5)

Country Link
US (2) US4996079A (zh)
EP (1) EP0330524A1 (zh)
JP (1) JP2610469B2 (zh)
KR (1) KR910005836B1 (zh)
CN (1) CN1028117C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136386A (en) * 1996-06-27 2000-10-24 Nissin Electric Co., Ltd. Method of coating polymer or glass objects with carbon films
US6893720B1 (en) 1997-06-27 2005-05-17 Nissin Electric Co., Ltd. Object coated with carbon film and method of manufacturing the same
CN104498907A (zh) * 2014-12-03 2015-04-08 中国科学院宁波材料技术与工程研究所 一种在低功耗低气压条件制备疏水性碳膜的方法
CN108368602A (zh) * 2015-12-18 2018-08-03 日本Itf株式会社 被覆膜与其制造方法及pvd装置

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224952B1 (en) * 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US5190824A (en) 1988-03-07 1993-03-02 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating
DE69005938T2 (de) * 1989-07-31 1994-05-19 Matsushita Electric Ind Co Ltd Vorrichtung zur Herstellung von einer dünnen diamantartigen Kohlenstoffschicht.
US5300460A (en) * 1989-10-03 1994-04-05 Applied Materials, Inc. UHF/VHF plasma for use in forming integrated circuit structures on semiconductor wafers
US5091208A (en) * 1990-03-05 1992-02-25 Wayne State University Novel susceptor for use in chemical vapor deposition apparatus and its method of use
CA2044543C (en) * 1990-08-10 1999-12-14 Louis Kimball Bigelow Multi-layer superhard film structure
US5427827A (en) * 1991-03-29 1995-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Deposition of diamond-like films by ECR microwave plasma
JPH07109034B2 (ja) * 1991-04-08 1995-11-22 ワイケイケイ株式会社 硬質多層膜形成体およびその製造方法
JP3152316B2 (ja) * 1991-05-31 2001-04-03 東邦レーヨン株式会社 炭素フィルム及びその製造方法
FR2682125A1 (fr) * 1991-10-07 1993-04-09 Nitruvid Procede de traitement pour deposer une couche de carbone en phase vapeur sur la surface d'une piece metallique et piece ainsi obtenue.
US5290610A (en) * 1992-02-13 1994-03-01 Motorola, Inc. Forming a diamond material layer on an electron emitter using hydrocarbon reactant gases ionized by emitted electrons
US5827613A (en) * 1992-09-04 1998-10-27 Tdk Corporation Articles having diamond-like protective film and method of manufacturing the same
US5637373A (en) 1992-11-19 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6805941B1 (en) * 1992-11-19 2004-10-19 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6835523B1 (en) * 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
US5932302A (en) * 1993-07-20 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating with ultrasonic vibration a carbon coating
US5399388A (en) * 1994-02-28 1995-03-21 The United States Of America As Represented By The Secretary Of The Navy Method of forming thin films on substrates at low temperatures
US5508368A (en) * 1994-03-03 1996-04-16 Diamonex, Incorporated Ion beam process for deposition of highly abrasion-resistant coatings
JPH09501612A (ja) * 1994-04-08 1997-02-18 マーク エー. レイ, 選択的プラズマ成長
JP3581900B2 (ja) * 1994-10-28 2004-10-27 三菱アルミニウム株式会社 フロロカーボン膜が形成された金属材料、その製造方法並びにその材料を用いた装置
JP3119172B2 (ja) * 1995-09-13 2000-12-18 日新電機株式会社 プラズマcvd法及び装置
US5712000A (en) * 1995-10-12 1998-01-27 Hughes Aircraft Company Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
US5837331A (en) * 1996-03-13 1998-11-17 Motorola, Inc. Amorphous multi-layered structure and method of making the same
US5804259A (en) * 1996-11-07 1998-09-08 Applied Materials, Inc. Method and apparatus for depositing a multilayered low dielectric constant film
JPH10158815A (ja) * 1996-11-29 1998-06-16 Nissin Electric Co Ltd 静電チャック用被保持物配置部材及びその製造方法並びに静電チャック
US5942317A (en) * 1997-01-31 1999-08-24 International Business Machines Corporation Hydrogenated carbon thin films
JPH10217522A (ja) * 1997-02-07 1998-08-18 Fuji Photo Film Co Ltd サーマルヘッドおよびサーマルヘッドの製造方法
US6066399A (en) * 1997-03-19 2000-05-23 Sanyo Electric Co., Ltd. Hard carbon thin film and method of forming the same
DE19814805A1 (de) * 1998-04-02 1999-10-07 Bosch Gmbh Robert Beschichtungsverfahren eines Wischergummis
US6287711B1 (en) 1998-07-01 2001-09-11 Front Edge Technology, Inc. Wear-resistant coating and component
JP2001192206A (ja) * 2000-01-05 2001-07-17 Sumitomo Electric Ind Ltd 非晶質炭素被覆部材の製造方法
DE10018143C5 (de) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
US7276222B2 (en) * 2001-01-19 2007-10-02 Chevron U.S.A. Inc. Diamondoid-containing thermally conductive materials
US7306674B2 (en) * 2001-01-19 2007-12-11 Chevron U.S.A. Inc. Nucleation of diamond films using higher diamondoids
US6783589B2 (en) * 2001-01-19 2004-08-31 Chevron U.S.A. Inc. Diamondoid-containing materials in microelectronics
JP2003231203A (ja) * 2001-08-21 2003-08-19 Toshiba Corp 炭素膜被覆部材
US6576328B2 (en) 2001-08-30 2003-06-10 Hitachi Global Storage Technologies Netherlands B.V. Magnetic thin film media with a protective layer of CNx having a plurality of compositions
TW566828U (en) * 2003-04-11 2003-12-11 Delta Electronics Inc Fan circuit board and fan structure with fan circuit board
US7312562B2 (en) * 2004-02-04 2007-12-25 Chevron U.S.A. Inc. Heterodiamondoid-containing field emission devices
US7300684B2 (en) * 2004-07-15 2007-11-27 Sub-One Technology, Inc. Method and system for coating internal surfaces of prefabricated process piping in the field
JP4649605B2 (ja) * 2004-08-19 2011-03-16 国立大学法人名古屋大学 プラズマcvd装置および硬質炭素膜の製造方法
US8679674B2 (en) * 2005-03-25 2014-03-25 Front Edge Technology, Inc. Battery with protective packaging
US7846579B2 (en) * 2005-03-25 2010-12-07 Victor Krasnov Thin film battery with protective packaging
JP4839723B2 (ja) * 2005-08-10 2011-12-21 富士電機株式会社 保護膜形成方法およびその保護膜を備えた磁気記録媒体
JP4918656B2 (ja) 2005-12-21 2012-04-18 株式会社リケン 非晶質硬質炭素皮膜
JP5109320B2 (ja) * 2006-09-28 2012-12-26 ブラザー工業株式会社 摺動部材
US7862927B2 (en) * 2007-03-02 2011-01-04 Front Edge Technology Thin film battery and manufacturing method
US20080254233A1 (en) * 2007-04-10 2008-10-16 Kwangduk Douglas Lee Plasma-induced charge damage control for plasma enhanced chemical vapor deposition processes
US7862627B2 (en) * 2007-04-27 2011-01-04 Front Edge Technology, Inc. Thin film battery substrate cutting and fabrication process
US8870974B2 (en) * 2008-02-18 2014-10-28 Front Edge Technology, Inc. Thin film battery fabrication using laser shaping
JP2008310849A (ja) * 2007-06-12 2008-12-25 Fuji Electric Device Technology Co Ltd 保護膜形成法及び保護膜を備えた磁気記録媒体
US8628645B2 (en) * 2007-09-04 2014-01-14 Front Edge Technology, Inc. Manufacturing method for thin film battery
US20090136839A1 (en) * 2007-11-28 2009-05-28 Front Edge Technology, Inc. Thin film battery comprising stacked battery cells and method
JP2009132543A (ja) * 2007-11-28 2009-06-18 Toyota Motor Corp アモルファスカーボン製造装置及びアモルファスカーボン製造方法
JP5093686B2 (ja) 2008-08-27 2012-12-12 富士電機株式会社 磁気記録媒体用保護膜の形成方法
JP2010146683A (ja) * 2008-12-22 2010-07-01 Fuji Electric Device Technology Co Ltd 保護膜の形成方法、及び当該方法により得られた保護膜、並びに当該保護膜を含む磁気記録媒体
US8502494B2 (en) * 2009-08-28 2013-08-06 Front Edge Technology, Inc. Battery charging apparatus and method
JP5360603B2 (ja) * 2010-05-27 2013-12-04 住友電気工業株式会社 非晶質炭素被覆部材の製造方法
US8865340B2 (en) 2011-10-20 2014-10-21 Front Edge Technology Inc. Thin film battery packaging formed by localized heating
US9887429B2 (en) 2011-12-21 2018-02-06 Front Edge Technology Inc. Laminated lithium battery
US8864954B2 (en) 2011-12-23 2014-10-21 Front Edge Technology Inc. Sputtering lithium-containing material with multiple targets
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
US9077000B2 (en) 2012-03-29 2015-07-07 Front Edge Technology, Inc. Thin film battery and localized heat treatment
US9159964B2 (en) 2012-09-25 2015-10-13 Front Edge Technology, Inc. Solid state battery having mismatched battery cells
US8753724B2 (en) 2012-09-26 2014-06-17 Front Edge Technology Inc. Plasma deposition on a partially formed battery through a mesh screen
US9356320B2 (en) 2012-10-15 2016-05-31 Front Edge Technology Inc. Lithium battery having low leakage anode
JP6100580B2 (ja) * 2013-03-28 2017-03-22 ブラザー工業株式会社 成膜装置、成膜方法及び成膜プログラム
JP6060016B2 (ja) * 2013-03-28 2017-01-11 ブラザー工業株式会社 成膜装置、成膜方法及び成膜プログラム
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
JP2017025389A (ja) * 2015-07-24 2017-02-02 株式会社ユーテック プラズマcvd装置及び成膜方法
CN118256865A (zh) * 2018-07-10 2024-06-28 耐科思特生物识别集团股份公司 电子设备及其制造方法
US11773484B2 (en) * 2020-06-26 2023-10-03 Tokyo Electron Limited Hard mask deposition using direct current superimposed radio frequency plasma

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698256A (en) * 1984-04-02 1987-10-06 American Cyanamid Company Articles coated with adherent diamondlike carbon films
US4770940A (en) * 1984-09-10 1988-09-13 Ovonic Synthetic Materials Company Glow discharge method of applying a carbon coating onto a substrate and coating applied thereby
JPS6167767A (ja) * 1984-09-11 1986-04-07 Canon Inc 膜形成方法
US4647494A (en) * 1985-10-31 1987-03-03 International Business Machines Corporation Silicon/carbon protection of metallic magnetic structures
US4777090A (en) * 1986-11-03 1988-10-11 Ovonic Synthetic Materials Company Coated article and method of manufacturing the article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136386A (en) * 1996-06-27 2000-10-24 Nissin Electric Co., Ltd. Method of coating polymer or glass objects with carbon films
US6893720B1 (en) 1997-06-27 2005-05-17 Nissin Electric Co., Ltd. Object coated with carbon film and method of manufacturing the same
CN104498907A (zh) * 2014-12-03 2015-04-08 中国科学院宁波材料技术与工程研究所 一种在低功耗低气压条件制备疏水性碳膜的方法
CN108368602A (zh) * 2015-12-18 2018-08-03 日本Itf株式会社 被覆膜与其制造方法及pvd装置
CN108368602B (zh) * 2015-12-18 2020-08-25 日本Itf株式会社 被覆膜与其制造方法、pvd装置及活塞环

Also Published As

Publication number Publication date
JPH01294867A (ja) 1989-11-28
EP0330524A1 (en) 1989-08-30
CN1028117C (zh) 1995-04-05
JP2610469B2 (ja) 1997-05-14
US4996079A (en) 1991-02-26
KR890013210A (ko) 1989-09-22
KR910005836B1 (ko) 1991-08-05
US5368937A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
CN1028117C (zh) 淀积主要由碳组成的薄膜的方法
US5079031A (en) Apparatus and method for forming thin films
US6564744B2 (en) Plasma CVD method and apparatus
US6678143B2 (en) Electrostatic chuck and method of manufacturing the same
CN1036078C (zh) 淀积碳的微波增强化学气相淀积方法
EP0030638B2 (en) Method for depositing silicon or germanium containing films
US5238866A (en) Plasma enhanced chemical vapor deposition process for producing an amorphous semiconductive surface coating
CN1190111C (zh) 具有双离子源的处理系统
EP0372696B1 (en) Method of producing a carbon-based film
CN1958841A (zh) 生长非常均匀的碳化硅外延层
EP2383366A1 (en) Method for producing diamond-like carbon membrane
CN100557075C (zh) 处理衬底的方法
JPH05217922A (ja) プラズマによる気相からの層析出方法
US5007374A (en) Apparatus for forming thin films in quantity
US20030107865A1 (en) Wafer handling apparatus and method of manufacturing the same
Sun et al. Crystal morphology and phase purity of diamond crystallites during bias enhanced nucleation and initial growth stages
CA2061302C (en) Method of making synthetic diamond film
JPH01246115A (ja) 炭素または炭素を主成分とする被膜を形成する方法
Kiyohara et al. Ion beam smoothing of CVD diamond thin films by etchback method
JPH03240959A (ja) 窒化炭素薄膜の合成方法
CA2014913A1 (en) Method for improving adhesion of synthetic diamond coatings to substrates
US5897711A (en) Method and apparatus for improving refractive index of dielectric films
JP3180332B2 (ja) 炭素または炭素を主成分とする被膜を形成する装置のクリーニング方法
JPS5915983B2 (ja) ホウ素被膜の形成方法
Kayaba et al. Simulation of the growth of diamond nuclei on silicon substrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee