CN103578948A - 抑制pmos器件工艺中栅极多晶硅耗尽的方法 - Google Patents

抑制pmos器件工艺中栅极多晶硅耗尽的方法 Download PDF

Info

Publication number
CN103578948A
CN103578948A CN201210266287.3A CN201210266287A CN103578948A CN 103578948 A CN103578948 A CN 103578948A CN 201210266287 A CN201210266287 A CN 201210266287A CN 103578948 A CN103578948 A CN 103578948A
Authority
CN
China
Prior art keywords
polycrystalline silicon
grid polycrystalline
pmos device
silicon
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210266287.3A
Other languages
English (en)
Other versions
CN103578948B (zh
Inventor
陈瑜
罗啸
马斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Hua Hong NEC Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hua Hong NEC Electronics Co Ltd filed Critical Shanghai Hua Hong NEC Electronics Co Ltd
Priority to CN201210266287.3A priority Critical patent/CN103578948B/zh
Publication of CN103578948A publication Critical patent/CN103578948A/zh
Application granted granted Critical
Publication of CN103578948B publication Critical patent/CN103578948B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种抑制PMOS器件工艺中栅极多晶硅耗尽的方法,包括步骤:在栅极多晶硅中注入硼离子;在栅极多晶硅表面注入铟离子;在栅极多晶硅的表面形成钨硅层。本发明通过在PMOS器件的栅极多晶硅硼注入之后,再进行铟注入,通过铟注入使栅极多晶硅表面发生固态相变,并使栅极多晶硅的表面形成晶界缺陷得到减少的多晶硅新核,多晶硅新核的形成能够降低掺杂原子的扩散速率,阻止硼向栅极多晶硅的表面扩散,能够降低在后续热过程中促使硼渗透到钨硅层中的风险,从而能有效抑制PMOS器件工艺中栅极多晶硅耗尽现象的发生,使PMOS器件的阈值电压稳定。

Description

抑制PMOS器件工艺中栅极多晶硅耗尽的方法
技术领域
本发明涉及一种半导体集成电路制造工艺方法,特别是涉及一种抑制PMOS工艺中栅极多晶硅耗尽(Poly Depletion Effects)的方法。
背景技术
现有工艺中,为了方便于NMOS器件集成,PMOS器件的栅极多晶硅采用和NMOS器件的栅极多晶硅相同的掺杂条件,即都为N型掺杂且都要求重掺杂,PMOS器件的栅极多晶硅N型掺杂后,必须在沟道区形成一P型埋沟(buried channel)才能解决N型栅极多晶硅造成的阈值电压(Vt)较高的问题,P型埋沟的引入又会产生较大的漏电流问题。为了解决现有PMOS器件的埋沟引起的较高的Vt和较大的漏电流的问题,现有技术中采用P型硼杂质来对PMOS器件的栅极多晶硅进行P型掺杂并且为重掺杂,即NMOS器件的栅极多晶硅形成N型掺杂的结构、PMOS器件的栅极多晶硅形成P型掺杂的结构,这样才能降低PMOS器件的P型栅极多晶硅和硅衬底上的沟道区之间的接触势,能达到降低PMOS器件的阈值电压和漏电的作用。但是由于NMOS器件和PMOS器件要集成在一起,故要保证NMOS器件的栅极和PMOS器件的栅极能够实现良好的接触,由于P型栅极多晶硅和N型栅极多晶硅之间存在接触问题,所以现有技术中采用在P型栅极多晶硅和N型栅极多晶硅上都分别形成钨硅层(WSI,Tungsten Polycide)来实现NMOS器件的栅极和PMOS器件的栅极的良好的接触连接。
PMOS器件的栅极多晶硅采用硼掺杂以及形成钨硅层后,由于硼在钨硅层与多晶硅中溶解度大致为100:1,这样容易受后续热处理的影响,导致硼穿越钨硅层和栅极多晶硅的界面,进入到钨硅层中并在钨硅层中聚积,即最后会产生PMOS器件的栅极多晶硅耗尽(Poly Depletion Effects),从而造成PMOS器件的阈值电压漂移。如图1所示,在硅衬底101上形成有栅氧化层102,以及栅极多晶硅层103和钨硅层104,其中栅极多晶硅层103中注入有P型硼杂质,该结构在进行后续热处理后,由于硼的在钨硅层104中的溶解度更大,故硼杂质会穿透到钨硅层104中,栅极多晶硅层103的硼杂质会大大减少,这样就会是最后形成的PMOS器件的阈值电压漂移。
为了克服上述硼穿透到钨硅层中的情况发生,如图2所示,现有一种工艺方法是在栅极多晶硅层103进行硼掺杂后,在栅极多晶硅层103的表面形成一层钛和氮化钛(Ti/TiN)的阻挡层105,再在阻挡层105上形成钨硅层104,其中在钨硅层104上的氮化硅层106为隔离保护层。即现有方法利用阻挡层105来阻止栅极多晶硅103中的硼杂质在加热后向钨硅层104中渗透聚集。虽然上述方法能够抑制栅极多晶硅耗尽发生,但是新引入的钛很容易在后续的栅极多晶硅的再氧化(Re-oxidation)工艺被氧化而发生膨胀,最后造成球形凸起(pilling),这会对栅极结构的形貌影响很大,不利于器件的性能稳定。同时,钛的引入,也对工艺线上的产品存在金属离子污染的风险。
发明内容
本发明所要解决的技术问题是提供一种抑制PMOS器件工艺中栅极多晶硅耗尽的方法,能抑制PMOS器件的栅极多晶硅中的硼穿透到钨硅层中,使PMOS器件的阈值电压稳定。
为解决上述技术问题,本发明提供的抑制PMOS器件工艺中栅极多晶硅耗尽的方法包括如下步骤:
步骤一、在硅衬底上形成栅极多晶硅后,在所述栅极多晶硅中注入硼离子,使所述栅极多晶硅呈P型掺杂结构;
步骤二、在硼离子注入之后,在所述栅极多晶硅表面注入铟离子,利用铟离子的轰击使所述栅极多晶硅表面被轰击的部分发生固态相变,使所述栅极多晶硅的表面被轰击的部分形成晶界缺陷得到减少的多晶硅新核;
步骤三、在所述栅极多晶硅的表面形成钨硅层,由所述钨硅层和所述栅极多晶硅组成所述PMOS器件的栅极。
进一步的改进是,步骤一中的注入硼离子的能量为3KeV~8Kev,注入剂量为1E15cm-2~1E16cm-2
进一步的改进是,步骤二中的注入铟离子的能量为10KeV~30Kev,注入剂量为1E14cm-2~6E14cm-2
本发明方法通过在PMOS器件的栅极多晶硅硼注入之后,再进行铟注入,通过铟注入使栅极多晶硅表面发生固态相变,并使栅极多晶硅的表面形成晶界缺陷得到减少的多晶硅新核,多晶硅新核的形成能够降低掺杂原子的扩散速率,阻止硼向栅极多晶硅的表面扩散,能够降低在后续热过程中促使硼渗透到钨硅层中的风险,从而能有效抑制PMOS器件工艺中硼穿透到WSI层中而引起的栅极多晶硅耗尽现象的发生,使PMOS器件的阈值电压稳定。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明:
图1是现有PMOS器件带有钨硅层和多晶硅层的栅极结构;
图2是现有PMOS器件带有钨硅层、阻挡层和多晶硅层的栅极结构;
图3是本发明实施例方法的流程图;
图4A-图4C是本发明实施例方法各步骤中器件结构图。
具体实施方式
如图3所示,是本发明实施例方法的流程图;本发明实施例抑制PMOS器件工艺中栅极多晶硅耗尽的方法包括如下步骤:
步骤一、如图4A所示,在硅衬底1上依次形成栅介质层2和栅极多晶硅3,其中栅介质层1能为一氧化层。在形成栅极多晶硅3后,在PMOS器件形成区域的所述栅极多晶硅3中注入硼离子,注入硼离子的能量为3KeV~8Kev,注入剂量为1E15cm-2~1E16cm-2,使所述PMOS器件形成区域的所述栅极多晶硅3呈P型掺杂结构。
步骤二、如图4A所示,在硼离子注入之后在所述PMOS器件形成区域的所述栅极多晶硅3表面注入铟离子,注入铟离子的能量为10KeV~30Kev,注入剂量为1E14cm-2~6E14cm-2。如图4B所示,利用铟离子的轰击使所述栅极多晶硅3表面被轰击的部分发生固态相变,使所述栅极多晶硅3的表面被轰击的部分形成晶界缺陷得到减少的多晶硅新核3a。多晶硅新核3a即为经过铟轰击后的栅极多晶硅形成的比未经过铟轰击的栅极多晶硅的晶界缺陷少的核。
步骤三、如图4C所示,在所述栅极多晶硅3的表面形成钨硅层4,对所述钨硅层4和所述栅极多晶硅3进行光刻刻蚀,由光刻刻蚀后的位于所述PMOS器件形成区域的所述钨硅层4和所述栅极多晶硅3的叠成组成所述PMOS器件的栅极。其中由于多晶硅新核3a的形成,能够降低掺杂原子的扩散速率,阻止硼向栅极多晶硅的表面扩散,能够降低在后续热过程中促使硼渗透到钨硅层中的风险,从而能有效抑制PMOS器件工艺中栅极多晶硅耗尽的发生,使PMOS器件的阈值电压稳定。
之后在PMOS器件的栅极的侧面形成侧墙,并在所述栅极两侧的所述硅衬底1中形成PMOS器件的源漏区。
PMOS器件一般和NMOS器件集成在一起形成,在形成NMOS器件的区域中,NMOS器件的栅极多晶硅采用N型掺杂,在栅极多晶硅上也形成有钨硅层。PMOS器件和NMOS器件集成在一起时,通过钨硅层实现器件之间的栅极的连接。
以上通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (3)

1.一种抑制PMOS器件工艺中栅极多晶硅耗尽的方法,其特征在于,包括如下步骤:
步骤一、在硅衬底上形成栅极多晶硅后,在所述栅极多晶硅中注入硼离子,使所述栅极多晶硅呈P型掺杂结构;
步骤二、在硼离子注入之后,在所述栅极多晶硅表面注入铟离子,利用铟离子的轰击使所述栅极多晶硅表面被轰击的部分发生固态相变,使所述栅极多晶硅的表面被轰击的部分形成晶界缺陷得到减少的多晶硅新核;
步骤三、在所述栅极多晶硅的表面形成钨硅层,由所述钨硅层和所述栅极多晶硅组成所述PMOS器件的栅极。
2.如权利要求1所述的抑制PMOS器件工艺中栅极多晶硅耗尽的方法,其特征在于:步骤一中的注入硼离子的能量为3KeV~8Kev,注入剂量为1E15cm-2~1E16cm-2
3.如权利要求1所述的抑制PMOS器件工艺中栅极多晶硅耗尽的方法,其特征在于:步骤二中的注入铟离子的能量为10KeV~30Kev,注入剂量为1E14cm-2~6E14cm-2
CN201210266287.3A 2012-07-30 2012-07-30 抑制pmos器件工艺中栅极多晶硅耗尽的方法 Active CN103578948B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210266287.3A CN103578948B (zh) 2012-07-30 2012-07-30 抑制pmos器件工艺中栅极多晶硅耗尽的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210266287.3A CN103578948B (zh) 2012-07-30 2012-07-30 抑制pmos器件工艺中栅极多晶硅耗尽的方法

Publications (2)

Publication Number Publication Date
CN103578948A true CN103578948A (zh) 2014-02-12
CN103578948B CN103578948B (zh) 2016-06-08

Family

ID=50050472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210266287.3A Active CN103578948B (zh) 2012-07-30 2012-07-30 抑制pmos器件工艺中栅极多晶硅耗尽的方法

Country Status (1)

Country Link
CN (1) CN103578948B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016197410A1 (zh) * 2015-06-09 2016-12-15 深圳市华星光电技术有限公司 多晶硅薄膜的制备方法及多晶硅tft结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180469B1 (en) * 1998-11-06 2001-01-30 Advanced Micro Devices, Inc. Low resistance salicide technology with reduced silicon consumption
US20080054363A1 (en) * 2006-08-31 2008-03-06 Haeng-Leem Jeon Dual gate cmos semiconductor device and method for manufacturing the same
CN101197286A (zh) * 2006-12-05 2008-06-11 中芯国际集成电路制造(上海)有限公司 金属氧化物半导体器件的制造方法
CN101211966A (zh) * 2006-12-27 2008-07-02 海力士半导体有限公司 具有栅极结构的半导体器件及其制造方法
CN101728274A (zh) * 2008-10-27 2010-06-09 台湾积体电路制造股份有限公司 通过共注入碳和氮降低多晶硅耗尽

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180469B1 (en) * 1998-11-06 2001-01-30 Advanced Micro Devices, Inc. Low resistance salicide technology with reduced silicon consumption
US20080054363A1 (en) * 2006-08-31 2008-03-06 Haeng-Leem Jeon Dual gate cmos semiconductor device and method for manufacturing the same
CN101197286A (zh) * 2006-12-05 2008-06-11 中芯国际集成电路制造(上海)有限公司 金属氧化物半导体器件的制造方法
CN101211966A (zh) * 2006-12-27 2008-07-02 海力士半导体有限公司 具有栅极结构的半导体器件及其制造方法
CN101728274A (zh) * 2008-10-27 2010-06-09 台湾积体电路制造股份有限公司 通过共注入碳和氮降低多晶硅耗尽

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016197410A1 (zh) * 2015-06-09 2016-12-15 深圳市华星光电技术有限公司 多晶硅薄膜的制备方法及多晶硅tft结构

Also Published As

Publication number Publication date
CN103578948B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN100495663C (zh) 集成电路的制造方法
CN102386234B (zh) 半导体元件与其形成方法
CN102446856B (zh) 半导体器件及制造半导体器件的方法
CN103187276B (zh) n型MOS场效应管及形成方法,半导体器件及形成方法
CN110034067B (zh) 半导体器件及其形成方法
CN103579112A (zh) Cmos及其形成方法
CN103378134A (zh) 栅极结构及形成方法、半导体结构及形成方法
CN102184961A (zh) 一种非对称栅mos器件及其制备方法
CN104269358A (zh) 半导体器件的制备方法
CN103000501B (zh) Nmos晶体管形成方法
CN102569077B (zh) 用于制作半导体器件的源/漏区的方法
CN103578948A (zh) 抑制pmos器件工艺中栅极多晶硅耗尽的方法
CN100570837C (zh) 半导体元件的制作方法
CN102800593B (zh) 晶体管形成方法
CN103681341B (zh) 抑制pmos器件阈值电压漂移的方法
CN103681334A (zh) 抑制pmos器件工艺中栅极多晶硅耗尽的方法
CN105742166A (zh) 一种降低器件漏电流的方法
CN106252282A (zh) 一种半导体器件及其制造方法、电子装置
CN103779280A (zh) 高介电层金属栅器件的制造方法
CN110931361B (zh) 一种mos器件、制造方法、集成电路及电子设备
CN105047566B (zh) 抑制反短沟道效应的方法及nmos器件制备方法
CN104078427B (zh) 一种sram存储器及其制备方法
CN103578998A (zh) 防止pmos器件工艺中栅极多晶硅耗尽的方法
CN103681509A (zh) 一种半导体结构的制造方法
US8722549B2 (en) Semiconductor device capable of reducing plasma induced damage and fabrication method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HUAHONG NEC ELECTRONICS CO LTD, SHANGHAI

Effective date: 20140114

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201206 PUDONG NEW AREA, SHANGHAI TO: 201203 PUDONG NEW AREA, SHANGHAI

TA01 Transfer of patent application right

Effective date of registration: 20140114

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech Park No. 1399

Applicant after: Shanghai Huahong Grace Semiconductor Manufacturing Corporation

Address before: 201206, Shanghai, Pudong New Area, Sichuan Road, No. 1188 Bridge

Applicant before: Shanghai Huahong NEC Electronics Co., Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant