CN105742166A - 一种降低器件漏电流的方法 - Google Patents

一种降低器件漏电流的方法 Download PDF

Info

Publication number
CN105742166A
CN105742166A CN201610186875.4A CN201610186875A CN105742166A CN 105742166 A CN105742166 A CN 105742166A CN 201610186875 A CN201610186875 A CN 201610186875A CN 105742166 A CN105742166 A CN 105742166A
Authority
CN
China
Prior art keywords
silicon substrate
injected
grid
ion
metal atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610186875.4A
Other languages
English (en)
Inventor
罗飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201610186875.4A priority Critical patent/CN105742166A/zh
Publication of CN105742166A publication Critical patent/CN105742166A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种降低器件漏电流的方法,采用与硅衬底呈一定倾斜角度的离子注入方式,将不具有导电性的中性离子注入到栅极侧墙的底部,由于这些注入的离子原子量很小,通过离子注入的方式到达侧墙下方的硅衬底内部之后,在之后的金属化过程中,金属原子向CMOS沟道扩散的时候会受到这些注入离子的阻碍。由于注入的离子元素的密度高,且其尺寸比金属原子小,而金属原子的尺寸较大,当金属原子遇到这种密度高且尺寸小的注入离子元素时,金属原子的扩散速度和横向扩散量将大幅降低。因此,相对于传统工艺,本发明的额外增加不导电的中性离子注入的方式可以很好的抑制金属原子的横向扩散,从而降低CMOS器件的漏电流。

Description

一种降低器件漏电流的方法
技术领域
本发明涉及半导体设备技术领域,具体涉及一种降低器件漏电流的方法。
背景技术
在半导体制造工艺流程中,金属硅化物工艺是非常典型而且传统的工艺步骤。其做法是把需要低电阻率的栅极多晶硅或者单晶硅衬底材料形成金属化合物,而不需要低电阻率的地方则用电介质材料如氧化硅或者氮化硅等保护起来不与金属接触从而不会形成金属化合物。
如图1所示,传统的金属硅化物工艺完成后CMOS器件结构示意图,其中,多晶硅栅极102底部具有栅氧层103,两侧壁具有栅极侧墙104,在多晶硅栅极102和源漏区105的单晶硅衬底101上形成了需要的金属硅化物H’。但是,由于金属硅化物H’的形成是金属原子在高温条件下向硅原子一侧渗透的结果,所以在源漏区105的单晶硅衬底101上不可避免的存在一些扩散速度较快的金属原子(栅极下方的小圆)向CMOS晶体管沟道下面扩散的情况。
这种扩散到沟道下面的金属原子往往呈游离状态而不受束缚,由于其超强的导电性能,这种游离态的金属原子就成为了CMOS器件漏电流的重要源头之一。特别是当CMOS器件尺寸越来越小的时候,这种因为金属硅化物工艺产生的游离金属原子对漏电流的影响已经到了不可忽视的地步。因此,金属硅化物工艺中抑制甚至消除金属原子向沟道扩散的新工艺和新方法非常值得探寻。
发明内容
为了克服以上问题,本发明旨在通过在金属硅化物工艺中在金属层沉积之前,先对栅极两侧底部进行特殊离子注入工序,从而在后续的金属硅化物形成时降低金属原子向沟道区域的扩散。
为了达到上述目的,本发明提供了一种降低器件漏电流的方法,包括:
步骤01:提供一硅衬底,所述硅衬底具有栅极、栅极侧墙、栅极底部的栅氧层、位于栅极两侧底部的源漏区、以及位于栅极下方的沟道区域;
步骤02:采用倾斜离子注入方式将不具有导电性的中性元素注入到栅极侧墙下方的硅衬底中,从而在栅极侧墙底部的硅衬底中形成中性元素阻挡区;
步骤03:在硅衬底上沉积金属层;
步骤04:经退火工艺,使得栅极顶部和源漏区顶部的硅原子与金属层中的金属原子结合,从而在栅极顶部和源漏区顶部形成金属硅化物区;其中,在金属层中的金属原子向源漏区内扩散时,中性元素阻挡区阻碍金属原子向沟道区域的扩散,使得所述源漏区的所述金属硅化物区与所述中性元素阻挡区的交界于所述栅极侧墙下方;
步骤05:去除完成步骤04的硅衬底的表面的金属层,并再进行退火工艺完成金属硅化过程。
优选地,所述不具有导电性的中性元素为碳、氮、氟、锗的一种或多种。
优选地,步骤02中,倾斜离子注入时注入离子的方向与硅衬底法线方向呈5~45度的夹角。
优选地,所述倾斜离子注入所形成的中性元素阻挡区在水平方向延伸的长度为3~5nm。
优选地,所述倾斜离子注入时采用的离子注入剂量为每立方厘米的原子数量为1E13~1E15。
优选地,所述倾斜离子注入时采用的能量为6~10KeV。
本发明的降低器件漏电流的方法,采用与硅衬底呈一定倾斜角度的离子注入方式,将不具有导电性的中性离子注入到栅极侧墙的底部,由于这些注入的离子原子量很小,通过离子注入的方式到达侧墙下方的硅衬底内部之后,在之后的金属化过程中,金属原子向CMOS沟道扩散的时候会受到这些注入离子的阻碍。由于注入的离子元素的密度高,且其尺寸比金属原子小,而金属原子的尺寸较大,当金属原子遇到这种密度高且尺寸小的注入离子元素时,金属原子的扩散速度和横向扩散量将大幅降低。因此,相对于传统工艺而言,本发明的额外增加不导电的中性离子注入的方式可以很好的抑制金属原子的横向扩散,从而降低CMOS器件的漏电流。
附图说明
图1为传统的金属硅化物工艺完成后CMOS器件的结构示意图
图2为本发明的一个较佳实施例的降低器件漏电流的方法的流程示意图
图3-7为本发明的一个较佳实施例的降低器件漏电流的方法的各制备步骤示意图
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
以下结合附图2-7和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
请参阅图2,本实施例的降低器件漏电流的方法,包括:
步骤01:提供一硅衬底,硅衬底具有栅极、栅极侧墙、栅极底部的栅氧层、位于栅极两侧底部的源漏区、以及位于栅极下方的沟道区域;
具体的,请参阅图3,硅衬底01具有栅极02、栅极侧墙04、栅极02底部的栅氧层03、位于栅极02两侧底部的源漏区05、以及位于栅极02下方的沟道区域;这里的栅极材料较佳的为单晶硅衬底,不导电的中性元素在单晶硅衬底中造成的负面影响极小;栅极的材料可以为多晶硅。
步骤02:采用倾斜离子注入方式将不具有导电性的中性元素注入到栅极侧墙下方的硅衬底中,从而在栅极侧墙底部的硅衬底中形成中性元素阻挡区;
具体的,请参阅图4,为完成步骤02的硅衬底结构示意图;采用倾斜离子注入方式(箭头表示)将不具有导电性的中性元素注入到栅极侧墙04下方的硅衬底01中,从而在栅极侧墙04底部的硅衬底01中形成中性元素阻挡区(黑色的小圆点形成的区域);不具有导电性的中性元素可以为碳、氮、氟、锗的一种或多种,倾斜离子注入时注入离子的方向与硅衬底01法线方向可以呈5~45度的夹角,倾斜离子注入所形成的中性元素阻挡区在水平方向延伸的长度可以为3~5nm,倾斜离子注入时采用的离子注入剂量为每平方厘米的原子数量可以为1E13~1E15,倾斜离子注入时采用的能量可以为6~10KeV,例如,针对55nm的技术节点,在传统金属硅化物工艺流程中应用本发明,所采用的能量为8KeV,注入剂量为4E14/m2,离子注入时与硅衬底法线方向的夹角为45度。中性元素阻挡区具有元素密度大且元素尺寸小的特点。
步骤03:在硅衬底上沉积金属层;
具体的,请参阅图5,金属层06可以采用现有技术,如气相沉积工艺,这里不再赘述。
步骤04:经退火工艺,使得栅极顶部和源漏区顶部的硅原子与金属层中的金属原子结合,从而在栅极顶部和源漏区顶部形成金属硅化物区;其中,在金属层中的金属原子向源漏区内扩散时,中性元素阻挡区阻碍金属原子向沟道区域的扩散,使得源漏区的金属硅化物区与中性元素阻挡区的交界于栅极侧墙下方;
具体的,请参阅图6,经退火工艺,使得栅极02顶部和源漏区05顶部的硅原子与金属层06中的金属原子结合,从而在栅极02顶部和源漏区05顶部形成金属硅化物区H;其中,在金属层06中的金属原子向源漏区05内扩散时,中性元素阻挡区阻碍金属原子向沟道区域的扩散,使得源漏区05的金属硅化物区H与中性元素阻挡区的交界于栅极侧墙04下方;退火工艺可以采用常规工艺来进行;在高温退火环境中,金属原子会突破比它尺寸小的硅原子向沟道区域扩散,然而,当金属原子碰到中性元素阻挡区时,中性元素阻挡区中的高密度小尺寸元素有效阻碍金属原子的进一步的横向扩散,从而降低CMOS器件的漏电流。
步骤05:去除完成步骤04的硅衬底的表面的金属层,并再进行退火工艺完成金属硅化过程。
具体的,请参阅图7,去除完成步骤04的硅衬底01的表面的金属层06,并再进行退火工艺完成金属硅化过程;关于金属层06的去除和退火可以采用常规工艺,这里不再赘述。
虽然本发明已以较佳实施例揭示如上,然所述实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。

Claims (6)

1.一种降低器件漏电流的方法,其特征在于,包括:
步骤01:提供一硅衬底,所述硅衬底具有栅极、栅极侧墙、栅极底部的栅氧层、位于栅极两侧底部的源漏区、以及位于栅极下方的沟道区域;
步骤02:采用倾斜离子注入方式将不具有导电性的中性元素注入到栅极侧墙下方的硅衬底中,从而在栅极侧墙底部的硅衬底中形成中性元素阻挡区;
步骤03:在硅衬底上沉积金属层;
步骤04:经退火工艺,使得栅极顶部和源漏区顶部的硅原子与金属层中的金属原子结合,从而在栅极顶部和源漏区顶部形成金属硅化物区;其中,在金属层中的金属原子向源漏区内扩散时,中性元素阻挡区阻碍金属原子向沟道区域的扩散,使得所述源漏区的所述金属硅化物区与所述中性元素阻挡区的交界于所述栅极侧墙下方;
步骤05:去除完成步骤04的硅衬底的表面的金属层,并再进行退火工艺完成金属硅化过程。
2.根据权利要求1所述的方法,其特征在于,所述不具有导电性的中性元素为碳、氮、氟、锗的一种或多种。
3.根据权利要求1所述的方法,其特征在于,步骤02中,倾斜离子注入时注入离子的方向与硅衬底法线方向呈5~45度的夹角。
4.根据权利要求1所述的方法,其特征在于,所述倾斜离子注入所形成的中性元素阻挡区在水平方向延伸的长度为3~5nm。
5.根据权利要求1所述的方法,其特征在于,所述倾斜离子注入时采用的离子注入剂量为每立方厘米的原子数量为1E13~1E15。
6.根据权利要求1所述的方法,其特征在于,所述倾斜离子注入时采用的能量为6~10KeV。
CN201610186875.4A 2016-03-29 2016-03-29 一种降低器件漏电流的方法 Pending CN105742166A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610186875.4A CN105742166A (zh) 2016-03-29 2016-03-29 一种降低器件漏电流的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610186875.4A CN105742166A (zh) 2016-03-29 2016-03-29 一种降低器件漏电流的方法

Publications (1)

Publication Number Publication Date
CN105742166A true CN105742166A (zh) 2016-07-06

Family

ID=56252215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610186875.4A Pending CN105742166A (zh) 2016-03-29 2016-03-29 一种降低器件漏电流的方法

Country Status (1)

Country Link
CN (1) CN105742166A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911282A (zh) * 2018-09-18 2020-03-24 无锡华润微电子有限公司 N沟道半导体元器件的制造方法及n沟道半导体元器件
US20210336014A1 (en) * 2020-03-09 2021-10-28 Changxin Memory Technologies, Inc. Semiconductor device and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080079095A1 (en) * 2006-09-30 2008-04-03 Semiconductor Manufacturing International (Shanghai) Corporation Metal oxide semiconductor device and method for manufacturing the same
CN101231953A (zh) * 2007-01-23 2008-07-30 联华电子股份有限公司 半导体元件的制作方法
CN102593173A (zh) * 2011-01-18 2012-07-18 中国科学院微电子研究所 半导体器件及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080079095A1 (en) * 2006-09-30 2008-04-03 Semiconductor Manufacturing International (Shanghai) Corporation Metal oxide semiconductor device and method for manufacturing the same
CN101231953A (zh) * 2007-01-23 2008-07-30 联华电子股份有限公司 半导体元件的制作方法
CN102593173A (zh) * 2011-01-18 2012-07-18 中国科学院微电子研究所 半导体器件及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911282A (zh) * 2018-09-18 2020-03-24 无锡华润微电子有限公司 N沟道半导体元器件的制造方法及n沟道半导体元器件
US20210336014A1 (en) * 2020-03-09 2021-10-28 Changxin Memory Technologies, Inc. Semiconductor device and method for manufacturing same

Similar Documents

Publication Publication Date Title
CN105826190B (zh) N型鳍式场效应晶体管及其形成方法
CN103426769B (zh) 半导体器件制造方法
CN105448979A (zh) 横向双扩散场效应管及其形成方法
CN107437563A (zh) Ldmos晶体管及其形成方法、以及esd器件及其形成方法
US6365475B1 (en) Method of forming a MOS transistor
CN105702582A (zh) 晶体管的形成方法
CN105448916A (zh) 晶体管及其形成方法
CN102184961B (zh) 一种非对称栅mos器件及其制备方法
JP2006060208A (ja) 高性能なサブ0.1マイクロメートルトランジスタ用のソース/ドレイン構造
CN107026202B (zh) 高压mosfet、半导体结构及其制造方法
CN102074476B (zh) Nmos晶体管的形成方法
CN106449405A (zh) 半导体结构的形成方法
CN104269358A (zh) 半导体器件的制备方法
CN105742166A (zh) 一种降低器件漏电流的方法
CN104347707B (zh) 一种mosfet结构及其制造方法
CN106449404A (zh) 半导体结构及其形成方法
CN103515238A (zh) Nmos晶体管及形成方法、cmos结构及形成方法
US7888223B2 (en) Method for fabricating P-channel field-effect transistor (FET)
KR101022854B1 (ko) 도핑된 고유전 측벽 스페이서들을 구비한 전계 효과트랜지스터의 드레인/소스 확장 구조
CN106158657B (zh) Mos晶体管的形成方法
US20080070356A1 (en) Trench replacement gate process for transistors having elevated source and drain regions
CN108630535B (zh) 半导体结构及其形成方法
CN102800593A (zh) 晶体管形成方法
CN102446769B (zh) 一种降低碳辅助注入工艺流程中多晶硅栅电阻的方法
CN112885716A (zh) 半导体结构的形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160706