CN103430310A - 具有提高的切换速度及提高的交叉控制及增加的输出电压的互补达林顿射极跟随器 - Google Patents

具有提高的切换速度及提高的交叉控制及增加的输出电压的互补达林顿射极跟随器 Download PDF

Info

Publication number
CN103430310A
CN103430310A CN2011800614027A CN201180061402A CN103430310A CN 103430310 A CN103430310 A CN 103430310A CN 2011800614027 A CN2011800614027 A CN 2011800614027A CN 201180061402 A CN201180061402 A CN 201180061402A CN 103430310 A CN103430310 A CN 103430310A
Authority
CN
China
Prior art keywords
transistor
coupled
base stage
emitter
transistorized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800614027A
Other languages
English (en)
Inventor
大卫·尼尔·凯西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diodes Zetex Semiconductors Ltd
Original Assignee
Diodes Zetex Semiconductors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diodes Zetex Semiconductors Ltd filed Critical Diodes Zetex Semiconductors Ltd
Publication of CN103430310A publication Critical patent/CN103430310A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/20Baffles; Ribs; Ribbons; Auger vanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • H01L27/0823
    • H01L29/1004
    • H01L29/66272
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34DC amplifiers in which all stages are DC-coupled
    • H03F3/343DC amplifiers in which all stages are DC-coupled with semiconductor devices only
    • H03F3/3432DC amplifiers in which all stages are DC-coupled with semiconductor devices only with bipolar transistors
    • H03F3/3435DC amplifiers in which all stages are DC-coupled with semiconductor devices only with bipolar transistors using Darlington amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/04113Modifications for accelerating switching without feedback from the output circuit to the control circuit in bipolar transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/615Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors in a Darlington configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Molecular Biology (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Electronic Switches (AREA)
  • Amplifiers (AREA)

Abstract

在一个实施例中,一种设备包括第一晶体管,其中所述第一晶体管的基极耦合到输入端子。提供第二晶体管,其中所述第一晶体管的射极耦合到所述第二晶体管的基极且所述第二晶体管的射极耦合到输出节点。提供第三晶体管,其中所述第三晶体管的基极耦合到输入节点。提供第四晶体管,其中所述第三晶体管的射极耦合到所述第四晶体管的基极且所述第四晶体管的射极耦合到所述输出节点且所述第二晶体管的基极耦合到所述第四晶体管的基极。所述第二晶体管的基极通过短路连结耦合到所述第四晶体管的基极。

Description

具有提高的切换速度及提高的交叉控制及增加的输出电压的互补达林顿射极跟随器
相关申请案的交叉参考
本申请案主张于2010年12月20日申请的"具有中间基极接触的达林顿(Darlingtonwith Intermediate Base Contact)"的第61/424,956号美国临时申请案的优先权,所述案的内容以引用的方式全部并入本文中。
技术领域
背景技术
特定实施例大体上涉及达林顿晶体管配置。
使用呈射极跟随器配置的互补达林顿对具有许多已知限制。具体来说,存储在输出晶体管的基极中的电荷归因于以下事实而限制切换速度:不存在可沿着其迅速移除电荷的低阻抗选路。此外,两个输出晶体管的基极不由低阻抗连结连接,这意味着当一个晶体管基极的状态从"断开"状态改变到"接通"状态时,互补输出晶体管的基极不能保证处于且实际上将不处于相同电势(即,将不同时从其先前存在的"接通"状态改变到"断开"状态)。因此,在交叉时期期间使两个晶体管都接通。这导致从电源流向接地的较高的非所要"贯通"传导电流,从而使效率降级。此外,最大输出电压摆幅不能紧密地接近单一晶体管互补对的最大输出电压摆幅,这是因为每一达林顿在接通时不能具有穿过其集极射极的小于VBE(约0.9V)加上VCESAT(约0.2V)的电压。
发明内容
在一个实施例中,一种设备包括第一晶体管,所述第一晶体管具有基极、射极及集极,其中所述第一晶体管的基极耦合到输入节点。提供第二晶体管,所述第二晶体管具有基极、射极及集极,其中所述第一晶体管的射极耦合到所述第二晶体管的基极且所述第二晶体管的射极耦合到输出节点。提供第三晶体管,所述第三晶体管具有基极、射极及集极,其中所述第三晶体管的基极耦合到输入节点。提供第四晶体管,所述第四晶体管具有基极、射极及集极,其中所述第三晶体管的射极耦合到所述第四具体的基极且所述第四晶体管的射极耦合到输出节点且所述第四晶体管的射极耦合到输出节点且所述第二晶体管的基极耦合到所述第四晶体管的基极。所述第二晶体管的基极通过短路连结耦合到所述第四晶体管的基极。
在一个实施例中,一种方法包括:将第一晶体管耦合到输入节点;将所述第一晶体管耦合到第二晶体管的基极;将所述第二晶体管耦合到输出节点;将第三晶体管耦合到所述输入节点;将所述第三晶体管耦合到第四晶体管的基极;及将所述第四晶体管耦合到输出节点,其中所述第二晶体管的基极通过短路连结耦合到所述第四晶体管的基极。
下列详细描述及附图提供本发明的本质及优势的更好理解。
附图说明
图1描绘根据一个实施例的达林顿晶体管配置的电路。
具体实施方式
本文描述用于达林顿晶体管配置的技术。在下列描述中,出于解释的目的,阐释数种实例及具体细节以提供本发明的实施例的全面理解。如通过所附权利要求书界定的特定实施例可单独包含这些实例中的一些特征或所有特征或结合下文所描述的其它特征,且可进一步包含本文所描述的特征及概念的修改及等效物。
图1描绘根据一个实施例的达林顿晶体管配置的电路100。在一个实施例中,所述达林顿晶体管配置为互补型达林顿射极跟随器对。电路100可用于以高电流增益驱动MOSFET及绝缘栅极双极性晶体管(IGBT)栅极。如展示,电路100包含可视为第一达林顿的第一晶体管Q11IN及第二晶体管Q11OUT。互补型达林顿或射极跟随器可包含晶体管Q12IN及晶体管Q12OUT。在一个实施例中,电路100可为单片达林顿配置。所述单片配置意味着晶体管Q11IN及晶体管Q11OUT可包含于单一裸片中且晶体管Q12IN及晶体管Q12OUT可包含于单一裸片中。两个裸片可包含于单一装置中。此外,应理解,即使描述达林顿配置,但也可使用其它类似配置,例如,三重达林顿或呈达林顿配置的其它多重晶体管配置。此外,达林顿晶体管配置的NPN及PNP变化可改变。
在电路100中,输入耦合到晶体管Q11IN的基极及晶体管Q12IN的基极。此外,输出耦合到晶体管Q11OUT的射极及晶体管Q12OUT的射极。晶体管Q11OUT的射极及晶体管Q12OUT的射极可连接在一起(短接)或保持未经连接(在此情况下存在两个输出节点)。特定实施例在晶体管Q11OUT的基极与晶体管Q12OUT的基极之间添加连结。添加的连结可为提供短路的电线。添加所述连结消除或减少在交叉处浪费的极大的贯通电流。在切换循环的点处(其中晶体管Q11OUT状态正从导通改变成非导通且晶体管Q12OUT正从非导通改变成导通),晶体管Q11OUT应恰好在晶体管Q12OUT接通的同时断开。然而,由于存储于晶体管Q11OUT的基极中的电荷,晶体管Q11OUT在有限时间内保持为"接通",在所述有限时间期间晶体管Q12OUT及晶体管Q11OUT两者同时为接通且呈现到接地的非常低电阻路径。在此时间期间,极大的贯通电流从电源流到接地。这些电流浪费能量且降低电路的效率。提供从晶体管Q11OUT的基极到晶体管Q12OUT的射极的短路抑制同时接通两个晶体管的趋势。此外,其提供了用于移除所存储的电荷的非常有效的选路且因此进一步抑制晶体管Q11OUT长时间保持接通而足以允许贯通电流流动的可能性。当晶体管Q12OUT正断开且晶体管Q11OUT正接通时存在相同状况。
此外,电路100提供最高可能切换速度及最高可能轨对轨偏移。所述最高切换速度是由于能用添加的连结使晶体管Q11OUT或晶体管Q12OUT快速放电而引起。此外,断开电压被降低到约0.5V,且此外接通电压在电源Vcc的0.5V之内。断开电压或接通电压常规上将不低于VBE+VCESAT(约0.9V),其中VBE为基极-射极电压且VCESAT为饱和时的集极-射极电压。这是因为输出晶体管Q11OUT或晶体管Q12OUT的基极需要高于其射极电压约0.7V以使基极电流流动以在其射极-集极电路中产生电流流动。此外,此基极电流是通过输入晶体管Q12IN经由其射极-集极电路供应。在单片或离散的达林顿配置中,输入晶体管Q12IN的集极连接到输出晶体管Q12OUT的集极。因此,晶体管Q12IN的射极(其也为晶体管Q12OUT的基极)与其集极之间的电压差不可小于晶体管Q12IN的VCESAT(比如,0.2V),否则晶体管Q12IN将无法将所需基极电流传导到晶体管Q12OUT的基极中。鉴于晶体管Q12OUT的射极必须为低于其基极约0.7V且其基极必须为低于其集极0.2V,所以晶体管Q12OUT的集极射极电压在导通时不可小于约0.7V加0.2V,即,(晶体管Q12OUT的)VBESAT加上(晶体管Q12IN的)VCESAT。
可使用电线以将晶体管Q11OUT的基极与晶体管Q12OUT的基极耦合在一起。如需要,所述电线允许修改达林顿的特性。除了所述电线外的额外组件也可与所述电线一起添加或代替所述电线使用。
此外,当使用单片达林顿设计时可提供额外垫使得可添加电线以连结晶体管Q11OUT及晶体管Q12OUT。如果使用单片达林顿设计,那么所述额外垫可不为必需的。所述达林顿可为串接的,其中可提供或可不提供额外垫,使得每一中间基极可连接到或可不连接到额外组件。
在未使用添加的连结的情况下,晶体管Q11OUT及Q12OUT可同时接通。这是因为晶体管Q11OUT的基极及晶体管Q12OUT的基极不具有低电阻选路(通过所述低电阻选路可迅速移除存储于其基极中的电荷)。无论哪个晶体管"接通"均含有大量存储电荷,在其电压将开始改变之前必须移除所述电荷。如果基极偏压差达到1.2V左右,那么两个晶体管Q11OUT及Q12OUT均接通。这引起电流穿过晶体管Q11OUT及Q12OUT从电源Vcc流到接地。这为高寄生电流,其浪费电力。
所述连结引起晶体管Q11OUT的基极及Q12OUT的基极处于相同电压且提供用于迅速移除所存储的基极电荷的选路。因此,晶体管Q11OUT及晶体管Q12OUT未同时接通。因此,极大的寄生电流未从电源Vcc流到接地。
添加的连结也允许达林顿晶体管的切换性能为快速的。所述切换性能可取决于存储于晶体管Q11OUT的基极区域中的电荷。如果晶体管Q11OUT的基极区域为浮动的,那么电荷可消散的时间可限制从接通状态断开晶体管Q11OUT的切换时间。然而,添加的连结允许电荷从基极区域较快消散以断开晶体管Q11OUT。例如,晶体管Q12IN接通,且将晶体管Q11OUT的基极耦合到接地。这使晶体管Q11OUT的基极处的电荷消散以减少断开晶体管Q11OUT的切换时间。透过晶体管Q11IN但在相反方向上对晶体管Q12OUT执行放电。
如本文的描述及遍及所附的权利要求中所使用,除非上下文另外明确指示,否则"一(a)"、"一(an)"及"所述(the)"包含复数参考。此外,如本文的描述及遍及所附的权利要求书中所使用,除非上下文另外明确指示,否则"在...中(in)"的意义包含"在...中(in)"及"在...上(on)"。
上文的描述说明本发明的各种实施例及可如何实施本发明的方面的实例。上文的实例及实施例不应视为唯一实施例,且经呈现以说明如由所附权利要求书界定的本发明的灵活性及优点。基于上文的揭示内容及所附权利要求书,可在不脱离如由权利要求书界定的本发明的范围的情况下使用其它布置、实施例、实施方案及等效物。

Claims (19)

1.一种设备,其包含:
第一晶体管,其具有基极、射极及集极,其中所述第一晶体管耦合到输入节点;
第二晶体管,其具有基极、射极及集极,其中所述第一晶体管耦合到所述第二晶体管的所述基极且所述第二晶体管耦合到输出节点;
第三晶体管,其具有基极、射极端及集极,其中所述第三晶体管耦合到所述输入节点;及
第四晶体管,其具有基极、射极及集极,其中所述第三晶体管耦合到所述第四晶体管的所述基极且所述第四晶体管耦合到所述输出节点,其中所述第二晶体管的所述基极通过短路连结耦合到所述第四晶体管的所述基极。
2.根据权利要求1所述的设备,其中:
所述第一晶体管的所述基极耦合到所述输入节点;
所述第一晶体管的所述射极耦合到所述第二晶体管的所述基极且所述第二晶体管的所述射极耦合到所述输出节点;
所述第三晶体管的所述基极耦合到所述输入节点;且
所述第三晶体管的所述射极耦合到所述第四晶体管的所述基极且所述第四晶体管的所述射极耦合到所述输出。
3.根据权利要求1所述的设备,其中所述短路连结移除存储在第二晶体管或所述第四晶体管的所述基极中的电荷。
4.根据权利要求1所述的设备,其中移除所述电荷致使所述第二晶体管在所述第四晶体管接通时"断开"。
5.根据权利要求1所述的设备,其中当所述第二晶体管或所述第四晶体管断开时所述短路连结使所述第二晶体管或所述第四晶体管放电。
6.根据权利要求1所述的设备,其中所述第一晶体管、所述第二晶体管、所述第三晶体管及所述第四晶体管为互补达林顿射极跟随器对。
7.根据权利要求1所述的设备,其中所述第一晶体管、所述第二晶体管、所述第三晶体管及所述第四晶体管以单片达林顿配置形成。
8.根据权利要求7所述的设备,其中所述第一晶体管及所述第二晶体管包括在第一裸片中且所述第三晶体管及所述第四晶体管包括在第二裸片中。
9.根据权利要求1所述的设备,其中所述第一裸片及所述第二裸片包括在单一装置中。
10.根据权利要求1所述的设备,其中所述连结包含电线。
11.根据权利要求1所述的设备,其中所述短路连结包含耦合到额外组件的电线。
12.根据权利要求1所述的设备,其中第二及所述第四晶体管的所述基极归因于所述短路电线而处于相同电压。
13.一种方法,其包含:
将第一晶体管耦合到输入节点;
将所述第一晶体管耦合到第二晶体管的基极;
将所述第二晶体管耦合到输出节点;
将第三晶体管耦合到所述输入节点;
将所述第三晶体管耦合到第四晶体管的基极;及
将所述第四晶体管耦合到输出节点,其中所述第二晶体管的所述基极通过短路连结耦合到所述第四晶体管的所述基极。
14.根据权利要求13所述的方法,其进一步包含:
将所述第一晶体管的所述基极耦合到所述输入节点;
将所述第一晶体管的所述射极耦合到所述第二晶体管的所述基极且将所述第二晶体管的所述射极耦合到所述输出节点;
将所述第三晶体管的所述基极耦合到所述输入节点;及
将所述第三晶体管的所述射极耦合到所述第四晶体管的所述基极且将所述第四晶体管的所述射极耦合到所述输出。
15.根据权利要求13所述的方法,其中其进一步包含移除电荷从而致使所述第二晶体管在所述第四晶体管接通时"断开"。
16.根据权利要求13所述的方法,其中当所述第二或所述第四晶体管断开时所述短路连结使所述第二晶体管或所述第四晶体管放电。
17.根据权利要求13所述的方法,其中所述短路连结包含电线。
18.根据权利要求13所述的方法,其中所述短路连结包含耦合到额外组件的电线。
19.根据权利要求13所述的方法,其中第二及所述第二晶体管的所述基极归因于所述短路电线而处于相同电压。
CN2011800614027A 2010-12-20 2011-12-19 具有提高的切换速度及提高的交叉控制及增加的输出电压的互补达林顿射极跟随器 Pending CN103430310A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201061424956P 2010-12-20 2010-12-20
US61/424,956 2010-12-20
PCT/IB2011/003282 WO2012085677A1 (en) 2010-12-20 2011-12-19 Complementary darlington emitter follower with improved switching speed and improved cross-over control and increased output voltage

Publications (1)

Publication Number Publication Date
CN103430310A true CN103430310A (zh) 2013-12-04

Family

ID=45809322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800614027A Pending CN103430310A (zh) 2010-12-20 2011-12-19 具有提高的切换速度及提高的交叉控制及增加的输出电压的互补达林顿射极跟随器

Country Status (6)

Country Link
US (3) US8623749B2 (zh)
EP (1) EP2656387B1 (zh)
KR (1) KR20130130770A (zh)
CN (1) CN103430310A (zh)
TW (1) TWI521694B (zh)
WO (3) WO2012085676A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245880B2 (en) * 2013-10-28 2016-01-26 Mosway Semiconductor Limited High voltage semiconductor power switching device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184029A (en) * 1991-10-15 1993-02-02 Hewlett-Packard Company Driver circuit for circuit tester
US6054898A (en) * 1996-08-30 2000-04-25 Kabushiki Kaisha Kenwood Semiconductor device having SEPP connected NPN and PNP transistors
US20060055437A1 (en) * 2004-09-16 2006-03-16 Deere & Company, A Delaware Corporation Driver circuit

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE626083A (zh) * 1964-03-04
US3477886A (en) * 1964-12-07 1969-11-11 Motorola Inc Controlled diffusions in semiconductive materials
US3491434A (en) * 1965-01-28 1970-01-27 Texas Instruments Inc Junction isolation diffusion
US3585407A (en) * 1967-12-04 1971-06-15 Bechman Instr Inc A complementary transistor switch using a zener diode
US3759761A (en) * 1968-10-23 1973-09-18 Hitachi Ltd Washed emitter method for improving passivation of a transistor
US3623925A (en) * 1969-01-10 1971-11-30 Fairchild Camera Instr Co Schottky-barrier diode process and devices
US3769568A (en) * 1972-07-31 1973-10-30 Bell Telephone Labor Inc Dc-to-dc converter having soft start and other regulation features employing priority of pulse feedback
US3938243A (en) * 1973-02-20 1976-02-17 Signetics Corporation Schottky barrier diode semiconductor structure and method
US4149906A (en) * 1977-04-29 1979-04-17 International Business Machines Corporation Process for fabrication of merged transistor logic (MTL) cells
FR2470484A1 (fr) * 1979-11-23 1981-05-29 Thomson Csf Procede de commande d'un montage darlington et montage darlington a faibles pertes
US4446611A (en) * 1980-06-26 1984-05-08 International Business Machines Corporation Method of making a saturation-limited bipolar transistor device
FR2503526A1 (fr) * 1981-04-03 1982-10-08 Silicium Semiconducteur Ssc Boitier et procede de montage et d'interconnexion de composants semiconducteurs de moyenne puissance en boitier unique.
FR2503932A1 (fr) * 1981-04-08 1982-10-15 Thomson Csf Boitiers a cosses plates pour composants semi-conducteurs de moyenne puissance et procede de fabrication
US4419593A (en) * 1981-06-29 1983-12-06 Honeywell Inc. Ultra fast driver circuit
FR2553231B1 (fr) * 1983-10-10 1988-07-08 Thomson Csf Commutateur double pour onduleurs, encapsule en boitier a broches exterieures planes
JPS63204639A (ja) * 1987-02-20 1988-08-24 Toshiba Corp 集積回路
US4841166A (en) * 1987-07-17 1989-06-20 Siliconix Incorporated Limiting shoot-through current in a power MOSFET half-bridge during intrinsic diode recovery
US4885486A (en) * 1987-12-21 1989-12-05 Sundstrand Corp. Darlington amplifier with high speed turnoff
IT1230025B (it) * 1988-10-28 1991-09-24 Sgs Thomson Microelectronics Dispositivo darlington con transistore di estrazione ed emettitore ultraleggero e relativo procedimento di fabbricazione
JPH033417A (ja) * 1989-05-30 1991-01-09 Nec Corp 半導体集積回路
US4970620A (en) * 1989-08-23 1990-11-13 General Motors Corporation FET bridge protection circuit
KR920010212B1 (ko) * 1989-12-29 1992-11-21 삼성전자 주식회사 바이씨모스 ttl레벨 출력구동회로
CA2120261A1 (en) * 1991-10-23 1993-04-29 James A. Matthews Bipolar junction transistor exhibiting improved beta and punch-through characteristics
JPH08162472A (ja) 1994-12-02 1996-06-21 Mitsubishi Electric Corp バイポーラトランジスタ,バイポーラトランジスタを有する半導体装置およびその製造方法
JPH08288299A (ja) 1995-04-20 1996-11-01 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6437416B1 (en) * 1996-04-12 2002-08-20 Cree Microwave, Inc. Semiconductor structure having a planar junction termination with high breakdown voltage and low parasitic capacitance
JPH1197679A (ja) * 1997-09-17 1999-04-09 Hitachi Ltd 半導体装置
JP2004006466A (ja) 2002-05-31 2004-01-08 Mitsubishi Electric Corp 半導体装置およびその製造方法
US7208785B2 (en) * 2004-12-20 2007-04-24 Silicon-Based Technology Corp. Self-aligned Schottky-barrier clamped planar DMOS transistor structure and its manufacturing methods
US8466728B2 (en) * 2006-02-23 2013-06-18 Agere Systems Llc Enhanced delay matching buffer circuit
US20080088353A1 (en) * 2006-10-13 2008-04-17 Chun-Hung Kuo Level shifter circuit with capacitive coupling
US7804337B2 (en) * 2007-10-23 2010-09-28 Texas Instruments Incorporated Method and apparatus of SFDR enhancement
US9755630B2 (en) * 2009-04-30 2017-09-05 The United States of America as represented by the Secretary of the Government Solid-state circuit breakers and related circuits
JP5347032B2 (ja) * 2009-10-26 2013-11-20 日産自動車株式会社 スイッチング素子の駆動回路および電力変換装置
WO2012145475A1 (en) * 2011-04-21 2012-10-26 Converteam Technology Ltd. Gate drive circuit and associated method
JP5516825B2 (ja) * 2011-05-11 2014-06-11 富士電機株式会社 絶縁ゲート型スイッチング素子の駆動回路
TWI448078B (zh) * 2011-06-09 2014-08-01 Mstar Semiconductor Inc 電壓準位移位器與昇壓驅動電路
US8674744B2 (en) * 2011-11-04 2014-03-18 Texas Instruments Deutschland Gmbh Electronic device and method for providing a digital signal at a level shifter output
EP2615737B1 (en) * 2012-01-13 2021-05-05 ABB Schweiz AG Active gate drive circuit
JP2013153388A (ja) * 2012-01-26 2013-08-08 Denso Corp デッドタイム生成回路および負荷駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184029A (en) * 1991-10-15 1993-02-02 Hewlett-Packard Company Driver circuit for circuit tester
US6054898A (en) * 1996-08-30 2000-04-25 Kabushiki Kaisha Kenwood Semiconductor device having SEPP connected NPN and PNP transistors
US20060055437A1 (en) * 2004-09-16 2006-03-16 Deere & Company, A Delaware Corporation Driver circuit

Also Published As

Publication number Publication date
WO2012085677A1 (en) 2012-06-28
US20120319301A1 (en) 2012-12-20
EP2656387A1 (en) 2013-10-30
US20120319768A1 (en) 2012-12-20
KR20130130770A (ko) 2013-12-02
US20120322219A1 (en) 2012-12-20
WO2012085666A1 (en) 2012-06-28
EP2656387B1 (en) 2014-07-30
TWI521694B (zh) 2016-02-11
WO2012085676A1 (en) 2012-06-28
TW201251006A (en) 2012-12-16
US8623749B2 (en) 2014-01-07

Similar Documents

Publication Publication Date Title
CN102187557B (zh) 功率用半导体元件的驱动电路
CN108781076B (zh) 具有防止意外导通的被动部件的双基极连接式双极晶体管
JP2010051165A (ja) 半導体装置のゲート駆動回路及びそれを用いた電力変換装置
CN101379672B (zh) 减少输入端子与功率轨之间的泄漏的设备和方法
CN104241269A (zh) 静电保护电路
CN101346881B (zh) 用于借助微处理器的输出信号驱动电子部件的电路装置和方法
US20230291399A1 (en) Miller clamping device for parallel switching transistors and driver comprising same
JP2021078115A (ja) Nmosスイッチ駆動回路及び電源装置
JP2001244418A (ja) 半導体集積回路装置
CN108649938B (zh) 一种抑制负向驱动电压尖峰的mos管驱动电路
JPS6271257A (ja) 誘電負荷スイツチトランジスタの保護回路
CN100574030C (zh) 泄漏电流防护电路
CN112821366B (zh) 双向静电防护电路
CN103430310A (zh) 具有提高的切换速度及提高的交叉控制及增加的输出电压的互补达林顿射极跟随器
US8598938B2 (en) Power switch
TW202042497A (zh) 用於最佳化柵地-陰地放大器之斷開的設備
KR20160101677A (ko) Rf 스위치
CN115037121A (zh) 一种桥臂串扰抑制电路和方法
US4499673A (en) Reverse voltage clamp circuit
JP4743006B2 (ja) 半導体集積回路
CN206506508U (zh) 一种mosfet管驱动电路
JP4037752B2 (ja) 追尾回路
CN205005032U (zh) 电路
KR100578648B1 (ko) 디씨-디씨 컨버터의 래치-업 방지회로
CN216959635U (zh) 一种防止外部电源短接的开关电路及供电装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20131204