CN108781076B - 具有防止意外导通的被动部件的双基极连接式双极晶体管 - Google Patents

具有防止意外导通的被动部件的双基极连接式双极晶体管 Download PDF

Info

Publication number
CN108781076B
CN108781076B CN201680083394.9A CN201680083394A CN108781076B CN 108781076 B CN108781076 B CN 108781076B CN 201680083394 A CN201680083394 A CN 201680083394A CN 108781076 B CN108781076 B CN 108781076B
Authority
CN
China
Prior art keywords
emitter
collector
base contact
semiconductor die
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680083394.9A
Other languages
English (en)
Other versions
CN108781076A (zh
Inventor
威廉·C·亚历山大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ideal Power Inc
Original Assignee
Ideal Power Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Power Inc filed Critical Ideal Power Inc
Publication of CN108781076A publication Critical patent/CN108781076A/zh
Application granted granted Critical
Publication of CN108781076B publication Critical patent/CN108781076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • H01L27/0694Integrated circuits having a three-dimensional layout comprising components formed on opposite sides of a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/747Bidirectional devices, e.g. triacs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0826Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in bipolar transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/66Switching arrangements for passing the current in either direction at will; Switching arrangements for reversing the current at will
    • H03K17/665Switching arrangements for passing the current in either direction at will; Switching arrangements for reversing the current at will connected to one load terminal only
    • H03K17/666Switching arrangements for passing the current in either direction at will; Switching arrangements for reversing the current at will connected to one load terminal only the output circuit comprising more than one controlled bipolar transistor
    • H03K17/668Switching arrangements for passing the current in either direction at will; Switching arrangements for reversing the current at will connected to one load terminal only the output circuit comprising more than one controlled bipolar transistor in a symmetrical configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0054Gating switches, e.g. pass gates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Electronic Switches (AREA)
  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Power Conversion In General (AREA)

Abstract

本申请公开了为B‑TRAN类装置提供被动截止保护的新方法。即使控制电路不起作用,AC耦合也使用外部端子上的瞬变电压以防止将发射极结正向偏压。优选地,实施二极管模式和预截止操作的相同开关用作被动截止电路操作的一部分。

Description

具有防止意外导通的被动部件的双基极连接式双极晶体管
交叉引用
本申请主张62/308,660号美国临时申请的优选权,所述美国临时申请以引用方式并入本文。
背景技术
本申请涉及使用双极传导的固态开关,并且更明确地说,涉及使用两个基极连接的双极晶体管。
应注意,下文所论述的要点可反映从所公开的发明得到的后见之明,并且未必被认为是现有技术。
所公开的US 2014-0375287号美国申请(所述美国申请全文以引用方式并入本文中)(尤其)公开被称为“B-TRAN”的新颖双向双极晶体管。对B-TRAN装置及其操作模式的进一步改进公开在14/937,814号申请和14/882,316号申请中。
图1B中可见B-TRAN的一个示例实例。应注意,管芯的两个表面基本上相同。
示例电路表征示出在图2中。除了示出两个基极连接之外,此电路表征类似于双极结型晶体管的电路表征。这对应于图1B的装置结构,其中两个不同基极接触区域被设置在管芯的两个表面上。
图3示出B-TRAN驱动电路的一个示例实例,如所述专利申请中广泛地描述。
图4示出B-TRAN的另一示例实施例。在此实施例中,沟槽含有场板;与场板的电容性耦合帮助在垂直方向上使附近电压梯度变得平滑。
BTRAN的优选操作模式出乎意料地复杂。为了实现高双极增益可靠性,在双向装置中,所述专利申请教示可使用以下操作阶段。
在导通时,在双极晶体管操作开始之前允许初始电流流动以“二极管模式”发生。在二极管模式中,装置两端的压降(当然)是至少二极管压降;但当施加基极电流驱动时,正向压降可减小到数百毫伏。
在截止时,首先停用基极电流,以使得装置再次作为二极管操作。此后,装置可处于“主动截止”模式中,其中两个结中的一个被反向偏压并阻断电流。
所述专利申请中所教示的另一令人惊讶的模式是“被动截止”模式。全双向装置的问题是双极增益可在截止模式中干扰电流阻断。为了避免此情形,装置的任一表面上的发射极结被箝位以避免任何显著正向偏压。(适当地,此处引用的“发射极结”是(通常n型)发射极/集电极区域中的任一个与(通常p型)衬底之间的结。)通过很好地使发射极结保持不予导通,少数载流子注入受到限制,并且双极晶体管的增益不使击穿电压降级。
具有防止意外导通的被动部件的双基极连接式双极晶体管
本申请公开为B-TRAN类装置提供“被动截止”保护的新方法。即使控制电路不发生作用,AC耦合也使用外部端子上的瞬变电压以防止将发射极结正向偏压。因此,在装置截止时,自动防止晶体管的增益使击穿电压降级。优选地,装置的每一表面具有基极接触区域和发射极/集电极区域;外部施加的电压的极性将确定两个发射极/集电极区域中的哪一个将充当发射极,以及哪一个充当集电极。被动截止电路将每一基极接触区域箝位到小于来自邻近发射极/集电极区域的二极管压降,以使得双极晶体管操作得以避免。
新颖的被动截止电路特别有利于软切换应用,例如,功率分组交换(PPSA)转换器,但不仅限于此。
附图说明
现将参照附图来描述本发明,附图示出重要的示例实施例,并以引用方式并入本说明书中,其中:
图1A示出B-TRAN开关电路的实例,包含“被动关闭”电路,其避免因瞬态的放大所致的击穿电压降级降级。
图1B示出B-TRAN的一个示例实施例。
图2示出B-TRAN的示例电路表征。
图3示出B-TRAN驱动电路的一个示例实施例。
图4示出B-TRAN的另一示例实施例。
图5示出被动截止功能的替代电路实现。
具体实施方式
将具体参考当前优选的实施例来描述本申请的各种创新教示(以实例方式,并且不进行限制)。本申请描述若干发明,并且下文的任何陈述总体上不应视为对权利要求书的限制。
本申请描述所公开的US 2014-0375287号美国申请所述的被动截止模式的新实施方案。
本申请公开为B-TRAN类装置提供“被动截止”保护的新方法。即使控制电路不发挥作用,AC耦合也使用外部端子上的瞬变电压以防止将发射极结正向偏压。
当外部电压跨越集电极施加到发射极(Vce)时并在基极控制功率可用之前,图1A的示范性电路将e基极短接到发射极,以便允许B-TRAN阻断所施加的Vce。
新的被动截止电路特别适用于软切换应用,例如,功率分组切换(PPSA)转换器。对于硬切换应用来说,电容器C1将减慢切换速度。具有固态开关(或甚至具有机械继电器)的电压限制电路可较有利于这些应用。
装置101是“B-TRAN”型晶体管,即,具有独立地操作的两个基极接触区域的双极晶体管。这是全双向装置,其中可在两个方向上进行电压阻断和电流传导。在此实例中,假设B-TRAN 101是npn装置,即,发射极/集电极区域是n型,衬底是p型,并且基极接触区域是p型。(也可以存在其它装置结构。)
在此实例中,假设页面的顶部处的外部端子开始变高,并且控制电路不起作用。这将使连接EC2成为集电极端子,并且使EC1成为发射极端子。连接B1因此作为e基极操作,并且连接B2作为c基极操作。
一些电荷将必要地漂移以产生阻断传导所需的耗尽区域。然而,难题在于避免发射极侧上的任何增益,这将使击穿电压降级。发射极结(EC1/B1)处的电压因此必须保持低于二极管压降。
当装置完全断电时,电阻器R1将电容器C1保持在零伏特。当端子EC2开始变为正性时,电流将流经C1以将MOS晶体管Q5和Q6的栅极拉至高电位。这使得MOS晶体管Q5和Q6导通,以将e基极端子(此时是B1)拉向发射极(此时是EC1)。
应注意,用于二极管模式和预截止模式的MOS晶体管Q3+Q4和Q5+Q6现也用作被动截止电路的一部分。这就B-TRAN装置的操作而言与先前申请中所公开的被动截止电路显著不同。
还应注意,电阻器R2将p沟道MOS晶体管Q1和Q2的栅极连接在一起。此子电路帮助在Q5和Q6导通时保持晶体管Q3和Q4截止。
本申请描述所公开的US 2014-0375287号美国申请所述的被动截止模式的新实施方案。
图5示出被动截止功能的替代电路实现。常开开关(在图3中被实施为JFET,这对应于WO2014/210072的图12)被替换为电阻器。
在选择电阻器替换常开开关时,必须平衡导通状态行为和截止状态行为。被动截止模式中的击穿电压必须足够高,同时不显著减小增益。
当e基极(发射极侧上的基极)短接到发射极,并且c基极(集电极侧上的基极)断开时,B-TRAN处于“主动截止状态”中。在此状态中,在NPN B-TRAN的情况下,集电极是阳极(高电压侧),并且发射极是阴极(低电压侧)。
当两个基极均断开时,B-TRAN也截止,并且由于此状态中的B-TRAN的高增益,击穿电压较低。如先前所公开,附接在相应发射极/集电极上的每一基极之间的常开JFET(如同早期版本那样,示出在图3中)与肖特基二极管的串联组合或电阻器(如本文所教示,示出在图5中)与肖特基二极管的串联组合将在此“被动截止状态”中显著增大阻断电压。JFET如果存在,则在正常操作期间关闭。
针对导通的一种有利的示例方法是从主动截止状态和阻断正向电压开始,同时地断开e基极到发射极的短路并将c基极短接到集电极。这立即将电荷载流子引入到集电极/基极结周围的耗尽区的最高场区域中,以便取得针对硬切换的极快正向偏压导通,这非常类似于IGBT导通。
从主动截止状态开始的另一有利的示例导通方法是使含有B-TRAN的电路颠倒B-TRAN极性,这产生在硬导通方法中所述的相同基极状态,但是是在接近零的电压下产生。即,随着B-TRAN电压从主动截止状态极性颠倒,短接到发射极的e基极变为短接到集电极的c基极。并且同样,导通是快速的。
在从主动截止状态开始的第三示例导通方法中,e基极与发射极断开,并且连接到具有足够电压以将电荷载流子注入到基极区域的电流源或电压源。此方法可能较慢,这是因为电荷载流子进入刚好在耗尽区之下的基极。并且,已知的是,到e基极中的载流子注入相比到c基极中的载流子注入导致较差的增益。
在通过使用c基极的方法中的任一种实现导通之后,Vce大于二极管压降。为了将Vce驱动至二极管压降之下,导通进行到第二阶段,其中经由电压源或电流源使得到c基极中的电荷注入增加。增加的电荷注入的量确定Vce减小到二极管压降之下有多少。到e基极中的注入也将减小Vce,但增益远低于c基极注入。
截止可通过若干方法中的任一种来实现。最有利的方法是两步骤过程。在第一步骤中,c基极与载流子注入电力供应器断开并短接到集电极,而先前断开的e基极短接到发射极。此举导致每一基极与其发射极/集电极之间的大的电流流动,这迅速从漂移区域移除电荷载流子。随着漂移区域的电阻率增大,这转而导致上升的Vce。在基极短接之后的某最佳时间,c基极与集电极之间的连接断开,此后,随着耗尽区域在集电极/基极结周围形成,Vce迅速增大。
或者,可通过简单地断开c基极并将e基极短接到发射极来实现截止,但这将导致较高的截止损耗,这是因为漂移区域(基极)将在耗尽区形成的开始时具有高水平的电荷载流子。
或者,可通过简单地断开c基极并保持e基极断开而实现截止,但这导致最高的截止损耗,并且还导致低击穿电压。
优点
在各种实施例中,所公开的创新提供至少以下优点中的一个或更多个。然而,并不是所有这些优点都源自所公开的创新中的每一个,并且此优点列表不对各个要求保护的发明构成限制。
·提高电力转换系统的效率;
·具有较高耐用性的功率半导体装置;
·具有较高击穿电压的功率半导体装置;
·具有较低导通电阻的功率半导体装置;
·具有较低成本的功率半导体装置。
根据一些但未必全部的实施例,提出:本申请公开为B-TRAN类装置提供“被动截止”保护的新方法。即使控制电路不起作用,AC耦合也使用外部端子上的瞬变电压以防止将发射极结正向偏压。优选地,实施二极管模式和预截止操作的相同开关用作被动截止电路操作的一部分。
根据一些但未必全部的实施例,提供:一种开关电路,包括:功率半导体装置,其在第二导电类型半导体管芯的相应表面上包含分别限定第一和第二发射极结的第一和第二第一导电类型发射极/集电极区域,并在与所述第一发射极/集电极区域相同的表面上包含第一基极接触区域,并在与所述第二发射极/集电极区域相同的表面上包含第二基极接触区域,两个基极接触区域分别与所述半导体管芯作欧姆接触;第一驱动晶体管,其在导通时操作性地将所述第一基极接触区域连接到所述第一发射极/集电极;以及第二驱动晶体管,其在导通时操作性地将所述第二基极接触区域连接到所述第二发射极/集电极区域;以及瞬变耦合电路,其操作性地连接以电连接跨越所述发射极/集电极区域的电压压摆以激活所述发射极/集电极区域中将要成为发射极那一个的所述驱动晶体管,限制此发射极/集电极区域与其对应基极接触区域之间的电压;控制电路,其独立驱动所述第一和第二基极接触区域以控制传导的导通和截止,这包含多个切换阶段,其中所述第一驱动晶体管和所述第二驱动晶体管将所述发射极/集电极区域中的至少一个与其对应基极接触区域连接;因此,所述第一发射极结上的正向电压被限制为低于所述第一发射极结的正向二极管压降特性,并且所述第二发射极结上的正向电压被限制为低于所述第二发射极结的正向二极管压降特性;并且因此当所述控制电路不起作用时,漏电流未被放大,并且击穿电压未因漏电流的放大而降级。
根据一些但未必全部的实施例,提供:一种开关电路,包括:功率半导体装置,其在第二导电类型半导体管芯的相应表面上包含分别限定第一和第二发射极结的第一和第二第一导电类型发射极/集电极区域,并分别在与所述第一和第二发射极/集电极区域相同的两个表面上包含第一和第二基极接触区域,两个基极接触区域分别与所述半导体管芯作欧姆接触;第一驱动晶体管,其在导通时操作性地将所述第一基极接触区域连接到所述第一发射极/集电极;以及第二驱动晶体管,其在开启时操作性地将所述第二基极接触区域连接到所述第二发射极/集电极区域;以及瞬变耦合电路,其与来自所述发射极/集电极区域中的集电极侧发射极/集电极区域的电压压摆电耦合以激活相反发射极/集电极的所述驱动晶体管;控制电路,其独立驱动所述第一和第二基极接触区域,这包含多个切换阶段,其中所述第一驱动晶体管和/或所述第二驱动晶体管将所述发射极/集电极区域中的至少一个与其对应基极接触区域连接;因此,所述第一发射极结上的正向电压被限制为低于所述第一发射极结的正向二极管压降特性,并且所述第二发射极结上的正向电压被限制为低于所述第二发射极结的正向二极管压降特性。
修改和变化
如本领域的技术人员所了解,本申请所述的创新概念可在极大范围的应用上作修改和变化,并且因此专利主题的范围不受所给出的具体示范性教示中的任一个限制。希望涵盖落入随附权利要求书的精神和广泛范围内的所有这些替代、修改和变化。
本申请中的描述的任何内容不应被解读为暗示任何特定元件、步骤或功能是必须包含在权利要求书范围中的基本元素。专利主题的范围仅由随附权利要求书界定。此外,权利要求书中任何内容不希望援引35USC 112的第六段,除非用词“用于……的装置”之后接着分词。
所申请的权利要求书希望尽可能详尽,并且主题不希望被蓄意让出、捐赠或放弃。

Claims (8)

1.一种开关电路,包括:
功率半导体装置,其在第二导电类型半导体管芯的相应第一和第二表面上包含分别限定第一和第二发射极结的第一和第二第一导电类型发射极/集电极区域,并在与所述第一发射极/集电极区域相同的表面上包含第一基极接触区域,并在与所述第二发射极/集电极区域相同的表面上包含第二基极接触区域,所述第一基极接触区域和所述第二基极接触区域分别与所述第二导电类型半导体管芯作欧姆接触;
第一驱动晶体管,其在导通时操作性地将所述第一基极接触区域连接到所述第一发射极/集电极区域;以及第二驱动晶体管,其在导通时操作性地将所述第二基极接触区域连接到所述第二发射极/集电极区域;以及
瞬变耦合电路,其操作性地连接以电连接跨越所述第一和第二发射极/集电极区域的电压压摆率以激活所述第一和第二发射极/集电极区域中将要充当发射极的那一个的所述驱动晶体管,以限制此发射极/集电极区域与其对应基极接触区域之间的电压;
控制电路,其独立驱动所述第一和第二基极接触区域以控制传导的导通和截止,这包含多个切换阶段,其中所述第一驱动晶体管和所述第二驱动晶体管将所述发射极/集电极区域中的至少一个与其对应基极接触区域连接;
因此,所述第一发射极结上的正向电压被限制为低于所述第一发射极结的正向二极管压降特性,并且所述第二发射极结上的正向电压被限制为小于所述第二发射极结的正向二极管压降特性;并且因此当所述控制电路不起作用时,漏电流未被放大,并且击穿电压未因漏电流的放大而降级。
2.根据权利要求1所述的开关电路,其中所述第二导电类型半导体管芯是硅。
3.根据权利要求1所述的开关电路,其中所述第二导电类型半导体管芯的所述第一表面上的所述第一发射极/集电极区域未电连接到所述第二导电类型半导体管芯的所述第二表面上的所述第二发射极/集电极区域。
4.根据权利要求1所述的开关电路,其中除经由所述半导体管芯自身而连接之外,所述半导体管芯的第一表面上的所述基极接触区域未电连接到所述半导体管芯的第二表面上的所述基极接触区域。
5.一种开关电路,包括:
功率半导体装置,其在第二导电类型半导体管芯的相应第一和第二表面上包含分别限定第一和第二发射极结的第一和第二第一导电类型发射极/集电极区域,并分别在与所述第一和第二发射极/集电极区域相同的两个表面上包含第一和第二基极接触区域,所述第一基极接触区域和所述第二基极接触区域分别与所述第二导电类型半导体管芯作欧姆接触;
第一驱动晶体管,其在导通时操作性地将所述第一基极接触区域连接到所述第一发射极/集电极区域;以及第二驱动晶体管,其在导通时操作性地将所述第二基极接触区域连接到所述第二发射极/集电极区域;以及
瞬变耦合电路,其电耦合至来自所述第一和第二发射极/集电极区域中的集电极侧发射极/集电极区域的电压压摆率以激活相反发射极/集电极区域的所述驱动晶体管;
控制电路,其独立地驱动所述第一和第二基极接触区域,这包含多个切换阶段,其中所述第一驱动晶体管和/或所述第二驱动晶体管将所述第一和第二发射极/集电极区域中的至少一个与其对应基极接触区域连接;
因此,所述第一发射极结上的正向电压被限制为低于所述第一发射极结的正向二极管压降特性,并且所述第二发射极结上的正向电压被限制为低于所述第二发射极结的正向二极管压降特性。
6.根据权利要求5所述的开关电路,其中所述第二导电类型半导体管芯是硅。
7.根据权利要求5所述的开关电路,其中所述第二导电类型半导体管芯的所述第一表面上的所述第一发射极/集电极区域未电连接到所述第二导电类型半导体管芯的所述第二表面上的所述第二发射极/集电极区域。
8.根据权利要求5所述的开关电路,其中除经由所述第二导电类型半导体管芯自身而连接之外,所述第二导电类型半导体管芯的所述第一表面上的所述第一基极接触区域未电连接到所述第二导电类型半导体管芯的所述第二表面上的所述第二基极接触区域。
CN201680083394.9A 2016-03-15 2016-12-30 具有防止意外导通的被动部件的双基极连接式双极晶体管 Active CN108781076B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662308660P 2016-03-15 2016-03-15
US62/308,660 2016-03-15
PCT/US2016/069618 WO2017160380A1 (en) 2016-03-15 2016-12-30 Double-base-connected bipolar transistors with passive components preventing accidental turn-on

Publications (2)

Publication Number Publication Date
CN108781076A CN108781076A (zh) 2018-11-09
CN108781076B true CN108781076B (zh) 2022-08-09

Family

ID=59852018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680083394.9A Active CN108781076B (zh) 2016-03-15 2016-12-30 具有防止意外导通的被动部件的双基极连接式双极晶体管

Country Status (5)

Country Link
US (2) US10056372B2 (zh)
EP (1) EP3430723A4 (zh)
JP (1) JP6858413B2 (zh)
CN (1) CN108781076B (zh)
WO (1) WO2017160380A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11637016B2 (en) 2013-12-11 2023-04-25 Ideal Power Inc. Systems and methods for bidirectional device fabrication
US11069797B2 (en) 2016-05-25 2021-07-20 Ideal Power Inc. Ruggedized symmetrically bidirectional bipolar power transistor
WO2019169041A1 (en) * 2018-02-27 2019-09-06 Ideal Power Inc. Hvdc/mvdc systems and methods with low-loss fully-bidirectional bjt circuit breakers
US11135936B2 (en) 2019-03-06 2021-10-05 Fermata, LLC Methods for using temperature data to protect electric vehicle battery health during use of bidirectional charger
US11958372B2 (en) 2019-11-26 2024-04-16 Fermata Energy Llc Device for bi-directional power conversion and charging for use with electric vehicles
US11411557B2 (en) 2020-05-18 2022-08-09 Ideal Power Inc. Method and system of operating a bi-directional double-base bipolar junction transistor (B-TRAN)
US11496129B2 (en) 2020-06-08 2022-11-08 Ideal Power Inc. Method and system of current sharing among bidirectional double-base bipolar junction transistors
US11777018B2 (en) 2020-11-19 2023-10-03 Ideal Power Inc. Layout to reduce current crowding at endpoints
EP4260375A1 (en) * 2020-12-10 2023-10-18 Ideal Power Inc. Method and system of operating a bi-directional double-base bipolar junction transistor (b-tran)
WO2023018769A1 (en) 2021-08-10 2023-02-16 Ideal Power Inc. System and method for bi-directional trench power switches

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081822A (en) * 1975-06-30 1978-03-28 Signetics Corporation Threshold integrated injection logic
WO1990013177A1 (en) * 1989-04-18 1990-11-01 Boral Johns Perry Industries Pty. Ltd. Circuits with switching protection and parts therefor
US7304539B2 (en) * 2003-10-16 2007-12-04 Renesas Technology Corporation High frequency power amplifier circuit and electronic component for high frequency power amplifier
CN101119099A (zh) * 2006-08-01 2008-02-06 罗姆股份有限公司 负载驱动电路及保护方法
CN104158536A (zh) * 2013-05-14 2014-11-19 英飞凌科技奥地利有限公司 具有多个双极晶体管的电路以及用于控制该电路的方法
CN104919595A (zh) * 2013-06-24 2015-09-16 理想能量有限公司 具有双向双极晶体管的系统、电路、器件和方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266100A (en) * 1978-03-17 1981-05-05 Licentia Patent-Verwaltungs-G.M.B.H. Monolithically integrated semiconductor circuit
JPS58223364A (ja) * 1982-06-21 1983-12-24 Nec Corp 半導体スイツチ素子
JPH0779159B2 (ja) * 1984-03-22 1995-08-23 潤一 西澤 光トリガ・光クエンチ可能なサイリスタ装置
JPS61263316A (ja) * 1985-05-17 1986-11-21 Hitachi Ltd 半導体スイツチング回路
FR2635930B1 (fr) * 1988-08-31 1990-11-23 Sgs Thomson Microelectronics Commutateur bidirectionnel monolithique a transistors mos de puissance
DE69127359T2 (de) * 1991-06-27 1998-03-19 Cons Ric Microelettronica Schaltkreis zum Verbinden eines ersten Knotens mit einem zweiten oder dritten Knoten in Abhängigkeit vom Potential des letzteren, zum Steuern des Potentials eines Isolationsbereiches in einer integrierten Schaltung in Abhängigkeit der Substratspannung
JP3495847B2 (ja) * 1995-09-11 2004-02-09 シャープ株式会社 サイリスタを備える半導体集積回路
US5977569A (en) * 1996-09-24 1999-11-02 Allen-Bradley Company, Llc Bidirectional lateral insulated gate bipolar transistor having increased voltage blocking capability
WO2003105212A1 (en) * 2002-05-20 2003-12-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Double side igbt phase leg architecture and clocking method for reduced turn on loss
JP4821086B2 (ja) * 2003-10-31 2011-11-24 富士電機株式会社 半導体装置
WO2007135694A1 (en) 2006-05-18 2007-11-29 Stmicroelectronics S.R.L. Three- terminal power device with high switching speed and manufacturing process
JP2009021313A (ja) * 2007-07-11 2009-01-29 Hitachi Ltd 半導体装置
CN102347354B (zh) * 2010-08-05 2013-04-24 上海华虹Nec电子有限公司 锗硅异质结双极晶体管及制造方法
US9685502B2 (en) 2013-02-07 2017-06-20 John Wood Bipolar junction transistor structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081822A (en) * 1975-06-30 1978-03-28 Signetics Corporation Threshold integrated injection logic
WO1990013177A1 (en) * 1989-04-18 1990-11-01 Boral Johns Perry Industries Pty. Ltd. Circuits with switching protection and parts therefor
US7304539B2 (en) * 2003-10-16 2007-12-04 Renesas Technology Corporation High frequency power amplifier circuit and electronic component for high frequency power amplifier
CN101119099A (zh) * 2006-08-01 2008-02-06 罗姆股份有限公司 负载驱动电路及保护方法
CN104158536A (zh) * 2013-05-14 2014-11-19 英飞凌科技奥地利有限公司 具有多个双极晶体管的电路以及用于控制该电路的方法
CN104919595A (zh) * 2013-06-24 2015-09-16 理想能量有限公司 具有双向双极晶体管的系统、电路、器件和方法

Also Published As

Publication number Publication date
US10497699B2 (en) 2019-12-03
US20170271328A1 (en) 2017-09-21
US10056372B2 (en) 2018-08-21
JP6858413B2 (ja) 2021-04-14
WO2017160380A1 (en) 2017-09-21
EP3430723A1 (en) 2019-01-23
EP3430723A4 (en) 2019-03-06
JP2019512885A (ja) 2019-05-16
CN108781076A (zh) 2018-11-09
US20190088645A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
CN108781076B (zh) 具有防止意外导通的被动部件的双基极连接式双极晶体管
US9742385B2 (en) Bidirectional semiconductor switch with passive turnoff
CN107371382B (zh) 具有双基极双极结型晶体管的优化操作的电路、方法和系统
US9496364B2 (en) Field effect semiconductor component and methods for operating and producing it
JP2020018164A (ja) 回路を動作させる方法及び回路
US10211283B2 (en) Operation of double-base bipolar transistors with additional timing phases at switching transitions
US10200028B2 (en) Electric assembly including a reverse conducting switching device and a rectifying device
JP2015006125A (ja) 高電圧iv族イネーブルスイッチを具えるデプレッションモードiii−v族トランジスタ
JP2007215389A (ja) パワー半導体素子とこれを用いた半導体回路
CN108631759B (zh) 晶体管器件
US10886909B2 (en) Electric assembly including an insulated gate bipolar transistor device and a wide-bandgap transistor device
JP2005109394A (ja) 半導体装置及び半導体装置の駆動回路
CN108028603B (zh) 用于操作双基双向功率双极晶体管的方法及驱动电路
US8354690B2 (en) Solid-state pinch off thyristor circuits
EP3012977A1 (en) Method for switching a semiconductor module, semiconductor module and half-bridge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant