CN103298861B - 微细纤维状纤维素复合预浸片的制造方法、微细纤维状纤维素复合片的制造方法及微细纤维状纤维素复合层叠片的制造方法 - Google Patents

微细纤维状纤维素复合预浸片的制造方法、微细纤维状纤维素复合片的制造方法及微细纤维状纤维素复合层叠片的制造方法 Download PDF

Info

Publication number
CN103298861B
CN103298861B CN201180062696.5A CN201180062696A CN103298861B CN 103298861 B CN103298861 B CN 103298861B CN 201180062696 A CN201180062696 A CN 201180062696A CN 103298861 B CN103298861 B CN 103298861B
Authority
CN
China
Prior art keywords
microfibre shape
shape cellulose
manufacture method
preliminary
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180062696.5A
Other languages
English (en)
Other versions
CN103298861A (zh
Inventor
野色泰友
野一色泰友
角田充
河向隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Publication of CN103298861A publication Critical patent/CN103298861A/zh
Application granted granted Critical
Publication of CN103298861B publication Critical patent/CN103298861B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • B05D3/108Curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/245Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using natural fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • D21H25/06Physical treatment, e.g. heating, irradiating of impregnated or coated paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paper (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及微细纤维状纤维素复合预浸片的制造方法、以及对由所述制造方法制造的微细纤维状纤维素复合预浸片实施固化处理的微细纤维状纤维素的复合片的制造方法,所述微细纤维状纤维素复合预浸片的制造方法具有:制备工序,将反应性化合物的乳液与含有微细纤维状纤维素的水性悬浮液混合而制造混合液;抄纸工序,通过在多孔性的基材上过滤将所述混合液脱水,从而形成含有水分的片材;以及干燥工序,将所述含有水分的片材加热干燥。根据本发明,可以提供效率良好地制造微细纤维状纤维素的预浸片的方法、微细纤维状纤维素的复合片的制造方法以及微细纤维状纤维素的复合层叠片。

Description

微细纤维状纤维素复合预浸片的制造方法、微细纤维状纤维素复合片的制造 方法及微细纤维状纤维素复合层叠片的制造方法
技术领域
本发明的目的是提供效率良好地制造微细纤维状纤维素的复合预浸片的方法、微细纤维状纤维素复合片的制造方法及微细纤维状纤维素复合层叠片的制造方法。
本申请要求基于2010年12月27日在日本提交的日本特愿2010-289167号的优先权,其内容在此引用。
背景技术
近年来,目的在于通过将物质设定为纳米级尺寸大小而获得与块体、分子水平不同的物性的纳米技术引人注目。另一方面,从替代石油资源和环境意识提高来看,可再生产的天然纤维的应用也引人注目。
在天然纤维中,纤维素纤维、尤其是源自木材的纤维素纤维(纸浆)主要作为纸制品被广泛使用。纸中使用的纤维素纤维的宽度基本上为10~50μm。由这种纤维素纤维获得的纸(片材)是不透明的,因为是不透明的,所以广泛用作印刷用纸。另一方面,用精磨机(refiner)、捏合机或砂磨机等处理(打浆或粉碎)纤维素纤维,将纤维素纤维微细化(微纤化)时,获得了透明纸(玻璃纸等)。然而,该透明纸的透明性是半透明水平,与高分子薄膜相比,光的透过性较低,雾度(浊度值)也较大。
另外,纤维素纤维是弹性模量高、热膨胀率低的纤维素晶体的集合体,通过将纤维素纤维与高分子复合化,耐热尺寸稳定性提高,从而用于层叠板等。然而,通常的纤维素纤维是晶体的集合体,是具有筒状空隙的纤维,因此在尺寸稳定性上具有限度。
将纤维素纤维机械性粉碎,将其纤维宽度制成50nm以下的微细纤维状纤维素的水分散液是透明的。另一方面,由于微细纤维状纤维素片材含有空隙,因此发生漫反射而呈白色,不透明性增高,将树脂浸渗到微细纤维状纤维素片材中时,上述空隙被埋上,因此获得了透明片材。此外,微细纤维状纤维素片材的纤维是纤维素晶体的集合体,由于非常刚直且纤维宽度小,因此与通常的纤维素片材(纸)相比,在相同质量下纤维的根数飞跃性增多。因此,与高分子复合化时,细纤维更均一且致密地分散在高分子中,耐热尺寸稳定性飞跃性提高。另外,由于纤维细,因此透明性高。具有这种特性的微细纤维状纤维素的复合物作为有机EL、液晶显示器用的柔性透明基板(能够弯曲或折叠的透明基板)被寄予非常大的期望。
关于微细纤维状纤维素的微细化技术、或与高分子的复合化技术,现状是虽然公开很多,但基本上没有公开在维持工业生产率的同时将微细纤维状纤维素制成复合片的技术。
具体而言,专利文献1~3中公开了将纤维素纤维微细纤维化的技术,但没有公开或教导在将微细纤维化的纤维素形成片材的同时与高分子复合化的技术。
专利文献4~10中公开了通过使微细纤维状纤维素与高分子复合化而提高力学强度等物性的技术等,但基本上没有公开使复合化变容易的技术。
另外,专利文献10~20中公开了将微细纤维状纤维素形成薄片的技术,但没有达到确保工业水平的生产率,期望提供将微细纤维状纤维素与高分子复合化而形成复合片的简便方法。
现有技术文献
专利文献
专利文献1:日本特开昭56-100801号公报
专利文献2:日本特开2008-169497号公报
专利文献3:日本专利第3036354号公报
专利文献4:日本专利第3641690号公报
专利文献5:日本特表平9-509694号公报
专利文献6:日本特开2006-316253号公报
专利文献7:日本特开平9-216952号公报
专利文献8:日本特开平11-209401号公报
专利文献9:日本特开2008-106152号公报
专利文献10:日本特开2005-060680号公报
专利文献11:日本特开平8-188981号公报
专利文献12:日本特开2006-193858号公报
专利文献13:日本特开2008-127693号公报
专利文献14:日本特开平5-148387号公报
专利文献15:日本特开2001-279016号公报
专利文献16:日本特开2004-270064号公报
专利文献17:日本特开平8-188980号公报
专利文献18:日本特开2007-23218号公报
专利文献19:日本特开2007-23219号公报
专利文献20:日本特开平10-248872号公报
发明内容
发明要解决的问题
本发明提供了微细纤维状纤维素复合预浸片的制造方法,所述方法将反应性化合物的乳液与含有微细纤维状纤维素的水性悬浮液混合,通过在多孔性的基材上过滤将该混合液脱水,然后干燥。另外,提供了对上述微细纤维状纤维素复合预浸片实施固化处理的微细纤维状纤维素复合片的制造方法。此外,提供了将2片以上的上述微细纤维状纤维素复合预浸片层叠而后实施固化处理的微细纤维状纤维素的复合层叠片的制造方法。
用于解决问题的方案
本发明人等对于下述事实的可能性进行了各种研究,并基于相关见解完成了本发明,所述事实为:将反应性化合物的乳液与含有微细纤维状纤维素的水性悬浮液混合,通过在多孔性的基材上过滤将该混合液脱水、干燥,由以上方法有效地将含有大量水的微细纤维状纤维素材料形成复合预浸片。
本发明包含以下的各技术方案。
(1)一种微细纤维状纤维素复合预浸片的制造方法,该方法具有:制备工序,将反应性化合物的乳液与含有微细纤维状纤维素的水性悬浮液混合而制造混合液;抄纸工序,通过在多孔性的基材上过滤将所述混合液脱水,从而形成含有水分的片材;以及干燥工序,将所述含有水分的片材加热干燥。
(2)根据第(1)项所述的微细纤维状纤维素复合预浸片的制造方法,其中,所述反应性化合物的乳液是阳离子性的。
(3)根据第(1)或(2)项所述的微细纤维状纤维素复合预浸片的制造方法,其中,在所述制备工序中,包括在含有微细纤维状纤维素的混合液中配合纤维素凝结剂。
(4)根据第(1)~(3)项的任一项所述的微细纤维状纤维素复合预浸片的制造方法,其中,在所述制备工序中,所混合的微细纤维状纤维素的纤维宽度为2~1000nm。
(5)根据第(1)~(4)项的任一项所述的微细纤维状纤维素复合预浸片的制造方法,其中,所述反应性化合物是热固化性化合物、光固化性化合物或电子束固化性化合物。
(6)一种微细纤维状纤维素的复合片的制造方法,该方法包括对通过第(1)~(5)项的任一项所述的制造方法所制造的微细纤维状纤维素复合预浸片进一步实施固化处理。
(7)一种微细纤维状纤维素的复合层叠片的制造方法,其还包括:将2片以上的由第(1)~(5)项的任一项所述的制造方法制造的微细纤维状纤维素复合预浸片层叠;以及对所述层叠的预浸片实施固化处理。
发明的效果
根据本发明,可以提供可效率良好地生产的微细纤维状纤维素复合预浸片的制造方法、微细纤维状纤维素的复合片的制造方法以及微细纤维状纤维素的复合层叠片的制造方法。
具体实施方式
以下详细说明本发明。
本发明人等研究了:通过制作微细纤维状纤维素的多孔性片材,将反应性化合物浸渗到所得多孔性片材中,而后进行固化处理,从而制作微细纤维状纤维素的复合片。然而,在该方法中,需要先制造多孔性片材并将反应性化合物浸渗到多孔性片材中,所以浸渗工序是必需的。因此可以看出,如果能够省略浸渗工序,生产率将大幅提高。此外,微细纤维状纤维素的多孔性不充分时,反应性化合物不能充分浸渗,存在变得不均一的情况。因此,存在能够浸渗的反应性化合物的种类受限的问题。
本发明人等进行了深入研究,结果发现,通过预先将反应性化合物乳化,而后与微细纤维状的纤维素混合,仅用抄纸工序就能制造反应性化合物与微细纤维状纤维素的预浸片或者复合片,由此完成了本发明。根据本发明,不仅可以省略反应性化合物的浸渗工序,而且还可以省略采用溶剂置换等进行的微细纤维状片材的多孔化工序,因此,在省略工序、或不使用溶剂等成本和环境方面具有很大优势。
本发明的微细纤维状纤维素是宽度远远小于通常造纸用途中使用的纸浆纤维的纤维素纤维或者纤维素的棒状粒子。所述微细纤维状纤维素是晶体状态的纤维素分子的集合体,其晶体结构是I型的(平行链)。以本发明的微细纤维状纤维素的短径为宽度时,上述纤维素的宽度用电子显微镜观察,优选是2nm~1000nm,更优选是2nm~500nm,进一步优选为4nm~100nm。纤维的宽度小于2nm时,以纤维素分子的形式溶解在水中,因而表现不出作为微细纤维的物性(强度、刚性或尺寸稳定性)。超过1000nm时,称不上微细纤维,不过是通常的纸浆所含的纤维,因此,不能获得作为微细纤维的物性(强度、刚性或尺寸稳定性)。另外,在要求微细纤维状纤维素的复合物具有透明性的用途中,上述微细纤维状纤维素的宽度优选为2nm以上且50nm以下。
将上述微细纤维状纤维素的长径设为长度时,只要上述纤维素的长度为0.1μm以上就没有特别限制,优选为0.1~1000μm,更优选为0.2~500μm,进一步优选为0.3~100μm。
其中,微细纤维状纤维素为I型晶体结构可以如下鉴定:在由使用用石墨单色化的CuKα的广角X射线衍射照片获得的衍射曲线图中,在2θ=14~17°附近和2θ=22~23°附近的2处位置上具有典型性峰。另外,微细纤维状纤维素利用电子显微镜观察的纤维宽度的测定如下进行。制备浓度0.05~0.1质量%的微细纤维状纤维素的水性悬浮液,将上述悬浮液浇注在亲水化处理的碳膜包覆格栅上,形成TEM观察用试样。在包含宽度大的纤维时,可以观察在玻璃上浇注的表面的SEM图像。根据构成纤维的宽度,在5000倍、10000倍或50000倍的任一倍率下进行电子显微镜图像观察。此时,设定为在所得图像内假定横竖任意的图像宽度的轴时至少相对于轴有20根以上的纤维与轴交叉的试样和观察条件(倍率等)。对于满足该条件的观察图像,每一幅图像引出横竖各2个随机轴,目视读取与轴交错的纤维的纤维宽度。这样,用电子显微镜观察最少3幅没有重叠的表面部分的图像,各自读取与2个轴交错的纤维的纤维宽度值(最少20根×2×3=120根的纤维宽度)。
对微细纤维状纤维素的制造方法没有特别限制,通过利用研磨机(石臼型粉碎机)、高压均化器、超高压均化器、高压撞击型粉碎机、圆盘型精磨机或锥形精磨机等的机械作用的湿式粉碎来将纤维素系纤维细化的方法是优选的。另外,也可以在实施TEMPO氧化、臭氧处理或酶处理等化学处理之后进行微细化。作为用来微细化的纤维素系纤维,可列举出源自植物的纤维素、源自动物的纤维素或源自细菌的纤维素等。更具体而言,可列举出针叶树纸浆、阔叶树纸浆等木材系造纸用纸浆;棉籽绒、皮棉等棉系纸浆;麻、麦秆或甘蔗渣等非木材系纸浆;或由海鞘、海藻等分离的纤维素等。在这些当中,从容易获得的观点来看,优选木材系造纸用纸浆、非木材系纸浆。
本发明的含有微细纤维状纤维素的水性悬浮液是将上述微细纤维状纤维素悬浮在水中的溶液,是通过上述湿式粉碎而获得的。将上述微细纤维状纤维素悬浮在水中时的比例优选水:上述微细纤维状纤维素为100:0.01~100:30,更优选为100:0.05~100:10,进一步优选为100:0.1~100:5。使上述微细纤维状纤维素悬浮的溶液优选是水,也可以相对于水含有1~30%的甲醇、乙醇、或异丙醇等醇类、乙二醇或二乙二醇等溶剂。
在本发明中,将反应性化合物的乳液与使上述微细纤维状纤维素悬浮在水中的水性悬浮液混合后使用。
其中,反应性化合物的乳液是使用乳化剂将天然或合成的反应性化合物乳化而成的乳液,是以粒径0.001~10μm左右的微细粒子分散于水中的乳白色液体。
以下说明上述反应性化合物的乳液的制造方法。首先,作为本发明中使用的反应性化合物,可列举出通过热、光或电子束等外部刺激而生成化学键的聚合性化合物等。
上述聚合性化合物是通过热、光或电子束等外部刺激而聚合的化合物,可列举出具有双键、三键的化合物等。
上述热、光或电子束等外部刺激,为热的情况下,可列举出例如通过在50~200℃下加热1秒钟~300分钟而产生的刺激。为光的情况下,可列举出例如通过照射1秒钟~300分钟的波长为200~400nm的紫外线而产生的刺激。上述波长为200~400nm的紫外线产生的刺激具体地可列举出高压汞灯、金属卤化物灯等产生的刺激。
在上述反应性化合物的乳液中,乳化剂相对于反应性化合物以0.1~10质量%的范围含有。乳化剂的含量低于0.1质量%时,乳液的稳定性变得不充分,反应中有可能产生凝聚物。另外,乳化剂的含量超过10质量%时,含量变得过剩,效率差而且容易起泡,因此不优选。
作为本发明中使用的乳化剂,只要是具有亲水基和疏水基的两亲性化合物即可,对其没有特别限制,优选具有烷基、芳香环的羧酸;上述羧酸与具有碳原子数1~20的烷基的醇的酯;或者HLB处在3~17的范围的聚氧亚乙基化合物。
作为本发明中使用的乳化剂,例如,可例示出油酸钾、月桂酸钠、十二烷基苯磺酸钠、烷基萘磺酸钠、琥珀酸二烷基酯磺酸钠、聚氧乙烯烷基醚硫酸钠、聚氧乙烯烷基烯丙基醚硫酸钠、聚氧乙烯二烷基硫酸钠、聚氧乙烯烷基醚磷酸酯、或者聚氧乙烯烷基烯丙基醚磷酸酯等阴离子系乳化剂,或者聚氧乙烯烷基醚、聚氧乙烯烷基烯丙基醚、聚(氧亚乙基-氧亚丙基)嵌段共聚物、聚乙二醇脂肪酸酯、或者聚氧乙烯脱水山梨醇脂肪酸酯等非离子系乳化剂。另外,例如,可例示出烷基三甲基铵盐、二烷基二甲基铵盐、烷基二甲基苄基铵盐、酰胺基乙基二乙基铵盐、酰胺基乙基二乙基胺盐、(烷基酰胺基)丙基二甲基苄基铵盐、烷基吡啶鎓盐、烷基吡啶鎓硫酸盐、硬脂酰胺基甲基吡啶鎓盐、烷基喹啉鎓盐、烷基异喹啉鎓盐、脂肪酸聚乙烯聚酰胺、酰胺基乙基吡啶鎓盐或者[[(酰氧乙基)氨基甲酰]甲基]吡啶鎓盐等季铵盐,硬脂氧基甲基吡啶鎓盐、脂肪酸三乙醇胺、脂肪酸三乙醇胺甲酸盐、三乙二醇(trioxyethylene)脂肪酸三乙醇胺、鲸蜡氧基甲基吡啶鎓盐、或者对异辛基苯氧基乙氧基乙基二甲基苄基铵盐等酯键合胺或醚键合季铵盐,烷基咪唑啉、1-羟乙基-2-烷基咪唑啉、1-乙酰胺基乙基-2-烷基咪唑啉、2-烷基-4-甲基-4-羟甲基噁唑啉等杂环胺,或者聚氧乙烯烷基胺、N-烷基亚丙基二胺、N-烷基多亚乙基多胺、N-烷基多亚乙基多胺二甲基硫酸盐、烷基双胍、或者长链胺氧化物等胺衍生物等阳离子系乳化剂。此外,还可以单独使用或与上述乳化剂组合使用具有乳化分散能力的较低分子量的高分子化合物,例如聚乙烯醇及其改性物、聚丙烯酰胺、聚乙二醇衍生物、聚羧酸共聚物的中和物、或者酪蛋白等。
上述烷基是指碳原子数1~20的烷基。
上述酰基是指碳原子数1~20的烷酰基。
上述酯是指具有碳原子数1~20的烷基的醇与脂肪酸或磷酸的酯。
上述脂肪酸是指碳原子数1~20的烷基羧酸。
上述长链胺是指碳原子数1~20的烷基胺。
上述较低分子量的高分子化合物是指分子量1000~100000的亲水性高分子。
上述改性物是指聚乙烯醇的羟基被羧酸或磺酸改性的粘性聚乙烯醇。
作为本发明中使用的乳化剂,HLB处在3~17范围的两亲性化合物是优选的。
作为本发明中使用的反应性化合物,例如,可列举出(甲基)丙烯酸、巴豆酸、马来酸、衣康酸、富马酸、单烷基马来酸、或单烷基富马酸等含烯属不饱和羧酸的单体或它们的酸酐。所述单烷基是碳原子数1~30的烷基链。
作为本发明中使用的反应性化合物,具体而言,可列举出(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸己酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸硬脂酯、醋酸乙烯酯、氯乙烯、偏二氯乙烯、(甲基)丙烯腈、苯乙烯、乙烯、丙烯、丁二烯、异戊二烯、氯丁二烯、(甲基)丙烯酸2-羟乙酯、(甲基)丙烯酸2-羟丙酯、(甲基)丙烯酸2-羟丁酯、聚乙二醇(甲基)丙烯酸酯、(甲基)丙烯酸2-羟基-3-苯氧基丙酯、甘油单(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、(聚)乙二醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、1,3-丁二醇二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、四羟甲基甲烷四(甲基)丙烯酸酯、二乙烯基苯、1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、(甲基)丙烯酸缩水甘油酯、(甲基)丙烯酸甲基缩水甘油酯、N-羟甲基(甲基)丙烯酰胺、N-甲氧基甲基(甲基)丙烯酰胺、N-丁氧基甲基(甲基)丙烯酰胺、N,N-亚甲基双(甲基)丙烯酰胺、2,2-双[4-(丙烯酰氧基聚乙氧基)苯基]丙烷(加成10摩尔EO)、2,2-双[4-(丙烯酰氧基聚乙氧基)苯基]丙烷(加成17摩尔EO)、2,2-双[4-(丙烯酰氧基聚乙氧基)苯基]丙烷(加成30摩尔EO)、2,2-双[4-(丙烯酰氧基二乙氧基)苯基]丙烷(加成4摩尔EO)、9,9-双[4-(2-丙烯酰氧基乙氧基)苯基]芴、2,2-双[4-(丙烯酰氧基聚丙氧基)苯基]丙烷(加成3摩尔PO)、三环癸烷二甲醇二丙烯酸酯、1,10-癸二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、1,9-壬二醇二丙烯酸酯、二丙二醇二丙烯酸酯、三丙二醇二丙烯酸酯、聚丙二醇#400二丙烯酸酯、乙氧基化邻苯基苯酚丙烯酸酯、丙二醇二丙烯酸酯、甲氧基聚乙二醇#400丙烯酸酯、甲氧基聚乙二醇#550丙烯酸酯、苯氧基聚乙二醇丙烯酸酯、琥珀酸2-丙烯酰氧基乙酯、丙烯酸异硬脂酯、甲基丙烯酸2-羟基-3-丙烯酰氧基丙酯、聚乙二醇#200二丙烯酸酯、聚乙二醇#400二丙烯酸酯、聚乙二醇#600二丙烯酸酯、聚乙二醇#1000二丙烯酸酯、丙氧基化乙氧基化双酚A二丙烯酸酯(加成12摩尔PO/6摩尔EO)、2,2-双[4-(丙烯酰氧基聚乙氧基)苯基]丙烷(加成3摩尔EO)、聚乙二醇#400二甲基丙烯酸酯、聚乙二醇#600二甲基丙烯酸酯、聚乙二醇#1000二甲基丙烯酸酯、2,2-双[4-(甲基丙烯酰氧基乙氧基)苯基]丙烷(加成2.3摩尔EO)、2,2-双[4-(甲基丙烯酰氧基乙氧基)苯基]丙烷(加成2.6摩尔EO)、2,2-双[4-(甲基丙烯酰氧基二乙氧基)苯基]丙烷(加成4摩尔EO)、2,2-双[4-(甲基丙烯酰氧基聚乙氧基)苯基]丙烷(加成10摩尔EO)、2,2-双[4-(甲基丙烯酰氧基聚乙氧基)苯基]丙烷(加成17摩尔EO)、2,2-双[4-(甲基丙烯酰氧基聚乙氧基)苯基]丙烷(加成30摩尔EO)、三环癸烷二甲醇二甲基丙烯酸酯、1,10-癸二醇二甲基丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、1,9-壬二醇二甲基丙烯酸酯、二季戊四醇聚丙烯酸酯、二季戊四醇六丙烯酸酯、苯二甲酸2-甲基丙烯酰氧基乙酯、甲氧基聚乙二醇#400甲基丙烯酸酯(加成9摩尔EO)、甲氧基聚乙二醇#1000甲基丙烯酸酯(加成23摩尔EO)、苯氧基乙二醇甲基丙烯酸酯(加成1摩尔EO)、甲基丙烯酸硬脂酯、琥珀酸2-甲基丙烯酰氧基乙酯、甲基丙烯酸异硬脂酯、乙二醇二甲基丙烯酸酯、二乙二醇二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、聚乙二醇#200二甲基丙烯酸酯、新戊二醇二甲基丙烯酸酯、乙氧基化聚丙二醇#700二甲基丙烯酸酯(加成12摩尔PO/6摩尔EO)、甘油二甲基丙烯酸酯、聚丙二醇#400二甲基丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、聚丙二醇#700二丙烯酸酯、聚四亚甲基二醇#650二丙烯酸酯、三(2-丙烯酰氧基乙基)异氰脲酸酯、ε-己内酯改性三(2-丙烯酰氧基乙基)异氰脲酸酯、乙氧基化甘油三丙烯酸酯(加成9摩尔EO)、乙氧基化甘油三丙烯酸酯(加成20摩尔EO)、季戊四醇三丙烯酸酯(三酯37%)、季戊四醇三丙烯酸酯(三酯55%)、季戊四醇三丙烯酸酯(三酯57%)、三羟甲基丙烷三丙烯酸酯、双三羟甲基丙烷四丙烯酸酯、乙氧基化季戊四醇四丙烯酸酯、或者季戊四醇四丙烯酸酯等,可以使用选自这些化合物组成的组中的至少一种化合物,或者可以使用上述化合物的共聚合低聚物。
本发明中使用的反应性化合物优选是热固化性化合物、光固化性化合物或电子束固化性化合物。
上述热固化性化合物是施加1秒钟~300分钟的50~200℃的热时发生固化的化合物,可列举出热分解引发剂等。
上述光固化性化合物是照射1秒钟~300分钟的波长200~400nm的光时发生固化的化合物,可列举出光分解引发剂等。
上述电子束固化性化合物是照射1秒钟~300分钟电子束时发生固化的化合物,可列举出上述反应性化合物等。
本发明中,为了调节上述固化性化合物的聚合度(平均分子量),在上述微细纤维状纤维素复合预浸片的固化处理中,可以在上述固化性化合物中使用链转移剂。
作为链转移剂,可以使用正十二烷基硫醇、辛基硫醇、叔丁基硫醇、巯基乙酸、硫代苹果酸或硫代水杨酸等硫醇类,二硫化二异丙基黄原酸酯、二硫化二乙基黄原酸酯或二硫化二乙基秋兰姆等硫化物类,碘仿等卤代烃,二苯乙烯、对氯二苯乙烯、对氰基二苯乙烯、α-甲基苯乙烯二聚体、或者硫等。
在本发明中,为了获得上述固化性化合物的稳定性,可以预先在上述固化性化合物中添加阻聚剂。
作为阻聚剂,可以使用吩噻嗪、2,6-二叔丁基-4-甲基苯酚、2,2’-亚甲基双(4-乙基-6-叔丁基苯酚)、亚磷酸三(壬基苯基)酯、4,4’-硫代双(3-甲基-6-叔丁基苯酚)、N-苯基-1-萘胺、2,2’-亚甲基双(4-甲基-6-叔丁基苯酚)、2-巯基苯并咪唑、氢醌或者N,N-二乙基羟胺等。
接着,说明将反应性化合物乳液化的方法。乳液化使用将油等在水中分散、乳化的常规装置来进行。作为上述装置,例如,可列举出均质混合机、梳齿型均化器等高速旋转型乳化装置;高压均化器、微射流均质机(microfluidizer)等高压乳化装置;辊磨机;超声波装置;或者多孔膜等。对乳化时的添加顺序、添加方法没有特别限制,可列举出将乳化剂添加到反应性化合物中,边搅拌边缓慢添加水的方法;在含有乳化剂的水中边搅拌边缓慢添加反应性化合物的方法;同时添加水、乳化剂和反应性化合物并搅拌的方法等。
在本发明中,考虑到成品率、脱水性时,反应性化合物的乳液的粒径越大越好,另外,粒径过大时,片材的均一性或者光学物性有可能降低,因此,优选是符合目的的适度尺寸即0.001~10μm。其中,考虑到将微细纤维状纤维素的水性悬浮液与反应性化合物的乳液混合时,反应性化合物的乳液的表面电荷为阳离子性对于分散稳定性或者成品率等是有利的。
反应性化合物的含量相对于水优选为5~70质量%,进一步优选为10~60质量%,特别优选为20~50质量%。反应性化合物的含量低于5质量%时,抄纸时的浆料浓度下降,效率差。反应性化合物的含量超过70质量%时,乳化物的分散性变得不稳定,因此不优选。
本发明中使用的含有微细纤维状纤维素的混合液通过在搅拌上述微细纤维状纤维素水性悬浮液的同时将上述反应性化合物的乳液投入到上述悬浮液中来制备。作为搅拌装置,只要是能够将纤维素和反应性化合物的乳液均匀地混合搅拌的装置即可,对其没有特别限制,例如可以使用搅拌器、均质混合器或者管路混合器等装置。
在本发明中,在上述制备工序中,优选在混合液中配合纤维素凝结剂。作为上述纤维素凝结剂,可列举出水溶性无机盐、含有阳离子性官能团的水溶性有机化合物。作为水溶性无机盐,可列举出氯化钠、氯化钙、氯化钾、氯化铵、氯化镁、氯化铝、硫酸钠、硫酸钾、硫酸铝、硫酸镁、硝酸钠、硝酸钙、碳酸钠、碳酸钾、碳酸铵、磷酸钠或者磷酸铵等。
作为上述水溶性无机盐,从干燥时受热分解、挥发的观点考虑,优选碳酸铵。
作为含有阳离子性官能团的水溶性有机化合物,可列举出聚丙烯酰胺、聚乙烯胺、尿素树脂、三聚氰胺树脂、三聚氰胺-甲醛树脂、或者含有季铵盐的单体聚合或共聚合而成的聚合物等。
作为上述含有阳离子性官能团的水溶性有机化合物,从容易控制上述凝结剂的凝结力的观点考虑,优选含有季铵盐的聚合物。
纤维素凝结剂的配合量需要以水性悬浮液发生凝胶化的量以上添加。具体而言,相对于100质量份微细纤维状纤维素,优选添加0.5~10质量份纤维素凝结剂。纤维素凝结剂的添加量低于0.5质量份时,水性悬浮液的凝胶化变得不充分,有可能缺乏滤水性改进效果。添加量超过10质量份时,过度凝胶化,水性悬浮液的处理有可能变得困难。更优选为1~8质量份的范围。
其中,本发明的凝胶化是指水性悬浮液的粘度急剧且大幅上升而失去流动性的状态变化。然而,此处获得的凝胶是果冻状的,容易通过搅拌而破坏。由于是急剧失去流动性的状态,因此凝胶化的判断可通过目视判断,关于本发明的含有纤维素凝结剂的微细纤维状纤维素的水性悬浮液,用浓度0.5质量%和温度25℃下的B型粘度(测定条件:4号转子,转速60rpm)判断。优选上述粘度为100mPa·秒以上,更优选为200mPa·秒以上,特别优选为300mPa·秒以上。B型粘度低于100mPa·秒时,水性悬浮液的凝胶化变得不充分,有可能缺乏滤水性改进效果。
上述粘度的范围优选为100~10000mPa·秒,更优选为200~4000mPa·秒,进一步优选为300~2000mPa·秒。
在本发明中,作为将含有微细纤维状纤维素和反应性化合物的乳液的水性悬浮液形成片材而制造微细纤维状纤维素复合预浸片的方法,例如,可列举出使用日本特愿2009-173136中记载的制造装置的方法等,该装置包括:将含有微细纤维的分散液喷到环状皮带的上面,由喷出的上述分散液挤出压榨分散介质而生成纸幅的挤水压榨段;以及使上述纸幅干燥,生成纤维片材的干燥段,从所述挤水压榨段到所述干燥段配设上述环状皮带,所述挤水压榨段中生成的上述纸幅以载置于上述环状皮带的状态下被输送到所述干燥段。
在本发明的制造方法的抄纸工序中,通过在多孔性的基材上过滤将上述含有微细纤维状纤维素的水性悬浮液与上述反应性化合物的乳液的混合液脱水,形成含有水分的片材。
作为可在本发明中使用的脱水方法,可列举出在造纸中通常使用的脱水方法,优选的是,在长网、圆网、或倾斜网等多孔性的基材上,通过过滤将上述混合液脱水,然后用辊压机脱水的方法。另外,作为干燥方法,可列举出在造纸中使用的方法,例如,优选利用筒式干燥器、杨克式烘缸(Yankeedryer)、热风干燥或红外线加热器等的方法。
另外,作为可用作脱水时的网的多孔性的基材,可列举出普通抄纸中使用的网。例如,优选不锈钢或青铜等金属网,聚酯、聚酰胺、聚丙烯或聚偏二氟乙烯等塑料网。另外,还可以使用醋酸纤维素基材等的膜滤器作为网。网的孔眼优选为0.2μm~200μm,更优选为0.4μm~100μm。孔眼小于0.2μm时,脱水速度变得极慢,因此不优选。而大于200μm时,微细纤维状纤维素的成品率降低,因此不优选。
上述制备工序中的上述混合液的浓度优选为3质量%以下,更优选为0.1~1质量%,特别优选为0.2~0.8质量%。混合液的浓度超过3质量%时,粘度过高,有可能处理困难。上述混合液的粘度按B型粘度计适宜为100~5000mPa·秒左右。
作为上述微细纤维状纤维素的复合片的制造方法,可列举出对上述微细纤维状纤维素复合预浸片进一步实施固化处理的方法等。作为上述固化处理,可列举出将上述微细纤维状纤维素复合预浸片热固化的方法、照射紫外线进行固化的方法、或者照射电子束进行固化的方法等。
另外,作为上述微细纤维状纤维素的复合层叠片的制造方法,可列举出将2片以上的上述微细纤维状纤维素复合预浸片层叠而后对上述层叠的预浸片进一步实施固化处理的方法等。作为上述固化处理,可列举出将2片以上的上述预浸片层叠而后热固化的方法、照射紫外线进行固化的方法、或者照射电子束进行固化的方法等。
采用热的固化是用100~180℃的热压机在大气压下、真空下或者非活性气体气氛中压制10~60分钟进行热固化的方法。
照射紫外线进行固化的方法是对预浸片照射波长为100~400nm的紫外线进行固化的方法。在紫外线照射的情况下,预浸片中含有光聚合引发剂时,固化速度快,因此是优选的。
照射电子束进行固化的方法由于电子束的能量大因而具有固化非常迅速的优点。照射的电子束的量优选为10~200kGy的范围,更优选为20~100kGy左右的范围。通过将电子束照射量设定为10kGy以上,能够使树脂成分充分固化,而通过设定为200kGy以下,不会由于过量的电子束而发生复合片的变色、强度降低。另外,预浸片中含有光聚合引发剂时,固化速度进一步变快,因此是优选的。
本发明中获得的微细纤维状纤维素的复合片的每平方米重量优选为0.1~1000g/m2,更优选为1~500g/m2,特别优选为5~100g/m2。每平方米重量低于0.1g/m2时,片材强度变得极弱,难以连续生产。而超过1000g/m2时,脱水非常耗时,生产率极度下降,因而不优选。
本发明中获得的微细纤维状纤维素的复合片的厚度优选为0.1~1000μm,更优选为1~500μm,特别优选为5~100μm。厚度小于0.1μm时,片材强度变得极弱,难以连续生产。而超过1000μm时,脱水非常耗时,生产率极度下降,因此不优选。
本发明中获得的微细纤维状纤维素的复合片为了获得目标物性而可以采用后续工序中的施胶压榨或涂布等进行处理。
通过本发明制作的复合片是具有源自纤维素的高弹性模量,且没有皱折的高密度片材。另外,可以给本来不耐水或者相对于湿度的尺寸变化大的纤维素薄片赋予耐水性或者耐湿尺寸稳定性提高等高分子所具有的功能。
实施例
以下举出实施例来更详细说明本发明,但本发明不受这些实施例限制。另外,除非另有规定,例中的份和%分别表示质量份和质量%。
(微细纤维状纤维素水性悬浮液A的制造)
使用碎屑厚度分级装置将用于制造纸浆的美国松碎屑分级为厚度2mm~8mm的碎屑,然后,通过日晒将碎屑的含水率(水分量/包括水分量的碎屑总量的比例)调节至约7%,制成木粉化的试样。
使用(株)槙野产业制的粗粉碎机(Hammer Crusher(锤式破碎机)HC-400)将上述碎屑粗粉碎。不将其分级,用同一公司制造的DD磨机(筛网0.8mmφ,DD-3型)一次微粉碎之后,进一步用DD磨机(筛网0.2mmφ,DD-3型)进行二次微粉碎。
将上述木粉在2%碳酸钠水溶液中边搅拌边在90℃下处理5小时,进行脱脂处理。处理后的原料用10倍量的蒸馏水洗涤,用布氏漏斗脱水,然后添加蒸馏水调整浓度。
将醋酸酐与30%过氧化氢按液量1:1混合调制,添加该液体使得相对于脱脂处理后的原料(BD30g)按过氧化氢当量计为4.5%。用离子交换水将该溶液稀释至1.5L后,添加1.5L过酸水溶液,在90℃下处理1小时,进行脱木质素。使用5%氢氧化钾水溶液,在室温下将浆料状的脱木质素处理过的原料(BD30g)浸渍处理24小时。用10倍量的蒸馏水洗涤,用布氏漏斗进行脱水,添加蒸馏水从而制作2%的纸浆悬浮液。
用CLEARMIX 9S(M TECHNIQUE Co.,Ltd.制)将上述纸浆浆料在转速7000rpm下处理2小时,获得微细纤维状纤维素水性悬浮液A。
(微细纤维状纤维素水性悬浮液B的制造)
用水将上述微细纤维状纤维素水性悬浮液A稀释至浓度0.30%之后,边用磁力搅拌器搅拌,边用超声波照射装置UP-400S(Hielscher UltrasonicsGmbH)照射30分钟超声波。将该超声波处理分散液在5400rpm(12000G)下离心分离10分钟,获得微细纤维状纤维素水性悬浮液B。
(反应性化合物乳液A的制造)
边用磁力搅拌器搅拌将89.7份水与10份反应性化合物(NKESTER“A-DOD-N”,新中村化学公司制)[1,10-癸二醇二丙烯酸酯]和0.1份热聚合引发剂(“PERCUMYL D”,日油公司制)[过氧化二异丙苯]、0.2份作为表面活性剂的壬基酚16摩尔EO加成物混合而成的100g液体,边用超声波照射装置UP100H(Hielscher Ultrasonics GmbH)照射1分钟的30kHz的超声波。
(反应性化合物乳液B的制造)
边用磁力搅拌器搅拌将89.79份水与10份反应性化合物(NKESTER“A-DOD-N”,新中村化学公司制)和0.01份光聚合引发剂(“LucirinTPO”,巴斯夫日本株式会社制)[2,4,6-三甲基苯甲酰基二苯基氧化膦]、0.2份作为表面活性剂的壬基酚16摩尔EO加成物混合而成的100g液体,边用超声波照射装置UP100H(Hielscher Ultrasonics GmbH)照射1分钟的30kHz的超声波。
<实施例1>
(预浸片的制作)
将780份的稀释至浓度0.2%的上述微细纤维状纤维素水性悬浮液A与15.6份的上述反应性化合物乳液A混合,然后添加15.6份的浓度0.2%的阳离子性凝结剂(商品名:“Fixer Ju 621”,栗田工业化学公司制),搅拌1分钟。在180℃下热压延处理过的无纺布(商品名:“TECHNOWIPER”,Technos Co.,Ltd.制)上将所得混合液吸滤脱水,获得湿片材。
用70℃的筒式干燥器将所得湿片材边加压边干燥40分钟,获得预浸片。将所得预浸片从TECHNOWIPER上剥离,获得每平方米重量为45.2g/m2的微细纤维状纤维素复合预浸片。
(热固化复合片)
用140℃的热压机将上述预浸片在真空下按压30分钟之后,进一步用筒式干燥器边加压边干燥40分钟,使之热固化。所得复合片是半透明的。
(层叠/热固化复合片1)
将2片上述预浸片叠置,用140℃的热压机在真空下按压30分钟,然后进一步用筒式干燥器边加压边干燥40分钟,使之热固化。所得复合片是半透明的。
(层叠/热固化复合片2)
将5片上述预浸片叠置,用140℃的热压机在真空下按压30分钟,然后进一步用筒式干燥器边加压边干燥40分钟,使之热固化。所得复合片是半透明的。
(层叠/热固化复合片3)
将10片上述预浸片叠置,用140℃的热压机在真空下按压30分钟,然后进一步用筒式干燥器边加压边干燥40分钟,使之热固化。所得复合片是半透明的。
<实施例2>
(预浸片的制作)
将780份的稀释至浓度0.2%的上述微细纤维状纤维素水性悬浮液B与15.6份的上述反应性化合物乳液A混合,然后添加15.6份的浓度0.2%的阳离子性凝结剂(商品名:“Fixer Ju 621”,栗田工业化学公司制),搅拌1分钟。在180℃下热压延处理过的无纺布(商品名:“TECHNOWIPER”,Technos Co.,Ltd.制)上将所得混合液吸滤脱水,获得湿片材。
用70℃的筒式干燥器将所得湿片材边加压边干燥40分钟,获得预浸片。将所得预浸片从TECHNOWIPER上剥离,获得每平方米重量为45.2g/m2的微细纤维状纤维素复合预浸片。
(热固化复合片)
用140℃的热压机将上述预浸片在真空下按压30分钟之后,进一步用筒式干燥器边加压边干燥40分钟,使之热固化。所得复合片是透明的。
(层叠/热固化复合片)
将5片上述预浸片叠置,用140℃的热压机在真空下按压30分钟,然后进一步用筒式干燥器边加压边干燥40分钟,使之热固化。所得复合片是透明的。
<实施例3>
(预浸片的制作)
将780份的稀释至浓度0.2%的上述微细纤维状纤维素水性悬浮液B与15.6份的上述反应性化合物乳液B混合,然后添加15.6份的浓度0.2%的阳离子性凝结剂(商品名:“Fixer Ju 621”,栗田工业化学公司制),搅拌1分钟。在180℃下热压延处理过的无纺布(商品名:“TECHNOWIPER”,Technos Co.,Ltd.制)上将所得混合液吸滤脱水,获得湿片材。
用70℃的筒式干燥器将所得湿片材边加压边干燥40分钟,获得预浸片。将所得预浸片从TECHNOWIPER上剥离,获得每平方米重量为49.8g/m2的微细纤维状纤维素复合预浸片。
(紫外线固化复合片)
用载玻片夹持上述的预浸片,照射10分钟紫外线(20J/cm2),使树脂固化。所得复合片是透明的。
(层叠/紫外线固化复合片)
将5片上述预浸片叠置,用室温的热压机在真空下按压30分钟,然后用载玻片夹持,照射10分钟紫外线(20J/cm2),使树脂固化。所得复合片是透明的。
(层叠/电子束固化复合片)
将10片上述预浸片叠置,用室温的热压机在真空下按压30分钟,然后用载玻片夹持,通过电子帘(electrocurtain)型电子束加速器(ESI公司制)照射约3秒钟加速电压175kV、吸收剂量40kGy的电子束,使之固化。所得复合片是透明的。
<比较例1>
将微细纤维状纤维素水性悬浮液A稀释至0.2%,在180℃下热压延处理过的无纺布(商品名:“TECHNOWIPER”,Technos Co.,Ltd.制)上将上述稀释的悬浮液A吸滤脱水,从而制作湿片材。用喷洒器在湿片材上相对于100份湿片材均匀地涂布100份二乙二醇二甲醚(DEGDME)(东邦化学公司制,商品名:“Hisolve MDM”,分子量134,沸点162℃,表面张力28N/m)。喷洒器使用喷雾类型。进一步减压从而形成含有水和DEGDME的湿片材。湿片材的固形分为10%。湿片材中含有的水与DEGDME的比率是50/50。使用辊筒(cylinder roll)将上述湿片材在80℃下干燥3分钟,获得第一干燥后的片材。所得第一干燥后的片材是半透明的,并且是潮湿状态的。将上述第一干燥后的片材在130℃下干燥3分钟(第二干燥工序),从而获得多孔性的35g/m2的微细纤维状纤维素片材。所得片材是白色不透明的,厚度为50μm。
将所得多孔性的35g/m2的微细纤维状纤维素片材在反应性化合物(NKESTER“A-DOD-N”,新中村化学公司制,1,10-癸二醇二丙烯酸酯)中浸渗,将浸渗的片材捞出并用载玻片夹持,照射10分钟紫外线(20J/cm2),使树脂固化。所得复合片的每平方米重量为80g/m2,厚度为110μm,并且是透明的。
调查上述方法获得的各个片材的拉伸强度和层间剥离。拉伸强度按照JIS P 8113-1998的方法测定。层间剥离用以下的方法来调查。即,在所得片材的表面和背面贴胶带(3M公司制,#400,宽度为25mm的产品),在片材表面上载置底面平滑的长方形(50mm×100mm)铁制砝码(1kg),30分钟之后将片材翻过来,在片材背面上载置砝码,30分钟后撕下胶带。如果在片材层间发生剥离,则视为有剥离。层间没有剥离而胶带或片材发生断裂或者胶带或片材没有断裂但胶带剥落的情况视为无剥离。结果在表1中示出。
[表1]
产业上的可利用性
根据本发明的制造方法,可以将微细纤维状纤维素效率良好地形成预浸片、或者形成(层叠)复合片,并且所得片材也显示了强度优异的特性。

Claims (5)

1.一种微细纤维状纤维素复合预浸片的制造方法,该方法具有:
制备工序,将聚合性化合物的乳液与含有微细纤维状纤维素的水性悬浮液混合而制造混合液;
抄纸工序,通过在多孔性的基材上过滤将所述混合液脱水,从而形成含有水分的片材;以及
干燥工序,通过将所述含有水分的片材加热干燥,从而形成含有所述聚合性化合物的微细纤维状纤维素复合预浸片,
所述聚合性化合物是通过热、光或电子束的外部刺激而聚合的化合物,
所述微细纤维状纤维素的纤维宽度为2~1000nm,
在所述聚合性化合物的乳液中,乳化剂相对于所述聚合性化合物以0.1~10质量%的范围含有,
在所述聚合性化合物的乳液中,所述聚合性化合物的含量相对于水为5~70质量%。
2.根据权利要求1所述的微细纤维状纤维素复合预浸片的制造方法,其中,所述聚合性化合物的乳液是阳离子性的。
3.根据权利要求1或2所述的微细纤维状纤维素复合预浸片的制造方法,其中,在所述制备工序中,包括在含有微细纤维状纤维素的混合液中配合纤维素凝结剂。
4.一种微细纤维状纤维素的复合片的制造方法,该方法包括对通过权利要求1~3的任一项所述的制造方法所制造的微细纤维状纤维素复合预浸片进一步实施固化处理。
5.一种微细纤维状纤维素的复合层叠片的制造方法,其还包括:
将2片以上的由权利要求1~3的任一项所述的制造方法制造的微细纤维状纤维素复合预浸片层叠;以及
对层叠的预浸片实施固化处理。
CN201180062696.5A 2010-12-27 2011-12-26 微细纤维状纤维素复合预浸片的制造方法、微细纤维状纤维素复合片的制造方法及微细纤维状纤维素复合层叠片的制造方法 Active CN103298861B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010289167 2010-12-27
JP2010-289167 2010-12-27
PCT/JP2011/080016 WO2012090908A1 (ja) 2010-12-27 2011-12-26 微細繊維状セルロースコンポジットプリプレグシートの製造方法、微細繊維状セルロースコンポジットシートの製造方法及び微細繊維状セルロースコンポジット積層シートの製造方法

Publications (2)

Publication Number Publication Date
CN103298861A CN103298861A (zh) 2013-09-11
CN103298861B true CN103298861B (zh) 2016-09-14

Family

ID=46383012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180062696.5A Active CN103298861B (zh) 2010-12-27 2011-12-26 微细纤维状纤维素复合预浸片的制造方法、微细纤维状纤维素复合片的制造方法及微细纤维状纤维素复合层叠片的制造方法

Country Status (5)

Country Link
US (1) US8999088B2 (zh)
EP (1) EP2660276B1 (zh)
JP (1) JP5644864B2 (zh)
CN (1) CN103298861B (zh)
WO (1) WO2012090908A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079341B2 (ja) * 2013-03-18 2017-02-15 王子ホールディングス株式会社 繊維樹脂成型体の製造方法
CN105247136B (zh) * 2013-06-03 2019-06-14 王子控股株式会社 含微细纤维的片材的制造方法
TWI716892B (zh) * 2014-05-26 2021-01-21 日商王子控股股份有限公司 含微細纖維素纖維片、複合片及其應用
JP6405751B2 (ja) * 2014-07-01 2018-10-17 凸版印刷株式会社 微小セルロースの製造方法
JP6402005B2 (ja) * 2014-11-04 2018-10-10 太陽ホールディングス株式会社 樹脂含有シート、並びに、それを用いた構造体および配線板
JP6701807B2 (ja) * 2015-09-18 2020-05-27 王子ホールディングス株式会社 積層体
JP6947033B2 (ja) * 2015-10-27 2021-10-13 王子ホールディングス株式会社 積層シート及び積層体
JP6806083B2 (ja) * 2015-11-30 2021-01-06 王子ホールディングス株式会社 シートおよびシートの製造方法
JP7006278B2 (ja) 2016-02-10 2022-01-24 王子ホールディングス株式会社 シート
JP6819048B2 (ja) * 2016-02-12 2021-01-27 凸版印刷株式会社 樹脂組成物、ならびに樹脂成形体及びその製造方法
SE540407C2 (en) * 2016-11-01 2018-09-11 Stora Enso Oyj Forming of a film comprising nanocellulose
SE540511C2 (en) 2016-11-18 2018-09-25 Stora Enso Oyj Method for making a film comprising mfc
US10988899B2 (en) 2017-03-09 2021-04-27 Ecolab Usa Inc. Fluff dryer machine drainage aid
WO2018173572A1 (ja) * 2017-03-24 2018-09-27 王子ホールディングス株式会社 ガラス板用合紙
TW201946975A (zh) * 2018-05-11 2019-12-16 美商陶氏有機矽公司 用於可撓式顯示器之聚矽氧背板
DE102020116043B3 (de) 2020-06-17 2021-01-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum Herstellen eines Nanocellulosepartikel enthaltenden Verbundwerkstoffes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575430A (zh) * 2009-07-31 2012-07-11 王子制纸株式会社 微细纤维状纤维素复合片的制造方法及微细纤维状纤维素复合片层压体的制造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2066145B (en) 1979-12-26 1983-05-25 Itt Microfibrillated cellulose
JPH02160998A (ja) * 1988-12-14 1990-06-20 Sanyo Kokusaku Pulp Co Ltd 電気絶縁積層板用原紙
JPH0794576B2 (ja) 1991-11-28 1995-10-11 工業技術院長 柔軟性を有する生分解性フィルムまたはシート、及びその製造方法
FR2716887B1 (fr) 1994-03-01 1996-04-26 Atochem Elf Sa Polymères renforcés de microfibrilles de cellulose, latex, poudres, films, joncs correspondants, et leurs applications.
JP3036354B2 (ja) 1994-05-17 2000-04-24 特種製紙株式会社 微細フィブリル化セルロースの製造方法
JPH08188981A (ja) 1995-01-09 1996-07-23 New Oji Paper Co Ltd 微細繊維化パルプシートの製造方法
JPH08188980A (ja) 1995-01-09 1996-07-23 New Oji Paper Co Ltd 透明紙
FR2743371B1 (fr) 1996-01-08 1998-08-14 Atochem Elf Sa Microfibrilles de cellulose conductrices et composites les incorporant
JP4308336B2 (ja) 1997-03-14 2009-08-05 株式会社日本吸収体技術研究所 ミクロフィブリル状微細繊維構造体およびその製造方法
US6042936A (en) * 1997-09-23 2000-03-28 Fibermark, Inc. Microsphere containing circuit board paper
US6093359A (en) * 1997-11-06 2000-07-25 Gauchel; James V. Reinforced thermoplastic composite systems
JPH11209401A (ja) 1998-01-20 1999-08-03 Bio Polymer Reserch:Kk 微細繊維状セルロース含有力学材料
WO1999046781A1 (en) * 1998-03-13 1999-09-16 Lydall, Inc. Process of making a printed wiring board core stock and product formed therefrom
JP2000191808A (ja) * 1998-12-28 2000-07-11 Oji Paper Co Ltd プリント配線板用プリプレグシ―トの製造法
JP2001279016A (ja) 2000-03-31 2001-10-10 Oji Paper Co Ltd セルロース系生分解性シートおよびその製造方法
JP3641690B2 (ja) 2001-12-26 2005-04-27 関西ティー・エル・オー株式会社 セルロースミクロフィブリルを用いた高強度材料
JP2004270064A (ja) 2003-03-07 2004-09-30 Asahi Kasei Corp 構造体
KR20120088678A (ko) * 2003-07-31 2012-08-08 고쿠리츠 다이가쿠 호진 교토 다이가쿠 섬유 강화 복합 재료, 그 제조 방법 및 그 이용
JP4724814B2 (ja) * 2003-07-31 2011-07-13 国立大学法人京都大学 繊維強化複合材料及びその製造方法並びに配線基板
JP2006193858A (ja) 2005-01-13 2006-07-27 Asahi Kasei Corp 微多孔性セルロースシート及びその製造方法
JP4979117B2 (ja) 2005-03-31 2012-07-18 旭化成ケミカルズ株式会社 セルロース含有樹脂複合体
JP2007023218A (ja) 2005-07-20 2007-02-01 Mitsubishi Paper Mills Ltd 微細セルロース繊維からなるシート及び樹脂との複合材料
JP2007023219A (ja) 2005-07-20 2007-02-01 Mitsubishi Paper Mills Ltd 微細繊維からなるシート
JP2008106152A (ja) 2006-10-25 2008-05-08 Asahi Kasei Corp セルロース含有樹脂複合体
JP2008127693A (ja) 2006-11-17 2008-06-05 Mitsubishi Paper Mills Ltd 微細セルロースを用いる高強度材料
JP2008169497A (ja) 2007-01-10 2008-07-24 Kimura Chem Plants Co Ltd ナノファイバーの製造方法およびナノファイバー
JP2008248441A (ja) 2007-03-30 2008-10-16 Daicel Chem Ind Ltd 疎水化された微小繊維状セルロースを含む繊維シート
WO2009036282A1 (en) * 2007-09-13 2009-03-19 Harman International Industries, Inc. Loudspeaker cone body
KR20100093080A (ko) * 2007-12-21 2010-08-24 미쓰비시 가가꾸 가부시키가이샤 섬유 복합체
JP5531403B2 (ja) * 2007-12-21 2014-06-25 三菱化学株式会社 繊維複合体
JP5422127B2 (ja) 2008-01-23 2014-02-19 本田技研工業株式会社 自動二輪車
JP5716665B2 (ja) 2009-07-24 2015-05-13 王子ホールディングス株式会社 繊維シートの製造装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575430A (zh) * 2009-07-31 2012-07-11 王子制纸株式会社 微细纤维状纤维素复合片的制造方法及微细纤维状纤维素复合片层压体的制造方法

Also Published As

Publication number Publication date
EP2660276A1 (en) 2013-11-06
WO2012090908A1 (ja) 2012-07-05
US8999088B2 (en) 2015-04-07
JPWO2012090908A1 (ja) 2014-06-05
EP2660276B1 (en) 2018-07-11
JP5644864B2 (ja) 2014-12-24
EP2660276A4 (en) 2015-12-16
US20130264007A1 (en) 2013-10-10
CN103298861A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
CN103298861B (zh) 微细纤维状纤维素复合预浸片的制造方法、微细纤维状纤维素复合片的制造方法及微细纤维状纤维素复合层叠片的制造方法
Kargarzadeh et al. Advances in cellulose nanomaterials
Saba et al. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites
CN102575430B (zh) 微细纤维状纤维素复合片的制造方法及微细纤维状纤维素复合片层压体的制造方法
EP0948677B1 (de) Verfahren zur herstellung von papier
Li et al. Stabilization of Pickering emulsions with cellulose nanofibers derived from oil palm fruit bunch
JP2017128717A (ja) 微細セルロース繊維含有樹脂組成物及びその製造方法
JP2014193959A (ja) 植物繊維含有樹脂組成物及びその製造方法
WO2013137449A1 (ja) 植物繊維含有樹脂組成物の製造方法および成形物の粉砕物の製造方法、植物繊維含有樹脂組成物
ES2905703T3 (es) Premezcla útil en la fabricación de un producto a base de fibra
JP6764718B2 (ja) 成形材料混合物及びその製造方法
Baati et al. CNFs from twin screw extrusion and high pressure homogenization: A comparative study
JP6787136B2 (ja) 微細セルロース繊維含有樹脂組成物及びその製造方法
CN108026696A (zh) 制造包含微原纤化纤维素和两性聚合物的膜的方法
CN109983176A (zh) 形成包含纤维的幅材的方法
Kasmani et al. Effect of nano-cellulose on the improvement of the properties of paper newspaper produced from chemi-mechanical pulping
CN109661492A (zh) 制造用于转化为微原纤化纤维素的中间体产物的方法
WO2011015297A1 (de) Verfahren zur verringerung negativer auswirkungen klebriger verunreinigungen in altpapierhaltigen stoffsystemen
Imchalee et al. Cellulose nanocrystals as sustainable material for enhanced painting efficiency of watercolor paint
Kurihara et al. The effect of electric charge density of polyacrylamide (PAM) on properties of PAM/cellulose nanofibril composite films
Christau et al. Effects of an aqueous surface modification via a grafting-through polymerization approach on the fibrillation and drying of bleached softwood kraft pulp
Ni et al. Research on improving the surface hydrophobicity of paper coated by poly-vinyl alcohol-itaconic acid grafting copolymer
JP2018131693A (ja) 不織布及びこの不織布を有する樹脂成形品
Wang et al. Cellulose nanofibrils with a three-dimensional interpenetrating network structure for recycled paper enhancement
Maria Santos Chiromito et al. Water-based processing of fiberboard of acrylic resin composites reinforced with cellulose wood pulp and cellulose nanofibrils

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant