CN103215248A - 用于扩增核酸的组合物、方法和试剂盒 - Google Patents

用于扩增核酸的组合物、方法和试剂盒 Download PDF

Info

Publication number
CN103215248A
CN103215248A CN2013100764557A CN201310076455A CN103215248A CN 103215248 A CN103215248 A CN 103215248A CN 2013100764557 A CN2013100764557 A CN 2013100764557A CN 201310076455 A CN201310076455 A CN 201310076455A CN 103215248 A CN103215248 A CN 103215248A
Authority
CN
China
Prior art keywords
dna polymerase
archaeal dna
enzyme
nucleic acid
nucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100764557A
Other languages
English (en)
Other versions
CN103215248B (zh
Inventor
董守连
琼科·史蒂文斯
丹尼·H·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Biosystems Inc
Original Assignee
Applied Biosystems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Biosystems Inc filed Critical Applied Biosystems Inc
Publication of CN103215248A publication Critical patent/CN103215248A/zh
Application granted granted Critical
Publication of CN103215248B publication Critical patent/CN103215248B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6846Common amplification features
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明涉及用于扩增靶核酸同时减少非特异性荧光和不需要的扩增产物,有时叫作次级扩增产物或假的副产物,的组合物、方法和试剂盒。本发明公开的酶抑制剂包括核苷酸序列和至少一种猝灭剂。本发明还提供包括与酶缔合的酶抑制剂的复合物,其中所述酶的至少一种酶促活性被抑制。本发明公开了用于扩增靶核酸同时减少不需要的扩增产物的方法,其是减少非特异性荧光的方法。本发明还提供了迅速进行某些公开的方法的试剂盒。

Description

用于扩增核酸的组合物、方法和试剂盒
本申请是申请日为2006年9月29日、申请号为“200680043159.5”、题为“用于扩增核酸的组合物、方法和试剂盒”的中国专利申请的分案申请。
领域
本发明一般涉及用于扩增核酸同时减少非特异性荧光和不需要的扩增产物的组合物、方法和试剂盒。
介绍
尽管聚合酶链式反应(PCR)及相关的技术对于各种应用是高度有用的,但是由于不理想的副反应而引起的非靶核酸的扩增可能存在显著的问题。这样的副反应可以作为非靶核酸的错误引发和/或引物寡聚化(有时也叫作引物二聚体形成),以及这些引发的假体(artifacts)的后续扩增的结果而发生。在使用具有显著的背景核酸而靶核酸以低拷贝数存在的核酸混合物进行PCR的应用中,这是特别实际的(参见,例如,Chou等,Nucl.AcidsRes.(核酸研究)20:1717-1723(1992))。非特异性扩增产物的产生已经至少部分归因于延长非特异性退火的引物的环境温度下的DNA聚合酶活性(参见,例如,id.;Li等,Proc.Natl.Acad.Sci.(美国国家科学院学报)87:4580(1990))。因此,在环境温度下抑制DNA聚合酶的活性有利于控制次级扩增子的产生。
已经描述了一些技术,据说其减少不需要的次级扩增产物的形成。按照某些“手工热启动”技术,直到混合物的温度足够高足以防止非特异性引物退火时才加入对DNA聚合酶活性重要的成分(例如,二价离子和/或DNA聚合酶本身)到反应混合物中(参见,例如,Chou等,Nucl.Acids Res.(核酸研究)20:1717-1723(1992);和D’Aquila等,Nucl.Acids Res.(核酸研究)19:3749(1991))。较少劳动力-密集型技术应用扩增反应的至少一种成分的物理分离或可逆失活。例如,镁或DNA聚合酶可以隔离在蜡珠中,当反应温度升高时蜡珠熔化,只在升高的温度释放所隔离的成分。按照其它的技术,对DNA聚合酶进行可逆地失活或修饰,例如,通过DNA聚合酶的可逆的化学修饰或与抗体的结合(参见,例如,Birch等,美国专利号5,677,152)。在升高的反应温度,所述化学修饰被逆转,或者所述抗体分子变性,释放出功能性DNA聚合酶。然而,一些这样的技术似乎是有漏洞的,原因在于在更低的反应温度,一些DNA聚合酶活性是可检测到的,或者它们需要将反应混合物延长暴露于高温才能完全使得DNA聚合酶失活。
某些目前所用的核酸扩增技术包括检测和/或定量扩增产物的步骤,其包括核酸染料,例如但不限于,
Figure BDA00002904136800021
Green I(分子探针(MolecularProbes),Eugene,OR),包括某些实时和/或终点检测技术(参见,例如,Ririe等,Analyt.Biochem.(分析生物化学)245:154-60(1997))。典型地,所述核酸染料与扩增产物的双链片段和/或引物-模板双链体缔合,并且在特别的核酸染料所特有的波长发射可检测的荧光信号。某些扩增方法包括评估扩增产物的纯度的检测步骤,其包括核酸染料,例如但不限于,PCR后解离曲线分析,其也叫作解链曲线分析。由于扩增子的解链曲线特别取决于它的长度和序列,所以扩增子通常可以通过它们的解链曲线而区分(参见,例如,Zhang等,Hepatology(肝脏病学)36:723-28(2002))。解离或解链曲线可以在特定的扩增反应过程中当反应温度经过所述扩增子的解链温度时通过检测核酸染料的荧光而获得。双链扩增子的解离观察为在所述核酸染料特征性发射波长的荧光的突然减少。按照某些解离曲线分析技术,当解链曲线表现出单一的、一致的解链温度时,有时在荧光强度的负导数相对温度(-dF/dt相对T)的图上绘图性表示为一个峰,那么将扩增产物分类为“纯的”。例如,在来自单丛扩增的这样的解离曲线中出现多个峰典型地表明存在不需要的副反应产物。当应用这样的基于核酸染料的扩增产物检测技术时,通常理想地:1)至少减少并且优选地消除不需要的副反应产物的形成,和2)至少减少并且优选地消除由其它核酸,即非扩增产物的双链片段的变性导致的荧光峰。
除此之外,由于引物、连接探针、裂解探针、启动子-引物等的非特异性退火,以及随后在亚最佳温度的酶活,某些其它扩增技术也可以产生不需要的扩增产物。例如,尽管反应成分通常是室温下结合,或者尽管反应组合物被加热到需要的反应温度。这些技术中至少有一些可以受益于背景荧光的减少。
发明概述
本发明涉及用于扩增靶核酸同时减少非特异性荧光和不需要的扩增产物的组合物、方法和试剂盒,所述不需要的扩增产物在本领域中有时叫作次级扩增子或假性副产物。
本发明公开了包括核苷酸序列和猝灭剂的酶抑制剂。所述公开的抑制剂设计成抑制酶的至少一种酶活性。在某些实施方案中,所述酶抑制剂的核苷酸序列包括适体。在一些实施方案中,酶抑制剂包括能够形成至少一个双链片段的适体(参见,例如,Yakimovich等,Biochem.(Mosc.)(生物化学(莫斯科))68(2):228-35(2003);Nickens等,RNA9:1029-33(2003);Nishikawa等,Oligonucleotides(寡核苷酸)14:114-29(2004);和Umehara等,J.Biochem.(生物化学杂志)137:339-74(2005))。在一些实施方案中,酶抑制剂包括多样的不同的猝灭剂。在某些实施方案中,所述酶抑制剂可以呈现出一种构象,所述构象在第一温度包括至少一个双链片段,但是当加热到第二温度时,是单链的或基本上单链的。按照某些实施方案,包括至少一个双链片段的酶抑制剂可以与下列各项中的至少一种形成复合体:DNA聚合酶,包括但不限于反转录酶;RNA聚合酶;裂解酶,包括但不限于,结构-特异的核酸酶;解旋酶;和连接酶。在某些实施方案中,酶抑制剂是相对应的酶的无效底物,原因在于所述抑制剂包括封闭基团、核苷酸类似物、不可裂解的核苷酸间连接或它们的组合。
本发明公开了包括核苷酸序列和猝灭剂的DNA聚合酶抑制剂。一些DNA聚合酶抑制剂包括两种或多种猝灭剂,其可以是相同的猝灭剂或不同的猝灭剂。在某些实施方案中,DNA聚合酶抑制剂还包括小沟结合物,其在一些实施方案中包括猝灭剂。在一些实施方案中,DNA聚合酶抑制剂的核苷酸序列的3’-端不能被DNA聚合酶延伸,这典型地是由于封闭基团或非延伸核苷酸的存在。在一些实施方案中,DNA聚合酶抑制剂的核苷酸序列包括能够形成至少一个双链片段的适体(参见,例如,Yakimovich等,Biochem.(Mosc.)(生物化学(莫斯科))68(2):228-35(2003))。
本发明提供包含酶和酶抑制剂的复合物。某些复合物包含:DNA聚合酶和DNA聚合酶抑制剂;连接酶和连接酶抑制剂;RNA聚合酶和RNA聚合酶抑制剂;裂解酶和裂解酶抑制剂;或解旋酶和解旋酶抑制剂。某些复合物还包含脱氧核糖核苷酸,核糖核苷酸,核苷酸类似物,辅助蛋白,例如但不限于单链结合蛋白(SSB)或增殖细胞核抗原(PCNA),或它们的组合。典型地,所述酶-酶抑制剂复合物可以在第一温度形成,并且当与在所述复合物中的抑制剂缔合时,所述酶的至少一种催化活性被抑制。当将所述复合物加热到第二温度时,所述复合物解离,释放所述酶。
在某些实施方案中,酶-酶抑制剂复合物包括DNA聚合酶和DNA聚合酶抑制剂。在某些实施方案中,DNA聚合酶-DNA聚合酶抑制剂复合物还包括核苷酸三磷酸(NTP)和/或核苷酸类似物。某些复合物实施方案包括与DNA聚合酶缔合的以茎-环构象存在的DNA聚合酶抑制剂,并且任选地,NTP和/或核苷酸类似物。某些复合物实施方案包括与DNA聚合酶抑制剂缔合的DNA聚合酶,并且任选地,NTP和/或核苷酸类似物,所述DNA聚合酶抑制剂包括退火形成包含至少一个双链片段的双链体的至少两个寡核苷酸。典型地,当它与本发明的DNA聚合酶抑制剂,并且任选地,NTP和/或核苷酸类似物复合时,所述DNA聚合酶的DNA合成活性被抑制。
本发明公开减少非特异性荧光的方法,其包括本发明的酶抑制剂。按照某些方法,在适合形成酶-酶抑制剂复合物的条件下,将酶与酶抑制剂接触。当所述酶存在于所述复合物中时,所述酶的至少一种酶促活性被抑制。当将所述酶-酶抑制剂复合物加热到适当的第二温度时,所述复合物解离,将所述酶释放。
一些减少非特异性荧光的方法包括本发明的DNA聚合酶抑制剂。按照某些这样的方法,反应组合物在第一温度形成,其包括:DNA聚合酶,包括核苷酸序列和猝灭剂的DNA聚合酶抑制剂,NTP和/或核苷酸类似物,靶核酸,引物和核酸染料。在某些实施方案中,所述引物包括引物对。在第一温度,所述DNA聚合酶抑制剂包括至少一个双链片段,并且可以与所述DNA聚合酶形成复合物。DNA聚合酶抑制剂的猝灭剂可以吸收与所述DNA聚合酶抑制剂的双链片段缔合的核酸染料的至少一些荧光信号。将所述反应组合物加热到第二反应温度,所述第二反应温度典型地接近、处于或者高于所述DNA聚合酶抑制剂的解链温度,这引起至少一些所述DNA聚合酶抑制剂-DNA聚合酶复合物的解离。将所述反应组合物进行至少一个扩增循环,并且产生扩增子的多样性。由于与所述扩增子缔合的核酸染料的荧光,在“实时”或在扩增反应完成后,可以检测到双链扩增子,但是与所述DNA聚合酶抑制剂的双链片段缔合的核酸染料的荧光至少被猝灭剂减少。
本发明还公开了扩增靶核酸的方法,其使用本发明的酶抑制剂。按照某些这样的方法,反应组合物在第一温度形成,其包括:DNA聚合酶,包括核苷酸序列和猝灭剂的DNA聚合酶抑制剂,NTP,靶核酸,引物,和核酸染料。在某些实施方案中,所述引物包括引物对。在第一温度,所述DNA聚合酶抑制剂包含至少一个双链片段,并且可以与DNA聚合酶形成形成复合物。所述DNA聚合酶抑制剂的猝灭剂可以吸收由与所述DNA聚合酶抑制剂的双链片段缔合的核酸染料发射的至少一些荧光。将所述反应组合物加热到第二反应温度,所述第二反应温度典型地接近、处于或者高于所述DNA聚合酶抑制剂的解链温度,这引起至少一些所述DNA聚合酶抑制剂-DNA聚合酶复合物的解离。将所述反应组合物进行至少一个扩增循环,并且产生扩增子的多样性。在某些实施方案中,由于在所述反应组合物中存在DNA聚合酶抑制剂,所产生的扩增子的量增加。
按照某些方法,反应组合物包括靶核酸,酶,酶抑制剂,核酸染料和下列各项中的至少一种:NTP,核苷酸类似物,引物,连接探针对,裂解探针对,启动子-引物,辅因子,例如但不限于包含NAD+的物质,和辅助蛋白,其包括但不限于PCNA和/或SSB。
按照某些方法,将连接酶与连接酶抑制剂接触,并且在适当的条件下,形成连接酶-连接酶抑制剂复合物。按照某些方法,将裂解酶与裂解酶抑制剂接触,并且在适当的条件下,形成裂解酶-裂解酶抑制剂复合物。按照某些方法,将解旋酶与解旋酶抑制剂接触,并且在适当的条件下,形成解旋酶-解旋酶抑制剂复合物。按照一些方法,将RNA聚合酶与RNA聚合酶抑制剂接触,并且在适当的条件下,形成RNA聚合酶-RNA聚合酶抑制剂复合物。
本发明还公开用于进行某些本发明方法的试剂盒。在一些实施方案中,试剂盒包括包含核苷酸序列和猝灭剂的酶抑制剂。在某些实施方案中,试剂盒包括两种或多种不同的酶抑制剂。在一些实施方案中,酶抑制剂可以与RNA聚合酶、解旋酶、裂解酶或连接酶形成复合物。某些试剂盒实施方案还包括裂解探针组、连接探针组、引物、启动子-引物或它们的组合。
某些试剂盒实施方案包括包含核苷酸序列和猝灭剂的至少一种DNA聚合酶抑制剂。在一些实施方案中,试剂盒包括两种或多种DNA聚合酶抑制剂。在某些实施方案中,DNA聚合酶抑制剂包括小沟结合物。某些试剂盒实施方案还包括下列各项中的至少一种:引物,引物对,核酸染料,DNA聚合酶,和报道探针。在一些实施方案中,试剂盒包括DNA-依赖型DNA聚合酶和反转录酶。
在本文中描述了本发明的这些和其它特征。
附图
熟练的技术人员应该理解下文所述的附图只是举例说明的目的。这些附图并不意欲以任何方式限制本发明的范围。
图1:示意性描述包含单一寡核苷酸的某些代表性酶抑制剂的示例实施方案。
图2:示意性描述包含多样性寡核苷酸的某些代表性酶抑制剂的示例实施方案。
图3:描述使用某些代表性DNA聚合酶抑制剂获得的解离曲线,其作为荧光的负导数(-dF/dt)相对于温度℃绘图。
图4:描述使用某些代表性DNA聚合酶抑制剂获得的解离曲线,其作为荧光的负导数相对于温度℃绘图。
图5:描述使用某些代表性DNA聚合酶抑制剂获得的解离曲线,其作为荧光的负导数相对于温度℃绘图。
图6:描述使用某些代表性DNA聚合酶抑制剂获得的解离曲线,其作为荧光的负导数相对于温度℃绘图。
图7:描述琼脂糖凝胶的照片。将包含在不同浓度的代表性酶抑制剂中产生的扩增子的系列热循环反应组合物的等分试样在非变性琼脂糖凝胶的分开泳道中进行电泳,并且用溴化乙锭显现,如在实施例2中所述。泳道A和J:大小梯度,包括1200碱基对,800碱基对,400碱基对,200碱基对,和100碱基对大小标准物;泳道B-G:分别为包含5,10,25,50,75或100nM DNA聚合酶抑制剂E的热循环反应组合物的等分试样;泳道H:包含50nM DNA聚合酶抑制剂E的无模板对照反应组合物;泳道I:空白。
图8:描述琼脂糖凝胶的照片。将包含在不同浓度的代表性DNA聚合酶抑制剂中产生的扩增子的系列热循环反应组合物的等分试样在非变性琼脂糖凝胶的分开泳道中进行电泳,并且用溴化乙锭显现,如在实施例3中所述。泳道A和J:大小梯度,包括1200碱基对,800碱基对,400碱基对,200碱基对,和100碱基对大小标准物;泳道B-H:分别为包含0,5,10,25,50,75或100nM DNA聚合酶抑制剂E的热循环反应组合物的等分试样;泳道I:包含50nM DNA聚合酶抑制剂E的无模板对照反应组合物。
图9:描述非变性琼脂糖凝胶的照片,表现出由干存在代表性的DNA聚合酶抑制剂而导致的次级扩增子的减少,如在实施例4中所述。
图10:描述按照本发明的代表性方法产生的代表性解离曲线,如在实施例5中所述。
示例性实施方案的描述
应该理解,前文的概括描述和下述详细描述都只是示例性的和解释性的,并不是意欲限制本发明的范围。当用于本说明书中时,词语“a(一个)”或“an(一种)”意指至少一个,除非特别另外阐明。在本说明书中,单数的应用包括复数,除非特别另外阐明。例如但不是作为限制,“一种靶核酸”意指可存在不止一种靶核酸;例如,一个或多个拷贝的特别的靶核酸种类,以及两种或多种不同种类的靶核酸。此外,使用“comprise(包括)”,“comprises(包括)”,“comprising(包括)”,“contain(含有)”,“contains(含有)”,“containing(含有)”,“include(包含)”,“includes(包含)”,和“including(包含)”并不意欲限制。术语“和/或”意指前和后的术语可以一起或分开采用。出于举例说明的目的,而不是作为限制,“X和/或Y”可以意指“X”或“Y”或者“X和Y”。
本文所用的部分标题只是出于组织的目的,并不是解释为以任何方式限制所述的主题。在本说明书中引用的所有文献,包括但不限于专利、专利申请、论文、书和论述都通过引用完全清楚地结合用于任何目的。在任何所结合的文献与本说明书中定义的任何术语相抵触的事件中,由本说明书控制。尽管本发明与许多实施方案结合进行描述,但是并不倾向于本发明应该被所述的实施方案所限制。相反,本发明包括各种备选方案、修改和等价物,这是本领域的技术人员应该理解的。
John W.Brandis的美国专利申请系列号10/762,222,题目为“Competitive Kinetic Nucleic Acid DNA polymerase inhibitors(竞争性动力学核酸DNA聚合酶抑制剂)”,其与2004年1月11日提交,通过引用完全清楚地结合于此用于任何目的。
一些定义
当参考从核酸染料发射的荧光信号应用时,术语“吸收至少一些”是指由于酶抑制剂的一种或多种猝灭剂的存在而导致的可检测的荧光的减少。吸收由与酶抑制剂的双链片段缔合的核酸染料发射的荧光中的至少一些,意指相对于在除了所述酶抑制剂不包括猝灭剂之外包括相同的成分的反应组合物中的可检测的荧光,在所述核酸染料特有的发射波长处的可检测的荧光中存在可测量的减少。在一些实施方案中,在可检测的荧光中的可测量的减少意指在荧光中的30%,40%,50%,60%,70%,80%,90%,95%,97%,98%,99%或大于99%的相对减少。在某些实施方案中,其中所述至少一种猝灭剂包括荧光猝灭剂,在所述核酸染料特有的波长处的可检测的荧光中可存在可测量的减少,并且在所述酶抑制剂的至少一种荧光猝灭剂的特征发射波长处的可检测的荧光中可存在可测量的减少。
当用于本文时,术语“扩增子”和“扩增产物”通常是指扩增反应的产物。扩增子可以是双链的或单链的,并且可以包括通过将双链的扩增产物变性而获得的分开的组成链。在一些实施方案中,扩增子包括连接产物(例如但不限于连接的探针),连接产物的至少部分的补体,或二者。在某些实施方案中,一个扩增循环的扩增子可以作为后续扩增循环的模板。
术语“退火(annealing)”和“杂交(hybridizing)”,包括但不限于源单词杂交(hybridize)和退火(anneal)的变化,是可以互换地使用的,并且意指一种核酸与另一种核酸的核苷酸碱基-配对的相互作用,其导致形成双链体、三链体或其它更高级的结构。在本发明的一些实施方案中,退火或杂交是指在相同的酶抑制剂的至少两个区域中的至少一些核苷酸之间的相互作用,以形成发夹或茎-环结构,有时称为自我退火。一级相互作用典型地是核苷酸碱基特异性的,例如,A:T,A:U,和G:C,通过沃森-克里克和Hoogsteen-型氢键作用。在某些实施方案中,碱基-堆积和疏水相互作用还可以有助于双链体稳定性。引物和探针退火成为互补序列的条件是本领域公知的,例如,如在Nucleic Acid Hybridization,A Practical Approach(核酸杂交,实用方法),Hames和Higgins,编,IRL出版,Washington,D.C.(1985)和Wetmur和Davidson,Mol.Biol.(分子生物学)31:349,1968中所述。通常,这样的退火是否发生特别受下列各项的影响:某些酶抑制剂的相对应的第一和第三区域和/或第四和第六区域的互补部分的长度,引物与它们在靶旁侧序列和/或扩增子中的相对应的结合位点的互补部分的长度,裂解探针或连接探针和靶核酸或扩增子的相对应的结合部分的互补部分的长度,或者报道探针与其结合位点的相对应的互补部分的长度;pH;温度;单价和二价阳离子的存在;在杂交区域的G和C核苷酸的比例;介质的粘度;以及变性剂的存在。这样的变量影响杂交所需要的时间。在某些酶抑制剂实施方案中,在所述抑制剂、探针和/或引物中存在特定的核苷酸类似物或小沟结合物还可以影响杂交条件。因此,优选的退火条件将取决于具体的应用。然而,这样的反应条件可以由本领域的普通技术人员常规确定,无需过度实验。优选地,选择退火条件,以在第二反应温度允许所述引物和/或探针选择性地与反应组合物中相对应的靶旁侧序列或扩增子中的互补序列杂交,而不以任何显著的程度与反应组合物中的不同的靶核酸或非靶序列杂交。
术语“选择性杂交”及其变化意指,在适当的严格条件下,给定的序列(例如但不限于引物)与包含核苷酸的互补片段(string)(例如但不限于,靶旁侧序列或扩增子的引物-结合位点)的第二种序列退火,但是不与不需要的序列如非靶核酸、探针或其它引物退火。典型地,当反应温度升高到特别的双链序列的解链温度时,选择性杂交的相对量通常增加,并且错位引发(mispriming)通常减少。在本说明书中,一种序列与另一种序列杂交或选择性杂交的叙述包括两种所述序列完全彼此杂交或选择性杂交的情形,以及只有所述序列中的一种或两种的部分与完整的另一种序列或其它序列的部分杂交或选择性杂交的情形。
当用于本文时,术语“严格性”用来定义在将形成包括两个互补核苷酸序列的杂合体的杂交和后续处理步骤中存在的温度和溶剂组成。严格性还定义同源性的量,需要的条件,和在两种核苷酸序列之间形成的杂合体的稳定性。当严格性条件升高时,对选择性杂交是有利的,并且对非特异性交叉杂交是不利的。相对于更低的严格性条件,其中更可能发生错误的引发,包括但不限于,连接探针和/或裂解探针的错误退火,增加的严格性条件典型地对应更高的温育温度,更低的盐浓度,和/或更高的pH。本领域的那些技术人员理解,能够使得引物或引物对、连接探针对和/或裂解探针对与相对应的靶旁侧序列和/或扩增子选择性杂交的适当的严格性条件可以使用已知的技术无需不必要的实验而常规确定(参见,例如,PCR:TheBasics from background to bench(PCR:从后台到工作台的基础),McPherson和Moller,Bios Scientific Publishers(生物科学出版社)(2000;以下为“McPherson”))。
在本说明书中,一种核酸序列与另一种核苷酸序列相同或基本上相同的叙述包括两种核苷酸序列与另一种序列完全相同或者基本上相同的情形,以及所述核苷酸序列中的一种只有部分与完整的另一种序列的部分相同或基本上相同的情形。同样地,一种核酸序列与另一种核苷酸序列互补或基本上互补的叙述包括两种核苷酸序列彼此完全互补或基本上互补的情形,以及所述序列中的一种只有部分与完整的另一种序列的部分互补或基本上互补的情形。
当用于本文时,术语“适体”是指DNA或RNA寡核苷酸,其:1)使用体外选择方法,例如但不限于“通过指数富集配体的系统进化技术(systematic evolution of ligands by exponential enrichment)(SELEX)”方法或其变化,典型地首先得到鉴定,并且2)以高特异性、构象-依赖性方式识别并且结合配偶体,例如但不限于酶。
当用于本文时,术语“或它们的组合”是指在先术语所列条目的所有排列和组合。例如,“A,B,C或它们的组合”意欲包括下述的至少一种:A,B,C,AB,AC,BC,或ABC,并且如果在特别的情形中顺序是重要的,还包括BA,CA,CB,ACB,CBA,BCA,BAC,或CAB。继续使用这一实例,清楚地包括包含一个或多个条目或项目的重复,诸如BB,AAA,AAB,BBC,AAABCCCC,CBBAAA,CABABB等的组合。熟练的技术人员应该理解,典型地,在任何组合中对条目或项目的数目没有限制,除非另外从上下文中显而易见。
当用于本文时,术语“互补(complementary)”和“互补性(complementarity)”参考通过碱基-配对法则而相关的至少两种核酸而应用。例如但不限于,序列“A-C-T”与序列“T-G-A”互补。互补可以是部分的,在这种情形中只有一些核苷酸按照碱基-配对法则而匹配。或者,在核酸之间可以存在完全的或全部的互补性。核酸链之间的互补性的程度对所述核酸链之间的杂交的效率和强度有显著的影响。对于稳定的双链体的形成,互补性不必是全部的,即,稳定的双链体可以包含错配的碱基对或不匹配的碱基。根据经验考虑许多变量,包括但不限于,核酸的长度、碱基组成和核酸的序列、离子强度和错配碱基对的发生率,本领域的技术人员可以确定双链体的稳定性。核酸双链体的稳定性典型地通过其解链温度而测量。
当用于本文时,术语“复合物”和“酶抑制剂-酶复合物”是指在本发明的酶抑制剂和相对应的酶之间的缔合。在一些实施方案中,酶抑制剂-酶复合物包括DNA聚合酶,RNA聚合酶,连接酶,裂解酶,或解旋酶。术语抑制(inhibit),抑制(inhibits)或其变化,当参考酶应用时,是相对的术语,并且是指与所述酶在相同的扩增条件但是不存在酶抑制剂时的活性相比,酶活性的可测量的减少。在某些实施方案中,当与酶抑制剂复合时,通过在存在和不存在酶抑制剂的平行的扩增反应中产生的需要的扩增子的量而确定,所述酶的酶活性减少约40%,约50%,约60%,约70%,约80%,约85%,约90%,约95%,约96%,约97%,约98%,约99%,或大于99%。在某些实施方案中,当所述复合物还包含辅助蛋白、NTP、核苷酸类似物、包含NAD+的物质、或它们的组合时,获得最佳抑制。
当用于本文时,术语“相对应”是指在所述术语涉及的要素之间的至少一种具体的关系。出于举例说明的目的而不是作为限制,特定引物对的至少一种正向引物对应同一引物对的至少一种反向引物;将至少一种引物设计成与相对应的靶核酸的旁侧区域和/或至少一种相对应的扩增子的引物-结合部分退火;连接探针组的第一探针与靶核酸和/或连接位点上游、以及典型地邻近连接位点的扩增子退火,并且相对应的第二连接探针与靶核酸和/或连接位点的下游、以及典型地邻近连接位点的扩增子退火;在特定的酶抑制剂实施方案中,第一寡核苷酸与相对应的第二寡核苷酸退火,形成包含至少一个双链片段的双链体;等等。
当用于本文时,术语“使变性(denaturing)”和“变性(denaturation)”是指这样的任何过程,其中适当地将双链多核苷酸转化成两个单链多核苷酸或者单链的或基本上单链的多核苷酸,所述双链多核苷酸包括但不限于,包括至少一种靶核酸的gDNA片段,双链扩增子,或包括至少一个双链片段的多核苷酸,例如但不限于在第一温度的酶抑制剂。使双链多核苷酸或酶抑制剂的双链片段变性包括但不限于,各种热和化学技术,其使得双链核酸或酶抑制剂的双链片段成为单链的或基本上单链的,例如但不限于,释放双链多核苷酸或者包含两个寡核苷酸的双链体的两个个体单链成分。本领域的技术人员应该理解,所用的变性技术通常没有限制,除非它显著妨碍后续的扩增反应的退火或酶促步骤,或者在某些方法中,干扰荧光信号的检测。
当用于本文时,术语“双链的”是指沿着至少它们的长度的部分杂交的一个或两个核酸链。因此,在某些情形中,“双链的”可以指这样的单一寡核苷酸的部分,即,其可以折叠,以致所述寡核苷酸的第一区域的至少一个片段与同一寡核苷酸的第三区域的至少一个片段杂交,所述寡核苷酸的第四区域的至少一个片段与所述寡核苷酸的第六区域的至少一个片段杂交,或者二者,由此形成一个或多个双链片段和一个或多个单链的部分。因此,单一的核酸链可以形成具有双链和单链片段的发夹或茎-环构象(参见,例如,图1)。类似地,两个互补的寡核苷酸可以彼此杂交,以形成双链体(参见,例如,图2)。因此,“双链的”并不意味着核酸必须是完全双链的。相反,双链的核酸可以具有一个或多个单链片段和一个或多个双链片段。
术语“第一温度”是指可以形成酶-酶抑制剂复合物的温度,通常是温度范围。术语“第二温度”是指酶-酶抑制剂复合物解离或不形成的温度,通常是温度范围。本领域的技术人员应该理解,第二温度典型地处于或者接近所述酶抑制剂的Tm,而第一温度典型地低于所述酶抑制剂的Tm,以允许所述酶抑制剂呈现包括至少一个双链片段的构象。一种示例性的第一温度可以是环境温度或“室温”。
当用于本文时,术语“Tm”参考解链温度应用。解链温度是大量的双链核酸分子半解离成单链的温度。
“微观流体装置”是一种反应容器,其包括至少一个微通道,所述微通道通常包括1毫米或更小的内部尺寸。微观流体装置典型地应用非常小的反应体积,通常在一个或几个微升(μL)、毫微升(nanoliter)或兆分之一升(picoliter)的数量级。本领域的技术人员应该理解,微观流体装置的大小、形成和组成通常不限于本发明。相反,可以应用任何适当的微观流体装置进行所公开的方法的一个或多个步骤。除其它地方之外,示例性的微观流体装置及其应用的描述可以特别见于在Fiorini和Chiu,BioTechniques(生物技术)38:429-46(2005);Kelly和Woolley,Analyt.Chem.(分析化学)77(5):96A-102A(2005);Cheuk-Wai Kan等,Electrophoresis(电泳)25:3564-88(2004);和Yeun等,Genome Res.(基因组研究)11:405-12(2001)。
当用于本文时,术语“小沟结合物”是指匹配双链DNA中的小沟的小分子,有时以序列特异的方式匹配。通常,小沟结合物是长的、平的分子,其可以采用月牙样的形状,并且因此贴切地匹配到双螺旋的小沟中,通常替代水。小沟结合分子典型地包括通过具有扭转自由度的键连接的一些芳香环,例如但不限于,呋喃、苯或吡咯环。
“错误引发”或“错误引发的”,当用于本文时,是指引物或探针与非靶核酸的杂交。如本领域内已知的,引物(不包括随机引物)通常设计成与侧连靶核酸的选择序列杂交或与扩增子的引物-结合位点杂交,并且设计成引导DNA合成或在所述位点的引物延伸起始。当引物或探针与非靶核酸杂交,这通常在低或减少的严格性条件下发生,并且然后作为引物从所述非靶位点延伸的起始点时,可以发生错误-引发,产生某些不需要的次级扩增产物的合成。连接探针对和裂解探针对还可以与非靶核酸错误退火,这通常在低或减少的严格性条件下发生,这还可以导致不需要的扩增产物的形成。
术语“不可延伸的核苷酸”,当用于本文时,是指基本上没有其它核苷酸可以通过聚合酶添加到其上的核苷酸。在一些实施方案中,所述不可延伸的核苷酸是不具有与另一个核苷酸形成磷酸二酯连接的最适官能团的核苷酸类似物。在某些实施方案中,所述不可延伸的核苷酸是本质上不允许引物延伸的链-终止核苷酸,例如二脱氧核苷酸(ddNs),诸如ddA,ddC,ddG,ddI,ddT,和ddU。在一些实施方案中,聚合酶可以将其它核苷酸连接到不可延伸的核苷酸上,但是以缓慢的速率进行。
术语“非特异性的”或“背景”,当参考荧光应用时,是指从与双链核酸缔合的核酸染料分子而不是需要的扩增子发射的可检测的信号。需要的扩增子包括靶核酸的扩增产物,在一些实施方案中包括内标或对照序列,所述内标或对照序列可以包含在本发明的特定反应组合物中,特别用于标准化和/或定量目的。因此,由核酸染料分子与假的、次级扩增子的缔合产生的荧光信号是非特异性荧光的一个来源,所述假的、次级扩增子通常是错误引发、错误连接和/或引物二聚体形成的结果。本领域的技术人员应该理解,当本发明的酶抑制剂在第一温度包括核酸染料分子可以缔合的至少一种双链片段时,所述抑制剂的猝灭剂部分可以吸收来自缔合的核酸染料,背景的次级来源的可检测的荧光信号中的至少一些,由此减少所述反应组合物的非特异性荧光。
术语“核苷酸碱基”,有时叫作含氮碱基或氮杂环碱基,是指可以作为核苷酸成分的取代的或未取代的一个或多个芳香环。在某些实施方案中,所述一个或多个芳香环包含氮原子。在某些实施方案中,所述核苷酸碱基能够与互补的核苷酸碱基形成沃森-克里克或Hoogsteen-型氢键。示例性的核苷酸碱基及其类似物包括天然存在的核苷酸碱基:腺嘌呤、鸟嘌呤、胞嘧啶、5甲基胞嘧啶、尿嘧啶和胸腺嘧啶,以及天然存在的核苷酸碱基的类似物,其包括7-脱氮腺嘌呤、7-脱氮鸟嘌呤、7-脱氮-8-氮杂鸟嘌呤、7-脱氮-8-氮杂腺嘌呤、N6-Δ2-异戊烯基腺嘌呤(6iA)、N6-Δ2-异戊烯基-2-甲硫基腺嘌呤(2ms6iA)、N2-二甲基鸟嘌呤(dmG)、7-甲基鸟嘌呤(7mG)、肌苷、水粉蕈素、2-氨基嘌呤、2-氨基-6-氯嘌呤、2,6-二氨基嘌呤、次黄嘌呤、假尿苷、假胞嘧啶、假异胞嘧啶、5-丙炔基胞嘧啶、异胞嘧啶、异鸟嘌呤、2-硫嘧啶、6-硫鸟嘌呤、4-硫胸腺嘧啶、4-硫尿嘧啶、O6-甲基鸟嘌呤、N6-甲基腺嘌呤、O4-甲基胸腺嘧啶、5,6-二氢胸腺嘧啶、5,6-二氢尿嘧啶、吡唑并[3,4-D]嘧啶(参见,例如,美国专利号6,143,877和6,127,121和PCT公布申请WO 01/38584)、亚乙烯腺嘌呤、吲哚如硝基吲哚和4-甲基吲哚,和吡咯如硝基吡咯。例如,核苷酸碱基的非限制性实例可以在Fasman,Practical Handbook ofBiochemistry and Molecular Biology(生物化学和分子生物学实践手册),第385-394页,CRC出版社,Boca Raton,Fla.(1989)及其中引用的参考文献中找到。
术语“核苷酸”,当用于本文时,是指核苷的磷酸酯,例如,三磷酸酯,其中最常见的酯化位点是附着在戊糖C-5位置的羟基。术语“核苷酸”还通常用来指一组包括核苷和核苷酸的化合物,除非另外从上下文显而易见。术语“核苷”,当用于本文时,是指包括连接到糖如核糖、阿拉伯糖、木糖、和吡喃糖以及它们的糖类似物的C-1’碳上的核苷酸碱基的化合物。所述糖可以是取代的或未取代的。取代的核糖糖包括,但不限于,其中的一个或多个碳原子,例如,2’-碳原子,被一个或多个相同的或不同的,-R,-OR,-NR2叠氮化物,氰化物或卤素基团取代的那些核糖,其中每个R独立地是H,C1-C6烷基,C2-C7酰基,或C5-C14芳基。示例性的核糖包括,但不限于,2’-(C1-C6)烷氧基核糖,2’-(C5-C14)芳氧基核糖,2’,3’-二脱氢核糖,2’-脱氧-3’-卤核糖,2’-脱氧-3’-氟核糖,2’-脱氧-3’-氯核糖,2’-脱氧-3’-氨基核糖,2’-脱氧-3’-(C1-C6)烷基核糖,2’-脱氧-3’-(C1-C6)烷氧基核糖和2’-脱氧-3’-(C5-C14)芳氧基核糖,核糖,2’-脱氧核糖,2’,3’-双脱氧核糖,2’-卤核糖,2’-氟核糖,2’-氯核糖,和2’-烷基核糖,例如,2’-O-甲基,4’-α-异头核苷酸,1’-α-异头核苷酸,2’-4’-和3’-4’-连接的以及其它“锁定的(locked)”或“LNA”,二环糖修饰(参见,例如,PCT公布申请号WO 98/22489,WO98/39352,和WO 99/14226;和Braasch和Corey,Chem.Biol.(化学生物)8:1-7,2001;和美国专利号6,268,490)。“LNA”或“锁定核酸”是这样的核苷酸类似物,即,其构象被锁定,以致所述核糖环受到例如但不限于2’-氧和3’-或4’-碳或具有2’-5’主链的3’-4’LNA之间的亚甲基连接的限制(参见,例如,Imanishi和Obika,美国专利号6,268,490;和Wengel和Nielsen,美国专利号6,670,461)。由所述连接施加的构象限制通常提高互补序列的结合亲和性,并且提高这样的双链体的热稳定性。在多核苷酸内的示例性LNA糖类似物包括下述结构:
Figure BDA00002904136800161
其中B是任何核苷酸碱基。
核糖的2’-或3’-位置可以被修饰,以包括氢、羟基、甲氧基、乙氧基、烯丙氧基、异丙氧基、丁氧基、异丁氧基、甲氧基乙基、烷氧基、苯氧基、叠氮基、氰基、酰氨基、亚氨基、氨基、烷基氨基、氟、氯和溴。核苷酸包括天然D光学异构体,以及L光学异构体形式(参见,例如,Garbesi等,Nucl.Acids Res.(核酸研究)21:4159-65(1993);Fujimori等,J.Amer.Chem.Soc.(美国化学学会杂志)112:7436-38(1990);Urata等,Nucl.AcidsSymposium(核酸研讨会)系列号29:69-70(1993))。当核苷酸碱基是嘌呤,例如A或G时,核糖糖附着到所述核苷酸碱基的N9-位置上。当核苷酸碱基是嘧啶,例如C、T或U时,戊糖糖附着到所述核苷酸碱基的N1-位置上,除了假尿苷外,其中戊糖糖附着到尿嘧啶核苷酸碱基的C5位置上(参见,例如,Kornberg和Baker,DNA Replication(DNA复制),第2版.(1992),Freeman,San Francisco,CA)。
核苷酸的一个或多个戊糖碳可以用具有下式的磷酸酯取代:
Figure BDA00002904136800171
其中α是从0到4的整数。在某些实施方案中,α是2,并且所述磷酸酯附着到戊糖的3’-或5’-碳上。在某些实施方案中,所述核苷酸是其中所述核苷酸碱基是嘌呤、7-脱氮嘌呤、嘧啶或它们的类似物的那些。术语“核苷酸5’-三磷酸”是指在5’位置具有三磷酸酯基团的核苷酸,并且有时表示为“rNTP”,或“dNTP”和“ddNTP”,以特别指出所述核糖糖的结构特征,或者一般表示为“NTP”。三磷酸酯基团可以包括用硫取代多个氧,例如,α-硫-核苷酸5’-三磷酸。除其它地方之外,核苷酸化学的综述可以特别在Miller,Bioconjugate Chem.(生物缀合物化学)1:187-91(1990);Shabarova,Z.和Bogdanov,A.Advanced Organic Chemistry of Nucleic Acids(核酸高级有机化学),VCH,纽约(1994);和Nucleic Acids in Chemistry and Biology(化学和生物中的核酸),第2版,Blackburn和Gait,编,牛津大学出版(1996;以下为“Blackburn和Gait”)中找到。
术语“核苷酸类似物”是指合成的类似物,其具有修饰的核苷酸碱基部分、修饰的戊糖部分、和/或修饰的磷酸部分,并且在多核苷酸的情形中,修饰的核苷酸之间的连接,如通常在本文和其它地方所描述的(例如,Scheit,Nucleotide Analogs(核苷酸类似物),John Wiley,纽约,1980;Englisch,Angew.Chem.Int.Ed.Engl.30:613-29,1991;Agarwal,Protocols forPolynucleotides and Analogs(多核苷酸和类似物的方法),Humana出版社,1994;和S.Verma和F.Eckstein,Ann.Rev.Biochem.(生物化学综述年刊)67:99-134,1998)。通常,修饰的磷酸酯部分包括磷酸的类似物,其中磷原子处于+5氧化状态,并且一个或多个氧原子用非氧部分取代,例如但不限于,硫。磷酸酯类似物的一些非限制性实例包括硫代磷酸酯、二硫代磷酸酯、硒代磷酸酯、二硒代磷酸酯、phosphoroanilothioate、phosphoranilidate、氨基磷酸酯、二羟硼基磷酸酯,包括缔合的抗衡离子,例如,H+,NH4 +,Na+,如果这样的抗衡离子存在的话。修饰的核苷酸碱基部分的非限制性实例包括5-甲基胞嘧啶(5mC);C-5-丙炔基类似物,包括但不限于,C-5丙炔基-C和C-5丙炔基-U;2,6-二氨基嘌呤,也叫作2-氨基腺嘌呤或2-氨基-dA;次黄嘌呤,假尿苷,2-硫代嘧啶,异胞嘧啶(异C),5-甲基异C,和异鸟嘌呤(异G;参见,例如,美国专利号5,432,272)。修饰的戊糖部分的非限制性实例包括LNA类似物,其包括但不限于Bz-A-LNA,5-Me-Bz-C-LNA,dmf-G-LNA,和T-LNA(参见,例如,The Glen Report(Glen报道),16(2):5(2003);Koshkin等,Tetrahedron(四面体)54:3607-30(1998)),和2’-或3’-修饰,其中所述2’-或3’-位置是氢、羟基、烷氧基(例如,甲氧基、乙氧基、烯丙氧基、异丙氧基、丁氧基、异丁氧基和戊氧基)、叠氮基、氨基、烷氨基、氟、氯或溴。修饰的核苷酸间连接包括磷酸酯类似物、具有非手性和不带电荷的亚基间连接的类似物(例如,Sterchak,E.P.等,Organic Chem.(有机化学)52:4202(1987)),和具有非手性亚基间连接的不带电荷的吗啉代基聚合物(参见,例如,美国专利号5,034,506)。核苷酸间连接类似物的一些非限制性实例包括morpholidate,乙缩醛和聚酰胺-连接的杂环。在一类叫作肽核酸的核苷酸类似物中,包括但不限于假互补性肽核酸(笼统地“PNA”),常规的糖和核苷酸间连接已被2-氨基乙基甘氨酸酰胺主链聚合物取代(参见,例如,Nielsen等,Science(科学),254:1497-1500(1991);Egholm等,J.Am.Chem.Soc.(美国化学学会杂志),114:1895-1897(1992);Demidov等,Proc.Natl.Acad.Sci.(美国国家科学院学报)99:5953-58(2002);Peptide Nucleic Acids:Protocols and Applications(肽核酸:方法和应用),Nielsen,编,Horizon生物科学(2004))。用于酶结合或化学合成的宽范围的核苷酸类似物可以用作三磷酸酯、氨基磷酸酯或CPG衍生物,除了其它来源外,其特别来自Glen研究,Sterling,MD;Link Technologies(连接技术),Lanarkshire,Scotland,英国;和TriLink BioTechnologies(三连接生物技术),San Diego,CA。除了其它地方外,关于寡核苷酸合成和某些核苷酸类似物的描述可以特别在S.Verma和F.Eckstein,Ann.Rev.Biochern.(生物化学综述年刊)67:99-134(1999);Goodchild,Bioconj.Chem.(生物缀合物化学)1:165-87(1990);Current Protocols in Nucleic Acid Chemistry(现代核酸化学方法),Beaucage等,编,John Wiley和Sons,纽约,纽约,包括从2005年8月以来的更新(以下“Beaucage等”);以及Blackburn和Gait中找到。
当用于本文时,术语“引物-结合位点”是指多核苷酸序列、典型地靶核酸和/或扩增子的这样的区域,即,其可以直接或者利用其补体作为引物可以在其上退火的模板,以用于本领域已知的任何适当的引物延伸反应,例如但不限于PCR。本领域的技术人员应该理解,当在单一多核苷酸上存在两个引物-结合位点时,所述两个引物-结合位点的方向通常是不同的。例如,引物对中的一个引物与第一引物-结合位点互补,并且可以与之杂交,而所述引物对的相对应的引物被设计成与第二引物-结合位点的补体杂交。换言之,在一些实施方案中,第一引物-结合位点可以是有义方向,并且第二引物-结合位点可以是反义方向。扩增子的引物-结合位点可以,但不必需包括与靶旁侧序列或其补体的相同的序列或所述序列的至少一些。
本领域的技术人员明白,当靶核酸和/或扩增产物通过特定的扩增方式扩增时,引物-结合位点的补体在互补扩增子或所述扩增子的互补链中合成。因此,应该理解,当用于本文时,引物-结合位点的补体清楚地包含在术语引物-结合位点的指定的意思之内。
当用于本文时,术语“探针-结合位点”是指多核苷酸序列、典型地靶核酸和/或扩增子的这样的区域,即,其可以直接或者利用其补体作为探针可以在其上退火的模板。本领域的技术人员应该理解,用于连接探针对的探针-结合位点包括上游探针-结合位点和下游探针结合位点,并且这两个位点典型地彼此邻近。在某些实施方案中,上游连接探针-结合位点和下游探针结合位点没有彼此邻近,并且扩增步骤可以包括填补缺口的反应。本领域的技术人员还应该理解,裂解探针对的探针-结合位点包括上游探针-结合位点,其邻近,并且可以但不必需与下游裂解探针-结合位点的至少部分重叠。
本领域的技术人员明白,当靶核酸和/或扩增产物通过特定的扩增方式扩增时,探针-结合位点的补体在互补扩增子或所述扩增子的互补链中合成。因此,应该理解,当用于本文时,探针-结合位点的补体清楚地包含在术语探针-结合位点的指定意思之内。
当用于本文时,术语“多核苷酸”、“寡核苷酸”和“核酸”可以互换地应用,并且是指核苷酸单体的单链的和双链的聚合物,其包括但不限于,通过核苷酸间磷酸二酯键,或核苷酸间类似物,以及缔合的抗衡离子如H+、NH4 +、三烷基铵、Mg2+、Na+等连接的2’-脱氧核糖核苷酸(DNA)和核糖核苷酸(RNA)。多核苷酸可以完全由脱氧核糖核苷酸、完整核糖核苷酸、或它们的嵌合的混合物组成,并且可以包括核苷酸类似物。核苷酸单体单位可以包括本文所述的任何核苷酸,其包括,但不限于,核苷酸和/或核苷酸类似物。多核苷酸在大小上典型地从几个单体单位,例如5-40个,当它们有时在本领域中叫作寡核苷酸时,到数千个单体核苷酸单位的范围。除非另外指明,当表示多核苷酸序列时,应该理解,所述核苷酸是在从左到右的5’到3’顺序,并且“A”表示脱氧腺苷,“C”表示脱氧胞嘧啶,“G”表示脱氧鸟苷,“T”表示胸苷,并且“U”表示脱氧尿苷,除非另外指明。
当用于本文时,术语“猝灭剂”是指吸收至少一些荧光发射的强度的部分。猝灭剂可以分类成荧光猝灭剂和黑暗猝灭剂(dark quenchers)(有时还叫作非荧光猝灭剂)。荧光猝灭剂是一种部分,典型地是荧光团,其可以吸收从在第一波长的荧光源,例如,但不限于,与核酸的双链片段缔合的核酸染料,发射的荧光信号,并且在吸收足够的荧光能量后,所述荧光猝灭剂可以发射在第二波长的荧光,其是所述猝灭剂特有的,一种叫作“荧光共振能量转移”或FRET的方法。例如但不作为限制,与TAMRA荧光猝灭剂缔合的FAM荧光团可以在492nm,FAM的激发峰,发光,并且在580nm,TAMRA的发射峰,发射荧光。适当地与荧光源配对的黑暗猝灭剂吸收来自所述光源的荧光能量,但是本身不发荧光。相反,黑暗猝灭剂消耗所吸收的能量,典型地作为热量。在某些实施方案中,黑暗猝灭剂包括发光团,其作用为从荧光源如与本发明的酶抑制剂的双链片段缔合的核酸染料的能量转移受体,但是其本身不发射可检测的荧光信号。黑暗或非荧光猝灭剂的非限制性实例包括DABCYL(4-(4’-二甲基氨基苯基偶氮)磺酸);黑洞猝灭剂系列猝灭剂,例如但不限于,BHQ-1,BHQ-2,和BHQ-3;IowaBlack;QSY系列猝灭剂,例如但不限于,QSY-7;完全猝灭剂;遮蔽非荧光猝灭剂;纳米晶体,例如但不限于,量子点;金属如金纳米颗粒;等等。
当用于本文时,术语“反应容器”通常是指任何容器、室、装置或组件,按照本发明在其中可以发生反应。在一些实施方案中,反应容器可以是微管,例如但不限于,0.2mL或0.5mL的反应管,如
Figure BDA00002904136800211
光学管(应用生物系统(Applied Biosystems))或微离心管,或其它在分子生物学实验室常规应用的此类容器。在一些实施方案中,反应容器包括多孔平板的孔,载玻片上的点,或微观流体装置的通道或室,包括但不限于应用生物系统TaqMan低密度阵列(Applied Biosystems TaqMan Low DensityArray)。例如但不作为限制,多个反应容器可以置于同一支持物上。在一些实施方案中,在芯片上的实验室(lab-on-a-chip)样的装置,例如可从Caliper和Fluidgm获得,可以在公开的方法中作为反应容器。应该认识到,许多反应容器是可以商购的,或者可以设计用于本发明的情形中。
术语“报道基团”在本文以广义应用,并且是指任何可鉴定标记、标志或部分。
术语“小RNA分子”在本文以广义应用,并且是指任何核酸序列,其包含不编码的核糖核苷酸,并且典型地具有下列长度:150个核苷酸或更少,100个核苷酸或更少,75个核苷酸或更少,30个核苷酸或更少,在19和27个核苷酸之间,并且在21和23个核苷酸之间。小RNA分子可以是单链的,双链的,或者可以包括至少一个单链区域和至少一个双链区域,双链区域包括但不限于茎-环或发夹结构。小RNA分子的非限制性实例包括不翻译的功能RNA,非编码的RNA(ncRNA),小的非信使RNA(snmRNA),小干扰RNA(siRNA),tRNA,小的非编码RNA(tncRNA),小的调节RNA(smRNA),snoRNA,stRNA,snRNA,微小RNA(miRNA),其包括但不限于miRNA前体如初始miRNA(pri-miRNA)和前体miRNA(pre-miRNA),以及小干扰RNA(siRNA)(参见,例如,Eddy,Nature Reviews Genetics(自然遗传学综述)2:919-29(2001);Storz,Science(科学)296:1260-63(2002);Buckingham,Horizon Symposia:Understanding the RNAissance:1-3(2003))。在某些实施方案中,靶核酸包括小RNA分子。当用于本说明书时,包括核糖核苷酸和/或核糖核苷酸类似物的本发明的这些酶抑制剂清楚地从术语小RNA分子的目的范围排除。
术语“热稳定”,当参考酶应用时,表示在升高的温度,例如但不限于,在约55℃或更高,所述酶是功能性的或有活性的(即,可以进行催化作用)。可以适用于本发明的热稳定的酶可从许多供应商处商购,其包括但不限于,应用生物系统(Applied Biosystems)(Foster City,CA),普洛麦格(Promega)(Madison,WI),Stratagene(LaJolla,CA),和纽英伦生物实验室(New England BioLabs)(Beverly,MA)。本领域的技术人员应该理解,热稳定的酶可以从各种嗜热性/或超嗜热性生物体分离,所述嗜热性和/或超嗜热性生物体例如但不限于,某些真细菌和古细菌物种,其包括但不限于,感染这样的生物体的某些病毒,并且这样的热稳定酶可以适用于本发明公开的复合物、方法和试剂盒。
术语“通用碱基”或“通用核苷酸”通常在本文可互换使用,并且是指可以取代多核苷酸中的多于一种的天然存在的核苷酸的核苷酸类似物,其包括但不限于,酶抑制剂。通用碱基典型地包含可以包含或可以不包含氮原子的芳香环部分,并且通常应用芳香环堆积来稳定双链体。在某些实施方案中,通用碱基可以共价附着到戊糖糖的C-1’碳上,以形成通用核苷酸。在某些实施方案中,通用碱基没有特异性与另一种核苷酸碱基氢键键合。在某些实施方案中,核苷酸碱基可以通过疏水堆积而与同一核酸链上的邻近核苷酸碱基相互作用。通用核苷酸和通用碱基的非限制性实例包括脱氧-7-氮杂吲哚三磷酸酯(d7AITP),脱氧异喹诺酮三磷酸酯(dICSTP),脱氧丙炔基异喹诺酮三磷酸酯(dPICSTP),脱氧甲基-7-氮杂吲哚三磷酸酯(dM7AITP),脱氧ImPy三磷酸酯(dImPyTP),脱氧PP三磷酸酯(dPPTP),脱氧丙炔基-7-氮杂吲哚三磷酸酯(dP7AITP),3-甲基异喹诺酮(MICS),5-甲基异二价碳基(5MICS),咪唑-4-羧酰胺(carboxamide),3-硝基吡咯,5-硝基吲哚,次黄嘌呤,肌苷,脱氧肌苷,5-氟脱氧尿苷,4-硝基苯并咪唑,以及某些PNA-碱基,其包括但不限于某些假互补的PNA(pcPNA)碱基。除了其它地方之外,通用碱基的描述可以在Loakes,Nucl.Acids Res.(核酸研究)29:2437-47(2001);Berger等,Nucl.Acids Res.(核酸研究)28:2911-14(2000);Loakes等,J.Mol.Biol.(分子生物学杂志)270:426-35(1997);Verma和Eckstein,Ann.Rev.Biochem.(生物化学综述年刊)67:99-134(1998);公布的PCT申请号US02/33619,以及Patron和Pervin,美国专利号6,433,134中找到。
当两个不同的寡核苷酸与同一线性互补核酸的不同区域退火,并且一个寡核苷酸的3’-端朝向或者相对另一个寡核苷酸的5’-端时,前者可以叫作“上游”寡核苷酸,并且后者叫作“下游”寡核苷酸。
某些示例性成分
术语“裂解酶”是指这样的任何多肽,即,当与核酸裂解结构(有时叫作重叠突出(flap)结构或侵入性裂解反应底物)组合并且在适当的条件下时,其可以将下游裂解探针的非退火突出部分裂解,以产生包含可连接的缺口的结构。裂解酶的非限制性实例包括结构-特异的核酸酶,例如但不限于,来自细菌和噬菌体的某些DNA聚合酶,包括其分离的5’核酸外切酶结构域;
Figure BDA00002904136800231
酶(Third Wave Technologies,Inc.(第三波技术公司),Madison,WI);真核突出核酸内切酶;和古细菌突出核酸内切酶(参见,例如,Lyamichev等,Science(科学)260:778-83(1993);Li等,J.Biol.Chem.(生物的化学杂志)270:22109-12(1995);Wu等,Nucl.Acids Res.(核酸研究)24:2036-43(1996);Hosfield等,J.Biol.Chem.(生物的化学杂志)273:27154-61(1998);Kaiser等,J.Biol.Chem.(生物的化学杂志)274:21387-94(1999);Allawi等,J.Mol.Biol.(分子生物学杂志)328:537-54(2003);以及美国专利号5,614,402和6,706,471)。
核酸裂解结构典型地包括与裂解探针对杂交的模板链(通常是靶核酸,单链扩增子,或双链扩增子的分开的链),所述裂解探针对包括两个重叠的探针,其与所述模板链杂交形成“突出”。第一或上游裂解探针包括与所述模板链的第一部分互补的序列,并且与第二或下游裂解探针的模板-互补序列的5’-端重叠,所述第二或下游裂解探针包括:(1)与邻近所述模板链的第一部分的模板链的第二部分互补的序列,和(2)含有至少一个可以或可以不与所述模板链互补的核苷酸的5’-区域,但是当与所述模板链杂交时,所述区域被上游裂解探针的3’-端置换(参见,例如,Lyamichev等,Nat.Biotechnol.(自然生物技术)17:292-96(1999),特别是图1;Neville等,BioTechniques(生物技术)32:S34-43(2002),特别是图2A;Allawi等,J.Mol.Biol.(分子生物学杂志)328:537-54(2003),特别是图2;以及Brow等,美国专利号6,706,471,例如在图32和65)。将本发明的某些裂解酶抑制剂设计成在第一温度采取类似于或模拟核酸裂解结构的构象。某些公开的裂解酶抑制剂可以在第一温度形成核酸裂解结构,但是至少一种寡核苷酸包括至少一种核苷酸类似物和/或至少一种不能被所述裂解酶裂解或被所述裂解酶缓慢裂解的核苷酸间连接(“不可裂解的核苷酸间连接”)。不可裂解的核苷酸间连接的非限制性实例包括:硫代磷酸酯,其包括但不限于二硫代磷酸酯;甲基磷酸酯;氨基磷酸酯;和硼代磷酸酯(boranophosphates)。
“连接酶”是一种这样的多肽,即,在适当条件下,其催化在相邻杂交的探针的3’-OH和5’-磷酸之间形成磷酸二酯键,所述杂交的探针包括但不限于,连接探针组的第一和第二连接探针,或者第一可裂解探针和已经被裂解酶裂解的第二裂解探针的杂交的片段。温度敏感性连接酶,包括但不限于,噬菌体T4连接酶和大肠杆菌(E.coli)连接酶。热稳定性连接酶的非限制性实例包括Afu连接酶,Taq连接酶,Tfl连接酶,Mth连接酶,Tth连接酶,Tth HB8连接酶,Tsc连接酶,栖热菌属(Thermus)物种AK16D连接酶,Ape连接酶,LigTK连接酶,Aae连接酶,Rm连接酶,和Pfu连接酶(参见,例如,Housby等.,Nucl.Acids Res.(核酸研究)28:e10,2000;Tong等,Nucl.Acids Res.(核酸研究)28:1447-54,2000;Nakatani等,Eur.J.Biochem.(欧洲生物化学杂志)269:650-56,2002;和Sriskanda等,Nucl.Acids Res.(核酸研究)11:2221-28,2000)。熟练的技术人员应该理解,可以从嗜温性、嗜热性或超嗜热性生物体获得许多嗜温的、热稳定的和/或超嗜热的连接酶,包括DNA连接酶和RNA连接酶,所述嗜温的、嗜热的或超嗜热的生物体例如,某些真细菌和古细菌物种,并且包括感染这样的嗜温性、嗜热性或超嗜热性生物体的某些病毒;并且这样的连接酶可以适用于本发明公开的复合物、方法和试剂盒。
当用于本文时,术语“核酸染料”是指这样的荧光分子,即,其对双链多核苷酸特异,并且当与双链多核苷酸缔合时,其至少表现出比与单链多核苷酸缔合基本上更高的荧光增强。典型的核酸染料分子通过嵌入到双链片段的碱基对之间,通过与双链片段的大沟或小沟结合,或者二者,而与多核苷酸的双链片段缔合。核酸染料的非限制性实例包括溴化乙锭,DAPI,Hoechst衍生物,其包括但不限于Hoechst 33258和Hoechst 33342,嵌入剂,其包括镧系元素螯合物(例如但不限于,携带两个荧光四配位基的β-二酮-Eu3+螯合物(NDI(BHHCT-Eu3+)2),参见,例如,Nojima等,Nucl.Acids Res.(核酸研究)增刊No.1,105-06(2001)),溴化乙锭,和某些不对称的花青染料,如SYBR
Figure BDA00002904136800251
和BOXTO。
某些公开的酶抑制剂的核酸序列包括适体。适体以高特异性、构象-依赖性方式,典型地以非常高的亲和力,而结合靶分子,尽管本领域的技术人员应该理解,如果需要,可以选择具有更低结合亲和力的适体。已经表明适体基于非常小的结构差别如存在或不存在甲基或羟基基团而区分靶,并且某些适体可以区分D-和L-对映体。已经获得结合小分子靶的适体,所述小分子靶包括药物、金属离子、和有机染料、肽、生物素和蛋白质,所述适体包括但不限于链霉抗生物素蛋白,VEGF,病毒蛋白和各种酶类,其包括但不限于DNA-依赖性DNA聚合酶、RNA-依赖性DNA聚合酶、RNA-依赖性RNA聚合酶、解旋酶和蛋白酶(参见,例如,Lin和Jayasena,J.Mol.Biol.(分子生物学杂志)271:100-11(1997);Thomas等,J.Biol.Chem.(生物的化学杂志)272:27980-86(1997);Kulbachinskiy等,Eur.J.Biochem.(欧洲生物化学杂志)271:4921-31(2004);Hannoush等,Chembiochem.(化学生物化学)5:527-33(2004);Bellecave等,Oligonucleotides(寡核苷酸)13:455-63(2003);和Nishikawa等,Nucl.Acids Res.(核酸研究)31:1935-43(2003))。已经表明在生物素酰化、荧光素标记后,并且当附着到玻璃表面和微球体上时,适体保留功能活性。
适体,包括speigelmers,通过体外选择方法鉴定,例如但不限于已知为通过指数富集配体的系统进化技术(SELEX)的方法进行鉴定。在所述SELEX方法中,非常大的组合寡核苷酸文库,例如1014到1015个个体序列,通常如60-100个核苷酸长度那样大,常规通过体外选择和扩增的重复方法而进行筛选。大部分靶在8-15个循环内亲和富集,并且所述方法已经自动化允许更快的适体分离。熟练的技术人员应该理解,适体可以按照常规方法获得,并且无需过度实验。除了其它地方之外,适体以及它们的选择的描述可以在L.Gold,J.Biol.Chem.(生物的化学杂志),270(23):13581-84(1995);L.Gold等,Ann.Rev.Biochem.(生物化学综述年刊)64:763-97(1995);Wilson和Szostak,Ann.Rev.Biochem.(生物化学综述年刊)68:611-47(1999);Cox等,Nucl.Acids Res.(核酸研究)30:e108(2002);Hermann和Patel,Science(科学)287:820-25(2000);Vuyisich和Beal,Chem.&Biol.(化学和生物)9:907-13(2002);S.Jayasena,Clin.Chem.(临床化学),45:1628-50(1999);Cox和Ellington,Bioorg.Med.Chem.(生物有机和医学化学)9:2525-31(2001);Eulberg等,Nucl.Acids Res.(核酸研究)33:e5(2005);以及Jayasena和Gold,美国专利号6,183,967中找到。
术语“DNA聚合酶”在本文中以广义应用,并且是指可以以模板-依赖性方式通过加入脱氧核糖核苷酸和/或某些核苷酸类似物而催化杂交的引物的5’-3’延伸的任何多肽。例如但不限于,在引物延伸反应过程中,向与核酸模板退火的引物的3’-端顺序添加脱氧核糖核苷酸。DNA聚合酶的非限制性实例包括RNA-依赖性DNA聚合酶,其包括但不限于反转录酶,以及DNA-依赖性DNA聚合酶。应该理解,某些DNA聚合酶(例如但不限于某些A型真细菌DNA聚合酶和Taq DNA聚合酶)还可以包括结构-特异性核酸酶活性,并且当扩增反应包括侵入性裂解反应,例如但不限于,FEN-LCR或PCR-FEN(参见,例如,Bi等,美国专利号6,511,810;和Neville等,BioTechniques(生物技术)32:S34-43(2002))时,其中所述裂解酶包括DNA聚合酶,在侵入性裂解的情形中,这样的聚合酶在本文中叫作裂解酶,并且对应的酶活性包括结构-特异性的寡核苷酸裂解。在某些实施方案中,DNA聚合酶提供多聚化活性和结构-特异性裂解活性。术语“RNA聚合酶”是指DNA-依赖性RNA聚合酶或RNA-依赖性聚合酶(有时叫作RNA复制酶),并且包括可以以模板-依赖性方式催化核糖核苷酸的5’-3’添加的任何多肽。在某些实施方案中,RNA聚合酶与启动子序列结合,并且催化转录。RNA聚合酶的非限制性实例包括来自噬菌体T3,T7,SP6,f2,MS2,和Qβ的RNA聚合酶。
术语“引物”是指多核苷酸,通常是包含典型地约12到约35个核苷酸长的“靶”结合部分的寡核苷酸,其被设计成在适当的严格条件下,选择性地杂交靶核酸旁侧序列或扩增产物的相对应的引物-结合位点;并且作为从模板的3’-端合成与相对应的多核苷酸模板互补的核苷酸序列的起始点。
术语“正向”和“反向”,当参考引物对的引物应用时,指示所述引物在多核苷酸序列上的相对方向。出于举例说明的目的,而不是作为限制,考虑水平从左到右方向绘制的单链多核苷酸,其5’-端在左侧。所述“反向”引物设计成与位于或接近这一以5’到3’方向的示例性多核苷酸的“3’-端”的下游引物-结合位点退火,从右到左。相对应的“正向”引物设计成与位于或接近以5’到3’“正向”方向的多核苷酸的“5’-端”的上游引物-结合位点的补体退火,从左到右。因此,所述反向引物包括与多核苷酸的反向或下游引物-结合位点互补的序列,并且所述正向引物包括与正向或上游引物-结合位点相同或基本上相同的序列。应该理解,在本段中所用的术语“3’-端”和“5’-端”只是举例说明性的,并不必按字面意思是指多核苷酸的每一端。相反,唯一的限制是这一示例性引物对的反向引物与位于正向引物-结合位点的下游的反向引物-结合位点退火,其包括与相对应的正向引物的“靶”结合部分相同的序列或基本上相同的序列。本领域的普通技术人员应该认识到,这些术语并不意欲是限制,而是在给出的实施方案中提供举例说明的方向。
本发明的“引物对”包括正向引物和相对应的反向引物。所述正向引物包括第一靶-特异性部分,其包括与第一或上游靶旁侧序列的核苷酸序列相同或基本上相同的序列,并且其被设计成与特别存在于反向扩增产物中的上游靶旁侧序列的补体选择性地杂交。引物对的反向引物包括第二靶-特异性部分,其包括与特别存在于正向扩增产物中的第二或下游靶区域旁侧序列互补或基本上互补的序列,并且所述序列设计成与特别存在于正向扩增产物中的第二或下游靶区域旁侧序列选择性地杂交。在某些实施方案中,正向引物、反向引物、或引物对的正向引物和反向引物还包括报道探针结合位点,通用引物-结合位点,和/或报道基团,例如但不限于荧光报道基团。在一些实施方案中,测序引物包括荧光报道基团。在某些实施方案中,引物对的正向引物和相对应的反向引物具有不同的解链温度,以允许进行基于温度的不对称PCR。
按照本发明的某些实施方案可以使用通用引物或引物组。在某些实施方案中,通用引物或通用引物组杂交并且可以用来扩增两种或多种不同的靶核酸种类和/或两种或多种不同种类的需要的扩增子。
术语“探针”是指这样的多核苷酸,即,其包括设计成以序列-特异性方式与在特定的核酸序列上,例如但不限于靶核酸或扩增产物的互补探针-结合位点杂交的部分。在某些实施方案中,将连接探针组的相应的探针连接在一起形成连接的探针。在一些实施方案中,裂解探针组中的相应的探针与模板链退火,形成核酸裂解结构,其在适当的条件下可以被适当的裂解酶裂解,以形成包括模板链、上游裂解探针和第二裂解探针的杂交的片段的杂交结构。在某些实施方案中,所退火的上游裂解探针和下游裂解探针的杂交的片段连接在一起,形成连接的探针。在某些实施方案中,探针包括报道基团,例如但不限于,报道探针。在一些实施方案中,探针包括引物-结合位点。
本发明的探针和引物的序列-特异性部分长度足够长,以允许与靶核酸和需要的扩增子中的互补序列特异性退火。除了其它地方之外,引物和探针设计的详细描述可以在Dieffenbach和Dveksler,PCR Primer,A LaboratoryManual(PCR引物,实验室手册),Cold Spring Harbor Press(冷泉港出版社)(1995;以下为“PCR Primer(PCR引物)”);R.Rapley,The Nucleic AcidProtocols Handbook(核酸方法手册)(2000),Humana出版社,Totowa,NewJersey(以下为“Rapley”);Schena;和Kwok等,Nucl.Acid Res.(核酸研究)18:999-1005(1990)中找到。引物和探针设计软件程序也是可以商购获得的,包括但不限于,Primer Express,Applied Biosystems(应用生物系统),Foster City,CA;Primer Premier and Beacon设计软件,PREMIER BiosoftInternational(国际PREMIER生物软件),Palo Alto,CA;Primer Designer 4,Sci-Ed软件,Durham,NC;Primer Detective(引物检测),ClonTech,Palo Alto,CA;Lasergene,DNASTAR,公司,Madison,WI;Oligo软件,NationalBiosciences,Inc.(国家生物科学公司),Plymouth,MN;iOligo,Caesar软件,Portsmouth,NH;和在万维网reattimeprimerdatabase.ht.st或在medgen31.urgent.be/primerdatabase/index(还参见,Pattyn等,Nucl.Acid Res.(核酸研究)31:122-23(2003))的RTPrimerDB。
熟练的技术人员应该理解,所公开的探针和引物的补体、靶核酸、需要的扩增子或它们的组合,可以用于本发明的某些实施方案中。例如,但不限于,基因组DNA样品可以包括靶核酸序列及其补体。因此,在某些实施方案中,当将基因组样品变性时,所述靶核酸及其补体都以单链序列存在于样品中。在某些实施方案中,引物、连接探针对、裂解探针对或它们的组合可以设计成选择性地杂交适当的序列,所述适当的序列包括但不限于,靶核酸、所述靶核酸的补体、扩增子和/或扩增子的补体。
术语“报道探针”是指这样的核苷酸和/或核苷酸类似物的序列,即,其与靶核酸和/或扩增子退火,并且当检测,包括但不限于强度或发射的波长的变化时,其在终点或实时检测技术例如但不限于Q-PCR技术中用于鉴定和/或定量相对应的靶核酸。大部分报道探针可以基于它们作用模式分类,例如但不限于:核酸酶探针,其包括但不限于
Figure BDA00002904136800291
探针(参见,例如,Livak,Genetic Analysis:Biomolecular Engineering(遗传分析:生物分子加工)14:143-149(1999);Yeung等,BioTechniques(生物技术)36:266-75(2004));延伸探针,如蝎子引物,LuxTM引物,Amplifluors,等等;杂交探针,如分子beacons,Eclipse探针,照亮(light up)探针,单一标记的报道探针对,杂交探针对,等;或它们的组合。在某些实施方案中,报道探针包括PNA,LNA,通用碱基或它们的组合,并且可以包括茎-环和无茎的报道探针构型。某些报道探针是单一标记的,而另一些报道探针是双标记的。在邻近杂交的探针之间包括FRET的双探针系统在术语报道探针的目的范围内(参见,例如,Zhang等,Hepatology(肝脏病学)36:723-28(2003))。
“不对称的花青染料(unsymmetrical cyanine dye)”,在本领域中有时描述为不对称的花青染料(asymmetric cyanine dye)或不对称花青染料(asymmetrical cyanine dye),是指具有通式R2N[CH=CH]nCH=NR2的染料分子,其中n是小的数字,并且R基团典型地包括至少一个吲哚基团和至少一个喹啉基团或至少一个吡啶基团。不对称花青染料的非限制性实例包括[2-[N-(3-二甲基氨基丙基)-N-丙基氨基]-4-[2,3-二氢-3-甲基-(苯并-1,3-噻唑-2-基)-亚甲基]-1-苯基-喹啉鎓](
Figure BDA00002904136800292
Green),[2-[N-双-(3-二甲基氨基丙基)-氨基)-氨基]-4-[2,3-二氢-3-甲基-(苯并-1,3-噻唑-2-基)-亚甲基]-1-苯基-喹啉鎓]4-[(3-甲基-6-(苯并噻唑-2-基)-2,3-二氢-(苯并-1,3-噻唑)-2-亚甲基)]-1-甲基吡啶鎓碘化物(BEBO),BOXTO,和BETO。除了其它地方之外,不对称花青染料的描述可以在Karlsson等,Nucl.Acids Res.(核酸研究)31:6227-34(2003);Zipper等,Nucl.Acids Res.(核酸研究)32:e103(2004);Bengtsson等,Nucl.Acids Res.(核酸研究)31:e45(2003);和Goransson等,Asymettric cyanine dyes(不对称的花青染料),DNATechnology(DNA技术)2005,Chalmers技术大学(2005;可获自万维网:molbiotech.Chalmers.se/research/mk/Asymmetric%cyanine%dyes.doc)中找到。
术语“靶核酸”或“靶”是指使用本发明的组合物、方法和试剂盒特异性扩增和/或检测的核酸序列(用于次级扩增产物相反,其是假的副反应的结果,典型地由于错误引发导致)。在某些实施方案中,靶核酸作为引物延伸反应中的模板。在一些实施方案中,靶核酸作为连接模板。在一些实施方案中,靶核酸作为核酸裂解结构中的模板链。在某些实施方案中,所述靶核酸包括DNA,并且存在于基因组DNA(gDNA)或线粒体DNA(mtDNA)中。在某些实施方案中,所述靶核酸包括RNA,例如但不限于,核糖体RNA(rRNA),信使RNA(mRNA),转移RNA(tRNA),或RNA分子如miRNA前体,其包括但不限于,primiRNA,pre-miRNA,或pri-miRNA和pre-miRNA。在一些实施方案中,所述靶核酸包括小RNA分子,其包括但不限于,miRNA,siRNA,stRNA,snoRNA,或其它ncRNA。所述靶核酸不必构成完整的核酸分子。例如但不作为限制,大的核酸,例如gDNA片段,可以包括多样的或不同的靶核酸。典型地,靶核酸具有至少一个确定的末端。在许多核酸扩增反应中,所述靶具有两个确定的末端。
在某些实施方案中,靶核酸位于两个旁侧的序列,第一靶旁侧序列和第二靶旁侧序列之间,所述旁侧的序列位于所述靶核酸的任一端,但不必紧邻所述靶核酸。在一些实施方案中,多核苷酸如gDNA片段包括多个或不同的靶核酸。在一些实施方案中,靶核酸紧接或邻近一个或多个不同的靶核酸。在一些实施方案中,给定的靶核酸可以在其5’-端与一个靶核酸重叠,在其3’-端与另一个靶核酸重叠,或者两者。在其它实施方案中,例如但不限于当所述靶包括小的RNA分子时,所述靶可以不包括旁侧区域,并且引物设计成与所述小RNA靶的一部分,典型地是所述靶核酸的一个末端退火(参见,例如,Chen等,美国专利申请系列号10/947,460)。
某些示例性组成技术
按照本发明,靶核酸可以从任何活的或曾经存活的生物体获得,所述生物体包括原核生物、古细菌或真核生物,例如但不限于:昆虫,其包括但不限于果蝇(Drosophila);虫,其包括但不限于秀丽隐杆线虫(C.elegans);植物,其包括但不限于拟南芥(Arabidopsis);以及动物,其包括但不限于人、小鼠、家畜或非人灵长类;并且包括原核细胞以及从真核生物获得的细胞、组织和器官,其例如但不限于临床活组织切片材料、口腔拭子、培养的细胞和血细胞。病毒核酸也在本发明的范围之内。在某些实施方案中,所述靶核酸可以以双链或单链形式存在。熟练的技术人员应该理解,gDNA不但包括全长物质,而且包括通过许多方法例如但不限于酶消化、超声、剪切力等而产生的片段,并且所有这样的物质,不管是全长的还是片段的,都代表可以作为本发明的扩增反应的模板的gDNA的形式。
靶核酸可以是合成的或天然存在的。在适当的情形中,包含旁侧序列的特定的靶核酸可以使用本领域公知的寡核苷酸合成方法而合成。除了其它地方之外,这样的技术的详细描述可以在Beaucage;和Blackburn与Gait中找到。用于合成靶核酸以及其它寡核苷酸,包括但不限于某些酶抑制剂、探针和引物的自动化DNA合成仪可以从许多来源商购获得,例如,包括应用生物系统DNA合成仪381A,391,392和394型(Applied Biosystems(应用生物系统),Foster City,CA)。靶核酸,在适当的情形中,其包括旁侧区域,以及其它寡核苷酸还可以使用本领域公知的体内方法和/或体外方法而生物合成产生。除了其它地方以外,这样的技术的描述可以在Sambrook等,Molecular Cloning,A Laboratory Manual(分子克隆,实验室手册),冷泉港出版社(1989)(以下为“Sambrook等”);和Ausubel等,Current Protocolsin Molecular Biology(现代分子生物学方法),John Wiley和Sons,公司,包括2005年9月26日的补充(以下为“Ausubel等”)中找到。
用于本发明的方法中的靶核酸,包括但不限于,gDNA可以使用本领域已知的任何适当的样品制备技术而从生物材料获得。商购的核酸提取仪器和系统特别包括
Figure BDA00002904136800321
6100核酸PrepStation和
Figure BDA00002904136800322
6700核酸自动工作站(ABI
Figure BDA00002904136800323
6700 Nucleic Acid Automated WorkStation)。核酸样品制备试剂和试剂盒也可以商购,包括但不限于,NucPrepTM化学,BloodPrepTM化学,ABI
Figure BDA00002904136800324
TransPrep系统,和PrepManTM超样品制备试剂(全部来自应用Applied Biosystems(应用生物系统))和miRvana RNA分离试剂盒(Ambion,Austin,TX)。纯化的或部分纯化的核酸,包括但不限于,gDNA和总RNA以及组织-特异性核酸制备物,可从许多商业来源商购获得,包括但不限于,Coriell细胞储藏处,Coriell医学研究院(Coriell Institute for Medical Research),Camden,NJ;血清学公司(Serologicals Corp.),Norcross,GA;Stratagene,La Jolla CA;Ambion,Austin,TX;以及美国典型培养物收藏中心(American Type CultureCollection(ATCC)),Manassas,VA。
术语“扩增(amplifying)”和“扩增(amplification)”以广义应用,并且是指本领域已知的任何技术,在所述技术中再生产或复制靶核酸、扩增子、至少靶核酸的部分、或至少扩增子的部分(包括互补链的合成或连接探针的形成),典型地以模板-依赖性方式进行,包括广泛范围的线性地或指数性地扩增核酸序列的技术。一些扩增技术等温地进行;一些扩增技术使用温度循环进行;一些扩增技术包括至少一个等温扩增步骤和至少一个包括热循环的扩增步骤。扩增技术的一些非限制性实例包括引物延伸,其包括但不限于PCR,RT-PCR,异步PCR(asynchronous PCR(A-PCR)),不对称PCR,定量或Q-PCR;连接酶链式反应(LCR),连接酶检测反应(LDR),其包括但不限于每一种的缺口填补和缺口寡核苷酸形式(参见,例如,Cao,DNA Amplification(DNA扩增)中第1.3章:Current Techniquesand Applications(现代技术和应用),Demidov和Broude,编,Horizon生物科学(2004;以下为“Demidov和Broude”);Abravaya等,Nucl.Acids Res.(核酸研究)23:675-82(1995);Lizardi等,Nat.Genetics(自然遗传学)19:225-32(1998);和Segev,美国专利号6,004,826);旋转循环扩增(RCA),有时叫作滚环复制(RCR);链置换扩增(SDA)和多置换扩增(MDA);基于核酸链的扩增(NASBA),有时叫作转录介导的扩增(TMA)或自我-维持的复制(3SR);SPIATM和RiboSPIATM扩增(参见,例如,Kurn,美国专利号6,251,639和美国专利申请公布号US 2003/0017591A1);以及解旋酶-依赖性扩增(HDA;参见,例如,Vincent等,EMBO报告5:795-800(2004)),并且包括但不限于多链体形式和/或它们的组合,例如但不限于,OLA/PCR,PCR/LDR,PCR/LCR,这还叫作组合的链式反应(CCR)某些扩增技术的描述可以特别在下列各项中找到:Molecular Cloning,A Laboratory Manual(分子克隆,实验室手册),Sambrook和Russell,编,Cold Spring Harbor Press,第3版.(2001;以下为“Sambrook和Russell”);Sambrook等;Ausubel等;PCR Primer(PCR引物);McPherson;Rapley;Lizardi等,Nat.Genetics(自然遗传学)19:225-32(1998);Wiedmann等,S51-64,在PCR Methods and Applications(PCR方法和应用)中,冷泉港实验室出版社(1994);Cao,Trends inBiotechnol(生物技术的趋势)22:38-44(2004);以及Wenz和Schroth,美国专利申请公布号US 2003/01 90646A1。
在某些实施方案中,扩增技术包括至少一个扩增循环,例如但不限于,下列步骤:将双链核酸变性,以分离组成链;将引物杂交到靶旁侧序列或扩增子的引物-结合位点上(或其补体,适当地);并且使用DNA聚合酶以模板-依赖性方式合成核苷酸链。在某些实施方案中,扩增循环包括下列步骤:将双链核酸变性,以分离组成链;将第一连接探针和相对应的第二连接探针杂交到(1)靶核酸或所述靶核酸的补体上,或(2)扩增子上;并且将邻近杂交的探针用连接酶连接,以形成连接的探针(代表性的扩增子)。在某些实施方案中,扩增循环包括下列步骤:将双链核酸变性,以分离组成链;将上游裂解探针和相对应的下游裂解探针杂交到(1)靶核酸或所述靶核酸的补体上,或(2)扩增子上,以形成核酸裂解结构;将所述裂解结构裂解,以释放突出,并且形成包括邻近下游裂解探针的杂交片段而退火的上游裂解探针的杂交结构;并且任选地将邻近杂交的探针用连接酶连接,以形成连接的探针。所述循环可以重复或可以不重复。在某些实施方案中,扩增循环包括多个扩增循环,例如但不限于20个循环,25个循环,30个循环,35个循环,40个循环,45个循环或多于45个循环的扩增。
在一些实施方案中,扩增包括使用仪器的热循环,所述仪器例如但不限于,
Figure BDA00002904136800331
PCR系统9700,9600,2700,或2400热循环仪(全部来自应用生物系统(Applied Biosystems))。在某些实施方案中,在扩增反应,例如但不限于不对称PCR或A-PCR中,产生单链扩增子。
已经开发了这样的装置,其可以使用含有核酸染料的反应组合物进行热循环反应和检测,发射特定波长的光束,读取从与双链核酸缔合的核酸染料分子发射的荧光信号的强度,并且在每个循环后显示荧光的强度。包括热循环仪、光束发射器和荧光信号检测器的装置,例如,已经在美国专利号5,928,907;6,015,674;和6,174,670中描述,并且包括但不限于,ABI
Figure BDA00002904136800341
7700序列检测系统((Applied Biosystems(应用生物系统),Foster市,加利福尼亚)和ABI
Figure BDA00002904136800342
5700序列检测系统((AppliedBiosystems(应用生物系统),Foster市,加利福尼亚)。
在某些实施方案中,这些功能可以通过分开的装置进行。例如但不限于,如果应用Q-β复制酶反应进行扩增,所述反应可以不在热循环仪中发生,而是在这样的仪器的反应容器中发生,所述仪器可以包括在特定波长发射的光束,荧光信号的检测,以及在监测仪或其它读取装置上计算并且显示扩增产物的量。
在某些实施方案中,组合的热循环和荧光检测装置可以用于精确定量样品中的靶核酸序列。在某些实施方案中,荧光信号可以在一个或多个热循环过程中和/或一个或多个热循环后检测并且显示,因此允许当反应“实时”发生时监测扩增产物。在某些实施方案中,人们可以使用扩增产物的量和扩增循环的数目来计算扩增前在样品中有多少靶核酸序列。
在一些实施方案中,提供一种连接探针组用于靶核酸,并且所述靶进行线性扩增,例如但不限于LDR。在某些实施方案中,提供两个连接探针组用于靶核酸,并且对所述靶进行指数扩增,例如但不限于LCR。在一些实施方案中,第一裂解探针和相对应的第二裂解探针与靶核酸退火,形成核酸裂解结构,所述核酸裂解结构包括形成裂解酶的适当的底物的重叠或突出序列(flap sequence)。在某些实施方案中,在裂解后,所述第一裂解探针和第二裂解探针的杂交的片段可以连接以形成连接的探针。在一些实施方案中,连接的探针包括引物-结合位点,并且可以作为引物延伸反应,例如但不限于PCR的模板。
按照本发明的引物延伸是一种扩增方法,其包括使用DNA聚合酶以5’到3’方向将与模板退火的引物延伸。按照某些实施方案,使用适当的缓冲剂、盐、pH、温度和适当的NTPs(其可以,但不必包括核苷酸类似物),DNA聚合酶结合与从退火的引物的3’-端起始的模板链互补的核苷酸,以生成互补链。在某些实施方案中,用于引物延伸的DNA聚合酶缺少或基本上缺少5’-核酸外切酶活性,3’-核酸外切酶活性或二者。在一些实施方案中,引物延伸包括反转录,并且DNA聚合酶包括反转录酶或在特定条件下包括反转录酶活性的DNA-依赖性DNA聚合酶,例如但不限于,嗜热栖热菌(Thermus thermophilus)(Tth)DNA聚合酶,重组Tth DNA聚合酶(rTthpol),GeneAmp AccuRT RNA PCR酶,或栖热菌属物种Z05(TZ05)DNA聚合酶(参见,例如,Smith等,在PCR Primer(PCR引物)中,第211-219页)。在某些实施方案中,引物延伸包括反转录酶和DNA-依赖性DNA聚合酶。在某些这样的实施方案中,反应组合物可以包括一种DNA聚合酶抑制剂或至少两种不同的DNA聚合酶抑制剂,例如但不限于,可以与反转录酶形成复合物的第一DNA聚合酶和可以与DNA-依赖性DNA聚合酶形成复合物的第二DNA聚合酶抑制剂。特定的引物延伸反应的描述可以特别在Sambrook等,Sambrook和Russell,Ausubel等,和Chen等,美国专利申请系列号10/947,460中找到。
在本发明的一些实施方案中,扩增包括两步反应,其包括但不限于,预扩增步骤,其中发生有限数目的扩增循环(例如,但不限于,2,3,4,或5个扩增循环),然后通常将得到的扩增子稀释,并且将部分的稀释的扩增子在后续扩增步骤中进行其它的扩增循环(参见,例如,Marmaro和Gordes,美国专利号6,605,451;以及Andersen和Ruff,美国专利申请公布号US2004/0175733)。在一些实施方案中,预扩增步骤,后续扩增步骤,或者两者,包括DNA聚合酶抑制剂。
在某些实施方案中,扩增反应包括多重扩增,其中使用多种不同的引物组、多种不同的连接探针组、多种不同的裂解探针组或它们的组合,同时扩增多种不同的靶核酸和/或多种不同的扩增产物种类(参见,例如,Henegariu等,BioTechniques(生物技术)23:504-11,1997;Belgrader等,Development of a Multiplex Ligation Detection Reaction DNA Typing Assay(多链体连接检测反应DNA分型测定的开发),Sixth InternationalSymposium on Human Identification(第六次人类鉴定国际研讨会)(1995);和Rapley,特别在第79章)。所公开的方法的某些实施方案包括多重扩增反应和单重(single-plex)扩增反应,包括平行进行的多个单重或更低重(lower-plexy)反应(例如但不限于,双重(two-plex)、三重(three-plex)、四重(four-plex)、五重(five-plex)或六重(six-plex)反应)。
在某些实施方案中,扩增反应包括不对称PCR。按照某些实施方案,不对称PCR包括这样的反应组合物,其包括:(i)至少一种引物对,其中相对于所述引物对的相对应的引物,存在过量的一种引物,例如但不限于,5倍、10倍或20倍过量;(ii)只包含正向引物或只包含反向引物的至少一种引物对;(iii)至少一种引物对,在给定的扩增条件下,其包括导致一条链扩增的引物和失去能力的相对应的引物;或(iv)满足上述(i)和(iii)的描述的至少一种引物对。因此,当扩增靶核酸和/或扩增子时,生成随后的扩增产物的过量的一条链(相对于其补体)。不对称的PCR的描述可以特别在McPherson,特别是第5章;和Rapley,特别是第64章中找到。
在某些实施方案中,人们可以使用至少一种引物对,其中所述引物中的一种的Tm高于另一种引物的Tm,有时叫作A-PCR(参见,例如,Chen等,美国专利申请公布号US2003/0207266A1)。在某些实施方案中,正向引物的Tm与相对应的反向引物的Tm有至少4-15℃的差别。在某些实施方案中,正向引物的Tm与相对应的反向引物的Tm有至少8-15℃的差别。在某些实施方案中,正向引物的Tm与相对应的反向引物的Tm有至少10-15℃的差别。在某些实施方案中,正向引物的Tm与相对应的反向引物的Tm有至少10-12℃的差别。在某些实施方案中,在至少一种引物对中,正向引物的Tm与相对应的反向引物的Tm的差别在于至少约4℃,至少约8℃,至少约10℃,或至少约12℃。
在A-PCR的某些实施方案中,除了引物对中的引物的Tm的差异之外,相对于引物对中的另一种引物,还存在过量的一种引物。在某些实施方案中,相对于引物对中的另一种引物,存在5倍到20倍过量的一种引物。在某些A-PCR的实施方案中,引物的浓度为至少50nM。
按照某些A-PCR实施方案,人们可以在第一个扩增循环中使用常规的PCR,以致两个引物退火,并且双链扩增子或靶核酸的两条链都得到扩增。然而,在同一扩增反应的后续循环中通过升高温度,可以使得具有更低Tm的引物失去能力,以致只有一条链得到扩增。因此,其中具有更低Tm的引物失去能力的后续的A-PCR循环导致不对称的扩增。所以,当扩增靶核酸或扩增产物时,生成后续扩增产物的过量的一条链(相对于其补体)。
按照某些A-PCR实施方案,可以通过改变第一阶段的常规PCR循环过程中的循环数而控制扩增的水平。在这样的实施方案中,通过改变初始的常规循环的数目,人们可以改变在具有更低Tm的引物失去能力的更高的温度进行后续PCR循环的双链扩增产物的量。
最优化扩增反应的特定的方法是本领域的技术人员已知的。例如,已知PCR可以通过改变用于退火、聚合和变性的时间和温度,以及改变反应组合物中的缓冲剂、盐、和其它试剂而最优化。最优化还可以受所用的探针和/或引物的设计的影响。例如,探针和/或引物的长度,以及G-C:A-T比例可以改变退火的效率,因此改变扩增反应。扩增最优化的描述可以特别在下列各项中找到:James C.Wetmur,“Nucleic Acid Hybrids,Formationand Structure(核酸杂化体,形成和结构),”在Molecular Biology andBiotechnology(分子生物学和生物技术)中,第605-8页,(Robert A.Meyers编,1995);McPherson,特别是第4章;Rapley;以及Protocols&ApplicationsGuide(方法和应用指南),rev.9/04,普洛麦格(Promega)。
某些反应组合物还包含dUTP和尿嘧啶-N-糖基化酶(UNG;例如,
Figure BDA00002904136800371
应用生物系统(Applied Biosystems))或尿嘧啶-DNA糖基化酶(UDG;纽英伦生物实验室(New England BioLabs),Beverly,MA)。例如,在扩增反应中应用dUTP和UNG的讨论可以在Kwok等,Nature(自然),339:237-238,1989;McPherson;Longo等,Gene(基因),93:125-128,1990;和Gelfand等,美国专利号5,418,149中找到。
在某些方法实施方案中,扩增包括解旋酶,其包括但不限于,大肠杆菌UvrD解旋酶,DnaB解旋酶,或噬菌体T7基因4蛋白;DNA聚合酶,其包括但不限于DNA聚合酶III或DNA聚合酶I的克列诺片段;解旋酶辅助蛋白,其包括但不限于,MutL蛋白;单链结合蛋白(SSB),其包括但不限于,大肠杆菌SSB,T7基因2.5SSB,T4基因32蛋白,和/或RB49基因32蛋白;或它们的组合。在某些实施方案中,包含核苷酸序列和猝灭剂的酶抑制剂设计成当所述酶抑制剂和解旋酶在第一温度彼此缔合形成复合物时,抑制解旋酶的酶活性,但是在第二温度不抑制,在第二温度,所述酶抑制剂和解旋酶解聚。在某些实施方案中,解旋酶抑制剂的核苷酸序列包括适体。在一些实施方案中,解旋酶抑制剂的核苷酸序列可以在第一温度形成双链片段,但是典型地不在第二温度形成。
在一些实施方案中,扩增包括连接酶-介导的扩增技术,例如但不限于,LDR,LCR,FEN-LCR,连接介导的扩增方法的缺口寡核苷酸和缺口-填补形式,连接酶-介导的扩增的扣锁形式,和与PCR和/或其它扩增方法偶联的连接方法,并且包括它们的多重形式(参见,例如,Demidov和Broude,特别是第1.3章;Lizardi等,Nat.Genetics(自然遗传学)19:225-32(1998);Bi等,美国专利号6,511,810;以及Wenz和Schroth,美国专利申请公布号US2003/10190646A1)。按照某些包括连接酶-介导的扩增的方法,连接酶和包含核苷酸序列和猝灭剂的连接酶抑制剂在第一温度缔合,以形成连接酶-连接酶抑制剂复合物。当与所述连接酶抑制剂缔合时,连接酶的酶促活性被抑制,其减少在不存在连接酶抑制剂时可能发生的至少一些错误连接,因此减少某些次级扩增子,并且减少背景荧光。当将包括连接酶-连接酶抑制剂复合物的反应组合物加热到第二温度时,所述连接酶抑制剂与所述连接酶解聚,并且邻近杂交的探针可以有效地连接。在某些实施方案中,当它们杂交到靶核酸或其补体上时,5’-端下游连接探针和相对应的上游连接探针的3’-端不是紧密邻近的,并且应用缺口-填补步骤,以将上游探针的3’-端延长到与下游探针的5’-端毗邻。在其它实施方案中,在下游探针的5’-端和上游探针的3’-端之间存在缺口,以致“缺口寡核苷酸”可以在所述连接探针相对的末端之间的缺口中杂交。在某些这样的实施方案中,5’-端下游探针可以与缺口寡核苷酸的3’-端连接,并且上游探针的3’-端可以与缺口寡核苷酸的5’-端连接。
在某些实施方案中,连接酶抑制剂的核苷酸序列包括适体。在一些实施方案中,连接酶抑制剂的核苷酸序列可以在第一温度形成双链片段,但是典型地不在第二温度形成。
按照某些缺口-填补LCR或缺口-填补LDR扩增技术,可以在第一温度形成包括DNA聚合酶和DNA聚合酶抑制剂的复合物,抑制所述DNA聚合酶的活性。在某些实施方案中,连接酶和连接酶抑制剂在第一温度形成复合物,以抑制错误退火的连接探针的连接,所述的错误退火有时叫作错误连接。
本领域的技术人员应该理解,所公开的酶抑制剂、复合物、方法和试剂盒可以用于各种不同的情形中,在所述情形中,进行可以进行引物和/或探针的错误退火并且随后形成不需要的次级扩增子的酶-介导的扩增反应。可以受益于使用包含猝灭剂的酶抑制剂以至少减少背景荧光的任何酶-介导的扩增技术在本发明的目的范围内。
扩增的或测序的靶核酸可以通过本领域已知的任何适当的技术检测,其包括测量、定量和/或直接或间接地观察可猝灭的发射,其包括但不限于,荧光、化学发光、生物发光、磷光等,例如但不限于,激光诱导的荧光和电化学发光。按照所公开的方法的一些实施方案,检测可以包括任何适当的实时或终点检测技术。适当的检测技术的一些非限制性的实例包括解链曲线分析、Q-PCR或其它包括核酸染料,并且在一些实施方案中,包括至少一种报道探针的实时技术;以及电泳技术,其包括但不限于凝胶电泳。本领域的技术人员应该理解,各种猝灭剂部分是可用的,其笼统地涵盖宽范围的可检测的发射,并且通过将具有适当的吸收谱的猝灭剂与发射源配对,其可以减少来自所述源的发射中的至少一些。
在一些实施方案中,本发明的方法包括Q-PCR。术语“定量PCR”或“Q-PCR”,还叫作实时PCR,是指用于特异性地、非特异性地或二者定量PCR扩增产物的各种方法(参见,例如,Raeymakers,Mo1.Biotechnol.(分子生物技术)15:115-22(2000);Joyce,定量RT-PCR,在Methods in Mol Biol.(分子生物学方法)中,卷193,O’Connell,编,Humana出版社;Pierson等,Nucl.Acids Res.(核酸研究)31(14):e73(2003))。这样的方法典型地分类为基于动力学的系统,其通常确定或比较扩增因素,诸如确定阈值循环(Ct),或分类为共扩增方法,其通常比较从靶和标准模板同时扩增而产生的产物的量。Q-PCR技术典型地包括报道探针,核酸染料,或二者。例如但不限于探针(应用生物系统(Applied Biosystems)),i-探针,分子beacons,Eclipse探针,蝎子引物,LuxTM引物,FRET引物,溴化乙锭,以及不对称的花青染料,例如但不限于,
Figure BDA00002904136800392
Green I(分子探针(MolecularProbes)),YO-PRO-1,Hoechst 33258,BOXTO(TATAA生物中心(Biocenter),Goteborg,瑞典)和
Figure BDA00002904136800401
(分子探针)。
在一些实施方案中,本发明的方法在测序反应之前或与之联合进行。术语“测序”以广义用于此,并且是指本领域已知的允许鉴定在至少部分多核苷酸,例如但不限于靶核酸或扩增子中的至少一些连续的核苷酸的次序的任何技术。测序技术的一些非限制性的实例包括桑格双脱氧终止子方法和Maxam和Gilbert的化学裂解方法,包括这些方法的变化;通过杂交测序;通过合成测序;以及限制性作图。一些测序方法包括电泳,其包括毛细电泳和凝胶电泳;通过杂交测序包括微阵列杂交;质谱;和单分子检测。在一些实施方案中,测序包括直接测序,双链体测序,循环测序,单碱基延伸测序(SBE),固相测序,或它们的组合。在一些实施方案中,测序包括使用仪器检测测序的产物,所述仪器例如,但不限于,
Figure BDA00002904136800402
377DNA测序仪,ABI
Figure BDA00002904136800403
310,3100,3100-Avant,3730,或3730xl基因分析仪,ABI
Figure BDA00002904136800404
3700DNA分析仪(全部来自应用生物系统(AppliedBiosystems)),或质谱仪。在一些实施方案中,测序包括在扩增产物中结合dNTP,其包括dATP,dCTP,dGTP,dTTP,dUTP,dITP或它们的组合,并且包括dNTPs的双脱氧核糖核苷酸类似物。
本领域的那些技术人员应该理解,所用的测序方法典型地不是本发明方法的限制。相反,提供至少部分相对应的扩增子或靶核酸的至少一些连续的核苷酸的次序的任何测序技术可以典型地与本方法一起应用。在一些实施方案中,在测序步骤之前,通过酶降解,其包括但不限于核酸外切酶I和虾碱性磷酸酶消化,例如但不限于
Figure BDA00002904136800405
试剂(USB公司,Cleveland,OH),而去除未结合的引物和/或dNTPs。在一些实施方案中,未结合的引物,dNTPs,和/或ddNTPs通过凝胶或柱纯化、沉淀、过滤、珠子、磁力分离或基于杂交的选出而适当地去除(参见,例如,ABIDuplexTM384Well F/R序列捕获试剂盒,应用生物系统(AppliedBiosystems)P/N 4308082)。在某些实施方案中,将包含扩增产物的反应组合物,或至少部分这样的反应组合物,未进行之间的纯化步骤而进行测序反应(参见,例如,Baskin等,美国专利申请公布号US2002/0137047 A1)。测序技术的描述可以特别在下列各项中找到:McPherson,特别是第5章;Sambrook和Russell;Ausubel等;Siuzdak,The Expanding Role of MassSpectrometry in Biotechnology(质谱在生物技术中的扩大作用),MCC出版社,2003,特别是第7章;以及Rapley,特别是第VI章。
在一些实施方案中,所公开的方法和试剂盒包括微观流体装置,“在芯片上的实验室”,或micrototal分析系统(μTAS)。在一些实施方案中,使用微观流体装置进行样品制备。在一些实施方案中,使用微观流体装置进行扩增反应。在一些实施方案中,使用微观流体装置进行测序或实时PCR反应。在一些实施方案中,使用微观流体装置获得至少部分扩增产物的核苷酸序列。示例性微观流体装置的描述可以特别在下列各项中找到:公布的PCT申请号WO/0185341和WO04/011666;Kartalov和Quake,Nucl.Acids Res.(核酸研究)32:2873-79,2004;以及Fiorini和Chiu,BioTechniques(生物技术)38:429-46,2005。
某些示例性实施方案
本发明提供用于扩增靶核酸并且用于减少背景荧光的组合物、方法和试剂盒,典型地在包含至少一种酶和至少一种酶抑制剂的反应组合物中,所述酶抑制剂包括至少一种核苷酸序列和至少一种猝灭剂。
所述酶抑制剂包含核苷酸序列和猝灭剂。设计这样的酶抑制剂的核苷酸序列,以通过在第一温度抑制酶的活性而减少不需要的扩增产物的形成,特别是由于在非靶序列的错误引发事件,连接和/或裂解探针的错误退火,以及引物二聚体的形成而导致的不需要的扩增产物的形成,而在第二温度不抑制酶的活性。减少的次级扩增子形成的水平减少反应组合物中的非特异性荧光的至少一种成分。所公开的酶抑制剂还设计成在适当条件下自我猝灭。所公开的抑制剂的猝灭剂部分设计成吸收在第一温度范围内通过核酸染料分子与所述酶抑制剂的双链片段的缔合而产生的荧光信号中的至少一些,而不管所述酶抑制剂是在溶液中游离的还是与酶复合的。因此,所述酶抑制剂的猝灭剂减少这种背景荧光的次级来源中的至少一些,进一步减少反应组合物中的非特异性荧光。
某些示例性酶抑制剂
按照本发明,包含核苷酸序列和猝灭剂的酶抑制剂设计成在所述酶抑制剂与所述酶在酶抑制剂-酶复合物中缔合时,而抑制酶的至少一种酶活性。设计所述酶抑制剂的核苷酸序列,以致它们可以形成包括至少一个双链片段的结构,并且选择所述猝灭剂以能够吸收在与所述酶抑制剂的双链片段缔合时从核酸染料发射的荧光中的至少一些。在第一温度,例如,但不限于,室温(典型地约22℃-28℃)以及低于、处于或略高于需要的模板延伸温度的温度,可以形成所述酶-酶抑制剂复合物和/或保持缔合。当将包含酶-酶抑制剂复合物的反应组合物加热到第二温度时,所述酶随着所述复合物解聚而释放。所公开的RNA聚合酶抑制剂设计成在所述抑制剂和RNA聚合酶在复合物中缔合时而抑制RNA聚合酶的聚合活性。所公开的连接酶抑制剂设计成在所述连接酶抑制剂和所述连接酶在复合物中缔合时,这包括错误退火的连接探针的连接,而抑制在模板上两个相邻杂交的核苷酸链之间的磷酸二酯的形成。所公开的解旋酶抑制剂设计成在所述解旋酶抑制剂和所述解旋酶在复合物中缔合时,抑制所述解旋酶催化双链核酸的解旋的能力。某些公开的裂解酶抑制剂设计成在所述裂解酶抑制剂和所述裂解酶在复合物中缔合时,而抑制所述裂解酶的5’-核酸酶活性。在某些实施方案中,连接酶抑制剂、RNA聚合酶抑制剂、解旋酶抑制剂、和/或裂解酶抑制剂的核苷酸序列包括适体。本发明的酶抑制剂的抑制能力典型地不显著依赖于所述抑制剂的精确序列。相反,所述酶抑制剂的整体结构及其解链温度是酶抑制剂是否将抑制相对应的酶的目的酶活性的主要决定因素。在某些实施方案中,将酶抑制剂设计成在第一温度采用模拟相对应的酶的底物的构象,允许所述酶与所述抑制剂缔合形成复合物,在所述复合物中抑制所述酶的酶活性。在第二温度,所述酶抑制剂的构象可以改变,以致它不再模拟底物,并且将所述酶从所述复合物中释放出来。因此,当它们基本上是单链的和/或不与所述酶在复合物中时,所公开的抑制剂典型地表现出显著更少的抑制作用,如果有抑制作用的话。在一些实施方案中,酶抑制剂的核苷酸序列包含脱氧核糖核苷酸、核糖核苷酸、核苷酸类似物、非核苷酸接头或它们的组合。
所公开的连接酶抑制剂显著地不干扰连接探针或裂解探针与靶核酸或需要的扩增子,例如但不限于,连接的探针上的相对应的序列的退火。所公开的解旋酶抑制剂显著地不干扰引物与相对应的靶旁侧序列或扩增子的杂交。所公开的裂解酶抑制剂显著地不干扰裂解探针或连接探针与靶核酸或需要的扩增子上的相对应的序列的退火,或者引物与相对应的靶旁侧序列和/或扩增子的杂交。
将所公开的DNA聚合酶抑制剂设计成在所述抑制剂与所述DNA聚合酶,并且任选地NTP和/或核苷酸类似物,在第一温度在DNA聚合酶抑制剂-DNA聚合酶复合物中缔合时,而抑制DNA聚合酶的聚合活性,所述第一温度例如但不限于,近似等于或低于引物的Tm的温度。本发明的DNA聚合酶抑制剂的抑制能力通常不显著地依赖所述抑制剂的精确的序列。相反,DNA聚合酶抑制剂的整体结构及其解链温度是DNA聚合酶抑制剂是否将抑制所述DNA聚合酶的酶活性即,聚合的主要决定因素。典型地,所公开的DNA聚合酶抑制剂在它们包括双链片段并且与所述DNA聚合酶,任选地NTP和/或核苷酸类似物,在复合物中缔合时,将干扰所述DNA聚合酶的聚合活性。然而,当它们是单链的,并且与所述DNA聚合酶不在复合物中时,所公开的DNA聚合酶抑制剂表现出显著更少的抑制作用,如果有一些抑制作用的话。在某些实施方案中,选择DNA聚合酶抑制剂的Tm近似等于或低于在所选的聚合或引物延伸反应中所用的退火引物的引物延伸所用的温度,但不是总是这样。在一些实施方案中,DNA聚合酶抑制剂的解链温度稍微高于引物延伸温度,例如但不限于其中所述DNA聚合酶抑制剂以低浓度使用的反应组合物。
典型地,本发明的DNA聚合酶抑制剂在处于或低于第一温度时包括至少一个双链片段,但是在处于或高于第二温度时,是单链的或基本上单链的。因此在第一温度,在复合物中的DNA聚合酶的酶活性被抑制,而在第二温度,所述DNA聚合酶是活性的,并且可以发生扩增反应。
示例性的第一温度包括22℃,23℃,24℃,25℃,26℃,27℃,28℃,29℃,30℃,约22℃到约40℃,约25℃到约35℃,以及约22℃到约28℃,并且清楚地包括在指定的第一温度范围内的所有居间温度。示例性的第二温度包括:42℃,43℃,44℃,45℃,46℃,47℃,48℃,49℃,50℃,51℃,52℃,53℃,54℃,55℃,56℃,57℃,58℃,59℃,60℃,61℃,62℃,63℃,64℃,65℃,66℃,67℃,68℃,69℃,70℃,71℃,72℃,73℃,约48℃到约73℃,约53℃到约67℃,约63℃到约67℃,以及约64℃到约66℃,并且清楚地包括在指定的第二温度范围内的居间温度。本领域的技术人员应该理解,对于给定的扩增反应的适当的第一和第二温度将至少部分取决于所述酶、所述酶抑制剂的Tm、和/或所述引物和/或探针的Tm,但是,使用本领域已知的和本发明告知的方法,可以常规确定适当的温度,无需过度的实验。
在某些实施方案中,本发明的DNA聚合酶抑制剂的核苷酸序列包括单一寡核苷酸。在一些实施方案中,这样的DNA聚合酶抑制剂包括第一区域、第二区域、第三区域,并且任选地,第四区域;并且所述第一区域与所述第三区域互补。在适当的条件下,包括在第一温度下,这样的DNA聚合酶抑制剂的第一区域和第三区域可以退火,并且形成至少一个双链片段,以致所述DNA聚合酶抑制剂采取茎-环或发夹构象。在某些实施方案中,只有在第一区域中的部分子集核苷酸与在第三区域中的相对应的部分子集核苷酸互补。在一些实施方案中,所公开的DNA聚合酶抑制剂包括可以影响或可以不影响所述DNA聚合酶抑制剂的Tm的核苷酸类似物。
一些包含一种寡核苷酸的示例性的DNA聚合酶抑制剂在图1中示例性地描述。在图1A中所示的示例性DNA聚合酶抑制剂包括在整个图1中用黑色条带显示的第一区域(1),在整个图1中用波浪线显示的第二区域(2),第三区域(3),和任选地第四区域([4],以中括号显示,以表明在本实施方案中它是任选地),其在整个图1中以黑色阴影显示。由于末端核苷酸包括双脱氧胞嘧啶(以ddC显示),所以这种示例性抑制剂的3’-端是不可延伸的。所述第一区域(1)还包括猝灭剂(5)。所述示例性的抑制剂显示第一区域(1)与第三区域(3)退火形成双链片段,以致所述抑制剂是以茎-环构象存在,其中第二区域(2)形成所述环,并且第四区域(4)作为5’单链突出端。在某些实施方案中,这样的DNA聚合酶抑制剂的第四区域的单链突出端包括至少一些核糖核苷酸,特别是当将所述抑制剂设计成与特定的反转录酶复合时。在图1B中显示的示例性DNA聚合酶抑制剂包括第一区域(1)、第二区域(2)、和第三区域(3),但是没有第四区域。显示所述第一区域(1)和第三区域(3)退火形成茎,并且第二区域(2)形成环结构,并且还包括猝灭剂(5)。在图1C中显示的示例性DNA聚合酶抑制剂包括第一区域(1),其包括第一猝灭剂(6),显示为Q1;第二区域(2),其包括第二猝灭剂(7),显示为Q2;和第三区域(3);以及任选地第四区域([4])。在图1D中显示的示例性的DNA聚合酶抑制剂包括第一区域(1),第二区域(2),第三区域(3),以及任选地第四区域([4]),所述第四区域在5’-端包括猝灭剂(5),显示为Q。
在特定的DNA聚合酶抑制剂实施方案中,所述核苷酸序列包括第一区域、第二区域、第三区域、第四区域、第五区域和第六区域;其中所述第一区域与第三区域互补,并且所述第一区域和第三区域可以在第一温度形成至少一个双链片段;其中所述第四区域与第六区域互补,并且所述第四区域和第六区域可以在第一温度形成至少一个双链片段;其中在第六区域的3’-端和第一区域的5’-端之间存在至少一个单链区域;并且其中第六区域的3’-端包括不可延伸的核苷酸。
在其它DNA聚合酶抑制剂实施方案中,所述核苷酸序列包括至少两种不同的寡核苷酸,例如但不限于,第一寡核苷酸和第二寡核苷酸。在某些实施方案中,其中所述DNA聚合酶抑制剂包括两种寡核苷酸,第一寡核苷酸包括第一区域,并且第二寡核苷酸包括第三区域,并且任选地,包括第四区域,并且第一寡核苷酸的第一区域与第二寡核苷酸的第三区域互补。在某些实施方案中,第一区域中只有子集的核苷酸与第三区域相对应的片段互补。在适当条件下,包括在第一温度下,第一寡核苷酸的第一区域和第二寡核苷酸的第三区域可以退火,形成包括至少一个双链片段的双链体。当将本发明的DNA聚合酶抑制剂加热到第二温度时,例如但不限于在第二温度范围内,它们采取单链的或基本上单链的构象,不是茎-环或双链体构象。
一些包括两种或多种寡核苷酸的示例性酶抑制剂示例性显示在图2中。在图2A中显示的示例性DNA聚合酶抑制剂包括与第二寡核苷酸退火的第一寡核苷酸,所述第一寡核苷酸包括在整个图2中以黑色条带显示的第一区域(1),所述第二寡核苷酸包括第三区域(3)和在整个图2中以黑色阴影显示的第四区域(4)。这种示例性DNA聚合酶抑制剂的第一寡核苷酸还包括猝灭剂,表示为Q。在图2B中显示的示例性DNA聚合酶抑制剂包括与第二寡核苷酸退火的第一寡核苷酸,所述第一寡核苷酸包括第一区域(1),所述第二寡核苷酸包括第三区域(3)和第四区域(4)。在这种示例性的DNA聚合酶抑制剂中,显示猝灭剂(Q)附着在第四区域(4)上。在图2C中显示的示例性DNA聚合酶抑制剂包括第一寡核苷酸和第二寡核苷酸,所述第一寡核苷酸包括含有第一猝灭剂(表示为Q1)的第一区域(1),所述第二寡核苷酸包括第三区域(3)以及包含第二猝灭剂(表示为Q2)的第四区域(4)。在图2D中显示的示例性DNA聚合酶抑制剂包括与第二寡核苷酸退火的第一寡核苷酸,所述第一寡核苷酸包括第一区域(1),所述第二寡核苷酸包括第三区域(3),其中所述第二寡核苷酸包括猝灭剂(表示为Q)。在图2E中显示的示例性DNA聚合酶抑制剂包括第一寡核苷酸,其包括第一区域(1)并且与包含第三区域(3)的第二寡核苷酸退火,其中所述第一寡核苷酸和第二寡核苷酸都包括猝灭剂(表示为Q1和Q2)。
在某些实施方案中,DNA聚合酶抑制剂的核苷酸序列包括与之结合的适体,并且当被适体结合时抑制所述DNA聚合酶的酶活性。在一些实施方案中,DNA聚合酶抑制剂包括包含至少一个双链片段的适体。当所述适体在溶液中游离,或者在复合物中与所述DNA聚合酶结合时,所述猝灭剂吸收由与所述适体缔合的核酸染料分子产生的荧光信号中的至少一些。
所公开的DNA聚合酶抑制剂不显著地干扰引物与相对应的靶旁侧序列和/或扩增子的杂交。除了减少与DNA聚合酶抑制剂的双链片段缔合的核酸染料分子的荧光强度并且减少次级扩增子的形成之外,相对于不包含所述DNA聚合酶抑制剂的平行扩增反应,本发明的一些DNA聚合酶抑制剂提高需要的扩增子的产量。
在一些实施方案中,DNA聚合酶抑制剂的核苷酸序列的3’-端不能通过DNA聚合酶延伸,典型地是由于存在不可延伸性核苷酸,其包括但不限于含有封闭基团的末端核苷酸。封闭基团是可以添加到核苷酸或核酸上以防止或使通过DNA聚合酶的核苷酸添加最少化的化学部分。通过将封闭基团添加到末端3’-OH上,所述核苷酸不再能够参与由DNA聚合酶催化的磷酸二酯键形成。封闭基团的一些非限制性实例包括烷基基团、非核苷酸接头、硫代磷酸酯、链烷二醇残基、PNA、LNA、包含替代3’-羟基基团的3’氨基基团的核苷酸类似物、包含替代5’磷酸基团的5’羟基基团的核苷酸类似物、以及缺少3’OH基团的核苷酸衍生物。烷基封闭基团是饱和烃,其可以是直链的、支链的、环形的或它们的组合。不可延伸的核苷酸的一些非限制性的实例包括具有已经被修饰,如通过用氢或氟取代或通过形成酯、酰胺、硫酸酯或糖苷而修饰的3’-羟基基团的核苷酸。这些核苷酸通常是不可链延伸的。可以使用的不可延伸的核苷酸的其它实例包括具有修饰的核糖部分的核苷酸。在某些实施方案中,核糖核苷酸可以作为不可延伸的核苷酸,原因在于在核糖核苷酸中终止的寡核苷酸不能通过特定的DNA聚合酶延伸。可以修饰所述核糖,以包含3’-脱氧衍生物,其包括其中3’-羟基被除氢以外的官能团如叠氮基团取代的那些。在某些实施方案中,不可延伸的核苷酸包括双脱氧核苷酸(ddN),例如但不限于,双脱氧腺苷(ddA)、双脱氧胞嘧啶(ddC)、双脱氧鸟苷(ddG)、双脱氧胸苷(ddT)或双脱氧尿苷(ddU)。
在一些实施方案中,酶抑制剂包含两种猝灭剂、三种猝灭剂或多于三种猝灭剂。在某些抑制剂实施方案中,第一区域包含猝灭剂和/或第三区域包含第三猝灭剂。在某些实施方案中,第二区域包含猝灭剂。在一些实施方案中,第四区域包含猝灭剂。在某些实施方案中,第五区域包含猝灭剂。在某些实施方案中,第六区域包含猝灭剂。在一些实施方案中,酶抑制剂在核苷酸序列的3’-端、核苷酸序列的5’-端和/或内部包含猝灭剂。在一些实施方案中,酶抑制剂包含第二区域,并且在一些实施方案中,包含形成茎-环构象的环的第五区域。在某些实施方案中,环包含猝灭剂。
所公开的连接酶抑制剂没有显著地干扰连接探针与相对应的靶核酸和/或扩增子的退火,并且在某些实施方案中,没有显著地干扰裂解探针与相对应的靶核酸和/或扩增子的退火,和/或引物与相对应的靶核酸和/或扩增子的退火。所公开的裂解酶抑制剂没有显著地干扰裂解探针与相对应的靶核酸或扩增子的退火,并且在某些实施方案中,没有显著地干扰连接探针与相对应的靶核酸或扩增子的退火,和/或引物与相对应的靶核酸或扩增子的退火。所公开的解旋酶抑制剂没有显著地干扰引物与相对应的靶核酸和/或扩增子的退火,并且在某些实施方案中,没有显著地干扰裂解探针和/或连接探针与相对应的靶核酸和/或扩增子的退火。除了减少与酶抑制剂的双链片段缔合的核酸染料分子的荧光强度并且减少次级扩增子的形成之外,相对于不包含所述酶抑制剂的平行扩增反应,本发明的一些酶抑制剂可以增加需要的扩增子的产量。
在某些实施方案中,酶抑制剂的双链片段包含内部碱基对错配。在某些实施方案中,酶抑制剂包含环结构,典型地是包含双链片段和单链环的茎-环结构。在某些实施方案中,酶抑制剂包含两个环结构。在一些实施方案中,在第一温度,当抑制剂的互补序列彼此退火时,酶抑制剂的第二区域和/或第五区域可以形成环结构,例如但不限于,第一区域与第三区域退火;和/或第四区域与第六区域退火。在某些实施方案中,所述核苷酸序列的第二区域、第五区域或第二区域和第五区域包括2-12个核苷酸和/或核苷酸类似物,并且在一些实施方案中,包括2-6个核苷酸和/或核苷酸类似物。在一些实施方案中,所述第二和/或第五区域包括非核苷酸接头。在某些实施方案中,酶抑制剂的第二区域、第五区域、或第二和第五区域由序列(T)n组成,基本上由序列(T)n组成,或者包括序列(T)n,其中n是在1和8之间的任何数目的T核苷酸,例如但不限于,TT,TTT,TTTT,或TTTTT。在其它实施方案中,所述第二区域和/或第五区域由核苷酸A,C,和/或G组成,基本上由核苷酸A,C,和/或G组成,或者包括核苷酸A,C,和/或G,包括但不限于任意这些核苷酸的核苷酸类似物。在一些实施方案中,所述第二区域和/或第五区域包括(1)至少一个核苷酸类似物,例如但不限于PNA和/或LNA,和/或(2)非核苷酸接头,例如但不限于包含烃基团(-CH2-)的非核苷酸,包括但不限于,包括烷、烯或炔部分,以及乙二醇的接头,其包括但不限于聚乙二醇(PEG)。典型地所述接头基团不是疏水性的。在某些实施方案中,接头是亲水性的,或者接头的至少部分具有亲水特性。本领域的技术人员应该理解,在所公开的酶抑制剂中的接头的组成通常没有限制,条件是所述接头不干扰酶-酶抑制剂的相互作用,并且所述接头足够灵活,足以允许所述酶抑制剂在第一温度自我退火。
在一些实施方案中,DNA聚合酶抑制剂包含在所述核苷酸序列的3’-端、5’-端或3’-端和5’-端两端上的小沟结合物。在一些实施方案中,所述小沟结合物位于内部。在某些实施方案中,所述小沟结合物还包含猝灭剂,例如但不限于,MGB-NFQ(应用生物系统(Applied Biosystems))。小沟结合物的非限制性实例包括,抗生素如纺锤菌素,偏端霉素,重氮氨苯脒乙酰甘氨酸盐,喷他脒及其它芳香二脒,Hoechst 33258,SN6999,金霉(aureolic)抗肿瘤药如色霉素和光神霉素,CC-1065,二氢环吡咯并吲哚三肽(DPI3),1,2-二氢-(3H)-吡咯并[3,2-e]吲哚-7-羧酸酯(CDPI3),以及相关的化合物和类似物。小沟结合物的描述可以特别在下列各项中找到:Nucleic Acids inChemistry and Biology(化学和生物学中的核酸),第2版,Blackburn和Gait,特别在第8.3部分中;Kumar等,Nucl.Acids Res.(核酸研究)26:831-38,1998;Kutyavin等,Nucl.Acids Res.(核酸研究)28:655-61,2000;Turner和Denny,Curr.Drug Targets(现代药物靶)1:1-14,2000;Kutyavin等,Nucl.Acids Res.(核酸研究)25:3718-25,1997;Lukhtanov等,Bioconjug.Chem.(生物缀合物化学)7:564-7,1996;Lukhtanov等,Bioconjug.Chem.(生物缀合物化学)6:418-26,1995;美国专利号6,426,408;和PCT公布申请号WO 03/078450。本领域的技术人员明白小沟结合物典型地提高它们所附着的寡核苷酸的Tm,允许这样的寡核苷酸有效地在更高的温度杂交。小沟结合物可以特别从应用生物系统(Applied Biosystems)(Foster City,CA)和Epoch生物科学(Epoch Biosciences)(Bothell,WA)商购。
在一些实施方案中,酶抑制剂的核苷酸序列包含通用碱基。在一些实施方案中,DNA聚合酶抑制剂包括第四区域或包含通用碱基的第六区域。在某些实施方案中,紧邻DNA聚合酶抑制剂的第三区域的第四区域的核苷酸包含通用碱基。在某些实施方案中,紧邻在DNA聚合酶抑制剂的第六区域和第一区域之间的单链区域的第六区域的核苷酸包含通用碱基。在一些实施方案中,所述通用碱基与NTP在DNA聚合酶抑制剂-DNA聚合酶复合物中相互作用。
本领域的技术人员应该理解,使用公知的方法和通过本发明的指导,并且无需过度实验,可以经验性地确定酶抑制剂的Tm;或者Tm可以应用运算法则估计。用于计算估计的Tm,包括含有常用核苷酸和/或核苷酸类似物的嵌合的寡聚体的Tm的一些公式和计算机运算法则是本领域公知的。按照一个用于寡核苷酸的这样的预测公式,Tm=(4×G+C的数目)+(2×A+T的数目)。特定的寡核苷酸如酶抑制剂、探针或引物的Tm,还可以使用已知的方法无需过度实验而常规确定。Tm/解链温度以及它们的计算的描述可以特别在Rapley;Nielsen,Exiqon Technical Note LNA02/07.2002,Exiqon A/S;McPherson;Finn等,Nucl.Acids Res.(核酸研究)17:3357-63,1996中找到。
本发明的酶抑制剂的解链温度可以以各种方法计算。例如,本领域的那些技术人员明白第一和第三区域,并且在某些实施方案中,第四和第六区域的互补序列的长度和/或组成,可以不同,以增加或减少酶抑制剂的解链温度;在某些抑制剂实施方案中,第四和第六区域的互补序列的长度和/或组成可以不同,以增加或减少所述酶抑制剂的Tm。因此,一般地,与具有更少数目的杂交碱基对的双链片段相比,具有更多数目的杂交碱基对的双链片段通常在更高的温度解链。然而,如果需要长的双链片段,本领域的技术人员可以引入碱基对错配,例如但不限于,G:T碱基对,以调节解链温度。在某些实施方案中,酶抑制剂的双链片段含有一个错配的碱基对,两个错配的碱基对,三个错配的碱基对,四个错配的碱基对,或多于四个错配的碱基对,其中两个或多个错配的碱基对可以,但是不必要,是相邻的。
因此,所公开的酶抑制剂的双链片段不必是100%互补的。相反,双链片段可以具有许多或特定百分比的错配或摆动碱基对。例如,所述双链片段可以具有约2%,约3%,约4%,约5%,约6%,约7%,约8%,约9%,约10%,约11%,约12%,约13%,约14%,约15%,约16%,约17%,约18%,约19%,或约20%的碱基对错配。在某些实施方案中,通过设计包含无碱基的核苷酸类似物的双链片段,而调节酶抑制剂的解链温度,所述无碱基的核苷酸类似物例如但不限于,包含糖或糖类似物和磷酸酯或磷酸酯类似物而不是核苷酸碱基或核苷酸碱基类似物的类似物,其特别消除双链区域内的碱基对。
包含第二区域和/或第五区域的酶抑制剂的解链温度还可以通过增加或减少在环中的核苷酸和/或核苷酸类似物的数目而调节。包含单一寡核苷酸的酶抑制剂的解链温度还可以通过在可以在第一温度包含至少一个双链片段的区域与在第一温度不包含双链片段的区域之间的结合处存在或不存在一个或多个“GC夹”而进行调节。例如但不限于环结构的碱基,其包括但不限于,在某些实施方案中,邻近第二区域并且与邻近第二区域的第三区域的核苷酸退火的第一区域的核苷酸(参见,例如,图1A),和/或在一些实施方案中,邻近第五区域并且与邻近第五区域的第六区域的核苷酸退火的第四区域的核苷酸(参见,例如,图1E)。类似地,包含两种或多种寡核苷酸的酶抑制剂的Tm可以通过存在或不存在GC夹而调节,特别是在它们位于所述酶抑制剂的第一和第三区域的互补片段的一端或两端时,其包括但不限于,环的碱基,如果适当的话;并且在某些实施方案中,位于所述酶抑制剂的第四和第六区域的互补片段的两端中的一端。酶抑制剂的解链温度还可以通过在所述核苷酸序列的第一和/或第三区域中的核苷酸类似物进行调节,并且在某些实施方案中,所述核苷酸序列的第四和/或第六区域,例如但不限于脱氮-dA。提高Tm的核苷酸类似物的一些非限制性实例包括取代dC的C-5丙炔基-dC或5-甲基-2’-脱氧胞苷;取代dA的2,6-二氨基嘌呤2’-脱氧核苷(2-氨基-dA);以及取代dT的C-5丙炔基-dU;其中每种取代分别提高相对解链温度约2.8℃,1.3℃,3.0℃,和1.7℃。
当考虑双链片段的长度时,应该考虑所述酶抑制剂的解链温度。例如但不限于,如果DNA聚合酶抑制剂的Tm太高,那么它可以在高于在引物延伸扩增中所用的温度的温度变性,由此引起需要的聚合反应的抑制和减少的需要的扩增子的产量。如果所述Tm太低,那么所述DNA聚合酶抑制剂可以在允许引物与非靶核酸杂交并且延伸的温度解链,并且失活。当所述DNA聚合酶能够扩增这样的非靶核酸时,那么将在终扩增产物混合物中存在许多不需要的产物,包括引物-二聚体。在某些实施方案中,酶抑制剂具有适当地接近,但不是显著高于扩增反应的所选的延伸、连接和/或裂解反应温度的解链温度。在一些实施方案中,特别是当所述酶抑制剂以低浓度应用时,可以使用具有适当地高于引物延伸温度、连接温度、或裂解反应温度的解链温度的酶抑制剂。典型地,本领域的技术人员可以确定酶抑制剂在将要使用其的条件下,例如,在核酸聚合条件下的解链温度。
一种示例性的DNA聚合酶抑制剂包括下述,由下述组成或基本上由下述组成:
5’-[TCTGG]GATA(脱氮dA)TT(脱氮dA)TGGTA(脱氮 dA)ATATGT(DABCYL-T)TTC(脱氮dA)TA TTTA TT(脱氮dA)TA(脱氮dA)TTATC(MGB-NFQ)-3’(SEQ ID NO:),
其中第四区域以中括号表示,第三区域以下划线表示,第二区域以黑体表示,并且第一区域以斜体表示,并且其中所述第二区域包括第一猝灭剂(在本实施例中表示为DABCYL),并且所述第一区域包括包含第二猝灭剂(在本实施例中表示为MGB-NFQ)的小沟结合物。由于在这两个区域之间的两个内部G:T碱基对错配,所以第一区域基本上与第三区域互补,但是所述DNA聚合酶抑制剂仍然在第一温度自我退火。在这种示例性DNA聚合酶抑制剂的一些实施方案中,在所述DNA聚合酶抑制剂的3’-端上的末端C核苷酸包括核苷酸类似物双脱氧胞嘧啶(ddC)。在一些实施方案中,第二区域包括TT,TTT,或TTTTT,由TT,TTT,或TTTTT组成或基本上由TT,TTT,或TTTTT组成。在其它实施方案中,第二区域包含非核苷酸接头。在一些实施方案中,第二区域不包含猝灭剂。在某些实施方案中,所述DNA聚合酶抑制剂的5’-端还包含猝灭剂。在某些实施方案中,所述DNA聚合酶抑制剂的至少一个G核苷酸包含核苷酸类似物脱氮-dG。在一些实施方案中,替代或除了DABCYL部分之外,所述第一猝灭剂包括:TAMRATM(羧基四甲基罗丹明);黑洞猝灭剂(black hole quencher)染料,例如但不限于BHQ-1,BHQ-2,或BHQ-3(生物搜索技术公司(BiosearchTechnologies,Inc.));OREGON
Figure BDA00002904136800521
染料(分子探针);ROXTM(羧基-X-罗丹明);DABSYL(4-二甲基氨基偶氮苯-4’-磺酰氯);或TET(四氯荧光素)。在一些实施方案中,替代或除了MGB-NFQ之外,所述第二猝灭剂包括DABSYL,DABCYL,TAMRA,黑洞猝灭剂,ROX,OREGONGREEN,或TET。猝灭剂的选择典型地不限于本发明,条件是所选择的猝灭剂可以吸收在所述核酸染料特有的波长的荧光,并且所述猝灭剂和/或所述猝灭剂在抑制剂中的位置基本上不减少所述抑制剂自我退火和/或与酶复合的能力。
另一种示例性DNA聚合酶抑制剂包括下述,由下述组成或基本上由下述组成:
5’-(TET)-[TTCTGG]GATAATTATGGTAAATATATTTTATATATTTATTATAATTATddC-3’(SEQ ID NO:),其中所述第四区域以中括号表示,第三区域用下划线表示,第二区域以黑体表示,并且第一区域以斜体表示,并且其中第四区域包含猝灭剂(在本实施例中表示为TET)。第一区域与第三区域互补。在所述DNA聚合酶抑制剂的第一区域的3’-端的末端C核苷酸包括核苷酸类似物双脱氧胞嘧啶(ddC),使得这一示例性的DNA聚合酶抑制剂不可延伸。在一些实施方案中,第二区域包括TT,TTTT,或TTTTT,由TT,TTTT,或TTTTT组成或基本上由TT,TTTT,或TTTTT组成。在一些实施方案中,第二区域包括非核苷酸接头。在某些实施方案中,第二区域不包含猝灭剂。在某些实施方案中,所述DNA聚合酶抑制剂的5’-端还包含猝灭剂。在某些实施方案中,至少一个G核苷酸包括核苷酸类似物脱氮-dG,至少一个A核苷酸包括核苷酸类似物脱氮-dA,或者至少一个G核苷酸包括脱氮-dG和至少一个A核苷酸包括脱氮-dA。在一些实施方案中,替代或除了TET部分之外,所述猝灭剂包括TAMRA,黑洞猝灭剂染料,ROX,OREGON GREEN,DABCYL,或DABSYL。
本领域的技术人员应该理解,典型地,所公开的酶抑制剂的长度与核苷酸和/或核苷酸类似物的组成可以变化,以便当在复合物中缔合时,最优化所述抑制剂,特别是双链片段的稳定性,并且提高其抑制相对应的酶的酶活的能力。本领域的技术人员还应该理解,当所述酶-酶抑制剂复合物在第一温度的解离速率,有时叫作“脱离-速率(off-rate)”是低的时,所公开的酶抑制剂典型地更有效地抑制次级扩增产物的形成。然而,在某些应用中,人们可以能够通过使用更高浓度的酶抑制剂而补偿“更快”的脱离速率。本领域的技术人员应该明白,用于特定应用的适当的酶抑制剂浓度可以凭经验确定。
当检测包括解链曲线分析,有时叫作解离曲线分析时,本发明的酶抑制剂是特别有用的。为了产生解链或解离曲线,将反应组合物加热,典型地以逐步或递增方式加热,并且在适当的时间间隔检测反应混合物的荧光。首先,在最初加热过程中,由于所述酶抑制剂的猝灭剂部分,其在第一温度范围内,减少从与所述酶抑制剂的双链片段缔合的核酸染料分子发射的荧光,所以反应组合物中的非特异性荧光减少。随着温度升高到第二温度,所述酶抑制剂的双链片段开始解链,将已经与所述酶抑制剂的双链片段缔合的核酸染料分子释放。由于所述酶抑制剂解离,其将使得一种或多种扩增子的评估变得复杂,所以预计将在解离曲线(以荧光的一阶导数相对温度作图)中出现峰值。由于在所述酶抑制剂中存在猝灭剂,与所述抑制剂解链相关的解离峰减小或不被检测到,原因在于所述猝灭剂吸收从缔合的染料分子发射的荧光中的至少一些,这至少减小了所述酶抑制剂的解离峰(参见,例如,图3-6)。
通常,本发明的DNA聚合酶抑制剂可以用于其中使用DNA聚合酶的任何扩增方法中。例如,所公开的DNA聚合酶抑制剂可以用于一种或多种下述方法中:DNA测序,DNA扩增,RNA扩增,反转录,DNA合成和/或引物延伸。所公开的DNA聚合酶抑制剂可以用于反应组合物中以用来通过引物延伸而扩增靶核酸,所述引物延伸例如但不限于,PCR和/或反转录。本发明的DNA聚合酶抑制剂还可以用于某些测序技术中。所公开的DNA聚合酶抑制剂可以用于使用终止子核苷酸通过单一核苷酸引物延伸的单核苷酸多态性(SNPs)检测中。任何这样的方法,包括其变体,例如但不限于,多核苷酸或引物标记,微型测序等,考虑与本文公开的DNA聚合酶抑制剂一起应用。
在一些实施方案中,连接酶抑制剂包括可以在第一温度作为连接底物模拟物的寡核苷酸,其是一种包含不能通过连接酶连接的切口的底物。在一些实施方案中,连接酶抑制剂包括两个邻近杂交的核酸末端,但是至少一个末端的至少一个末端核苷酸不与所述抑制剂的“模板”链杂交,并且所述两端不能连接在一起。在某些实施方案中,连接酶抑制剂包括两个邻近杂交的核酸末端,但是至少一个末端包括不被连接酶连接的末端核苷酸。例如,3’末端核苷酸不包含3’-羟基基团,5’末端核苷酸不包含5’-磷酸基团,或者二者。图1E中显示了一个包含不能通过连接酶闭合的切口的示例性的连接酶抑制剂实施方案。这种示例性的连接酶抑制剂包括第一区域(1),第二区域(2),第三区域(3),第四区域(4),第五区域(8),和第六区域(9)。所述第二区域(2),以环结构表示,还包含第一猝灭剂(6);和第五区域(8),也以环结构表示,还包括第二猝灭剂(7)。显示第一区域(1)与第三区域(3)退火形成第一双链片段;并且显示第四区域(4)与第六区域(9)退火形成第二双链片段,例如,其可以在第一温度发生。第六区域(9)的3’-端包含不可连接的末端(10),例如但不限于,缺少3’-OH基团的末端核苷酸(表示为X)。在某些实施方案中,这样的示例性连接酶抑制剂的第六区域的3’-端和/或第一区域的5’-端不与“模板链”(在这一举例说明中,分别为第四区域(4)和/或第三区域(3))退火。在某些实施方案中,连接酶抑制剂的上游末端(在图1E中所示的所述示例性连接酶抑制剂中表示为9)包括8个核苷酸,9个核苷酸,10个核苷酸,11个核苷酸,12个核苷酸,13个核苷酸,14个核苷酸,15个核苷酸,16个核苷酸,17个核苷酸,18个核苷酸,19个核苷酸,20个核苷酸,或多于20个核苷酸。应该理解,连接酶抑制剂的“上游链”的长度应该典型地设计成至少与所需要的连接酶的足迹一样长,并且可以更长。
在某些实施方案中,连接酶抑制剂包括可以与模板链邻近杂交的2个寡核苷酸,但是切口的相对末端不适合连接在一起,例如,但不限于,上游链的3’-端不包含3’-OH基团,下游链的5’-端不包含5’-磷酸基团,或者二者。
一些连接酶抑制剂实施方案包括至少三个寡核苷酸:第一寡核苷酸,第二寡核苷酸和第三寡核苷酸,其中所述第一寡核苷酸包括第一区域,所述第二寡核苷酸包括第三区域和第四区域,并且所述第三寡核苷酸包括第六区域,其中所述第一区域与第三区域互补,并且第四区域与第六区域互补。
某些连接酶抑制剂包括两个寡核苷酸,包括第一寡核苷酸和第二寡核苷酸,其中所述第一寡核苷酸包括第一区域,第二区域,第三区域和第四区域,并且所述第二寡核苷酸包括第六区域,并且其中所述第一区域与第三区域互补,并且第四区域与第六区域互补。在适当的条件下,包括在第一温度下,所述第一区域和第三区域可以退火,并且形成至少一个双链片段,并且第四区域和第六区域可以退火,形成至少一个双链片段。其它连接酶抑制剂实施方案包括多于两个寡核苷酸,在适当的条件下,包括在第一温度下,其可以退火,形成在两个邻近杂交的寡核苷酸末端之间包含不能通过连接酶闭合的切口或缺口的杂交结构。在某些连接酶抑制剂实施方案中,位于或者接近上游寡核苷酸的3-端、下游寡核苷酸的5’-端、或者上述两端的至少一个核苷酸,不与第三寡核苷酸的相对应的核苷酸互补,其中所述第一和第二寡核苷酸与所述第三寡核苷酸邻近退火。因此,至少一个相对末端不能与模板有效退火并且连接酶不能将它们连接在一起。
在某些实施方案中,裂解酶抑制剂包括突出序列,其包括至少一个不可被所述裂解酶裂解或被之缓慢裂解的核苷酸间连接。这样的抑制剂的一个示例性实施方案在图1F中示例性显示。所述示例性抑制剂包括第一区域(1),第二区域(2),包含第一猝灭剂(6)的第三区域(3),第四区域(4),第五区域(8),和第六区域(9),在本示例性抑制剂中所述第六区域(9)包含第二猝灭剂(7)。显示所述第一区域(1)和第三区域(3)退火,形成第一双链片段,第四区域(4)和第六区域(9)退火,形成第二双链片段,并且第二区域(2)和第五区域(8)分别表示为环结构。在第一区域(1)的上游是突出序列(11),在本示例性实施方案中,其包括不能被裂解酶裂解的多种核苷酸间连接(12)。在这种构象中,所述示例性酶抑制剂形成裂解结构模拟物,其为类似于核酸裂解结构的二级结构,但是其作为所述裂解酶的无效底物。在某些实施方案中,例如但不限于,当所述裂解酶包括具有聚合活性的DNA聚合酶时,和/或当反应组合物包括裂解酶和DNA聚合酶时,所述裂解酶抑制剂的3’-端包括不可延伸的核苷酸,其包括但不限于ddN。
在某些实施方案中,酶抑制剂的核苷酸序列包括适体,其包括至少一个双链片段,并且其与酶结合,并且当所述酶结合适体时,其抑制酶的酶促活性。当所述适体在低于第二温度下在溶液中游离时,或者在复合物中与酶结合时,所述猝灭剂吸收由与所述适体缔合的核酸染料分子产生的荧光信号中的至少一些。
某些示例性复合物
按照本发明的复合物包括与酶缔合的酶抑制剂,以致所述酶的至少一种酶促活性被抑制。在某些实施方案中,复合物包括与扩增酶如包含在扩增反应中的任何酶缔合的酶抑制剂。在一些实施方案中,复合物包括与RNA聚合酶抑制剂缔合的RNA聚合酶。在一些实施方案中,复合物包括与连接酶缔合的连接酶抑制剂。在一些实施方案中,复合物包括与解旋酶缔合的解旋酶抑制剂。在某些实施方案中,复合物包括与裂解酶抑制剂缔合的裂解酶。一些复合物还包括其它的成分,例如但不限于,脱氧核糖核苷酸(dNTP),核糖核苷酸(rNTP),核苷酸类似物,解旋酶辅助蛋白,SSB,或酶辅因子,其包括但不限于ATP和烟酰胺腺嘌呤二核苷酸(NAD+),并且包括其可以参与某些酶-酶抑制剂复合物的形成和/或稳定的不可裂解的类似物,或它们的组合。
在某些实施方案中,酶-酶抑制剂复合物包括与DNA聚合酶抑制剂缔合的DNA聚合酶。在某些实施方案中,包括DNA聚合酶抑制剂和DNA聚合酶的复合物还包括NTP和/或核苷酸类似物,其可以参与所述DNA聚合酶抑制剂-DNA聚合酶复合物。按照本发明,当DNA聚合酶与DNA聚合酶抑制剂以及任选地NTP和/或核苷酸类似物复合(即,在复合物中缔合)时,所述DNA聚合酶关于其催化向引物或新生多核苷酸链的3’-端添加核苷酸的酶促活性被抑制。典型地,设计所公开的DNA聚合酶抑制剂,以在第一温度形成至少一个双链片段并且与DNA聚合酶复合。当将所述复合物加热到第二温度时,所述DNA聚合酶抑制剂的双链片段变性并且复合物解离。当从所述复合物释放时,所述DNA聚合酶的合成活性恢复,并且,在适当的条件下,可以扩增特定的核酸序列。
按照某些实施方案,复合物包括与DNA聚合酶缔合的DNA聚合酶抑制剂,以致所述DNA聚合酶的酶促活性被抑制。在一些实施方案中,复合物包括与DNA聚合酶缔合的以单或双茎-环构象的DNA聚合酶抑制剂。在一些实施方案中,复合物包括与DNA聚合酶抑制剂缔合的DNA聚合酶,所述DNA聚合酶抑制剂包括退火形成至少一个双链片段的至少两个寡核苷酸。
典型地,DNA聚合酶抑制剂的第一和第三区域在第一温度退火形成双链片段,并且所述DNA聚合酶抑制剂适当地采取茎-环构象或双链体构象。在某些实施方案中,DNA聚合酶抑制剂的第四和第六区域在第一温度退火形成双链片段,并且所述DNA聚合酶抑制剂适当地采取茎-环构象、双茎-环构象或双链体构象。当以茎-环或双链体构象的DNA聚合酶抑制剂与DNA聚合酶结合时,所述DNA聚合酶抑制剂和所述DNA聚合酶可以缔合形成复合物,其中所述DNA聚合酶的活性被抑制。随着反应温度升高,在或者接近第二温度时,所述DNA聚合酶抑制剂的双链片段变性,使得所述复合物解离,并且免除对所述DNA聚合酶的抑制。
本发明的DNA聚合酶典型地包括,但不限于,DNA-依赖型DNA聚合酶和RNA-依赖型DNA聚合酶,包括反转录酶。某些反转录酶在特定的反应条件下拥有DNA-依赖型DNA聚合酶活性,这包括AMV反转录酶和MMLV反转录酶。这样的具有DNA-依赖型DNA聚合酶活性的反转录酶可以适用于所公开的方法,并且清楚地在本发明的考虑中。DNA聚合酶的描述可以特别在下列各项中找到:Lehninger Principles of Biochemistry(生物化学原理),第3版,Nelson和Cox,Worth出版社,纽约,NY,2000,特别是第26和29章;Twyman,Advanced Molecular Biology:A Concise Reference(高级分子生物学:简明参考),生物科学出版社(Bios Scientific Publishers),纽约,NY,1999;Ausubel等;Lin和Jaysena,J.Mol.Biol.(分子生物学杂志)271:100-11,1997;Pavlov等,Trends in Biotechnol.(生物技术趋势)22:253-60,2004;和Enzymatic Resource Guide:DNA polymerases(酶资源指南:DNA聚合酶),1998,普洛麦格(Promega),Madison,WI。
DNA聚合酶活性的抑制可以关于通过所述DNA聚合酶的次级扩增子的合成或更一般地,关于全部核酸的合成而观察到。通常,本领域的技术人员可以选择最优化需要的扩增子的合成,同时最小化假的副产物的合成。因此,在产生需要的扩增子时,当与不存在所选择的DNA聚合酶抑制剂时合成的次级扩增子的量相比时,所公开的DNA聚合酶抑制剂可以抑制次级扩增子的合成约5%,约10%,约15%,约20%,约25%,约30%,约35%,约40%,约45%,约50%,约55%,约60%,约65%,约70%,约75%,约85%,约90%,约95%,约96%,约97%,约98%,约99%,或大于约99%。
连接酶活性的抑制可以关于通过在反应组合物中,例如但不限于,其中发生LCR,LDR,LDR-PCR,PCR-LDR,或FEN-LCR的反应组合物中,不需要的副产物,包括但不限于,错误连接产物的合成或更一般地,关于全部核酸的扩增而观察到。通常,本领域的技术人员可以选择最优化需要的扩增子的合成,同时最小化假的副产物的合成。因此,在产生需要的扩增子时,当与不存在所选择的连接酶抑制剂时产生的次级扩增子的量相比时,所公开的连接酶抑制剂可以抑制不需要的副产物的合成约5%,约10%,约15%,约20%,约25%,约30%,约35%,约40%,约45%,约50%,约55%,约60%,约65%,约70%,约75%,约85%,约90%,约95%,约96%,约97%,约98%,约99%,或大于约99%。
裂解酶活性的抑制可以关于在反应组合物中,例如但不限于,其中发生FEN-LCR的反应组合物中,不需要的副产物的合成或更一般地,关于全部核酸的扩增而观察到。通常,本领域的技术人员可以选择最优化需要的扩增子的合成,同时最小化假的副产物的合成。因此,在产生需要的扩增子时,当与不存在所选择的裂解酶抑制剂时合成的次级扩增子的量相比时,所公开的裂解酶抑制剂可以抑制不需要的副产物的合成约5%,约10%,约15%,约20%,约25%,约30%,约35%,约40%,约45%,约50%,约55%,约60%,约65%,约70%,约75%,约85%,约90%,约95%,约96%,约97%,约98%,约99%,或大于约99%。
解旋酶活性的抑制可以关于在反应组合物中,例如但不限于,其中发生HDA的反应组合物中,次级扩增子的合成或更一般地,关于全部核酸的合成而观察到。通常,本领域的技术人员可以选择最优化需要的靶核酸的合成,同时最小化假的副产物的合成。因此,在产生需要的扩增子时,当与不存在所选择的解旋酶抑制剂时产生的次级扩增子的量相比时,所公开的解旋酶抑制剂可以抑制次级扩增子的合成约5%,约10%,约15%,约20%,约25%,约30%,约35%,约40%,约45%,约50%,约55%,约60%,约65%,约70%,约75%,约85%,约90%,约95%,约96%,约97%,约98%,约99%,或大于约99%。
所公开的酶抑制剂可以与所述酶以各种比例或浓度结合,以形成复合物。在一些实施方案中,所述酶抑制剂以比所述酶更高的摩尔浓度存在。在其它实施方案中,所述酶抑制剂以与所述酶大约相同或更低的摩尔浓度存在。本领域的技术人员可以选择使用大于1∶1(抑制剂∶酶)的酶抑制剂与酶的摩尔比例,以确保存在足够的酶抑制剂,以致每个酶分子可以与酶抑制剂缔合形成复合物。通常,高度有效的酶抑制剂可以以比较不有效的酶抑制剂更低的浓度应用。因此,酶抑制剂可以以各种浓度提供在反应组合物中。例如,这样的浓度可以从约1nM到约10mM,或从约5nM到约1mM,或从约10nM到约100μM,或者由本领域的技术人员选择的其它便利的浓度而不同。
本文公开的酶抑制剂可以在扩增反应之前或过程中与酶结合以形成复合物,条件是所述扩增反应条件包括在第一温度的至少一个步骤。在某些实施方案中,在形成反应组合物之前,酶和酶抑制剂在第一温度结合。这样的预温育步骤可以促进酶抑制剂-酶复合物的形成,并且帮助减少或消除不需要的副产物如错误引发的扩增子、错误连接的探针和寡聚体化的引物的合成。
某些示例性方法
所公开的酶抑制剂在本发明的方法中起至少两种作用。第一,在第一温度,所公开的酶抑制剂作用抑制相对应的酶的酶促活性,减少次级扩增子形成,所述次级扩增子特别由于引物和/或探针与除靶核酸以外的序列的错误退火以及引物二聚体形成而引起。本领域的那些技术人员应该理解,通过减少次级扩增产物的形成,本发明的酶抑制剂可以减少反应组合物的非特异性荧光。第二,由于所述至少一种猝灭剂部分可以吸收由与所述酶抑制剂的双链片段缔合的核酸染料分子发射的荧光中的至少一些,所以,所公开的酶抑制剂还可以减少在反应组合物中由于所述酶抑制剂的自我-猝灭能力引起的非特异性荧光。在某些实施方案中,酶抑制剂还在所公开的方法中增加扩增子的产量。
本发明提供扩增靶核酸的方法。按照某些方法实施方案,反应组合物在第一温度形成,其中所述反应组合物包括DNA聚合酶;DNA聚合酶抑制剂,其包含核苷酸序列和猝灭剂;核苷三磷酸酯(NTP),典型地是脱氧核糖核苷酸三磷酸(dNTPs)的混合物;靶核酸;引物;以及核酸染料。在某些实施方案中,反应组合物还包括核苷酸类似物。在一些实施方案中,所述DNA聚合酶、DNA聚合酶抑制剂、以及任选地NTP和/或核苷酸类似物,在形成所述反应组合物之前结合。在某些实施方案中,在形成反应组合物之前,将所述DNA聚合酶和所述DNA聚合酶抑制剂在第一温度预温育。在第一温度下,所述DNA聚合酶抑制剂的核苷酸序列包括至少一个双链片段,并且所述DNA聚合酶与所述DNA聚合酶抑制剂可以缔合形成复合物。相对于在包括相同的DNA聚合酶抑制剂核苷酸序列但是缺少猝灭剂的平行反应组合物中检测到信号,所述猝灭剂吸收由与所述核苷酸序列的双链片段缔合的核酸染料分子发射的荧光信号中的至少一些。然后,将所述反应组合物加热到接近、处于或高于所述DNA聚合酶抑制剂的解链温度的第二温度,使得双链片段变性,并且使所述复合物解离。随着所述DNA聚合酶抑制剂从所述复合物释放,所述DNA聚合酶的酶促活性不再被抑制。将所述反应组合物进行至少一个扩增循环,以产生多个扩增子。
本发明提供减少在反应组合物中的非特异性荧光的方法。按照某些这样的方法,反应组合物在第一温度形成,其中所述反应组合物包括DNA聚合酶;DNA聚合酶抑制剂,其包含核苷酸序列和猝灭剂;NTP,典型地是dNTPs的混合物;靶核酸;引物;以及核酸染料。在某些实施方案中,反应组合物还包括核苷酸类似物。在一些实施方案中,所述DNA聚合酶、DNA聚合酶抑制剂、以及任选地NTP和/或核苷酸类似物,在形成所述反应组合物之前结合。在某些实施方案中,在形成反应组合物之前,将所述DNA聚合酶和所述DNA聚合酶抑制剂在第一温度预温育以形成复合物。相对于在包括相同的DNA聚合酶抑制剂核苷酸序列但是缺少猝灭剂的平行反应组合物中检测到的信号,所述猝灭剂吸收由与所述核苷酸序列的双链片段缔合的核酸染料分子发射的荧光信号中的至少一些。然后,将所述反应组合物加热到接近、处于或高于所述DNA聚合酶抑制剂的解链温度的第二温度,使得双链片段变性,并且使所述复合物解离。随着所述DNA聚合酶从所述复合物释放,所述DNA聚合酶的聚合活性不再被抑制。将所述反应组合物进行至少一个扩增循环,以产生多个扩增子。在适当的检测条件下,可以检测在所述反应组合物中与多种扩增子缔合的核酸染料的荧光,然而,与所述DNA聚合酶抑制剂的核苷酸序列的双链片段缔合的核酸染料的荧光至少被所述猝灭剂减少。
在一些实施方案中,所述至少一个扩增循环包括多个扩增循环,例如但不限于,至少10个循环,至少15个循环,至少20个循环,至少25个循环,至少30个循环,至少35个循环,至少40个循环,或者多于40个循环的扩增。在一些实施方案中,将所述反应组合物进行至少一个扩增循环包括PCR,其包括PCR的变体,例如但不限于,RT-PCR,不对称PCR,或定量或实时PCR(参见,例如,Rapley,特别是第VII部分;Protocols&Applications Guide(方法和应用指南),rev.9/04,普洛麦格(Promega);McPherson)。
所公开的方法的某些实施方案包括:多重扩增步骤,其包括但不限于,多个平行单重或更低重的扩增反应(例如,2-重、3-重,4-重,5-重,或6-重扩增反应);多重检测步骤,其包括但不限于,多个平行的单重或更低重的检测步骤(例如,其中在同一反应组合物中检测二、三、四、五或六种不同的扩增子);或者多重扩增反应和多重检测方法二者。在一些实施方案中,所述靶核酸包括多种不同的靶核酸,所述引物包括多种不同的引物或多种不同的引物对,多种扩增子包括多种不同的扩增子,并且所述检测包括检测与所述多种不同的扩增子缔合的核酸染料的荧光。
使用所公开的DNA聚合酶抑制剂获得的酶促抑制的程度可以不同,并且可以依赖于所用的方法,DNA聚合酶,所选的DNA聚合酶抑制剂的结构和解链温度,以及其它因素,如引物延伸温度。这些变量中的每一个可以由本领域的技术人员使用本发明和/或可用的方法进行最优化,以获得具有最少的非靶核酸产量的需要的产物的优化产量。类似地,非特异性荧光减少的程度可以不同,除了其它因素,这特别取决于在所述核苷酸序列中的特别的猝灭剂,每种DNA聚合酶抑制剂所用的猝灭剂的数目,所用的核酸染料,反应条件,以及所述DNA聚合酶抑制剂减少次级扩增产物的量的效力。本领域的那些技术人员应该理解,在特定的DNA聚合酶抑制剂中的特定的一种猝灭剂或多种猝灭剂的数目和放置,特定的DNA聚合酶与特定的DNA聚合酶抑制剂的配对,以及特定的猝灭剂与特定的核酸染料的配对,可以使用本领域已知的常规方法无需过度实验而凭经验进行评估,以最优化在特定的反应组合物和扩增技术中的非特异性荧光的减少。
按照某些方法实施方案,在包括靶核酸和连接探针对的反应组合物中,连接酶与连接酶抑制剂在第一温度形成复合物。在某些实施方案中,在形成反应组合物之前,将所述连接酶与所述连接酶抑制剂结合,并且进行预温育。在第一个第二温度,所述连接酶-连接酶抑制剂复合物解离,释放连接酶。所述连接探针对的上游和下游连接探针选择性地与靶核酸杂交,并且所述连接酶催化形成连接的探针。一些这样的实施方案包括多个扩增循环,其包括下列步骤:变性,将上游和下游连接探针退火,并且连接所述探针,以产生连接的探针。在某些实施方案中,所述反应组合物包括设计成与所连接的探针的补体的至少一部分特异性杂交的连接探针对。在一些实施方案中,连接的探针包括引物-结合位点,并且所述反应组合物包括引物以及DNA聚合酶-DNA聚合酶复合物。
按照某些公开的方法,在第一温度,裂解酶与裂解酶抑制剂形成复合物,并且连接酶与连接酶抑制剂形成复合物。在某些实施方案中,在第一个第二温度,所述裂解酶-裂解酶抑制剂复合物解离。然后,释放的裂解酶可以从某些重叠的突出结构裂解突出部分,所述重叠的突出结构包括:(1)靶核酸或单链扩增子,(2)上游裂解探针,和(3)对应的下游裂解探针,其包括与上游裂解探针的3’-端至少重叠一个核苷酸的5’-突出端或突出序列。当所述突出被裂解酶裂解时,形成包括模板链、上游裂解探针和下游裂解探针的杂交的片段的杂交结构,在上游裂解探针的3’-端和下游裂解探针的杂交的片段的5’-端之间具有可连接的切口。在一些实施方案中,在第二个第二温度,所述连接酶-连接酶抑制剂复合物解离,并且释放的连接酶可以连接在杂交结构中的切口,以产生包括连接的探针和模板链的双链体。在某些实施方案中,连接的探针包括至少一个引物-结合位点。本领域的那些技术人员应该理解,所述第一个第二温度和所述第二个第二温度可以近似是相同的温度,或者它们可以是不同的温度。
在第一温度,一些方法实施方案还包括DNA聚合酶-DNA聚合酶抑制剂复合物。在适当的第三个第二温度下,所述DNA聚合酶-DNA聚合酶抑制剂复合物解离。在适当的条件下,引物与连接的探针的引物-结合部分特异性地杂交,并且可以发生引物延伸。本领域的那些技术人员应该理解,当在反应组合物中使用不同的酶抑制剂时,下列各项中的至少两者:第一个第二温度,第二个第二温度,和第三个第二温度,可以是近似相同的温度或者它们可以全部是不同的温度。
在所公开的复合物、方法和试剂盒中所用的示例性的裂解酶包括,但不限于,大肠杆菌(E.coli)DNA聚合酶I,水生栖热菌(Thermus aquaticus)DNA聚合酶I,嗜热栖热菌(Thermus thermophilus)DNA聚合酶I,哺乳动物FEN-1,闪烁古生球菌(Archaeoglobus fulgidus)FEN-1,詹氏甲烷球菌(Methanococcus jannaschii)FEN-1,激烈热球菌(Pyrococcus furiosus)FEN-1,热自养甲烷杆菌(Methanobacterium thermoautotrophicum)FEN-1,嗜热栖热菌(Thermus thermophilus)FEN-1,Cleavase酶(第三波公司(Third Wave,Inc.),Madison,WI),酿酒酵母(Saccharomyces cerevisiae)RTH1,酿酒酵母(S.cerevisiae)RAD27栗酒裂殖酵母(Schizosaccharomyces pombe)rad2,噬菌体T55’-3’核酸外切酶,极端嗜热球古菌(Pyroccus horikoshii)FEN-1,人核酸外切酶1,牛胸腺5’-3’核酸外切酶,包括其在真细菌,真核细胞,和古菌(archaea)中的同系物,诸如结构特异酶的II类家族的成员。除了其它地方之外,裂解酶的描述可以特别在下列各项中找到:Lyamichev等,Science(科学)260:778-83(1993);Eis等,Nat.Biotechnol.(自然生物技术)19:673-76(2001);Shen等,Trends in Bio.Sci.(生物科学趋势)23:171-73(1998);Kaiser等,J.Biol.Chem.(生物的化学杂志)274:21387-94(1999);Ma等,J.Biol.Chem.(生物的化学杂志)275:24693-700(2000);Allawi等,J.Mol.Biol.(分子生物学杂志)328:537-54(2003);Sharma等,J.Biol.Chem.(生物的化学杂志)278:23487-96(2003);以及Feng等,Nat.Struct.Mol.Biol.(自然结构分子生物学)11:450-56(2004)。
按照某些公开的方法,DNA聚合酶与DNA聚合酶抑制剂,以及任选地NTP和/或核苷酸类似物结合,以形成复合物。在某些实施方案中,所述DNA聚合酶包括反转录酶,DNA-依赖型DNA聚合酶,其包括但不限于,热稳定性DNA聚合酶,或反转录酶和DNA-依赖型DNA聚合酶。在一些实施方案中,所述DNA聚合酶抑制剂包括(1)第一DNA聚合酶抑制剂,其在适当的第一温度可以与反转录酶形成复合物,(2)第二DNA聚合酶抑制剂,其在适当的第一温度可以与DNA依赖型DNA聚合酶形成复合物,或(3)第一DNA聚合酶抑制剂,其在适当的第一温度可以与反转录酶形成复合物,和第二DNA聚合酶抑制剂,其在适当的第一温度可以与DNA-依赖型DNA聚合酶形成复合物,其中所述第一DNA聚合酶抑制剂和所述第二DNA聚合酶抑制剂包括相同的核苷酸序列或不同的核苷酸序列,其中适用于第一DNA聚合酶抑制剂的第一温度和适用于第二DNA聚合酶抑制剂的第一温度是相同的温度或不同的温度。
按照某些公开的方法,扩增包括两阶段PCR反应,其包括两种不同的反应组合物:第一反应组合物和第二反应组合物,每种包括DNA聚合酶和DNA聚合酶抑制剂。在某些这样的实施方案中,第一反应组合物包括第一DNA聚合酶,第一DNA聚合酶抑制剂,NTP,典型地是NTPs的混合物,和引物,典型地是多种不同的引物对。在某些实施方案中,将DNA聚合酶,DNA聚合酶抑制剂,和任选地NTP和/或核苷酸类似物在形成第一反应组合物之前组合。将所述第一反应组合物进行有限数目的扩增循环,例如但不限于,2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个或15个扩增循环。在所述有限的第一阶段扩增后,将第一反应组合物稀释,并且将所稀释的第一反应组合物的部分与第二DNA聚合酶,第二DNA聚合酶抑制剂,NTP,典型地是NTPs的混合物,和引物,典型地是引物对组合。在某些实施方案中,将DNA聚合酶,DNA聚合酶抑制剂,和任选地NTP和/或核苷酸类似物在形成第二反应组合物之前组合。将第二反应组合物进行多个扩增循环,例如但不限于,10-45个扩增循环或20-40个扩增循环,包括在所列范围内的任何数目的扩增循环,正如每个以及每一个扩增数目是在本文中清楚地叙述的。在一些实施方案中,在稀释的第一反应组合物中存在足够的残留的第一DNA聚合酶,在所述稀释的第一反应组合物中,第二DNA聚合酶不是必需的。在一些实施方案中,在稀释的第一反应组合物中存在足够的残留的第一DNA聚合酶抑制剂,在所述稀释的第一反应组合物中,第二DNA聚合酶抑制剂不是必需的。在某些实施方案中,所述第一DNA聚合酶和第二DNA聚合酶是相同的聚合酶或不同的聚合酶,其包括但不限于,反转录酶和DNA-依赖型DNA聚合酶。在一些实施方案中,所述第一DNA聚合酶抑制剂和所述第二DNA聚合酶抑制剂是相同的抑制剂或不同的抑制剂。出于举例说明的目的,而不是这样的实施方案的限制,考虑一种示例性的RT-PCR反应,其包括第一反应,所述第一反应包括反转录酶、第一DNA聚合酶抑制剂、以及任选地NTP和/或核苷酸类似物;和第二反应组合物,所述第二反应组合物包括热稳定的DNA-依赖型DNA聚合酶、第二DNA聚合酶抑制剂、以及任选地NTP和/或核苷酸类似物。所述第一DNA聚合酶抑制剂可以设计成在低于反转录的最佳温度的温度(即,示例性第一阶段第一温度)下抑制反转录酶活性,但是处于或高于最佳反转录温度(即,示例性第一阶段第二温度)时不抑制。所述第二DNA聚合酶抑制剂可以设计成在低于第二阶段第一温度的温度下抑制热稳定性DNA聚合酶的酶活性,所述低于第二阶段第一温度的温度例如但不限于,低于至少一个PCR引物的Tm(即,示例性第二阶段第一温度)约5℃到约10℃或者约4℃更低到约6℃的温度,但是不高于所述PCR引物的Tm(即,示例性第一阶段第二温度)。
本发明的方法可以典型地与任何靶核酸一起应用。所公开的方法不但用于生产大量的需要的扩增子,还用于生产或测序已知存在但是没有完全测序或纯化的核酸。人们只需要充分详细地知道在靶的一端或两端,即,靶旁侧序列的充分数目的碱基的相同性,以致可以制备至少一种可以作为测序引物的引物。在可接受的第二靶旁侧序列的测序和鉴定后,可以制备第二引物,并且位于旁侧序列之间的靶核酸可以指数扩增,并且在一些实施方案中,定量。在其它实施方案中,当已经获得足够多的序列时,可以合成适当的连接探针组和/或适当的裂解探针组。
在所公开的方法的某些实施方案中,检测包括评估内标或对照序列,并且可以包括将需要的扩增子的量与标准曲线或内部大小标准进行比较。在一些实施方案中,对照序列、被动参照染料或二者包含在反应组合物中,以解释泳道-与-泳道、毛细管-与-毛细管和/或测定-与-测定的可变性。
本方法的某些实施方案还包括多孔反应容器,其包括但不限于,多孔板或多室微观流体装置,在其中进行多种扩增反应,并且在一些实施方案中,进行多种检测,典型地平行进行。在某些实施方案中,产生扩增子的一种或多种多重反应在同一反应容器中进行,所述反应容器包括但不限于,多孔板,如96孔、384孔、1536孔板等;或在微观流体装置中进行,例如但不限于,
Figure BDA00002904136800661
低密度阵列(应用生物系统(AppliedBiosystems))。在一些实施方案中,大规模的平行扩增步骤包括多孔反应容器,包括含有多个反应孔的板,例如但不限于,24孔板、96孔板、384孔板、或1536孔板;或多室微观流体装置,例如但不限于,TaqMan低密度阵列,其中每个室或每个孔适当地包括适当的引物、引物组、和/或报道探针。典型地,这样的扩增步骤以一系列平行的单重、两重、三重、四重、五重或六重反应发生,尽管更高水平的平行多重方法也在本发明的目的范围内。
在某些实施方案中,所述反应组合物还包括被动参照染料。所述被动参照染料包含在反应组合物中作为内部对照,以允许在荧光上对非PCR相关的变量进行标准化,例如但不限于,孔-与-孔、管-与-管、板-与-板、以及测定-与-测定变量。被动参照提供标准化的基线,原因在于其荧光在扩增反应过程中没有变化。典型地,所述被动参照不干扰扩增反应。被动参照染料以及基于所述被动参照的标准化计算,例如但不限于,Rn和ΔRn的应用,是本领域公知的(参见,例如,Killigore等,J.Clin.Micro.(临床微生物学杂志),38:2516-19,2000;使用AmpliTaq
Figure BDA00002904136800662
DNA聚合酶方法的
Figure BDA00002904136800663
PCR试剂试剂盒,应用生物系统(Applied Biosystems)P/N402823Rev.D2003;
Figure BDA00002904136800664
Green QRT-PCR Master混合试剂盒,1-步使用手册,Rev.#75003a,Stratagene,2005;和实时PCR的纲要(Essential of Real Time PCR),应用生物系统(Applied Biosystems))。在一些实施方案中,所述被动参照染料包括ROXTM或TAMRATM
某些示例性试剂盒
本发明还提供设计成迅速进行某些公开的方法的试剂盒。试剂盒可以通过组装实施所述方法必需的两个或多个成分而迅速进行某些公开的方法。在某些实施方案中,试剂盒包含预先测量的单位量的成分,以将终端使用者测量的需要最小化。在一些实施方案中,试剂盒包括进行一种或多种所公开的方法的用法说明。优选地,将所述试剂盒成分最优化,以与另一种联合实施。
某些公开的试剂盒包括含有核苷酸序列和猝灭剂的酶抑制剂。在某些实施方案中,试剂盒包括下列各项中的至少一种:连接酶抑制剂,解旋酶抑制剂,RNA聚合酶抑制剂,裂解酶抑制剂,和/或DNA聚合酶抑制剂。本发明的某些试剂盒还包括下列各项中的至少一种:连接酶,解旋酶,RNA聚合酶,和裂解酶。某些试剂盒包括酶抑制剂,并且还包括下列各项中的至少一种:引物,其包括但不限于随机引物或包含寡dT的引物,或引物对;连接探针对;裂解探针组;连接酶辅因子,其包括但不限于ATP或NAD;SSB;和/或解旋酶辅助蛋白。在一些实施方案中,试剂盒包括引物,DNA聚合酶,连接酶,或它们的组合。在某些实施方案中,试剂盒包括NTP,核苷酸类似物或二者。
某些试剂盒实施方案包括含有核苷酸序列和猝灭剂的DNA聚合酶抑制剂。在某些实施方案中,试剂盒包括DNA聚合酶;对照序列,例如但不限于,内标序列如持家基因和/或共扩增序列(参见,例如,Siebert和Larrick,BioTechniques(生物技术)14:244-49(1993);Joyce,Quantitative RT-PCR(定量RT-PCR),83-92,在Methods in Mol Biol.(分子生物学方法)中,卷193,O’Connell,编,Humana出版社;Raeymaekers,Mol.Biotechnol.(分子生物技术)115-22(2000))或包含分子大小或重量标准的多核苷酸梯度;引物和/或引物对;报道探针;核酸染料;被动参照染料;或它们的组合。在某些实施方案中,试剂盒包括多种不同的引物对。在一些实施方案中,试剂盒包括正向引物、反向引物、或正向引物和反向引物,其还包括报道基团。在一些这样的实施方案中,引物对的正向引物的报道基团与所述引物对的反向引物的报道基团不同。
熟练的技术人员应该理解,许多不同种类的报道基团可以用于本发明,不管是单个的或与一种或多种不同的报道基团组合。在某些实施方案中,报道基团发射荧光,化学发光,生物发光,磷光或电化学发光信号。报道基团的一些非限制性的实例包括荧光团,放射性同位素,色原,酶,抗原,其包括但不限于表位标记,半导体纳米晶体,如量子点,重金属,染料,磷光基团,化学发光基团,电化学检测部分,结合蛋白,磷(phosphors),稀土螯合剂,过渡金属螯合剂,近红外染料,电化学发光标记,和质谱-相容的报道基团,如质量标记、电荷标记和同位素(参见,例如,Haff和Smirnov,Nucl.Acids Res.(核酸研究)25:3749-50,1997;Xu等,Anal.Chem.(化学年刊)69:3595-3602,1997;Sauer等,Nucl.Acids Res.(核酸研究)31:e63,2003)。除了其它地方,将报道基团附着到核酸上的详细方法可以特别在下列各项中找到:Hermanson,Bioconjugate Techniques(生物缀合物技术),学院出版社(Academic Press),San Diego,1996;Current Protocols in Nucleic Acid Chemistry(现代核酸化学方法),Beaucage等,编,John Wiley和Sons,纽约,纽约(2000),包括从2005年8月起的增刊;以及Haugland,Handbook of Fluorescent Probes and Research Products(荧光探针和研究产物手册),第10版,Molecular Probes(分子探针)-Invitrogen,2005。
在某些实施方案中,试剂盒包括两种或多种不同的酶抑制剂,例如但不限于,连接酶抑制剂和裂解酶抑制剂;裂解酶抑制剂,连接酶抑制剂,和DNA聚合酶抑制剂;或解旋酶抑制剂和DNA聚合酶抑制剂。在一些实施方案中,试剂盒包括两种或多种不同的DNA聚合酶抑制剂。在某些实施方案中,试剂盒包括两种不同的酶,其包括但不限于,DNA-依赖型DNA聚合酶和RNA-依赖型DNA聚合酶,如反转录酶;连接酶和裂解酶;RNA聚合酶和DNA聚合酶,例如但不限于,反转录酶;以及解旋酶和DNA聚合酶。在某些实施方案中,试剂盒包括热稳定性DNA聚合酶。
本发明,已经如上文所述,可以通过参考实施例更好地理解。下述实施例只是意欲举例说明的目的,并不应该以任何方式解释为限制本发明的范围。
实施例1:为了评估某些示例性酶抑制剂的猝灭剂部分吸收从与所述示例性酶抑制剂的双链片段缔合的核酸染料分子发射的荧光中的至少一些的作用,合成了五种示例性DNA聚合酶抑制剂,如在表1(如下)中所示。特性、位置以及猝灭剂部分的数目是不同的。
表1.
Figure BDA00002904136800691
在室温下形成一系列平行组合物,每种包括在1×反应缓冲液(50mMTris缓冲液,pH 9,5mM MgCl2,250μM dATP,dCTP和dGTP,500μM dUTP,60nM ROX被动参照染料)中的1×SYBR Green I核酸染料(分子探针),以及在表1中所示的一种示例性DNA聚合酶抑制剂,其适当地以5nM,10nM,25nM,50nM,75nM,或100nM的浓度存在。如在表1中看出,除了在DNA聚合酶抑制剂D的3’-端的核苷酸是C,而“DNA聚合酶抑制剂”A、DNA聚合酶抑制剂B和DNA聚合酶抑制剂C的3’-端的核苷酸都包括核苷酸类似物双脱氧胞嘧啶(ddC)以外,“DNA聚合酶抑制剂”A、DNA聚合酶抑制剂B、DNA聚合酶抑制剂C、以及DNA聚合酶抑制剂D享有相同的核苷酸序列。“DNA聚合酶抑制剂”A缺少猝灭剂部分(因此,A不是本发明的真正的DNA聚合酶抑制剂,其用引号标记:“DNA聚合酶抑制剂”指示);DNA聚合酶抑制剂B在其5’-端包含DABCYL猝灭剂部分;DNA聚合酶抑制剂C在其5’-端包含ROX猝灭剂部分;并且DNA聚合酶抑制剂D在其3’-端包含含有非荧光猝灭剂(MGB-NFQ)的小沟结合物。DNA聚合酶抑制剂E包括这样的核苷酸序列,即,其在其第一和第三区域包含4个脱氮-dA核苷酸类似物(表示为脱氮A)和两个G:T碱基对错配。DNA聚合酶抑制剂E还包含两个猝灭剂部分,在第二区域环中的DABCYL部分和在其3’-端的MGB-NFQ。
使用ABI
Figure BDA00002904136800701
7900HT实时序列检测系统仪器(应用生物系统(Applied Biosystems))在30℃到95℃的温度范围,对于每一种组合物生成解离曲线。使用相关的解离曲线软件计算荧光相对于温度的导数。如在图3中所示,在这一核苷酸序列的Tm(约56℃)从包含100nM“DNA聚合酶抑制剂”A(表示为100nM A)的组合物获得的解离峰比从包含100nM,75nM,或50nM DNA聚合酶抑制剂B(分别表示为100nM B,75nM B,和50nM B)的组合物获得的解离峰高得多。如在图3中所示,相对于“DNA聚合酶抑制剂”A,可能归因于从与DNA聚合酶抑制剂B的双链片段缔合的核酸染料分子发射的荧光信号的背景荧光减小。
从包含100nM“DNA聚合酶抑制剂”A,100nM DNA聚合酶抑制剂C,75nM DNA聚合酶抑制剂C,和50nM DNA聚合酶抑制剂C的组合物中获得的解离曲线显示在图4中。如在图4中所示,用100nM“DNA聚合酶抑制剂”A获得的解离峰基本上高于与100nM,75nM,或50nM的DNA聚合酶抑制剂C相关的解离峰。
从包含50nM“DNA聚合酶抑制剂”A的组合物和包含50nM DNA聚合酶抑制剂D的组合物获得的解离曲线显示在图5中。从包含50nM“DNA聚合酶抑制剂”A的组合物获得解离峰(在图5中显示为A)基本上高于从包含50nM DNA聚合酶抑制剂D的组合物获得的解离峰(显示为D)。
图6显示从包含100nM,75nM,50nM,25nM,10nM或5nM“DNA聚合酶抑制剂”A(分别显示为100nM/Std,75nM/Std,50nM/Std,25nM/Std,10nM/Std,和5nM/Std)和100nM,75nM,50nM,25nM,10nM或5nMDNA聚合酶抑制剂E的组合物获得的解离曲线。如在图6中所示,从包含“DNA聚合酶抑制剂”A的每种组合物获得的解离峰是可检测地更高的,并且一般基本上高于从包含DNA聚合酶抑制剂E的组合物获得的解离峰,后者基本上在“基线”处消失,并且不容易区分。
应该理解,这些示例性的DNA聚合酶抑制剂目的是作为各种DNA聚合酶抑制剂设计的非限制性实例,例如但不限于,核苷酸序列变化,有和无小沟结合物,以及不同的猝灭剂部分,其包括但不限于每个抑制剂不同数目的猝灭剂,在所述抑制剂中不同的猝灭剂位置(例如,3’-端、5’-端和内部),以及不同的特异性猝灭剂(例如,DABCYL,ROX,和NFQ)。本领域的那些技术人员应该理解,各种DNA聚合酶抑制剂设计是可能的,并且适当的DNA聚合酶抑制剂可以通过由本发明告知的各种设计的常规评估而获得,用于与特别的DNA聚合酶和给定的反应条件组一起应用。
实施例2:在gDNA的纤溶酶原激活物尿激酶(PAU)基因中的示例性靶核酸的PCR扩增过程中,抑制次级扩增子
为了评估DNA聚合酶抑制剂E在扩增gDNA中的靶核酸中的抑制能力,进行PCR反应。在室温下形成6种平行的20μL反应组合物,每种反应组合物包括:40ng人gDNA(Coriell);PAU靶核酸-特异的引物对,其包括2.25μM正向引物:5’-TGTAAAACGACGGCCAGTTCTCATATTCTCTCATCCTCCTGTCCC-3’(SEQ ID NO:)和2.25μM反向引物:5’-CAGGAAACAGCTATGACCAAGCGGCTTTAGGCCCACCT-3’(SEQID NO:);和终浓度分别为5,10,25,50,75或100 nM DNA聚合酶抑制剂E;在1×PCR缓冲液(50mM Tris-HCl,pH 9,250μM dATP,dCTP和dGTP,500μM dUTP,5mM MgCl2,0.6U AmpliTaq DNA聚合酶(应用生物系统(Applied Biosystems)),60nM ROX被动参照染料,8%甘油,0.01%吐温-20,0.01%NaN3,1×SYBR Green I核酸染料)中。除了没有gDNA,并且DNA聚合酶抑制剂E的终浓度是50nM之外,在包含与另外六种相同的制剂的第七平行反应组合物中包括无模板对照。
将所述反应组合物在室温下温育大约15分钟,然后在ABI7900HT实时序列检测系统仪器(应用生物系统(Applied Biosystems))中进行热循环。应用下述循环:95℃ 2分钟,40个循环:96℃ 5秒和60℃ 2分钟。为了评估在每种热循环的反应组合物中产生的扩增产物,将15μL每种反应组合物加载到非变性4%琼脂糖E-凝胶(InVitrogen,Carlsbad,CA)的分开的泳道中,与加载包括500碱基对、400碱基对、300碱基对、200碱基对和100碱基对的标记的分子大小梯度(低范围DNA标记,InVitrogen)的两个泳道一起。反应组合物加载在凝胶的泳道中,如下:泳道B,5nM抑制剂E;泳道C,10nM抑制剂E;泳道D,25nM抑制剂E;泳道E,50nM抑制剂E;泳道F,75nM抑制剂E;泳道G,100nM抑制剂E;泳道H,50nM抑制剂E,无模板对照。将样品电泳15分钟,并且通过溴化乙锭显示。如在图7中所示,需要的扩增子(11)的量随着DNA聚合酶抑制剂浓度增加而增加,直到抑制剂的浓度约为75nM(泳道F)。相反,次级扩增子条带的密度随着DNA聚合酶抑制剂浓度增加而减少。
实施例3:在PCR扩增cDNA中的人细胞色素P450的示例性靶核酸过程中,抑制次级扩增子
在室温下形成7种平行的20μL反应组合物,每种反应组合物包括:10ng通用参照人cDNA(Stratagene);P450靶核酸-特异的引物对,其包括200nM正向引物:5’-TGGGAGTCCTGGAAGCAGC-3’(SEQ ID NO:)和200nM反向引物:5’-TGGCTTCTGGTCAACAAGTGC-3’(SEQ ID NO:);和终浓度分别为0,5,10,25,50,75或100nM DNA聚合酶抑制剂E;在1×PCR缓冲液(50mM Tris-HCl,pH 9,250μM dATP,dCTP和dGTP,500μM dUTP,5mM MgCl2,1.5U AmpliTaq DNA聚合酶,60nM ROX被动参照染料,8%甘油,0.01%吐温-20,0.01%NaN3,1×SYBR Green I核酸染料)中。除了没有cDNA,并且DNA聚合酶抑制剂E的终浓度是50nM之外,在包含与另外七种相同的制剂的第八平行反应组合物中包括无模板对照。将所述反应组合物在室温下温育15分钟,然后在ABI7900HT实时序列检测系统仪器中进行热循环,并且在非变性琼脂糖凝胶上分析扩增产物,如在实施例2中所述。反应组合物加载在凝胶的泳道中,如下:泳道B,0nM抑制剂E;泳道C,5nM抑制剂E;泳道D,10nM抑制剂E;泳道E,25nM抑制剂E;泳道F,50nM抑制剂E;泳道G,75nM抑制剂E;泳道H,100nM抑制剂E;和泳道I,50nM抑制剂E,无模板对照。
如从在图8所示的凝胶所看出的,需要的扩增子(21)的量随着DNA聚合酶抑制剂浓度增加而增加,直到抑制剂的浓度约为75nM。在不包含DNA聚合酶抑制剂E的反应组合物中(泳道A),观察到几乎很少到没有的需要的扩增子。次级扩增子条带的密度随着DNA聚合酶抑制剂浓度增加而减少。
实施例4:抑制包括引物二聚体的次级扩增产物
获得5种商购引物对和相应的TaqMan报道探针(应用生物系统(Applied Biosystems)),用于验证基因表达测定,其包括用于下列各项的测定:白介素1,β(IL1β;测定ID Hs00174097_m1),TRAF家族成员-相关的NFKB激活物(TANK;测定ID Hs00370305_m1),脂肪酸合酶(FASN;测定ID Hs00188012_m1),溶质载体家族2,成员1(SLC2A1;测定IDHs00197884_m1),和磷脂酶D1,磷脂酰胆碱-特异的(PLD1;测定IDHs00160118_m1)。
为了评估示例性酶抑制剂对引物二聚体扩增子形成的作用,平行制备5对缺少靶核酸的相应的反应组合物。每种20μL的反应组合物对包括适当的引物对和相应的以1×浓度的
Figure BDA00002904136800731
探针;250μM dATP,dCTP和dGTP;500μM dUTP;5mM MgCl2;2U AmpliTaq DNA聚合酶;60nM ROX被动参照;8%甘油;0.01%吐温-20;0.01%NaN3;在50mM pH 9 Tris-HCl缓冲液中的1×SYBRI;以及50nM聚合酶抑制剂E或无抑制剂。将这5组平行的反应组合物在室温下温育30分钟,然后转移到ABI
Figure BDA00002904136800733
7900HT实时序列检测系统仪器中。将反应组合物加热到95℃持续2分钟,然后进行40个扩增循环,包括96℃5秒和60℃2分钟。将15μL热循环的反应组合物加载到4%琼脂糖E凝胶(Invitrogen)的单个泳道上,如下:IL1β测定,泳道B(无抑制剂)和C(50nM聚合酶抑制剂E);TANK测定,泳道D(无抑制剂)和E(50nM聚合酶抑制剂E);FASN测定,泳道F(无抑制剂)和G(50nM聚合酶抑制剂E);SLC2A1测定,泳道H(无抑制剂)和I(50nM聚合酶抑制剂E);以及PLD1测定,泳道J(无抑制剂)和K(50nM聚合酶抑制剂E)。将包括1200,800,400,200,和100碱基对标记的分子量标准加载到泳道A和L上。将凝胶电泳15分钟,并且通过用核酸染料溴化乙锭染色而显示(在图9中所示)。当与缺少抑制剂的相应的反应组合物相比较时,例如,比较泳道B(IL1β测定,无抑制剂)与C(IL1β测定,50nM聚合酶抑制剂E)或者D(TANK测定,无抑制剂)与E(TANL测定,50nM聚合酶抑制剂E),在包含抑制剂的反应组合物中,不需要的引物二聚体产物的量至少被减少。
实施例5:减少与酶抑制剂相关的非特异性荧光
为了使用PCR扩增和解链曲线分析而评估示例性聚合酶抑制剂的示例性猝灭剂部分的作用,制备两种反应组合物。每种20μL的反应组合物包括来自TANK测定(在实施例4中描述)的以1×浓度的引物和报道探针;10ng通用参照人cDNA(Stratagene);250μM dATP,dCTP和dGTP;500μMdUTP;5mM MgCl2;2U AmpliTaq DNA聚合酶,60nM ROX被动参照,8%甘油,0.01%吐温-20,0.01%NaN3,在50mM pH 9 Tris-HCl缓冲液中的1×SYBR Green I以及50nM“聚合酶抑制剂A”或50nM聚合酶抑制剂E。将反应组合物在室温下温育15分钟,然后转移到ABI
Figure BDA00002904136800741
7900HT实时序列检测系统仪器中,并且如在实施例4中所述进行热循环。使用所述仪器相关的软件,设定为默认条件,产生关于两种热循环反应组合物的解离曲线,显示在图10中。当所述热循环的反应组合物包括“聚合酶抑制剂A”时,观察到两个解离峰,包括峰A(“聚合酶抑制剂A”)和峰B(TANK扩增子)。相反,使用包含聚合酶抑制剂B的热循环反应组合物获得的解离曲线包含关于TANK扩增子的峰(在更低组中表示为C),但是关于聚合酶抑制剂E没有解离峰是容易辨别的。
本发明的酶抑制剂、酶-酶抑制剂复合物、方法和试剂盒已经在本文中进行了广泛而全面地描述。落入总公开内容中的每种更窄的种类和亚类分组也形成本发明的一部分。这包括本发明的总描述,限制性条件或负性限制是从所述种类去除任何主题,而不管所去除的物质是否在本文中特别引用。
前述实施例是用于举例说明目的,并且不意欲限制本发明的范围。
尽管已经参考各种酶抑制剂、酶-酶抑制剂复合物、方法以及试剂盒描述了所公开的发明,但是应该理解,可以进行各种不背离本发明的变化和修改。提供前述实施例,以更好地举例说明本发明,并且不意欲限制本发明的范围。可以依据附上的权利要求进一步理解本发明的某些方面。
Figure IDA00002904137400011
Figure IDA00002904137400021

Claims (15)

1.一种酶抑制剂,所述酶抑制剂包含核苷酸序列和至少两种不同的猝灭剂,其中所述核苷酸序列包含至少一个双链片段。
2.一种包含酶和权利要求1的酶抑制剂的复合物。
3.权利要求2的复合物,其中所述酶包括DNA聚合酶,RNA聚合酶,连接酶,解旋酶,裂解酶,或它们的组合。
4.权利要求3的复合物,其中所述酶是聚合酶并且所述酶抑制剂是聚合酶抑制剂。
5.权利要求4的复合物,所述复合物还包含NTP,核苷酸类似物,或NTP和核苷酸类似物。
6.权利要求5的复合物,其中所述聚合酶抑制剂不可通过所述聚合酶延伸。
7.权利要求4的复合物,其中所述聚合酶抑制剂的核苷酸序列包括适体。
8.权利要求1或2的酶抑制剂或复合物,其中所述酶抑制剂的核苷酸序列包含核苷酸类似物。
9.权利要求1或2的酶抑制剂或复合物,其中所述酶抑制剂的核苷酸序列包含第一区域、第二区域、第三区域和任选第四区域;并且其中所述第一区域与所述第三区域互补。
10.权利要求9的酶抑制剂或复合物,其中所述第一区域、所述第三区域或所述第一区域和第三区域包含至少一个核苷酸类似物;并且其中所述第一区域包含第一猝灭剂而所述第二区域包含第二猝灭剂,并且任选地,所述第一猝灭剂和第二猝灭剂是不同的。
11.权利要求1或2的酶抑制剂或复合物,其还包括小沟结合物。
12.权利要求8的酶抑制剂或复合物,其中所述核苷酸类似物包括脱氮-dA、脱氮-dG、ddN、PNA、LNA或它们的组合。
13.权利要求1或2的酶抑制剂或复合物,其中所述核苷酸序列包括5’-TCTGGGATA(脱氮-dA)TT(脱氮-dA)TGGTA(脱氮-dA)ATATG(Tn)C(脱氮-dA)TATTTATT(脱氮-dA)TA(脱氮-dA)TTATC-3’,并且其中所述Tn包括TT、TTT、TTTT、TTTTT或TTTTTT。
14.权利要求11的酶抑制剂或复合物,其中所述第一猝灭剂包括DABCYL、DABSYL、TAMRA、TET和ROX中的至少一种;并且所述小沟结合物还包括第二猝灭剂。
15.一种减少非特异性荧光的方法,该方法包括:
(a)在第一温度,形成包含权利要求1的酶抑制剂、酶、靶核酸、引物和核酸染料的反应组合物,其中所述酶抑制剂和所述酶缔合形成复合物,并且其中所述至少两种不同的猝灭剂抑制与所述酶抑制剂的双链片段缔合的核酸染料的荧光;
(b)将所述反应组合物加热到第二温度,以使所述复合物解离;
(c)将所述反应组合物进行至少一个扩增循环,以产生多种扩增子;和
(d)在反应组合物中检测与所述多种扩增子缔合的核酸染料的荧光,其中所述猝灭剂抑制与所述酶抑制剂的核苷酸序列的双链片段缔合的核酸染料的荧光。
CN201310076455.7A 2005-10-03 2006-09-29 用于扩增核酸的组合物、方法和试剂盒 Active CN103215248B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72338305P 2005-10-03 2005-10-03
US60/723383 2005-10-03
CN2006800431595A CN101321877B (zh) 2005-10-03 2006-09-29 用于扩增核酸的组合物、方法和试剂盒

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2006800431595A Division CN101321877B (zh) 2005-10-03 2006-09-29 用于扩增核酸的组合物、方法和试剂盒

Publications (2)

Publication Number Publication Date
CN103215248A true CN103215248A (zh) 2013-07-24
CN103215248B CN103215248B (zh) 2016-05-18

Family

ID=37906699

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2006800431595A Active CN101321877B (zh) 2005-10-03 2006-09-29 用于扩增核酸的组合物、方法和试剂盒
CN201310076455.7A Active CN103215248B (zh) 2005-10-03 2006-09-29 用于扩增核酸的组合物、方法和试剂盒

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2006800431595A Active CN101321877B (zh) 2005-10-03 2006-09-29 用于扩增核酸的组合物、方法和试剂盒

Country Status (6)

Country Link
US (6) US20070212704A1 (zh)
EP (2) EP1943348B1 (zh)
JP (9) JP5438320B2 (zh)
CN (2) CN101321877B (zh)
CA (1) CA2624634A1 (zh)
WO (1) WO2007041201A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689886A (zh) * 2016-08-26 2019-04-26 生命技术公司 核酸提取和扩增对照及其使用方法
CN111926067A (zh) * 2020-09-24 2020-11-13 圣湘生物科技股份有限公司 用于荧光定量pcr的双探针组合物、试剂盒、用途及方法

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846733B2 (en) 2000-06-26 2010-12-07 Nugen Technologies, Inc. Methods and compositions for transcription-based nucleic acid amplification
ATE475720T1 (de) 2000-12-13 2010-08-15 Nugen Technologies Inc Methoden und zusammensetzungen zur generierung einer vielzahl von kopien von nukleinsäuresequenzen und methoden zur detektion derselben
US8507662B2 (en) 2001-01-19 2013-08-13 General Electric Company Methods and kits for reducing non-specific nucleic acid amplification
DE60220025T2 (de) 2001-03-09 2008-01-17 Nugen Technologies, Inc., San Carlos Methoden und zusammensetzungen zur vervielfältigung von rna sequenzen
WO2004092418A2 (en) 2003-04-14 2004-10-28 Nugen Technologies, Inc. Global amplification using a randomly primed composite primer
KR20070090158A (ko) * 2004-10-18 2007-09-05 브랜데이스 유니버시티 Pcr 증폭에서 재현성을 개선시키고 미스프라이밍을감소시키기 위한 시약 및 방법
US7939258B2 (en) 2005-09-07 2011-05-10 Nugen Technologies, Inc. Nucleic acid amplification procedure using RNA and DNA composite primers
JP5438320B2 (ja) 2005-10-03 2014-03-12 アプライド バイオシステムズ リミテッド ライアビリティー カンパニー 核酸を増幅するための組成物、方法およびキット
US20090203531A1 (en) 2008-02-12 2009-08-13 Nurith Kurn Method for Archiving and Clonal Expansion
GB2470672B (en) * 2008-03-21 2012-09-12 Nugen Technologies Inc Methods of RNA amplification in the presence of DNA
DK3211126T3 (da) 2009-02-13 2020-12-21 X Chem Inc Fremgangsmåder til dannelse og screening af dna-kodede biblioteker
EP2425240A4 (en) 2009-04-30 2012-12-12 Good Start Genetics Inc METHOD AND COMPOSITION FOR EVALUATING GENETIC MARKERS
US20120165202A1 (en) * 2009-04-30 2012-06-28 Good Start Genetics, Inc. Methods and compositions for evaluating genetic markers
FI20095514A0 (fi) * 2009-05-07 2009-05-07 Expression Analytics Oy Menetelmä, laitteisto ja tietokoneohjelmatuote PCR-tuotteiden kvantifioimiseksi
CN101935697B (zh) * 2010-04-16 2015-11-25 中生方政生物技术有限公司 用于核酸序列检测的方法和试剂盒
US9163281B2 (en) 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
JP5977000B2 (ja) * 2011-07-12 2016-08-24 アークレイ株式会社 核酸の増幅検出方法およびキット
US9109226B2 (en) 2011-09-01 2015-08-18 New England Biolabs, Inc. Synthetic nucleic acids for polymerization reactions
EP2748357B1 (en) 2011-09-07 2018-04-04 X-Chem, Inc. Methods for tagging dna-encoded libraries
WO2013039228A1 (ja) * 2011-09-14 2013-03-21 日本碍子株式会社 標的核酸の検出方法
WO2013038534A1 (ja) * 2011-09-14 2013-03-21 日本碍子株式会社 標的核酸の検出方法
ES2660228T3 (es) 2011-10-14 2018-03-21 Becton Dickinson & Company Ciclado térmico de onda cuadrada
US8209130B1 (en) 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly
JP6490576B2 (ja) * 2012-04-12 2019-03-27 ニユー・イングランド・バイオレイブス・インコーポレイテツド 重合反応のための合成核酸
KR102146721B1 (ko) * 2012-07-13 2020-08-21 엑스-켐, 인크. 폴리머라제에 의해 판독가능하지 않은 코딩 올리고뉴클레오티드 연결을 갖는 dna-코딩된 라이브러리
EP2875147B1 (en) * 2012-07-23 2017-07-05 Cynvenio Biosystems, Inc. Dual enzymatic amplification
WO2014028793A1 (en) * 2012-08-17 2014-02-20 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Cyclopentane-peptide nucleic acids for qualitative and quantitative detection of nucleic acids
EP2912464B1 (en) * 2012-10-24 2017-04-26 Becton Dickinson and Company Hydroxamate substituted azaindoline-cyanine dyes and bioconjugates of the same
JP6338221B2 (ja) * 2012-10-24 2018-06-06 タカラ バイオ ユーエスエー, インコーポレイテッド 核酸生成物を生成するための、テンプレートスイッチに基づく方法
JP2015050980A (ja) * 2013-09-09 2015-03-19 東洋紡株式会社 非特異増幅を低減させる方法
EP3058104B1 (en) 2013-10-17 2020-08-19 Takara Bio USA, Inc. Methods for adding adapters to nucleic acids and compositions for practicing the same
EP3063129B1 (en) 2013-10-25 2019-04-17 Life Technologies Corporation Novel compounds for use in pcr systems and applications thereof
WO2015094861A1 (en) 2013-12-17 2015-06-25 Clontech Laboratories, Inc. Methods for adding adapters to nucleic acids and compositions for practicing the same
WO2016040446A1 (en) 2014-09-10 2016-03-17 Good Start Genetics, Inc. Methods for selectively suppressing non-target sequences
BR112017005392A2 (pt) * 2014-09-17 2017-12-12 Theranos Inc amplificação de ácido nucleico multipassos híbrida
JP2017537648A (ja) * 2014-12-19 2017-12-21 ブランデイズ ユニバーシティー ミスプライミング防止試薬
WO2016112073A1 (en) 2015-01-06 2016-07-14 Good Start Genetics, Inc. Screening for structural variants
SG11201707893RA (en) * 2015-04-23 2017-11-29 Geron Corp Methods of polynucleotide preparation using multivalent cation salt compositions
ES2961374T3 (es) * 2015-04-24 2024-03-11 Atila Biosystems Incorporated Amplificación con cebadores de composición de nucleótidos limitada
US10619189B2 (en) * 2015-05-11 2020-04-14 3M Innovative Properties Company Composition for reducing inhibition of nucleic acid amplification
PT3436198T (pt) * 2016-03-29 2022-07-13 Univ Rice William M Deteção de ácido nucleico baseada em superfícies num dispositivo fluídico de fluxo de convecção
WO2018031588A1 (en) * 2016-08-09 2018-02-15 Takara Bio Usa, Inc. Nucleic acid adaptors with molecular identification sequences and use thereof
WO2018087200A1 (en) * 2016-11-11 2018-05-17 Roche Innovation Center Copenhagen A/S Therapeutic oligonucleotides capture and detection
US20180188204A1 (en) * 2017-01-01 2018-07-05 Sylvester Tumusiime Use of charged quinine sulfate or other precursors or derivatives of quinine alkaloids in visualization of nucleic acids
CN108546748A (zh) * 2017-04-05 2018-09-18 杭州丹威生物科技有限公司 一种检测核酸的方法和试剂盒
US11905553B2 (en) * 2018-01-29 2024-02-20 St. Jude Children's Research Hospital, Inc. Method for nucleic acid amplification
CN108588050B (zh) * 2018-05-14 2021-06-25 北京艾克伦医疗科技有限公司 Dna聚合酶以及核酸检测方法和试剂盒
US20220056511A1 (en) * 2018-12-20 2022-02-24 Alveo Technologies, Inc. Methods and compositions to reduce nonspecific amplification in isothermal amplification reactions
CN110628877A (zh) * 2019-05-17 2019-12-31 澳门大学 增强核酸扩增反应的增强剂、试剂盒和进行核酸扩增反应的方法
CN113528624A (zh) * 2020-04-17 2021-10-22 青岛大学 扩增和检测核酸的方法及试剂盒
KR102661292B1 (ko) * 2021-09-09 2024-04-30 포항공과대학교 산학협력단 금속 이온 반응성 dna 중합 효소 스위치 및 이에 의해 제어되는 등온 증폭 방법
WO2024054867A1 (en) * 2022-09-07 2024-03-14 Becton, Dickinson And Company Modified molecular beacons for improved detection specificity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090153A3 (en) * 2003-04-01 2005-06-23 Eragen Biosciences Inc Polymerase inhibitor and method of using same
CN1661088A (zh) * 2004-12-24 2005-08-31 武汉大学 一种检测口蹄疫病毒的荧光定量pcr试剂盒及应用
CN1661359A (zh) * 2004-02-25 2005-08-31 陕西西大北美基因股份有限公司 一种核酸等温扩增定量检测技术

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US6004826A (en) 1988-07-20 1999-12-21 David Segev Repair-mediated process for amplifying and detecting nucleic acid sequences
US5763173A (en) 1990-06-11 1998-06-09 Nexstar Pharmaceuticals, Inc. Nucleic acid ligand inhibitors to DNA polymerases
US5693502A (en) * 1990-06-11 1997-12-02 Nexstar Pharmaceuticals, Inc. Nucleic acid ligand inhibitors to DNA polymerases
US5874557A (en) 1990-06-11 1999-02-23 Nexstar Pharmaceuticals, Inc. Nucleic acid ligand inhibitors to DNA polymerases
EP0540693B1 (en) 1990-07-24 1999-01-20 F. Hoffmann-La Roche Ag THE REDUCTION OF NON-SPECIFIC AMPLIFICATION DURING $i(IN VITRO) NUCLEIC ACID AMPLIFICATION USING MODIFIED NUCLEIC ACID BASES
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
US5338671A (en) * 1992-10-07 1994-08-16 Eastman Kodak Company DNA amplification with thermostable DNA polymerase and polymerase inhibiting antibody
US5614402A (en) 1992-12-07 1997-03-25 Third Wave Technologies, Inc. 5' nucleases derived from thermostable DNA polymerase
JP2909216B2 (ja) 1994-04-29 1999-06-23 パーキン‐エルマー コーポレイション 核酸増幅生成物のリアルタイム検出装置
US5801155A (en) 1995-04-03 1998-09-01 Epoch Pharmaceuticals, Inc. Covalently linked oligonucleotide minor grove binder conjugates
US6183967B1 (en) 1995-06-07 2001-02-06 Nexstar Pharmaceuticals Nucleic acid ligand inhibitors to DNA polymerases
DE69637805D1 (de) 1995-06-07 2009-02-26 Gilead Sciences Inc Nukleinsäure liganden die dna-polymerase binden und inhibieren
US5773258A (en) 1995-08-25 1998-06-30 Roche Molecular Systems, Inc. Nucleic acid amplification using a reversibly inactivated thermostable enzyme
US6706471B1 (en) 1996-01-24 2004-03-16 Third Wave Technologies, Inc. Detection of nucleic acid sequences by invader-directed cleavage
ATE295427T1 (de) 1996-06-04 2005-05-15 Univ Utah Res Found Überwachung der hybridisierung während pcr
ES2192672T3 (es) 1996-11-18 2003-10-16 Takeshi Imanishi Nuevos analogos de nucleotidos.
JP3756313B2 (ja) 1997-03-07 2006-03-15 武 今西 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体
US6143877A (en) 1997-04-30 2000-11-07 Epoch Pharmaceuticals, Inc. Oligonucleotides including pyrazolo[3,4-D]pyrimidine bases, bound in double stranded nucleic acids
NZ503765A (en) 1997-09-12 2002-04-26 Exiqon As Bi-cyclic and tri-cyclic nucleotide analogues
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
US6127121A (en) 1998-04-03 2000-10-03 Epoch Pharmaceuticals, Inc. Oligonucleotides containing pyrazolo[3,4-D]pyrimidines for hybridization and mismatch discrimination
WO2000002899A1 (en) 1998-07-09 2000-01-20 Biocept, Inc. Method of using an improved peptide nucleic acid universal library to optimize dna sequence hybridation
US6830902B1 (en) 1999-07-02 2004-12-14 Invitrogen Corporation Compositions and methods for enhanced sensitivity and specificity of nucleic acid synthesis
NZ516894A (en) * 1999-07-02 2004-06-25 Invitrogen Corp Compositions and methods for enhanced sensitivity and specificity of nucleic acid synthesis
US6692918B2 (en) 1999-09-13 2004-02-17 Nugen Technologies, Inc. Methods and compositions for linear isothermal amplification of polynucleotide sequences
KR100527265B1 (ko) 1999-09-13 2005-11-09 뉴젠 테크놀로지스 인코포레이티드 폴리뉴클레오티드 서열의 선형 등온 증폭을 위한 방법 및조성물
JP3463098B2 (ja) * 1999-10-08 2003-11-05 独立行政法人産業技術総合研究所 モジュレートアプタマー及びこれを用いた標的タンパク質の検出方法
US6660845B1 (en) 1999-11-23 2003-12-09 Epoch Biosciences, Inc. Non-aggregating, non-quenching oligomers comprising nucleotide analogues; methods of synthesis and use thereof
US6579680B2 (en) * 2000-02-28 2003-06-17 Corning Incorporated Method for label-free detection of hybridized DNA targets
SE0001768D0 (sv) 2000-05-12 2000-05-12 Helen Andersson Mikrofluidisk flödescell för manipulering av partiklar
JP2004507226A (ja) 2000-05-30 2004-03-11 ピーイー コーポレイション (エヌワイ) ライゲーションおよび増幅の組み合わせを用いて標的核酸を検出するための方法
US6887664B2 (en) 2000-06-06 2005-05-03 Applera Corporation Asynchronous primed PCR
US6605451B1 (en) 2000-06-06 2003-08-12 Xtrana, Inc. Methods and devices for multiplexing amplification reactions
US6511810B2 (en) 2000-07-03 2003-01-28 Applera Corporation Polynucleotide sequence assay
WO2002006827A1 (en) * 2000-07-05 2002-01-24 The General Hospital Corporation Compounds and methods for fluorescently labeling nucleic acids
US7309573B2 (en) * 2000-11-21 2007-12-18 Stratagene California Methods for detection of a nucleic acid by sequential amplification
US7267945B2 (en) 2001-03-26 2007-09-11 Applera Corporation Methods of determining the presence of polynucleotides employing amplification
AU2003213836A1 (en) 2002-03-11 2003-09-29 Epoch Biosciences, Inc. Negatively charged minor groove binders
EP1527175B1 (en) * 2002-06-24 2009-05-27 Exiqon A/S Methods and systems for detection and isolation of a nucleotide sequence
EP1532275A4 (en) 2002-07-26 2005-09-14 Applera Corp HOT START-UP BIOCHEMICAL REACTIONS BY MG
AU2003298706A1 (en) 2002-12-04 2004-06-23 Applera Corporation Multiplex amplification of polynucleotides
US20040259116A1 (en) * 2003-01-28 2004-12-23 Gorilla Genomics, Inc. Hairpin primer amplification
KR20070090158A (ko) * 2004-10-18 2007-09-05 브랜데이스 유니버시티 Pcr 증폭에서 재현성을 개선시키고 미스프라이밍을감소시키기 위한 시약 및 방법
US8530194B2 (en) * 2005-09-26 2013-09-10 Allelogic Biosciences Corporation Oligonucleotides as temperature-sensitive inhibitors for DNA polymerases
US7917762B2 (en) 2005-09-30 2011-03-29 Phoenix Technologies Ltd. Secure execution environment by preventing execution of unauthorized boot loaders
JP5438320B2 (ja) 2005-10-03 2014-03-12 アプライド バイオシステムズ リミテッド ライアビリティー カンパニー 核酸を増幅するための組成物、方法およびキット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090153A3 (en) * 2003-04-01 2005-06-23 Eragen Biosciences Inc Polymerase inhibitor and method of using same
CN1661359A (zh) * 2004-02-25 2005-08-31 陕西西大北美基因股份有限公司 一种核酸等温扩增定量检测技术
CN1661088A (zh) * 2004-12-24 2005-08-31 武汉大学 一种检测口蹄疫病毒的荧光定量pcr试剂盒及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689886A (zh) * 2016-08-26 2019-04-26 生命技术公司 核酸提取和扩增对照及其使用方法
US11613777B2 (en) 2016-08-26 2023-03-28 Life Technologies Corporation Nucleic acid extraction and amplification controls and methods of use thereof
CN111926067A (zh) * 2020-09-24 2020-11-13 圣湘生物科技股份有限公司 用于荧光定量pcr的双探针组合物、试剂盒、用途及方法

Also Published As

Publication number Publication date
US20070212704A1 (en) 2007-09-13
CN101321877A (zh) 2008-12-10
WO2007041201A3 (en) 2007-11-22
JP6157541B2 (ja) 2017-07-05
EP1943348A2 (en) 2008-07-16
US11225686B2 (en) 2022-01-18
US20110262898A1 (en) 2011-10-27
JP2023065578A (ja) 2023-05-12
EP1943348B1 (en) 2013-01-02
JP2021182939A (ja) 2021-12-02
JP2009509565A (ja) 2009-03-12
JP2018134099A (ja) 2018-08-30
JP2015165820A (ja) 2015-09-24
JP5438320B2 (ja) 2014-03-12
WO2007041201A2 (en) 2007-04-12
JP5890762B2 (ja) 2016-03-22
CN101321877B (zh) 2013-04-10
CA2624634A1 (en) 2007-04-12
EP1943348A4 (en) 2009-11-25
US20140004515A1 (en) 2014-01-02
US20200140937A1 (en) 2020-05-07
US8470531B2 (en) 2013-06-25
JP7274264B2 (ja) 2023-05-16
CN103215248B (zh) 2016-05-18
EP2458011B1 (en) 2013-07-24
US10604796B2 (en) 2020-03-31
JP2012228270A (ja) 2012-11-22
EP2458011A1 (en) 2012-05-30
US20160024566A1 (en) 2016-01-28
US20220154265A1 (en) 2022-05-19
JP2016192979A (ja) 2016-11-17
JP2023156506A (ja) 2023-10-24
JP2019193664A (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
CN101321877B (zh) 用于扩增核酸的组合物、方法和试剂盒
EP1791982B1 (en) TWO-COLOR REAL-TIME/END-POINT QUANTITATION OF MICRORNAS (MIRNAs)
US20060057595A1 (en) Compositions, methods, and kits for identifying and quantitating small RNA molecules
US20070003955A1 (en) Normalization of samples for amplification reactions
CN102428190A (zh) 用于检测等位基因变体的方法、组合物和试剂盒
JP5486501B2 (ja) 小さなrna分子の改善された検出のための方法、組成物およびキット
CN103502475A (zh) 包含内部标记引物的核酸的测序、扩增和检测方法
JP2009508475A (ja) Dnaメチル化を評価するための方法およびキット

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant