CN102557035A - 生产多晶硅棒的方法 - Google Patents

生产多晶硅棒的方法 Download PDF

Info

Publication number
CN102557035A
CN102557035A CN2011103430188A CN201110343018A CN102557035A CN 102557035 A CN102557035 A CN 102557035A CN 2011103430188 A CN2011103430188 A CN 2011103430188A CN 201110343018 A CN201110343018 A CN 201110343018A CN 102557035 A CN102557035 A CN 102557035A
Authority
CN
China
Prior art keywords
reactor drum
thin rod
silicon
thin
described method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103430188A
Other languages
English (en)
Other versions
CN102557035B (zh
Inventor
L·法布里
T·阿尔特曼
H·克劳斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Polymer Systems GmbH and Co KG
Original Assignee
Wacker Polymer Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Polymer Systems GmbH and Co KG filed Critical Wacker Polymer Systems GmbH and Co KG
Publication of CN102557035A publication Critical patent/CN102557035A/zh
Application granted granted Critical
Publication of CN102557035B publication Critical patent/CN102557035B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种通过在反应器中在至少一个薄棒上沉积硅来生产多晶硅的方法,其中,在硅沉积之前,在400-1000℃的薄棒温度下将卤化氢通入到含有至少一个薄棒的反应器中,并通过UV光辐射,从而产生卤素和氢自由基,以及从反应器中去除形成的挥发性卤化物。

Description

生产多晶硅棒的方法
技术领域
本发明涉及一种生产多晶硅棒的方法。
背景技术
多晶硅在通过坩埚提拉(Czochralski或CZ法)或通过区域提拉(浮区法或FZ法)生产单晶硅中用作原料。所述单晶硅被分离成晶片,在经过大量机械、化学和化学机械加工步骤之后,用于半导体工业中生产电子元件(芯片)。
然而,特别是在用提拉或浇铸法生产单晶硅或多晶硅(multicrystallinesilicon)中,对多晶硅(polycrystalline silicon)的需求程度与日俱增,其中所述单晶硅或多晶硅用于太阳能电池的制造。
多晶硅通常用西门子法生产。在这种情况下,在钟形反应器(“西门子反应器”)中,由硅构成的薄棒通过直流电加热,并通入包含含硅组分和氢气的反应气体。
硅薄棒通常具有3-15mm的边长。
适合的含硅组分的实例包括卤代硅化合物,如氯代硅化合物,特别是氯硅烷。含硅组分与氢气一同被通入到反应器中。在超过1000℃的温度下,硅沉积在薄棒上。最终得到包含多晶硅的棒。DE 1 105 396描述了西门子法的基本原理。
随着薄棒的生产,由DE 1 177 119已知,在由硅构成的载体(=薄棒)上沉积硅,随后从其中分离出一部分,继而使用分离出的这部分作为沉积硅的载体。所述分离可以是机械分离,例如通过锯开,或可以通过液体喷射进行电解分离。
然而,在薄棒的机械分离期间,其表面被金属和硼、磷、铝和砷的化合物污染。B、P、Al和As的平均污染为60-700ppta(份每万亿原子)。由于在薄棒表面上沉积第一层多晶硅期间,薄棒表面上的掺杂剂B、P、As混入到生长的Si棒中,因而受污染的薄棒表面污染了第一层热沉积Si层。
因此,在用于硅沉积之前,通常需要对薄棒进行表面清洁。在这方面,DE 1 177 119公开了例如通过喷砂进行机械清洁或通过蚀刻进行化学清洁。
在由低污染材料如塑料构成的蚀刻罐中使用HF和HNO3的混合物对薄棒进行处理能够使表面污染显著降低,对于B、P、Al和As,降低到小于15pptw。然而,这种纯度对于高阻抗FZ棒还是不够的。
EP 0 548 504 A2同样描述了一种清洁方法,其中使用HF和HNO3清洁硅。
由DE 195 29 518 A1已知另一种清洁方法。在这种情况下,首先用王水混合物(HCl和HNO3的混合物)清洁多晶硅,而后用HF进行进一步清洁。
对于用于沉积作为区域提拉的原材料的多晶Si棒的薄棒,在纯度上有特别苛刻的要求。依据6,503,563 B1,FZ薄棒在机械加工后,首先通过HF-HNO3蚀刻,用超纯水冲洗,干燥,而后储存在超压下密闭的惰性气体容器(N2、He、优选Ar)中。在随后的步骤中,通过等离子体CVD将晶体硅沉积在薄棒上。
然而,由于从HF/HNO3蚀刻装置转移到惰性气体容器和从惰性气体容器转移到CVD反应器的过程中对薄棒的操作,掺杂剂可能再次沉积在薄棒表面上。
DE 27 25 574 A1公开了通过加热介质(氢、氩或氦)对硅载体预加热。所用的高纯度的气体防止了对硅的污染。在这种情况下,将硅载体加热到约400℃的温度。从这个温度开始,硅变成导电性的,可以通过传导电流而进行电加热,但是在这些条件下,在薄棒表面上不能实现清洁效果。
DE 1 202 771公开了一种方法,其中在西门子法中,通过调整气体混合物中卤化氢的比例,在第一步中沉积载体的上层,而在第二步中沉积硅。在第一步中,载体被加热到约1150℃的温度,直到氧化物表层被还原。
由US 6,107,197已知,通过将受污染的层置于氯或氢自由基中去除被碳污染的硅层,所述氯或氢自由基是使氯气或氢气通过加热的灯丝而产生的。通过这种方法比通过UV辐射更有效地产生自由基。为了形成足够用于薄棒清洁的氢和氯自由基,需要1000℃以上的高分解温度,如DE 1 202771所公开的。
发明内容
因此,本发明的目的是避免上述缺点即高薄棒温度、在沉积之前的暂时存储期间对已清洁的薄棒的操作所致污染、和在混合薄棒的表面上的不充分清洁效果,并改善现有技术。
利用一种通过在反应器中在至少一个薄棒上沉积硅生产多晶硅棒的方法达到所述目的,其中在硅沉积之前,在400-1000℃的薄棒温度下将卤化氢通入到含有至少一个薄棒的反应器中,并通过UV光进行辐照,从而产生卤素和氢自由基,以及从反应器中去除形成的挥发性卤化物。
优选,在用卤素和氢自由基清洁之后,直接开始在薄棒上沉积硅。
然而,如果想要在以后的时间实施沉积,这同样是优选的,那么将薄棒储存在惰性气氛中。例如,CO2气氛适用于此目的。适合的惰性气体还包括N2或Ar。
优选储存在超压下的气密式封闭的由石英、HDPE或PP构成的管中。
在本发明中,所述卤素和氢自由基通过用UV光分解卤化氢产生。
依据本发明的方法的优势在于,在沉积之前,在可控条件下对被大气中的污染物污染的薄棒表面进行清洁。
通过自由基反应,以挥发性卤化物(例如PCl3、BCl3、AsCl3)和氢化物(PH3、BH2、B2H6、AsH3)的形式从反应器中去除掺杂剂。在低温下H2气氛中,用UV(例如波长为200-400nm,优选254nm)辐照例如HBr-HCl或HJ-HCl的混合物,以在沉积前清洁和钝化薄棒。
氯和氢自由基从硅表面上除去最后残余的痕量硼、磷、铝和砷。
如果之后不立即使用已清洁的薄棒,那么将以这种方式清洁的薄棒储存在惰性气体超压下例如CO2、N2或氩气超压下的气密式封闭的由石英、HDPE或PP构成的管中,以得到较低掺杂剂污染的沉积硅棒。
沉积硅棒中的低掺杂剂浓度对于在区域提拉和坩埚提拉法后对硅棒进一步加工以形成无位错单晶,是重要的质量标准。
特别是,原料硅棒中的低掺杂剂浓度对于生产具有特定的稳定的电阻值的单晶是必要的。
而且,超高纯度的薄棒对于具有高电阻的高无位错FZ产量是重要的。
产生的卤素和氢自由基与含铝、硼、磷和As的表面污染物反应而形成挥发性卤化物和氢化物是本发明成功的基础。
DE 10 2006 037 020 A1中详细描述了西门子法的原理,其全部内容作为参考,为本发明公开的一部分。
依据DE 10 2006 037 020 A1,从打开沉积反应器以卸下具有沉积硅的第一载体开始,直到关闭反应器以在第二载体上沉积硅,通过供料管线和排料管线将惰性气体通入到打开的反应器中
由于在反应器已经具有惰性之后对薄棒进行的额外表面清洁,依据本发明的方法提升了产品性质。
本发明将参考附图说明如下。
附图说明
图1显示了实施本发明的方法的设备的构造。
具体实施方式
图1涉及西门子反应器的典型构造。
所述反应器包括用于反应气体的具有关闭阀8的供料管线1,该管线经供料口2通过基板3通入到反应器4中,还包括用于废气的排料管线6,该管线通过反应器4的基板3中的排料口5,经关闭阀7通到外界或调节系统,其中惰性气体管线11在关闭阀8的下游与供料管线1相连,所述惰性气体管线可通过关闭阀10调节,惰性气体管线11在关闭阀7的上游与排料管线6相连,所述惰性气体管线可通过关闭阀9调节。
对比实施例
在更换批料或加入薄棒的过程中,用惰性气体(氮气)冲洗供料管线和排料管线以及打开状态的钟形反应器。
沉积本身如DE 12 09 113或DE 196 08 885所述,用三氯硅烷(TCS)实施(“灼烧”)。
一旦多晶硅棒生长到期望的目标直径,就终止三氯硅烷的供给,将反应器冷却至室温并赋予惰性。
卸料之后,依据SEMI MF 1723-1104(10.23.2003)由得到的多晶硅棒制备样品,并依据标准SEMI MF 397-02(电阻系数10.22.2003)和SEMI MF1389-0704(每光致发光的P含量10.22.2003)测试掺杂剂。
电阻系数为980ohmcm,P含量为33ppta。斜率mrho为150ohmcm/mm(对于mrho的定义,参考DE 10 2006 037 020 A1([0010]-[0012]))。
实施例
如对比实施例一样准备反应器。
反应器4被再次牢固组装之后,通过凸缘12或通过观测镜13以密封方式引入UV灯(例如Ren-Ray 3SC-9或Hanovia SC2537)。
随后,当关闭阀9,打开阀8和阀10后,通过反应气体管线1通入大气压下的体积比为0.00001∶0.1∶0.9至0.01∶0.09∶0.9的HBr-HCl-H2混合物,体积流速为85m3/h,并通过废气管线6排出。
流动的HX-H2混合物用UV灯辐照,在室温下用该辐照的混合物处理薄棒表面30分钟。
在经过所述处理后,关闭阀8,在N2惰性气体流下从反应器4中取出UV灯,并通过惰性气体管线11和废气管线6再次赋予反应器4惰性。
然后在这种状态下进行沉积,如对比实施例所述。
卸出的棒显示出的电阻系数>1100ohmcm,P含量<26ppta。斜率值mrho>150ohmcm/mm。

Claims (6)

1.一种通过在反应器中在至少一个薄棒上沉积硅生产多晶硅的方法,其中,在硅沉积之前,在400-1000℃的薄棒温度下将卤化氢通入到含有至少一个薄棒的反应器中,并通过UV光进行辐射,从而产生卤素和氢自由基,以及从所述反应器中去除形成的挥发性卤化物和氢化物。
2.权利要求1所述的方法,其中,在去除挥发性卤化物和氢化物之后,将硅沉积在所述至少一个薄棒上。
3.权利要求1所述的方法,其中,在去除挥发性卤化物和氢化物之后,首先将所述至少一个薄棒从反应器中取出,并储存在气密式封闭的包含惰性气体的管中,以后再将所述至少一个薄棒放入到反应器中,以在该至少一个薄棒上沉积硅。
4.权利要求1-3之一所述的方法,其中在通入卤化氢之前,先用惰性气体冲洗反应器和反应器中的气体供料管线和排料管线。
5.权利要求1-4之一所述的方法,其中通过UV灯进行辐照,所述UV灯以通过凸缘或观测镜密封的形式插入到所述反应器中。
6.权利要求1-5之一所述的方法,其中,在从反应器中去除挥发性卤化物和氢化物之后和在所述至少一个薄棒上沉积硅之前,用惰性气体冲洗反应器和气体管线。
CN201110343018.8A 2010-10-25 2011-10-25 生产多晶硅棒的方法 Expired - Fee Related CN102557035B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010042869.8 2010-10-25
DE102010042869A DE102010042869A1 (de) 2010-10-25 2010-10-25 Verfahren zur Herstellung von polykristallinen Siliciumstäben

Publications (2)

Publication Number Publication Date
CN102557035A true CN102557035A (zh) 2012-07-11
CN102557035B CN102557035B (zh) 2014-09-17

Family

ID=44992548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110343018.8A Expired - Fee Related CN102557035B (zh) 2010-10-25 2011-10-25 生产多晶硅棒的方法

Country Status (7)

Country Link
US (1) US20120100302A1 (zh)
EP (1) EP2444373B1 (zh)
JP (1) JP5307216B2 (zh)
KR (1) KR101339047B1 (zh)
CN (1) CN102557035B (zh)
CA (1) CA2755762C (zh)
DE (1) DE102010042869A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620839B (zh) * 2015-08-26 2018-04-11 中美矽晶製品股份有限公司 多晶矽柱體及多晶矽晶片

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272047B (zh) * 2009-02-04 2013-07-31 株式会社德山 多晶硅的制造方法
KR101708058B1 (ko) * 2009-07-15 2017-02-17 미쓰비시 마테리알 가부시키가이샤 다결정 실리콘의 제조 방법, 다결정 실리콘의 제조 장치, 및 다결정 실리콘
JP5655429B2 (ja) * 2009-08-28 2015-01-21 三菱マテリアル株式会社 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
DE102010003068A1 (de) * 2010-03-19 2011-09-22 Wacker Chemie Ag Verfahren zur Herstellung von rissfreien polykristallinen Siliciumstäben
DE102010042869A1 (de) 2010-10-25 2012-04-26 Wacker Chemie Ag Verfahren zur Herstellung von polykristallinen Siliciumstäben
DE102013200660A1 (de) * 2013-01-17 2014-07-17 Wacker Chemie Ag Verfahren zur Abscheidung von polykristallinem Silicium
DE102014201893A1 (de) 2014-02-03 2015-08-06 Wacker Chemie Ag Verfahren zur Herstellung von polykristallinem Silicium
KR102303581B1 (ko) 2016-06-23 2021-09-16 미쓰비시 마테리알 가부시키가이샤 다결정 실리콘 로드 및 그 제조 방법
KR102553013B1 (ko) 2018-12-17 2023-07-06 와커 헤미 아게 다결정 실리콘의 제조 방법
CN114026044A (zh) 2019-05-21 2022-02-08 瓦克化学股份公司 用于生产多晶硅的方法
WO2020234401A1 (de) 2019-05-21 2020-11-26 Wacker Chemie Ag Verfahren zur herstellung von polykristallinem silicium
KR20220017500A (ko) 2019-06-11 2022-02-11 와커 헤미 아게 다결정 실리콘의 제조 방법
EP3999469B1 (de) 2019-07-16 2023-08-30 Wacker Chemie AG Verfahren zur herstellung von polykristallinem silicium
EP4021849B1 (de) 2019-08-29 2024-01-03 Wacker Chemie AG Verfahren zur herstellung von siliciumbruchstücken
JP7342147B2 (ja) 2019-12-17 2023-09-11 ワッカー ケミー アクチエンゲゼルシャフト 多結晶シリコンを製造及び分類するための方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438810A (en) * 1966-04-04 1969-04-15 Motorola Inc Method of making silicon
US6107197A (en) * 1996-01-10 2000-08-22 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
CN101654249A (zh) * 2009-09-22 2010-02-24 江苏中能硅业科技发展有限公司 一种多晶硅硅棒的生产方法
CN101717087A (zh) * 2009-11-25 2010-06-02 江苏中能硅业科技发展有限公司 一种多晶硅棒的制造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL113118C (zh) 1954-05-18 1900-01-01
NL225538A (zh) 1955-11-02
DE1105396B (de) 1957-05-29 1961-04-27 Siemens Ag Verfahren und Vorrichtung zur Herstellung von Reinstsilicium
DE1202771B (de) 1960-01-15 1965-10-14 Siemens Ag Verfahren zum Herstellen von hochreinem einkristallinem Silicium
US4148931A (en) * 1976-03-08 1979-04-10 Siemens Aktiengesellschaft Process for depositing elemental silicon semiconductor material from a gas phase
JPS52151616A (en) 1976-06-12 1977-12-16 Komatsu Denshi Kinzoku Kk Producing method and apparatus of bar form high purity silicon
JPS60216558A (ja) * 1984-04-12 1985-10-30 Fuji Electric Corp Res & Dev Ltd 表面洗浄方法
JPH0624197B2 (ja) * 1987-03-25 1994-03-30 日本電気株式会社 表面保護方法
JPH01278028A (ja) * 1988-04-28 1989-11-08 Mitsubishi Electric Corp 半導体基板のクリーニング方法及び装置
US5174881A (en) * 1988-05-12 1992-12-29 Mitsubishi Denki Kabushiki Kaisha Apparatus for forming a thin film on surface of semiconductor substrate
JP2874259B2 (ja) * 1990-03-15 1999-03-24 富士通株式会社 半導体基板のドライ洗浄方法
JP2571304B2 (ja) * 1990-07-23 1997-01-16 大日本スクリーン製造株式会社 基板の表面処理方法および装置
US5326406A (en) * 1991-07-31 1994-07-05 Kawasaki Steel Corporation Method of cleaning semiconductor substrate and apparatus for carrying out the same
JPH05121390A (ja) 1991-10-29 1993-05-18 Koujiyundo Silicon Kk 酸の除去方法
DE19529518A1 (de) 1994-08-10 1996-02-15 Tokuyama Corp Polykristallines Silizium und Verfahren zu dessen Herstellung
US5753567A (en) * 1995-08-28 1998-05-19 Memc Electronic Materials, Inc. Cleaning of metallic contaminants from the surface of polycrystalline silicon with a halogen gas or plasma
US5749975A (en) * 1995-12-28 1998-05-12 Micron Technology, Inc. Process for dry cleaning wafer surfaces using a surface diffusion layer
DE19608885B4 (de) 1996-03-07 2006-11-16 Wacker Chemie Ag Verfahren und Vorrichtung zum Aufheizen von Trägerkörpern
KR100321170B1 (ko) 1998-10-12 2002-05-13 박종섭 폴리실리콘막증착용수소이온발생장치및그를이용한증착방법
US6503563B1 (en) 2001-10-09 2003-01-07 Komatsu Ltd. Method of producing polycrystalline silicon for semiconductors from saline gas
DE102006037020A1 (de) 2006-08-08 2008-02-14 Wacker Chemie Ag Verfahren und Vorrichtung zur Herstellung von hochreinem polykristallinem Silicium mit reduziertem Dotierstoffgehalt
DE102007039638A1 (de) * 2007-08-22 2009-02-26 Wacker Chemie Ag Verfahren zum Reinigen von polykristallinem Silicium
DE102010042869A1 (de) 2010-10-25 2012-04-26 Wacker Chemie Ag Verfahren zur Herstellung von polykristallinen Siliciumstäben

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438810A (en) * 1966-04-04 1969-04-15 Motorola Inc Method of making silicon
US6107197A (en) * 1996-01-10 2000-08-22 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
CN101654249A (zh) * 2009-09-22 2010-02-24 江苏中能硅业科技发展有限公司 一种多晶硅硅棒的生产方法
CN101717087A (zh) * 2009-11-25 2010-06-02 江苏中能硅业科技发展有限公司 一种多晶硅棒的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620839B (zh) * 2015-08-26 2018-04-11 中美矽晶製品股份有限公司 多晶矽柱體及多晶矽晶片

Also Published As

Publication number Publication date
EP2444373B1 (de) 2012-12-12
CA2755762A1 (en) 2012-04-25
US20120100302A1 (en) 2012-04-26
JP2012092008A (ja) 2012-05-17
KR101339047B1 (ko) 2013-12-09
CA2755762C (en) 2013-12-03
JP5307216B2 (ja) 2013-10-02
CN102557035B (zh) 2014-09-17
DE102010042869A1 (de) 2012-04-26
KR20120042689A (ko) 2012-05-03
EP2444373A1 (de) 2012-04-25

Similar Documents

Publication Publication Date Title
CN102557035B (zh) 生产多晶硅棒的方法
US8987156B2 (en) Polycrystalline group III metal nitride with getter and method of making
US8461071B2 (en) Polycrystalline group III metal nitride with getter and method of making
AU2010296773B2 (en) Polycrystalline silicon mass and process for producing polycrystalline silicon mass
US9073756B2 (en) Low-dopant polycrystalline silicon chunk
US7927571B2 (en) Method and device for producing high purity polycrystalline silicon with a reduced dopant content
USRE47114E1 (en) Polycrystalline group III metal nitride with getter and method of making
US20180371609A1 (en) Method and system for preparing polycrystalline group iii metal nitride
CA1178177A (en) Process for increasing silicon thermal decomposition deposition rates from silicon halide-hydrogen reaction gases
WO2017221952A1 (ja) 多結晶シリコンロッド及びその製造方法
US20120111263A1 (en) Method for the determination of impurities in silicon
US4309241A (en) Gas curtain continuous chemical vapor deposition production of semiconductor bodies
KR20130018673A (ko) 고순도 실리콘 제조용 플라즈마 증착 장치 및 방법
JP5640822B2 (ja) 窒化物半導体製造装置、窒化物半導体の製造方法および窒化物半導体結晶
KR101731410B1 (ko) 다결정 실리콘의 증착 방법
US20150299897A1 (en) Method for forming an epitaxial silicon layer
EP0045191A1 (en) Process and apparatus for the production of semiconductor bodies
JPH06127923A (ja) 多結晶シリコン製造用流動層反応器
JP3864693B2 (ja) シリコン単結晶の製造方法
JPH0494117A (ja) 気相成長装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140917

Termination date: 20151025

EXPY Termination of patent right or utility model