CN102549191A - ZnO系透明导电膜用靶及其制造方法 - Google Patents

ZnO系透明导电膜用靶及其制造方法 Download PDF

Info

Publication number
CN102549191A
CN102549191A CN2010800418239A CN201080041823A CN102549191A CN 102549191 A CN102549191 A CN 102549191A CN 2010800418239 A CN2010800418239 A CN 2010800418239A CN 201080041823 A CN201080041823 A CN 201080041823A CN 102549191 A CN102549191 A CN 102549191A
Authority
CN
China
Prior art keywords
zno
powder
target
quality
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800418239A
Other languages
English (en)
Other versions
CN102549191B (zh
Inventor
福岛英子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of CN102549191A publication Critical patent/CN102549191A/zh
Application granted granted Critical
Publication of CN102549191B publication Critical patent/CN102549191B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供具有高烧结密度的、添加了硼(B)及钒(V)两者的ZnO系透明导电膜用靶及其制造方法。本发明的靶的特征在于,其为ZnO系透明导电膜用靶,所述靶是硼量以B2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.5~10质量%、钒量以V2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.05~5质量%、密度以相对密度计为90%以上的氧化物烧结体。本发明的制造方法使用H3BO3粉末作为硼源,使用V2O3粉末作为钒源。制造方法中,优选将混合H3BO3粉末和ZnO粉末或进一步混合V2O3粉末并预烧结而得到的预烧结粉末作为烧结原料进行烧结。

Description

ZnO系透明导电膜用靶及其制造方法
技术领域
本发明涉及在液晶显示器、薄膜太阳能电池等的制造中使用的、添加了硼(B)及钒(V)两者的ZnO系透明导电膜用靶及其制造方法。
背景技术
液晶显示器、薄膜太阳能电池等中使用导电性且对光为透明的电极(透明电极)。作为带有这样的性质的材料,已知有例如In2O3-SnO2(以下称为ITO)、ZnO-B2O3(以下称为BZO)、ZnO-Al2O3(以下称为AZO)、ZnO-Ga2O3(以下称为GZO)等的氧化物材料。这样的材料通过溅射法在液晶显示器、薄膜太阳能电池上以薄膜的形式形成后,作为电极被图案化,成为透明电极。
溅射法中,在溅射装置中,用于形成薄膜的基板与溅射靶(以下称为靶)相对地配置。使它们之间产生气体放电,通过该气体放电而产生的离子与靶的表面碰撞,由于该冲击而释放的原子(粒子)附着于对向的基板而形成薄膜。该靶由成为透明电极的材料形成,透明电极的特性反映了所使用的靶的特性。
另外,通常靶非常昂贵,其价格在液晶显示器、太阳能电池的制造成本中所占的比例大。因此,为了液晶显示器、太阳能电池的低成本化,也要求靶的廉价。其中BZO靶使用廉价的原料即ZnO粉末和B2O3粉末进行制造,有希望实现低成本化。进而,与作为透明电极使用的ITO、AZO相比,从波长1000nm以上的透射率高、可有效活用太阳光的观点出发,BZO有望作为太阳能电池用透明电极。但是,烧结ZnO粉末和B2O3粉末来获得BZO靶时,被指出存在以下问题:由于B2O3从约600℃附近开始生成液相,导致B2O3彼此熔接、粗大化,烧结体内产生偏析,或者,由于润湿性、B2O3的蒸发的问题等导致难以获得致密的烧结体。
为了解决该问题,公开有使用由预烧结ZnO粉末和B2O3粉末而获得的复合粉末形成的原料,或使用由将基于共沉淀法得到的氢氧化物的粉末预烧结而获得的复合粉末形成的原料(专利文献1、专利文献2、专利文献3)。
如这样的使用事先形成的复合粉末,由于不存在粗大的B2O3相,因此在预防偏析、获得致密的烧结体方面变得有效。
另外,公开有添加CO、V在提高ZnO的耐化学品性方面是有效的(专利文献4)。
专利文献4也公开了以下内容:对于添加了作为施主杂质而使用的上述硼所属的第III族元素等的ZnO系导电膜而言,添加CO、V是有效的,这样的导电膜的形成适用溅射法以及用于此目的的烧结体。
现有技术文献
专利文献
专利文献1:日本特开平11-158607号公报
专利文献2:日本特开平11-171539号公报
专利文献3:日本特开平11-302835号公报
专利文献4:日本特开2002-75062号公报
发明内容
发明要解决的问题
专利文献4中公开的V从提高耐化学品性的观点来看是有利的,但以专利文献4中有具体记载的V2O5作为钒源的情况下,针对V2O5的毒性的慎重处理是必要的。
另外,作为比V2O5毒性低的V氧化物,已知有V2O3。但相对于V2O5的熔点为低温的690℃,V2O3的熔点高达1970℃,在获得含有硼的ZnO系烧结体的方面来说,行为不明。
另外,对于硼的添加而言,专利文献1~3那样的形成复合氧化物的方法是有效的。但是,即使在使用这样的复合氧化物的制造技术中,关于添加V时的、原料氧化物的V的价数对烧结性等存在何种影响,还完全未知。
本发明的目的是提供具有高烧结密度的、添加了硼(B)及钒(V)两者的ZnO系透明导电膜用靶及其制造方法。
用于解决问题的方案
本发明人发现在获得含有硼的烧结体方面V2O3可有助于提高烧结密度,从而完成了本发明。
即本发明为ZnO系透明导电膜用靶,其是硼量以B2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.5~10质量%、钒量以V2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.05~5质量%、密度以相对密度计为90%以上的氧化物烧结体。
另外,本发明可以添加分别为2质量%以下的以3价氧化物换算的铝和/或镓。
另外,本发明的制造方法是由含有硼和钒、硼量以B2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.5~10质量%、钒量以V2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.05~5质量%的氧化物烧结体制成的ZnO系透明电极用靶的制造方法,是使用H3BO3粉末作为硼源,使用V2O3粉末作为钒源的ZnO系透明电极用靶的制造方法。
另外,优选将本发明的制造方法中的烧结温度设为700~1050℃,将烧结气氛设为非还原性气氛。
另外,本发明的制造方法中,优选将混合H3BO3粉末和ZnO粉末或进一步混合V2O3粉末并预烧结而得到的预烧结粉末作为烧结原料进行烧结。
另外,本发明中使用预烧结粉末的情况下,优选将预烧结粉末的组成设为以B2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.8~45质量%,向该预烧结粉末中混合ZnO粉末或V2O3的任一种或者两者,进行烧结,从而获得相对密度为90%以上的烧结体。
另外,优选将预烧结温度设为100~500℃。
发明的效果
本发明为具有高烧结密度的、添加了硼(B)及钒(V)两者的ZnO系透明导电膜用靶,其异常放电少,在液晶显示器、薄膜太阳能电池等的制造中是适合的。另外,本发明的制造方法可以安全且高精度的制造,因此在获得上述靶方面成为重要的技术。
附图说明
图1为本发明的靶的显微组织以及相应的特定原子分布的一例的示意图。
图2为比较例的靶的显微组织以及相应的特定原子分布的一例的示意图。
具体实施方式
如上所述,本发明的重要特征在于,发现在获得含有硼的烧结体方面V2O3可有助于提高烧结密度,实现了具有高烧结密度的、添加了硼及钒两者的ZnO系透明导电膜用靶。
本发明中,将硼量设定为以B2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.5~10质量%是因为,硼的添加在确保所形成的导电膜的低电阻性和透明性方面是有效地。优选为0.5~5质量%。
另外,在本发明中,将钒量设定为以V2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.05质量%以上是因为,钒量不足0.05质量%时,无法获得提高烧结性的明确的效果,另外制造时难以使钒在靶中均匀地分散。另外,设为5质量%以下是为了维持廉价且特定波长的透射率高这样的硼添加的作用。优选为0.05~2质量%。
本发明中,为了发挥硼的特征,不一定需要添加硼和钒以外的赋予导电性的氧化物,但也可以添加。典型来说,可以添加铝(Al)、镓(Ga)的氧化物。理想的是,以3价氧化物换算,它们的添加分别设为2质量%以下。
另外,将本发明的靶的相对密度设为90%以上。不足90%的相对密度在通常的烧结中也能够容易地达到,这使得V2O3的添加所带来的烧结性提升的意义小。优选设为95%以上。更优选为98%以上。
予以说明,本发明所述的相对密度是,在假定靶组织中ZnO、B2O3、V2O3的各相分别独立地存在下,计算出的相对于密度的相对密度。
接着,针对本发明的制造方法进行详细说明。
本发明的制造方法中,其重要特征之一在于,为了获得上述组成的靶,使用H3BO3粉末作为硼源,使用V2O3粉末作为钒源。
确认通常作为硼源使用的B2O3粉末具有吸湿性高易产生称量误差的问题。另一方面,本发明中使用的H3BO3粉末为水合物,没有水分吸收的担心,不易产生称量误差,在提高成分调制的精度方面是有效的。
另外,通常作为钒源使用的V2O5具有上述那样的毒性,在处理方面存在问题。另一方面,本发明所使用的V2O3不存在那样的问题。而且,重要的是,发现尽管V2O3具有1970℃那样的高温的熔点,但其有助于提高烧结性。
根据本发明人的研究,确认了以下现象:靶组织中存在的Zn-B-O相的组织在未添加V2O3时为粒状的组织,与此相对,通过V2O3的添加则会变成柱状组织。从此现象推测添加的V2O3粉末对靶组织产生较大影响,成为使烧结性提高的因素。
而且,利用该方法,可将相对密度提高至90%,优选提高至95%以上,更优选提高至98%以上。
优选将本发明的制造方法的烧结温度设为700~1050℃,将烧结气氛设为非还原性气氛。为不足700℃的烧结温度时,所用烧结时间过长;为1050℃以上时,所构成的氧化物的分解进行,不仅无法获得规定的烧结密度,且组成变动也可能变大。
另外,通过选择非还原气氛作为烧结气氛,具有能够容易地抑制所构成的氧化物的分解的优点。作为该非还原性气氛,可使用空气、氮气、非活性气体等。
本发明的制造方法中,H3BO3粉末的使用如上所述对控制组成是有效的,但直接作为烧结原料时,其因加热而分解成氧化硼和水,因此与将氧化硼直接作为烧结原料的情况同样地、可能在烧结体内产生大的偏析,或无法获得致密的烧结体。
因此,制造将ZnO粉末和H3BO3粉末混合并预烧结所得的预烧结粉末,并将其作为烧结原料时,由于形成了复合氧化物,可以获得防止偏析的、致密的烧结体。另外,预烧结工序可以预先除去作为烧结体而言不需要的水分,因此在防止由于水分存在导致的烧结体的变形、缺陷的形成方面也是有效的。此时,也可以同时与V2O3粉末混合,获得预烧结粉末。
另外,本发明的制造方法中,可以仅以预烧结粉末作为原料进行烧结,也可以在预烧结粉末的基础上混合其他的氧化物粉末再进行烧结。具体而言,理想的是,将预烧结粉末的组成调整为以B2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.5~45质量%,向该预烧结粉末中混合ZnO粉末或V2O3的任一种或者混合两者,并进行烧结。
将B2O3的比例设为0.5%以上是因为:B2O3的比例不足0.5%时难以获得作为电极的特性,产生需要在预烧结粉末的基础上添加其他硼源等的必要。
另一方面,将B2O3的比例设为45%以下是因为:B2O3的比例变高超过45%时,存在以下情况:除以复合氧化物形式存在以外,以B2O3相存在的量变多,B的分散性变差。实际的预烧结粉末的组成可通过所使用的H3BO3粉末变成B2O3时的量与ZnO粉末的ZnO量,或V2O3粉末的V2O3量而进行调整。
上述预烧结工序中,预烧结温度设定为100℃以上且500℃以下是适合的。这是由于:为比100℃低的低温时,H3BO3中的水的分解除去难以推进。
另一方面,由于为比500℃高的高温的情况下,预烧结粉末生长得较大,作为烧结原料需要特别的粉碎处理等。
实施例
以下,说明本发明的实施例。但是,本发明不受以下所述实施例的限定。
本实施例中适用的制造工序如下所述。
(工序A1)
称量比表面积为4.5m2/g的ZnO粉末和H3BO3粉末以成为表1所示的规定的靶组成,然后用球磨机混合,制作混合粉末。
将所得的混合粉末以规定温度进行预烧结,获得预烧结粉末。向所得的预烧结粉末中称量V2O3粉末以成为规定的靶组成,然后用球磨机混合,制作混合粉末。向所得的混合粉末中添加0.5质量%聚乙烯醇作为粘结剂,边磨碎边混合后,制作造粒的造粒粉。
予以说明,添加其他氧化物粉末的情况下,与V2O3同样地进行添加。
(工序A2)
称量比表面积为4.5m2/g的ZnO粉末和H3BO3粉末和V2O3粉末以成为规定的靶组成,然后用球磨机混合,制作混合粉末。将所得的混合粉末以规定温度进行预烧结,获得预烧结粉末。向所得的预烧结粉末中添加0.5质量%聚乙烯醇作为粘结剂,边磨碎边混合后,制作造粒的造粒粉。
(工序A3)
作为比较例的工序,称量比表面积为4.5m2/g的ZnO粉末和H3BO3粉末以成为规定的靶组成,然后用球磨机混合,制作混合粉末。
将所得的混合粉末以规定温度进行预烧结,获得预烧结粉末。向所得的预烧结粉末中添加0.5质量%聚乙烯醇作为粘结剂,边磨碎边混合后,制作造粒的造粒粉。
(工序B)
接着,用冷等静压成形以3ton/cm2的压力将A1~A3的任一工序中所得的造粒粉成形,得到了直径120mm、厚度8mm的圆盘状的成形体。将所得的成形体以表1所述的规定的温度、气氛进行烧结,制作烧结体。将所得的烧结体加工成直径100mm、厚度5mm的圆盘状,制作溅射用靶。
(靶评价)
将利用水中置换法测定制造过程中所得的烧结体的密度除以理论密度得到的值作为相对密度。上述理论密度在假定构成烧结体的成分以规定的氧化物的形式存在的条件下求出。利用高频电感耦合等离子体发射光谱仪(ICP-AES)分析Zn量、B量、V量、Al量、Ga量,换算成ZnO、B2O3、V2O3、Al2O3、Ga2O3的氧化物从而求得烧结体的组成分析,其与所希望的组成一致。这些结果如表1所示。
用扫描型电子显微镜观察所得的烧结体,并用EPMA映射组织的元素分布。作为典型的例子,图1显示实施例2的靶的显微组织及对应的特定原子分布,图2显示比较例2的靶的显微组织及对应的特定原子分布。
图1及图2分别示出的4个观察图像中,左上图显示通过扫描型显微镜观察的组织、右上图显示相对应的视野的B原子分布、左下图显示相对应的视野的V原子分布、右下图显示相对应的视野的Zn原子分布。另外,原子分布以黑色-白色-褐色的顺序表示浓度逐渐增加。
另外,利用X射线衍射分析在实施例及比较例的硼浓化部中检出Zn3B2O6化合物,在钒浓化部中检出Zn3(VO4)2化合物。
(成膜评价)
使用所制造的靶利用DC磁控溅射法进行膜厚200nm的成膜。溅射条件固定为输入功率200W、Ar气压0.7Pa。然后测定从实验开始经过10小时后的平均每10分钟内产生的异常放电次数、基板温度200℃时的膜的体积电阻率、1200nm波长区域的透射率。进而,将基板温度200℃时的膜暴露在温度60℃、湿度90%的环境下,测定暴露时间1000小时后的体积电阻率,评价暴露后的体积电阻率相对于暴露前的体积电阻率的变化。结果如表2所示。
[表1]
Figure BDA0000145095800000101
[表2]
Figure BDA0000145095800000111
表1中,例如对比实施例3与比较例1时可知,相对于等量的B2O3,即使为相同的烧结条件,V2O3的添加也使得相对密度显著上升。另外对比实施例3与比较例2时可知,不添加V2O3的情况下,将烧结温度设为1000℃的高温,才得到近似的烧结密度。这些结果表明,在获得含有硼的ZnO系烧结体方面,V2O3的添加对提高烧结密度是有效的。
另外,表2中,可知通过添加V2O3可抑制体积电阻率的变化,添加V2O3使耐环境性提升。另外可知,即使添加规定的V2O3,1200nm透射率也不会大幅劣化,因此其在维持含有硼的ZnO系烧结体的特性的方面也是有效的。

Claims (8)

1.一种ZnO系透明导电膜用靶,其特征在于,其是硼量以B2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.5~10质量%、钒量以V2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.05~5质量%、密度以相对密度计为90%以上的氧化物烧结体。
2.根据权利要求1所述的ZnO系透明导电膜用靶,其特征在于,含有以3价氧化物换算分别为2质量%以下的铝和/或镓。
3.一种ZnO系透明导电膜用靶的制造方法,其特征在于,所述ZnO系透明导电膜用靶由含有硼和钒、且硼量以B2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.5~10质量%、钒量以V2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.05~5质量%的氧化物烧结体制成,使用H3BO3粉末作为硼源,使用V2O3粉末作为钒源。
4.根据权利要求3所述的ZnO系透明导电膜用靶的制造方法,其特征在于,ZnO系透明电极用靶含有以3价氧化物换算分别为2质量%以下的铝和/或镓。
5.根据权利要求3或4所述的ZnO系透明导电膜用靶的制造方法,其特征在于,烧结温度为700~1050℃,烧结气氛为非还原性气氛。
6.根据权利要求3~5中任一项所述的ZnO系透明导电膜用靶的制造方法,其特征在于,将混合H3BO3粉末和ZnO粉末或进一步混合V2O3粉末并预烧结而得到的预烧结粉末作为烧结原料进行烧结。
7.根据权利要求6所述的ZnO系透明导电膜用靶的制造方法,其特征在于,将预烧结粉末的组成设为以B2O3/(ZnO+B2O3+V2O3)×100的氧化物换算为0.5~45质量%,向所述预烧结粉末中混合ZnO粉末或V2O3的任一种或者两者,进行烧结,获得相对密度为90%以上的烧结体。
8.根据权利要求6或者7所述的ZnO系透明导电膜用靶的制造方法,其特征在于,将预烧结温度设为100~500℃。
CN2010800418239A 2009-07-21 2010-07-15 ZnO系透明导电膜用靶及其制造方法 Active CN102549191B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009169759 2009-07-21
JP2009-169759 2009-07-21
PCT/JP2010/061997 WO2011010603A1 (ja) 2009-07-21 2010-07-15 ZnO系透明導電膜用ターゲットおよびその製造方法

Publications (2)

Publication Number Publication Date
CN102549191A true CN102549191A (zh) 2012-07-04
CN102549191B CN102549191B (zh) 2013-10-30

Family

ID=43499076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800418239A Active CN102549191B (zh) 2009-07-21 2010-07-15 ZnO系透明导电膜用靶及其制造方法

Country Status (4)

Country Link
JP (1) JP5392633B2 (zh)
KR (1) KR101412319B1 (zh)
CN (1) CN102549191B (zh)
WO (1) WO2011010603A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888599B2 (ja) * 2012-03-13 2016-03-22 三菱マテリアル株式会社 スパッタリングターゲット及び高抵抗透明膜の製造方法
KR20150018728A (ko) 2013-08-09 2015-02-24 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
KR101702791B1 (ko) * 2013-08-26 2017-02-06 제이엑스금속주식회사 소결체 및 아모르퍼스막
WO2017187763A1 (ja) * 2016-04-28 2017-11-02 リンテック株式会社 透明導電膜および透明導電膜の製造方法
CN109487223B (zh) * 2018-12-26 2020-01-07 武汉大学 水化硅酸钙纳米薄膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158607A (ja) * 1997-11-28 1999-06-15 Sumitomo Metal Mining Co Ltd ZnO系焼結体およびその製法
JPH11322413A (ja) * 1998-02-16 1999-11-24 Japan Energy Corp 光透過膜、高抵抗透明導電膜、光透過膜形成用スパッタリングタ―ゲット及び高抵抗透明導電膜の製造方法
JP2002075062A (ja) * 2000-09-01 2002-03-15 Uchitsugu Minami 透明導電膜
CN1397661A (zh) * 2001-06-26 2003-02-19 三井金属矿业株式会社 高电阻透明导电膜用溅射靶及高电阻透明导电膜的制造方法
CN1880500A (zh) * 2005-06-16 2006-12-20 中国科学院物理研究所 一种制备硼掺杂的n型高硬度透明导电氧化锌薄膜的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171539A (ja) * 1997-12-08 1999-06-29 Sumitomo Metal Mining Co Ltd ZnO系焼結体およびその製法
JPH11302835A (ja) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd ZnO系焼結体の製造方法
JP5682112B2 (ja) * 2007-12-19 2015-03-11 日立金属株式会社 酸化亜鉛焼結体およびその製造方法、スパッタリングターゲット、このスパッタリングターゲットを用いて形成された電極
JPWO2009078329A1 (ja) * 2007-12-19 2011-04-28 日立金属株式会社 酸化亜鉛焼結体およびその製造方法、スパッタリングターゲット、電極
JP2009167515A (ja) * 2008-01-15 2009-07-30 Kanazawa Inst Of Technology 透明導電膜製造用スパッタリングターゲット及び透明導電膜形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158607A (ja) * 1997-11-28 1999-06-15 Sumitomo Metal Mining Co Ltd ZnO系焼結体およびその製法
JPH11322413A (ja) * 1998-02-16 1999-11-24 Japan Energy Corp 光透過膜、高抵抗透明導電膜、光透過膜形成用スパッタリングタ―ゲット及び高抵抗透明導電膜の製造方法
JP2002075062A (ja) * 2000-09-01 2002-03-15 Uchitsugu Minami 透明導電膜
CN1397661A (zh) * 2001-06-26 2003-02-19 三井金属矿业株式会社 高电阻透明导电膜用溅射靶及高电阻透明导电膜的制造方法
CN1880500A (zh) * 2005-06-16 2006-12-20 中国科学院物理研究所 一种制备硼掺杂的n型高硬度透明导电氧化锌薄膜的方法

Also Published As

Publication number Publication date
JPWO2011010603A1 (ja) 2012-12-27
WO2011010603A1 (ja) 2011-01-27
JP5392633B2 (ja) 2014-01-22
CN102549191B (zh) 2013-10-30
KR101412319B1 (ko) 2014-06-26
KR20120039027A (ko) 2012-04-24

Similar Documents

Publication Publication Date Title
CN1545567B (zh) 溅射靶、透明导电膜及它们的制造方法
Brugge et al. Germanium as a donor dopant in garnet electrolytes
KR101590429B1 (ko) 복합 산화물 소결체, 복합 산화물 소결체의 제조방법, 스퍼터링 타겟 및 박막의 제조방법
JP3746094B2 (ja) ターゲットおよびその製造方法
US9058914B2 (en) Oxide sintered compact and sputtering target
CN107709603B (zh) 基板/取向性磷灰石型复合氧化物膜复合体及其制造方法
KR20120051656A (ko) 산화물 소결물체와 그 제조 방법, 타겟 및 투명 도전막
CN105565798B (zh) 氧化锌靶材的制备方法及氧化锌薄膜的制备方法
CN102549191B (zh) ZnO系透明导电膜用靶及其制造方法
JP6278229B2 (ja) 透明酸化物膜形成用スパッタリングターゲット及びその製造方法
US9224513B2 (en) Zinc oxide sintered compact tablet and manufacturing method thereof
EP2495224A1 (en) Indium oxide sintered body and indium oxide transparent conductive film
KR20080026169A (ko) InㆍSm 산화물계 스퍼터링 타깃
JP2006200016A (ja) ZnO:Alターゲットおよび薄膜並びに薄膜の製造方法
CN103958729A (zh) 溅射靶以及高电阻透明膜及其制造方法
EP3210952B1 (en) Oxide sintered compact, oxide sputtering target, and oxide thin film
EP2194158B1 (en) ZnO VAPOR DEPOSITION MATERIAL AND PROCESS FOR PRODUCING THE SAME
US20120037857A1 (en) Method for Manufacturing a Powder for the Production of P-Type Transparent Conductive Films
Parascos et al. Optimizing Li+ transport in Li7La3Zr2O12 solid electrolytes
Chan et al. Filled oxygen‐deficient strontium barium niobates
KR20150039753A (ko) 산화물 소결체 및 그것을 가공한 테블렛
TWI809118B (zh) 固體電解質及固體電解質接合體
JP2019094550A (ja) Izoターゲット及びその製造方法
JP2010269984A (ja) ホウ素を含有するZnO系焼結体の製造方法
JP7427505B2 (ja) スパッタリングターゲット材及びその製造方法並びに薄膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant