CN102356451A - 处理装置 - Google Patents

处理装置 Download PDF

Info

Publication number
CN102356451A
CN102356451A CN2010800122297A CN201080012229A CN102356451A CN 102356451 A CN102356451 A CN 102356451A CN 2010800122297 A CN2010800122297 A CN 2010800122297A CN 201080012229 A CN201080012229 A CN 201080012229A CN 102356451 A CN102356451 A CN 102356451A
Authority
CN
China
Prior art keywords
mentioned
gas
energy
container handling
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800122297A
Other languages
English (en)
Other versions
CN102356451B (zh
Inventor
守谷修司
进藤丰彦
田村登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN102356451A publication Critical patent/CN102356451A/zh
Application granted granted Critical
Publication of CN102356451B publication Critical patent/CN102356451B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4402Reduction of impurities in the source gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明提供一种处理装置。其包括用于对被处理体进行处理的处理容器,其包括:气体供给流路,其至少一部分由金属构成,并且用于将含有卤素的腐蚀性气体向上述处理容器内供给;稳定化反应处理部,其具有能量产生器和障碍物中的至少一种,该能量产生器用于向在上述气体供给流路的金属部分中流过的上述腐蚀性气体供给光能或者热能,该障碍物被设置成通过使在上述气体供给流路的金属部分中流过的上述腐蚀性气体与该障碍物碰撞而产生作用于上述腐蚀性气体的碰撞能量,该稳定化反应处理部用于进行利用上述光能、热能以及碰撞能量之中的至少一种使包含上述腐蚀性气体所含有的卤素和上述金属的化合物稳定化的反应;捕捉部件,其用于对在上述稳定化反应处理部中被稳定化的化合物进行捕捉。

Description

处理装置
技术领域
本发明涉及一种对被处理体进行处理的处理装置。
背景技术
在半导体装置的制造工序中具有向半导体晶圆(下面称为晶圆)供给气体而利用例如CVD(Chemical Vapor Deposition)进行成膜的工序、向晶圆供给气体并利用该气体对晶圆表面的膜进行蚀刻的工序。进行这样的工序的成膜或者蚀刻装置包括用于收纳晶圆的处理容器、在成膜或者蚀刻工序中使用的处理气体的积存部、用于对处理容器内进行干洗的清洁气体的积存部,各气体的积存部通过包括气体供给配管以及被设在该配管上的阀等的气体供给设备与上述处理容器连接。
为了得到高耐腐蚀性,上述气体供给设备由例如不锈钢构成。另外,有时在上述气体供给配管上介设用于除去气体中所含有的固体以及液体的微粒(粒子)的过滤器。
在这样的成膜装置或者蚀刻装置中,有时使用分别含有F(氟)、Cl(氯)、Br(溴)的被称为F类气体、Cl类气体、Br类气体的、含有卤素的反应性非常高的气体。例如,有时上述F类气体用作上述成膜装置的清洁用气体,例如,有时Cl类气体以及Br类气体在上述蚀刻装置中用作蚀刻用气体。
含有上述的卤素的气体与构成用于供给该气体的气体供给设备的不锈钢反应,生成由卤素、金属以及氧构成的三元类化合物和由卤素以及金属构成的二元类化合物,并且由于上述的化合物而引起气体的金属污染。在上述的三元类化合物以及二元类化合物中存在蒸气压较高的化合物,因为那样的化合物在配管内以气体的状态流通,所以不会被上述过滤器捕捉而被供给到处理容器内。另外,有时上述的三元类化合物以及二元类化合物被暴露在处理容器内的气氛中而分解,上述的化合物所含有的金属变成固体而附着在晶圆以及处理容器内。这样,晶圆不能被正常地处理,合格率有可能会下降。
另外,被供给到处理容器内的气体流入到用于对处理容器进行排气的排气管内。排气管内变成气体的压力较高的低真空区域、并且气体分子彼此的碰撞比气体分子与排气管的管壁之间的碰撞占优势时,排气管内的气体的流速在排气管的中心轴线处最高,从中心轴线越接近排气管的管壁越低,在管壁处为0。有时气体沿着流速为0的管壁向上游侧、即处理容器侧扩散。产生这样的向处理容器内的气体的扩散时,也有可能上述的气体状态的三元类化合物以及二元类化合物变化成含有固体的金属的化合物而附着在晶圆上、处理容器内,从而合格率下降。另外,有时在处理容器上经由辅助流路安装真空计等附属设备。有时气体也在构成辅助流路的配管中与排气管同样地从流速为0的管壁处向处理容器侧扩散,或者有时在晶圆的处理中由于处理容器内的压力的变动,气体从附属设备侧朝向处理容器侧扩散。那样,气体从辅助流路扩散时也有可能气体状态的三元类化合物以及二元类化合物变化成含有固体的金属的化合物而附着在晶圆上、处理容器内。
为了防止由上述的现象引起的合格率的下降,有时这样进行处理:将含有上述的卤素的气体供给到处理容器内之后,将仿真晶圆(非制品晶圆)输送到处理容器内,对该仿真晶圆进行蚀刻或者成膜处理,使上述金属附着在该仿真晶圆上而从处理容器内除去之后,将通常的晶圆输送到处理容器内,重新进行蚀刻、成膜处理。或者,也有时向处理容器内供给规定的气体,将附着在处理容器的壁面上的金属覆盖而形成防止该金属的飞散的膜之后,向处理容器内输送晶圆而进行处理。然而,不论使用仿真晶圆时,还是在处理容器内形成飞散防止膜时,都进行对半导体的制造没有用的处理,因此,生产率会下降,处理成本也会提高。
在日本国专利申请公开公报日本特开2002-222807号(JP2002-222807A)中记载有为了抑制晶圆的金属污染而利用铬氧化物来涂覆与气体接触的金属制构件。然而,因为上述的含有卤素的气体与铬氧化物反应,所以不能解决上述的问题。
发明内容
本发明提供一种能够在包括用于对被处理体进行处理的处理容器的处理装置中防止处理容器以及被处理体的金属污染的处理装置。
本发明的第1技术方案提供一种处理装置,其包括用于对被处理体进行处理的处理容器,该处理装置包括:气体供给流路,其至少一部分由金属构成、并且用于将含有卤素的腐蚀性气体向上述处理容器内供给;稳定化反应处理部,其具有能量产生器和障碍物中的至少一种,该能量产生器用于向在上述气体供给流路的金属部分中流过的上述腐蚀性气体供给光能或者热能,该障碍物被设置成通过使在上述气体供给流路的金属部分中流过的上述腐蚀性气体与该障碍物碰撞而产生作用于上述腐蚀性气体的碰撞能量,该稳定化反应处理部用于进行利用上述光能、热能以及碰撞能量之中的至少一种使包含上述腐蚀性气体所含有的卤素和上述金属的化合物稳定化的反应;捕捉部件,其用于对在上述稳定化反应处理部中被稳定化的化合物进行捕捉。
优选在上述气体供给流路中,构成上述光能、热能以及碰撞能量之中的至少一种所作用的部位或者该部位的下游侧的流路的壁面比构成上述部位的上游侧的流路的壁面对上述腐蚀性气体的耐腐蚀性高。在此情况下,构成上述部位的流路的壁面或者构成上述部位的下游侧的流路的壁面能够由硅、二氧化硅、类金刚石(diamond-like carbon)、氧化铝、氟树脂之中的任意一种构成。
本发明的第2技术方案提供一种处理装置,其包括用于对被处理体进行处理的处理容器,并且含有卤素的腐蚀性气体被供给到该处理容器内,在该处理装置中包括:排气流路,其与上述处理容器连接,并且至少一部分由金属构成;稳定化反应处理部,其具有能量产生器和障碍物之中的至少一种,该能量产生器用于向从上述排气流路的金属部分朝向处理容器扩散的气体供给光能或者热能,该障碍物被设置成通过使从上述排气流路的金属部分朝向处理容器扩散的气体与该障碍物碰撞而产生作用于该气体的碰撞能量,该稳定化反应处理部进行利用上述光能、热能以及碰撞能量之中的至少一种使包含上述排气流路内的气体所含有的卤素和上述金属的化合物稳定化的反应;捕捉部件,其用于对在上述稳定化反应处理部中被稳定化的化合物进行捕捉。
本发明的第3技术方案提供一种处理装置,其包括用于对被处理体进行处理的处理容器,并且含有卤素的腐蚀性气体被供给到该处理容器内,在该处理装置中包括:辅助流路,其为了安装附属设备而与上述处理容器连接,并且至少一部分由金属构成;稳定化反应处理部,其具有能量产生器和障碍物之中的至少一种,该能量产生器用于向从上述辅助流路的金属部分朝向处理容器扩散的气体供给光能或者热能,该障碍物被设置成通过使从上述辅助流路的金属部分朝向处理容器扩散的气体与该障碍物碰撞而产生作用于该气体的碰撞能量,该稳定化反应处理部进行利用上述光能、热能以及碰撞能量之中的至少一种使包含上述辅助流路内的气体所含有的卤素和上述金属的化合物稳定化的反应;捕捉部件,其用于对在上述稳定化反应处理部中被稳定化的化合物进行捕捉。
在上述稳定化反应处理部中,作为上述障碍物能够设置被填充在上述流路内的由非金属构成的填充物。在此情况下,能够使上述填充物还具有作为上述捕捉部件的功能。另外,在优选的一实施方式中,上述填充物是由陶瓷构成的球状体的群,在此情况下,能够设置用于对上述填充物进行加热的加热部件以及对上述填充物照射光的光照射部件中的至少一种部件。另外,也可以在上述填充物上承载有用于使上述化合物稳定化的催化剂。
采用本发明,能够利用稳定化反应处理部以及捕捉部件来防止处理容器以及被处理体的金属污染。
附图说明
图1是作为本发明的处理装置的一个例子的成膜装置的纵剖侧视图。
图2是设在上述成膜装置上的能量供给部的结构图。
图3是表示在上述成膜装置中除去Cr的工序的工序图。
图4是表示含有Cr的化合物的蒸气压曲线的曲线图。
图5是表示能量供给部的其他的例子的剖视图。
图6是表示能量供给部的其他的例子的剖视图。
图7是表示成膜装置的其他的例子的纵剖侧视图。
图8是表示能量供给部的其他的例子的剖视图。
图9是在对能量供给部的效果进行确认的实验中使用的装置的简图。
具体实施方式
作为处理装置的一个例子,对于利用CVD将多晶硅(polysilicon)膜形成在晶圆W上的成膜装置1,参照其纵剖侧视图、即图1进行说明。成膜装置1包括处理容器11,在处理容器11内设有用于水平地载置晶圆W的载置台12。在载置台12内设有构成晶圆W的调温部件的加热器13。另外,在载置台12上设有利用升降机构14升降自如的三个升降销14a(为了方便,只图示两个),利用该升降销14a在未图示的输送部件与载置台12之间进行晶圆W的交接。
处理容器11的底部的排气口15a与排气管15的一端侧连接,该排气管15的另一端侧与由真空泵构成的排气部件16连接。排气部件16具有未图示的压力调整部件,按照从控制部100输出的控制信号控制排气量。另外,在处理容器11的侧壁上形成有被闸阀G开闭的输送口17。
另外,在处理容器11的顶部以与载置台12相对的方式设有气体簇射头21。气体簇射头21包括被划分出来的气体室22,被供给到气体室22中的气体被从多个气体供给孔23供给到处理容器11内,其中,该气体供给孔23被分散地穿设在气体簇射头21的下表面上。
气体室22与气体供给配管24的一端连接,气体供给配管24的另一端经由包括阀、质量流量控制器的流量控制设备群25与积存有作为多晶硅膜的原料的SiH4(单硅烷)气体的气体供给源26连接。流量控制设备群25按照从控制部100输出的控制信号对来自气体供给源26与下述的气体供给源的各气体的向晶圆的供给或停止供给进行控制。
另外,气体供给配管24与气体供给配管31的一端连接,气体供给配管31的另一端按照过滤器32、能量供给部4、上述流量控制设备群25的顺序经由过滤器32、能量供给部4、上述流量控制设备群25与积存有清洁气体、即Cl2(氯)气体的气体供给源33连接。由气体供给配管24、31以及流量控制设备群25构成的气体流路由不锈钢构成。过滤器32用于除去在气体供给配管31中流通的Cl2气体中所含有的固体以及液体的微粒。关于能量供给部4在后面表述。
成膜装置1具有对加热器13、排气部件16以及流量控制设备群25等的动作进行控制的控制部100。控制部100例如由包括未图示的CPU和程序的计算机构成,在程序中编入有关于利用该成膜装置1对晶圆W进行成膜处理所需要的动作、例如关于由加热器13进行的晶圆W的温度的控制、处理容器11内的压力调整、向处理容器11内的各气体的供给量调整的控制等的步骤(指令)群。该程序被存储在例如硬盘、光盘、光磁盘、存储卡等存储介质中,从上述存储介质安装到计算机中。
接下来,参照图2说明能量供给部4、即稳定化反应处理部。图2的(a)表示能量供给部4的纵截面,图2的(b)是从能量供给部4的开口方向观察能量供给部4的图。该能量供给部4包括内管41和包围该内管41的外管42,内管41与气体供给配管31连接。另外,从气体供给配管31的上游侧供给到能量供给部4中的气体在该内管41内通过而向气体供给配管31的下游侧流通。内管41由例如不锈钢构成,内管41的内周面被硅膜43覆盖。
在内管41与外管42之间的空间中设有包围该内管41的加热器44,能够按照从控制部100输出的控制信号将在内管41内通过的气体加热到任意的温度。另外,在内管41内填充有多个多孔质体、即球45。作为填充物的球45是与在内管41内通过的气体碰撞的障碍物,由于该碰撞而产生的碰撞能量作用于气体自身,从而包含气体中所含有的卤素以及金属的化合物被稳定化。另外,球45还兼作对稳定化了的化合物进行捕捉的捕捉部件。球45由作为陶瓷的氧化铝(alumina)构成,其中,该氧化铝的表面被硅覆盖。在本例中,该球45的直径L1为例如3mm。另外,内管41的内径L2为例如4.35mm。另外,内管41的长度L3为例如300mm。
为了使气体高效地与球45碰撞,优选球45的直径L1为上述内管41的内径L2的50%~87%的大小。另外,优选各球45以其一部分与上述硅膜43接触、并且在气体的流动方向上相邻的球45彼此不完全重合(各球的中心位置错开)的方式进行配置。
接下来,说明成膜装置1的作用。首先,闸阀G打开,晶圆W被未图示的输送机构输送到处理容器11内,利用升降销14a被载置到载置台12上,并且输送机构从处理容器11内退避出来。然后,闸阀G被关闭,晶圆W被加热器13加热到规定的温度,处理容器11内被排气而达到规定的压力之后,SiH4气体被以规定的流量供给到晶圆W。SiH4气体在晶圆W的表面上在热的作用下分解,硅沉积在晶圆W表面上,从而形成多晶硅膜。
从SiH4气体的供给开始经过规定的时间之后,SiH4气体的供给停止,晶圆W通过与被输入到成膜装置1中时相反的动作被交接到未图示的输送机构上而被从成膜装置1中输出。
在此之后,参照图3的配管内的变化的示意图进行说明。输出晶圆W之后,能量供给部4的加热器44升温到例如150℃,Cl2气体被从气体供给源33朝向气体供给配管31的下游侧供给。此时,Cl2气体的温度是设置有成膜装置1的无尘室的温度、即常温。如图3的(a)所示,Cl2气体在由流量控制设备群25以及气体供给配管31构成的流路中流通过程中与构成上述流量控制设备群25以及气体供给配管31的不锈钢中的Cr(铬)以及O(氧)反应,生成CrO2Cl2
在图4中表示该CrO2Cl2的蒸气压曲线,如该图所示那样,CrO2Cl2的蒸气压比较高。气体供给配管31内的压力为例如0kPa~300kPa,因为在该压力以及上述无尘室的温度下该CrO2Cl2为气体的状态,所以生成的CrO2Cl2以那样气体的状态与Cl2气体一起在气体供给配管31中向下游侧流通,流入到能量供给部4中。
然后,如图3的(b)所示,流入到能量供给部4中的CrO2Cl2气体在该能量供给部4的内管41内一边与球45碰撞一边向下游侧前进。由该碰撞产生的碰撞能量与加热器44所产生的热能作用于CrO2Cl2气体,由此,如图3的(c)所示,CrO2Cl2被还原成比CrO2Cl2稳定的CrCl2。在此,由图4所示的CrCl2的蒸气压曲线显而易见那样,CrCl2的蒸气压比CrO2Cl2的蒸气压低,在上述的无尘室的温度以及上述的配管内的压力下,被还原成的CrCl2变成固体的微粒而出现在内管41的流路中。如上述那样,因为球45是多孔质体,CrCl2的微粒进入球45的内部,被捕捉,该CrCl2的微粒的向下游侧的流通被抑制。
另外,在球45的群中通过了的含有CrCl2的微粒的Cl2气体从能量供给部4流入到下游侧的过滤器32中。于是,如图3的(d)所示,该微粒被过滤器32捕捉而被从Cl2气体中除去。然后,Cl2气体被供给到处理容器11内,与附着在处理容器11的壁面、载置台12上的Si反应,该Si被除去。从Cl2气体的供给开始经过规定的时间之后,Cl2气体的供给被停止,加热器44降温。
在上述的说明中,气体供给配管31的构成材料中含有的Cr以及O与Cl2气体反应,将生成的作为三元类化合物的CrO2Cl2还原成CrCl2,该CrCl2被除去。总而言之,即使与Cl2反应而生成CrO2Cl2之外的蒸气压较高的不稳定的金属化合物,也能够将该金属化合物变换成蒸气压较低的更稳定的化合物,与CrCl2同样地除去。虽然难以对具体的化合物组成及其变换进行验证,但例如,在卤素与金属的二元类化合物之中存在不稳定且蒸气压较高的化合物,有时由于卤素类气体的在配管内的流通而生成那样的化合物。对于那样的化合物,也能够如上述那样在能量供给部4中使能量作用于该化合物,变换成金属以及卤素的元素比率与能量作用之前不同的、更稳定且蒸气压较低的由卤素和金属构成的二元类化合物,与上述的CrCl2同样地除去。此外,也能够与CrO2Cl2同样如上述那样使能量作用于由卤素、金属以及氧构成的三元类化合物,从而变换成蒸气压比该三元类化合物的蒸气压低、固体的由金属以及氧构成的二元类化合物,与上述的CrCl2同样除去。如在下述的实验中所示,证明了除了Cr之外Fe也被能量供给部4除去。
如上述那样,在成膜装置1中设有能量供给部4、即稳定化反应处理部,其中,该能量供给部包括:加热器44,其在供用于对处理容器11进行清洁的清洁气体、即Cl2流通的气体供给配管31中,向与Cl2反应而生成的气体状态的金属化合物供给热能;球45,其与该金属化合物碰撞而使碰撞能量作用于该金属化合物。因为作用了能量的金属化合物稳定化,变成固体的状态而被球45的群捕捉,所以该金属化合物向处理容器11内的供给被抑制,能够抑制处理容器11内以及晶圆W的金属污染。另外,不需要进行下面这种对半导体装置的生产没有用的工艺:将Cl2气体供给到处理容器11内之后,将仿真晶圆输入到处理容器11内而进行处理、或者,在晶圆W的处理之前为了抑制金属的飞散而对处理容器内进行成膜,因此,能够实现生产率的提高。
另外,因为在能量供给部4的下游侧设有通过对该变成了固体的状态的金属化合物进行捕捉而从Cl2气体中除去的过滤器32,所以能够更可靠地抑制处理容器11内以及晶圆W的金属污染。
另外,在上述的例子中,内管41的内表面被硅膜43覆盖,但气体供给配管31的比能量供给部4靠下游侧的部分的内表面也可以用硅膜覆盖。这样,将能量供给部4以及其下游侧的配管的内表面构成为具有比能量供给部4的上游侧的配管的内表面高的对Cl2气体的耐腐蚀性,由此,能够抑制在上述的各部分中的腐蚀,能够更可靠地抑制处理容器11内以及晶圆W的金属污染。配管的内表面也可以由例如二氧化硅、类金刚石、氧化铝、氟树脂等构成以代替硅。
接下来,说明供给光能以代替热能的能量供给部的例子。图5所示的能量供给部50具有内管51以代替内管41,该内管51由硅构成以使紫外线能够透过。另外,在能量供给部50中,在外管42上设有UV灯52以代替设置加热器44。Cl2气体被供给到处理容器11内时,紫外线被从UV灯52照射到在内管51中通过的该Cl2气体上。由于受到该紫外线的能量,混入到Cl2气体中的上述的不稳定的蒸气压较高的化合物被变换成稳定的蒸气压较低化合物。
图6的(a)是表示能量供给部的其他的例子的图。在该能量供给部53中,在球45之间承载有由例如Pt(白金)、Ni(镍)构成的网状构件54。图6的(b)表示从内管41的开口方向观察到的网状构件54。该网状构件54通过与在内管41中流通的气体接触,起到使为了该气体中的蒸气压较高的化合物被变换成上述的蒸气压较低的化合物而需要的活化能量降低的催化剂的作用。另外,活化能量降低了的化合物通过来自加热器44的热能的供给以及与球45碰撞所产生的碰撞能量的作用,被变换成稳定的化合物。采用该能量供给部53,能够用比上述能量供给部4所需能量低的能量引起上述的化合物的变换,因此,能够更可靠地抑制处理容器11以及晶圆W的金属污染。
另外,在这样利用催化剂的情况下,也可以将该催化剂形成为球状而填充到内管41内以代替将该催化剂形成为网状。图6的(c)表示那样设有由Pt构成的球55的例子。在该图6的(c)中,为了与球45进行区别,球55以带有多个点的方式进行表示。
图7表示成膜装置的其他的实施方式,对于该图7的成膜装置6,以与成膜装置1之间的差异点为中心进行说明。在该成膜装置6中,在排气口15a处经由与能量供给部4同样构成的能量供给部60、即稳定化反应处理部连接有排气管15。另外,在处理容器11的侧壁上设有开口部61,在该开口部61处经由与能量供给部4同样构成的能量供给部62、即稳定化反应处理部连接有构成辅助流路的配管63的一端。配管63的另一端与用于对处理容器11内的真空度进行测量的附属设备、即压力传感器64连接。排气管15以及配管63与配管31同样由不锈钢构成。
如在背景技术的栏中说明的那样,由于排气管15内的排气路径的压力状态的不同,有时气体沿着排气管15的管壁扩散到上游侧、即处理容器侧。这样引起扩散时,通过设置能量供给部60,能够防止构成该排气管15的金属被供给到处理容器11内。另外,在配管63处也与排气管15同样有时气体从管壁向处理容器11侧扩散,另外,在晶圆W的处理过程中由于处理容器11内的压力的变动,有时气体从压力传感器64侧朝向处理容器11侧扩散,但即使那样引起扩散,也能够通过设置能量供给部62来防止构成该配管63的金属被供给到处理容器11内。在该成膜装置6中,也可以在从能量供给部62、能量供给部60看来靠处理容器11的一侧设置过滤器32。另外,也可以设置上述的能量供给部50、53以代替上述能量供给部60、62。
在上述的能量供给部、即稳定化反应处理部的各例中,在含有卤素的气体的供给路径中供给热能或者光能的位置与利用球45进行化合物的捕捉的位置相同。然而,也可以将能量的供给与化合物的捕捉在不同的位置进行,图8的(a)例示那样的例子。该图的能量供给部65具有由石英构成的配管66,配管66介设在上述的配管31上。另外,光能被UV灯52供给到在该配管66的管路中流通的气体上。另外,在配管66的下游侧的配管31内设有由网状的玻璃光纤构成的过滤器67,对变成了固体的金属化合物进行捕捉。
另外,产生作用于气体的碰撞能量的障碍物不被限定于球45。如图8的(b)所示,为了利用与气体的碰撞产生碰撞能量,也可以使用控制板68、69。在相邻的控制板68、69上以在气体的流动方向上不互相重合的方式形成有贯通孔68a、69a。
在上述的例子中,作为处理装置,在半导体制造装置、即成膜装置中设有能量供给部4,但半导体制造装置也可以是蚀刻装置、向硅晶圆等的表面上供给气体而使单结晶层外延成长在该硅晶圆的表面上的外延晶圆制造装置、LED制造装置等,也能够将上述的各种能量供给部4设在上述的装置中。另外,这里所说的半导体制造装置也包括FPD(平板显示器)制造装置、太阳能电池制造装置、有机EL制造装置,能够将上述的各能量供给部设在上述的装置中。除了半导体制造装置之外,也能够将上述的各种能量供给部、即稳定化反应处理部应用于向处理容器内供给气体并对被处理体进行处理的所有处理装置。
(实施例1)
在上述的处理容器11上连接了如图9所示的配管系统7。介设有过滤器32以及能量供给部4的配管通过将柔性配管以及硬质的配管连接而构成。图中71、72表示配管的连接部。作为该连接部71、72之间的配管73,为了作为金属污染的产生源,所以使用了内周面由不锈钢构成的新的柔性配管。另外,作为连接部72与能量供给部之间的配管74,使用了内周面由不锈钢构成的新的柔性配管。另外,作为图中的过滤器32与阀V2之间的配管75,使用了内周面由二氧化硅涂层构成的柔性配管。配管73、74、75的长度分别为30cm、30cm、50cm。另外,图中的阀V1与连接部71之间、能量供给部4与过滤器32之间分别被硬质的配管76、77连接,配管76的内壁面由不锈钢构成,配管77的内壁面由二氧化硅涂层构成。各配管的口径为1/4英寸(6.35mm)。用二氧化硅涂层构成配管75、77的内周面的目的在于,如上述那样抑制在能量供给部4的下游侧的腐蚀。除了二氧化硅之外,也可以使用能够抑制腐蚀的上述的材料,但在此使用了二氧化硅。
将这样的配管系统7与处理容器11连接之后,通过向各配管中流过纯水来进行清洗,接下来使能量供给部4的加热器44为200℃。然后,在阀V1的上游侧连接N2气体的储气罐,经由配管系统7向处理容器11内进行N2气体的供给而吹扫(除去)纯水,进行了干燥处理。
接下来,拆下上述的储气罐,将包括HBr气体供给源、N2气体供给源的气体供给系统连接在阀V1的上游侧,从而形成了实验装置。设有该实验装置的室内为常温(22℃)。能够利用该气体供给系统将N2气体和HBr气体分别经由配管系统7供给到处理容器11内。在该供给系统中,在HBr气体供给源的下游侧设有对HBr气体的向处理容器11的流量进行控制的质量流量控制器。另外,设置多个N2气体供给源,能够以各自不同的流量向处理容器11内供给N2气体。
将处理容器11内维持成50kPa,从N2气体供给源以2.5slm、50分钟的条件进行N2气体的供给,吹扫了处理容器11的内容物。然后,保持将处理容器内维持成50kPa的状态,从HBr气体供给源以200sccm、25分钟的条件向处理容器11内供给了HBr气体。此时,能量供给部4的加热器44的电源为断开状态。然后,使加热器44的温度为100℃,以200sccm、5分钟的条件向处理容器11内供给HBr气体,接下来,使加热器44的温度为150℃,以200sccm、5分钟的条件向处理容器11内供给了HBr气体。然后,使加热器44的温度为170℃,以200sccm、1小时的条件向处理容器11内供给了HBr气体之后,断开加热器44的电源,以200sccm、25分钟的条件向处理容器11内供给了HBr气体。
接下来,一边将用于供给HBr气体的上述质量流量控制器的流路打开5分钟,一边向该流路中供给N2气体,然后,通过用10分钟供给500cc的N2气体进行流路的吹扫。另外,以每分钟2500cc、35分钟的条件向处理容器11内供给了N2气体之后,在一个晚上的期间,通过以每分钟500cc向处理容器11内供给N2气体来进行了处理容器11的吹扫。
然后,按照上述的实施方式将晶圆W(为了方便,称为“晶圆W1”)输入向处理容器11内,对处理容器11内进行抽真空(将该晶圆W输入之后的抽真空设为“步骤A”),从N2气体供给源以每分钟500cc向处理容器11内供给了N2气体。此时,加热器44的电源为断开状态,因而加热器44为上述室温、即22℃。然后,在将处理容器11内的压力维持成50kPa的状态下,用5分钟将向处理容器11内供给的气体渐渐地从N2气体切换成HBr气体,切换之后,以100sccm、1小时的条件向处理容器11内供给了HBr气体。
然后,停止HBr气体的供给,在将处理容器11内维持成50kPa的状态下,从N2气体供给源以每分钟2500cc进行N2气体的供给,对处理容器11进行吹扫,将处理容器11内从真空气氛切换成大气气氛之后(设为“步骤B”),将晶圆W1从处理容器11内取出,通过ICP质量分析对附着在晶圆W1上的Fe以及Cr的量进行了测量。
(实施例2)
在实施例1中从处理容器11内输出晶圆W1之后,在供给上述N2气体的期间,输入其他的晶圆W(为了方便,称为“晶圆W2”),进行了实施例1的步骤A~步骤B的处理。但是,在HBr气体的供给时使加热器44的温度为150℃。步骤B的处理容器11的气氛的切换之后,将晶圆W2从处理容器11内取出,通过ICP质量分析对附着在晶圆W2上的Fe以及Cr的量进行了测量。
(实施例3)
使用由与实施例1同样的配管系统7和气体供给系统构成的装置,以与实施例1大致同样的过程进行了实验。但是,在该配管系统7中未设置过滤器32。
以与实施例1之间的差异点为中心进行说明时,装置组装之后使加热器44的温度为370℃,将处理容器11内维持成50kPa,从N2气体供给源以每分钟500cc、45分钟的条件进行N2气体的供给,对处理容器11进行了吹扫。然后,使加热器44的温度为300℃,继续将处理容器11内维持成50kPa,从N2气体供给源以每分钟500sccm、15分钟的条件进行N2气体的供给,对处理容器11进行了吹扫。然后,将晶圆W(为了方便,称为“晶圆W3”)输入向处理容器11内,对处理容器11内进行抽真空,与实施例1同样进行了步骤A~步骤B的处理。但是,从以每分钟500cc向处理容器11内供给N2气体开始到向处理容器11内供给HBr气体的期间,加热器44的温度为300℃。然后,将晶圆W3从处理容器内11取出,通过ICP质量分析对附着在晶圆W3上的Fe以及Cr的量进行了测量。另外,断开加热器44的电源,进行了加热器44的冷却。
(实施例4)
在实施例3中从处理容器11内输出晶圆W3之后,在供给上述N2气体的期间,输入其他的晶圆W(为了方便,设为“晶圆W4”),进行了实施例1的步骤A~步骤B的处理。但是,在HBr气体的供给时使加热器44的温度为35℃。对步骤B的处理容器11的气氛进行切换之后,将晶圆W4从处理容器11内取出,通过ICP质量分析对附着在晶圆W4上的Fe以及Cr的量进行了测量。
(比较例1)
以与实施例1同样的过程进行了实验。但是,在该比较例1中,在配管系统7中未设置能量供给部4。
表1
Figure BPA00001437366500171
上述的表1是表示各实施例以及比较例的结果的表。进行上述ICP质量分析的装置的Cr的检测极限为0.074×1e10atoms/cm2。在实施例1中,Cr的检测值为该检测极限值以下。另外,实施例1的Fe的检测值为0.38×1e10atoms/cm2。比较例的Cr、Fe的各自的检测值为12×1e10atoms/cm2、55×1e10atoms/cm2,因为实施例1的Cr、Fe的检测值比比较例1的Cr、Fe检测值低,所以显示出了本发明的效果。另外,由该结果可知,即使加热器44的热能不被施加,化合物也被气体与球45的碰撞所产生的能量稳定化,在向处理容器11内供给之前被除去。即、在上述的说明中,稳定化反应处理部(6、60、62、65)构成为具有从外部供给热能以及光能的能量产生器的能量供给部,但并不限定于此,即使没有能量产生器,只要存在用于产生碰撞能量的适当的障碍物,就能够构成使含有卤素和金属的化合物稳定化的稳定化反应处理部。另外,在实施例2中,也因为Cr、Fe的检测量比比较例1的Cr、Fe的检测量小,所以证明了本发明的效果。
在实施例3中,Cr以及Fe的检测量也比比较例1的Cr以及Fe的检测量小。因此,即使没有过滤器32,由Cr、Fe各自构成的化合物也被能量供给部4的球45捕捉,显示出了上述金属向处理容器11内的供给被抑制。另外,在实施例4中也与实施例3同样,Cr以及Fe的检测量比比较例1的Cr以及Fe的检测量小,同样显示出了即使没有过滤器32也能够除去上述化合物。

Claims (10)

1.一种处理装置,其包括用于对被处理体进行处理的处理容器,其特征在于,
该处理装置包括:
气体供给流路,其至少一部分由金属构成、并且用于将含有卤素的腐蚀性气体向上述处理容器内供给;
稳定化反应处理部,其具有能量产生器和障碍物中的至少一种,该能量产生器用于向在上述气体供给流路的金属部分中流过的上述腐蚀性气体供给光能或者热能,该障碍物被设置成通过使在上述气体供给流路的金属部分中流过的上述腐蚀性气体与该障碍物碰撞而产生作用于上述腐蚀性气体的碰撞能量,该稳定化反应处理部用于进行利用上述光能、热能以及碰撞能量之中的至少一种使包含上述腐蚀性气体所含有的卤素和上述金属的化合物稳定化的反应;
捕捉部件,其用于对在上述稳定化反应处理部中被稳定化的化合物进行捕捉。
2.根据权利要求1所述的处理装置,其特征在于,
在上述气体供给流路中,构成上述光能、热能以及碰撞能量之中的至少一种所作用的部位或者该部位的下游侧的流路的壁面比构成上述部位的上游侧的流路的壁面对上述腐蚀性气体的耐腐蚀性高。
3.根据权利要求2所述的处理装置,其特征在于,
构成上述部位的流路的壁面或者构成上述部位的下游侧的流路的壁面由硅、二氧化硅、类金刚石、氧化铝、氟树脂之中的任意一种构成。
4.一种处理装置,其包括用于对被处理体进行处理的处理容器,并且含有卤素的腐蚀性气体被供给到该处理容器内,其特征在于,
该处理装置包括:
排气流路,其与上述处理容器连接,并且至少一部分由金属构成;
稳定化反应处理部,其具有能量产生器和障碍物之中的至少一种,该能量产生器用于向从上述排气流路的金属部分朝向处理容器扩散的气体供给光能或者热能,该障碍物被设置成通过使从上述排气流路的金属部分朝向处理容器扩散的气体与该障碍物碰撞而产生作用于该气体的碰撞能量,该稳定化反应处理部进行利用上述光能、热能以及碰撞能量之中的至少一种使包含上述排气流路内的气体所含有的卤素和上述金属的化合物稳定化的反应;
捕捉部件,其用于对在上述稳定化反应处理部中被稳定化的化合物进行捕捉。
5.一种处理装置,其包括用于对被处理体进行处理的处理容器,并且含有卤素的腐蚀性气体被供给到该处理容器内,其特征在于,
该处理装置包括:
辅助流路,其为了安装附属设备而与上述处理容器连接,并且至少一部分由金属构成;
稳定化反应处理部,其具有能量产生器和障碍物之中的至少一种,该能量产生器用于向从上述辅助流路的金属部分朝向处理容器扩散的气体供给光能或者热能,该障碍物被设置成通过使从上述辅助流路的金属部分朝向处理容器扩散的气体与该障碍物碰撞而产生作用于该气体的碰撞能量,该稳定化反应处理部进行利用上述光能、热能以及碰撞能量之中的至少一种使包含上述辅助流路内的气体所含有的卤素和上述金属的化合物稳定化的反应;
捕捉部件,其用于对在上述稳定化反应处理部中被稳定化的化合物进行捕捉。
6.根据权利要求1至4中的任意一项所述的处理装置,其特征在于,
在上述稳定化反应处理部中,作为上述障碍物设有被填充在上述流路内的由非金属构成的填充物。
7.根据权利要求6所述的处理装置,其特征在于,
上述填充物也能够用作上述捕捉部件。
8.根据权利要求6所述的处理装置,其特征在于,
上述填充物是由陶瓷构成的球状体的群。
9.根据权利要求6所述的处理装置,其特征在于,
该处理装置包括用于对上述填充物进行加热的加热部件以及对上述填充物照射光的光照射部件中的至少一种部件。
10.根据权利要求6所述的处理装置,其特征在于,
在上述填充物上承载有用于使上述化合物稳定化的催化剂。
CN201080012229.7A 2009-03-31 2010-03-30 处理装置 Expired - Fee Related CN102356451B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009088332 2009-03-31
JP2009-088332 2009-03-31
PCT/JP2010/055703 WO2010113946A1 (ja) 2009-03-31 2010-03-30 処理装置

Publications (2)

Publication Number Publication Date
CN102356451A true CN102356451A (zh) 2012-02-15
CN102356451B CN102356451B (zh) 2014-02-19

Family

ID=42828235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080012229.7A Expired - Fee Related CN102356451B (zh) 2009-03-31 2010-03-30 处理装置

Country Status (5)

Country Link
US (1) US9150965B2 (zh)
JP (1) JP5501807B2 (zh)
KR (1) KR101299841B1 (zh)
CN (1) CN102356451B (zh)
WO (1) WO2010113946A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784203B (zh) * 2018-12-03 2022-11-21 日商愛發科股份有限公司 成膜裝置以及成膜方法

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501807B2 (ja) * 2009-03-31 2014-05-28 東京エレクトロン株式会社 処理装置
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
KR101427726B1 (ko) * 2011-12-27 2014-08-07 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반도체 장치의 제조 방법
JP6156972B2 (ja) * 2012-04-06 2017-07-05 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、気化システムおよびミストフィルタ
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10294560B2 (en) * 2013-09-03 2019-05-21 Lam Research Corporation High-conductance, non-sealing throttle valve with projections and stop surfaces
JP6306356B2 (ja) * 2014-01-27 2018-04-04 有限会社コンタミネーション・コントロール・サービス 回転流発生装置、それを備える配管システム、半導体製造装置及び熱交換器
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
JP6486160B2 (ja) * 2015-03-23 2019-03-20 東京エレクトロン株式会社 熱処理装置
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
JP6567951B2 (ja) * 2015-10-23 2019-08-28 株式会社日立ハイテクノロジーズ ガス排気方法
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10424487B2 (en) 2017-10-24 2019-09-24 Applied Materials, Inc. Atomic layer etching processes
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI766433B (zh) 2018-02-28 2022-06-01 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04277045A (ja) * 1991-03-01 1992-10-02 Hitachi Ltd 気体用フィルタ
CN1638818A (zh) * 2002-07-11 2005-07-13 住友电气工业株式会社 多孔半导体及其制备方法
CN1806317A (zh) * 2004-06-04 2006-07-19 东京毅力科创株式会社 气体处理装置和成膜装置
CN101165207A (zh) * 2006-10-19 2008-04-23 东京毅力科创株式会社 半导体处理装置及其使用方法
KR20090031814A (ko) * 2007-09-25 2009-03-30 도쿄엘렉트론가부시키가이샤 가스 공급 장치, 반도체 제조 장치 및 가스 공급 장치용 부품

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137701A (en) * 1984-09-17 1992-08-11 Mundt Randall S Apparatus and method for eliminating unwanted materials from a gas flow line
JPS63126229A (ja) * 1986-11-17 1988-05-30 Hitachi Ltd 処理装置
US5174881A (en) * 1988-05-12 1992-12-29 Mitsubishi Denki Kabushiki Kaisha Apparatus for forming a thin film on surface of semiconductor substrate
US5160544A (en) * 1990-03-20 1992-11-03 Diamonex Incorporated Hot filament chemical vapor deposition reactor
US5225378A (en) * 1990-11-16 1993-07-06 Tokyo Electron Limited Method of forming a phosphorus doped silicon film
US5777300A (en) * 1993-11-19 1998-07-07 Tokyo Electron Kabushiki Kaisha Processing furnace for oxidizing objects
JP3246708B2 (ja) * 1995-05-02 2002-01-15 東京エレクトロン株式会社 トラップ装置及びこれを用いた未反応処理ガス排気機構
TW323387B (zh) * 1995-06-07 1997-12-21 Tokyo Electron Co Ltd
US6171684B1 (en) * 1995-11-17 2001-01-09 Donaldson Company, Inc. Filter material construction and method
US6143081A (en) * 1996-07-12 2000-11-07 Tokyo Electron Limited Film forming apparatus and method, and film modifying apparatus and method
JP3563565B2 (ja) 1997-06-09 2004-09-08 東京エレクトロン株式会社 排気装置および排気方法
US6149729A (en) 1997-05-22 2000-11-21 Tokyo Electron Limited Film forming apparatus and method
US6271498B1 (en) * 1997-06-23 2001-08-07 Nissin Electric Co., Ltd Apparatus for vaporizing liquid raw material and method of cleaning CVD apparatus
US6086679A (en) * 1997-10-24 2000-07-11 Quester Technology, Inc. Deposition systems and processes for transport polymerization and chemical vapor deposition
US6051321A (en) * 1997-10-24 2000-04-18 Quester Technology, Inc. Low dielectric constant materials and method
US6140456A (en) * 1997-10-24 2000-10-31 Quester Techology, Inc. Chemicals and processes for making fluorinated poly(para-xylylenes)
US6020458A (en) * 1997-10-24 2000-02-01 Quester Technology, Inc. Precursors for making low dielectric constant materials with improved thermal stability
US6316055B1 (en) * 1998-05-01 2001-11-13 Virginia Tech Intellectual Properties, Inc. Near-room temperature thermal chemical vapor deposition of oxide films
US6315963B1 (en) * 2000-03-22 2001-11-13 Samuel E. Speer Method and apparatus for the enhanced treatment of fluids via photolytic and photocatalytic reactions
JP3587249B2 (ja) * 2000-03-30 2004-11-10 東芝セラミックス株式会社 流体加熱装置
US6884295B2 (en) * 2000-05-29 2005-04-26 Tokyo Electron Limited Method of forming oxynitride film or the like and system for carrying out the same
DE60132089T2 (de) * 2000-05-29 2008-12-11 ADTEC Plasma Technology Co., Ltd., Fukuyama City Vorrichtung zur behandlung von gasen miitels plasma
EP1160838B1 (en) * 2000-05-31 2007-12-05 Tokyo Electron Limited Heat treatment system and method
JP3872952B2 (ja) 2000-10-27 2007-01-24 東京エレクトロン株式会社 熱処理装置及び熱処理方法
JP4640891B2 (ja) 2001-01-29 2011-03-02 東京エレクトロン株式会社 熱処理装置
US20030196680A1 (en) * 2002-04-19 2003-10-23 Dielectric Systems, Inc Process modules for transport polymerization of low epsilon thin films
US20030188683A1 (en) * 2002-04-04 2003-10-09 Dielectric Systems, Inc. UV reactor for transport polymerization
US20030198578A1 (en) * 2002-04-18 2003-10-23 Dielectric Systems, Inc. Multi-stage-heating thermal reactor for transport polymerization
KR100447248B1 (ko) * 2002-01-22 2004-09-07 주성엔지니어링(주) Icp 에쳐용 가스 확산판
US6787185B2 (en) * 2002-02-25 2004-09-07 Micron Technology, Inc. Deposition methods for improved delivery of metastable species
JP4338355B2 (ja) * 2002-05-10 2009-10-07 東京エレクトロン株式会社 プラズマ処理装置
KR101183109B1 (ko) * 2002-07-30 2012-09-24 에이에스엠 아메리카, 인코포레이티드 캐리어 가스를 이용하는 승화 시스템
DE10359487A1 (de) * 2003-12-18 2005-07-21 Bayerische Motoren Werke Ag Steuergerät mit außer Funktion setzbarer Schnittstelle
US7892357B2 (en) * 2004-01-12 2011-02-22 Axcelis Technologies, Inc. Gas distribution plate assembly for plasma reactors
US7323230B2 (en) * 2004-08-02 2008-01-29 Applied Materials, Inc. Coating for aluminum component
US20060276049A1 (en) * 2005-06-06 2006-12-07 Bailey Christopher M High efficiency trap for deposition process
KR100915722B1 (ko) * 2005-06-23 2009-09-04 도쿄엘렉트론가부시키가이샤 반도체 처리 장치용의 구성 부재 및 그 제조 방법, 및반도체 처리 장치
JP4370529B2 (ja) * 2006-07-24 2009-11-25 エルピーダメモリ株式会社 成膜装置、原料の導入方法、及び成膜方法
JP5148851B2 (ja) * 2006-08-08 2013-02-20 大陽日酸株式会社 ホウ素系ガス中の金属不純物の除去方法
JP4280782B2 (ja) * 2007-04-10 2009-06-17 東京エレクトロン株式会社 半導体製造装置のガス供給システム
US8333839B2 (en) * 2007-12-27 2012-12-18 Synos Technology, Inc. Vapor deposition reactor
JP5696348B2 (ja) * 2008-08-09 2015-04-08 東京エレクトロン株式会社 金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置
WO2010101191A1 (ja) * 2009-03-03 2010-09-10 東京エレクトロン株式会社 載置台構造、成膜装置、及び、原料回収方法
JP5501807B2 (ja) * 2009-03-31 2014-05-28 東京エレクトロン株式会社 処理装置
GB2472474B (en) * 2009-12-14 2012-04-11 Pro Teq Surfacing Uk Ltd Method for applying a coating to a surface
US20110237051A1 (en) * 2010-03-26 2011-09-29 Kenneth Lee Hess Process and apparatus for deposition of multicomponent semiconductor layers
JP5842750B2 (ja) * 2012-06-29 2016-01-13 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04277045A (ja) * 1991-03-01 1992-10-02 Hitachi Ltd 気体用フィルタ
CN1638818A (zh) * 2002-07-11 2005-07-13 住友电气工业株式会社 多孔半导体及其制备方法
CN1806317A (zh) * 2004-06-04 2006-07-19 东京毅力科创株式会社 气体处理装置和成膜装置
CN101165207A (zh) * 2006-10-19 2008-04-23 东京毅力科创株式会社 半导体处理装置及其使用方法
KR20090031814A (ko) * 2007-09-25 2009-03-30 도쿄엘렉트론가부시키가이샤 가스 공급 장치, 반도체 제조 장치 및 가스 공급 장치용 부품

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784203B (zh) * 2018-12-03 2022-11-21 日商愛發科股份有限公司 成膜裝置以及成膜方法

Also Published As

Publication number Publication date
US20120055402A1 (en) 2012-03-08
WO2010113946A1 (ja) 2010-10-07
JP5501807B2 (ja) 2014-05-28
US9150965B2 (en) 2015-10-06
KR101299841B1 (ko) 2013-08-23
JP2010255103A (ja) 2010-11-11
CN102356451B (zh) 2014-02-19
KR20110131318A (ko) 2011-12-06

Similar Documents

Publication Publication Date Title
CN102356451A (zh) 处理装置
JP4911980B2 (ja) 減圧処理装置
WO2013146982A1 (ja) トラップ機構、排気系及び成膜装置
US7883581B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US8349283B2 (en) Metal recovery method, metal recovery apparatus, gas exhaust system and film forming device using same
WO2013094680A1 (ja) 基板処理装置、半導体装置の製造方法および気化装置
US7795157B2 (en) Substrate treatment device and manufacturing method of semiconductor device
JP2007511902A (ja) 薄膜成長用反応装置
WO2013141084A1 (ja) トラップ装置及び成膜装置
CN101372739A (zh) 从批式热处理装置的石英制构件中除去金属杂质的方法
JP2006303414A (ja) 基板処理システム
US20200312655A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN103649368A (zh) 气体喷注装置、原子层沉积装置以及使用该原子层沉积装置的原子层沉积方法
TWI762813B (zh) 用於清洗和表面處理的原子氧和臭氧裝置
KR20060093571A (ko) 질화 텅스텐 증착 장치 및 증착 방법
US20080251018A1 (en) Gas supply system for semiconductor manufacturing apparatus
JP4714620B2 (ja) オゾンガス分解装置および処理システム
KR20230136517A (ko) 가스 클리닝 방법, 기판 처리 방법, 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치
KR20080061893A (ko) 가스 공급 장치
JP4527595B2 (ja) ゲル状物質の処理方法、および処理装置
KR101366385B1 (ko) 원자층 박막 증착 장치
JP2009154091A (ja) 排ガス処理装置および排ガス処理方法、ならびに薄膜形成装置
KR101032043B1 (ko) 반도체 제조설비의 가스 쿨링시스템
JP2008160081A (ja) 基板処理装置及び基板処理方法
JP4342559B2 (ja) 基板処理装置及び半導体装置の形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140219

Termination date: 20180330