CN102203217A - 基于催化脱氧和缩合氧化的碳水化合物的液体燃料组合物 - Google Patents

基于催化脱氧和缩合氧化的碳水化合物的液体燃料组合物 Download PDF

Info

Publication number
CN102203217A
CN102203217A CN2009801381775A CN200980138177A CN102203217A CN 102203217 A CN102203217 A CN 102203217A CN 2009801381775 A CN2009801381775 A CN 2009801381775A CN 200980138177 A CN200980138177 A CN 200980138177A CN 102203217 A CN102203217 A CN 102203217A
Authority
CN
China
Prior art keywords
hydrocarbon
composition
catalyst
boiling point
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801381775A
Other languages
English (en)
Other versions
CN102203217B (zh
Inventor
J·M·鲍尔德雷
P·G·布罗梅
R·D·科尔特里特
R·J·普里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN102203217A publication Critical patent/CN102203217A/zh
Application granted granted Critical
Publication of CN102203217B publication Critical patent/CN102203217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

本发明提供一种液体燃料组合物,它包含通过下述方法制备的由水溶性氧化烃衍生的含至少一种C4+化合物的组分的蒸馏馏分,所述方法包括:在含水液相和/或气相中提供水和含C1+O1+烃的水溶性氧化烃;提供氢气;在脱氧催化剂存在下,在脱氧温度和脱氧压力下,在液相和/或气相中使氧化烃与氢气催化反应,以在反应物流内产生含C1+O1-3烃的含氧化合物;和在缩合催化剂存在下,在缩合温度和缩合压力下,使含氧化合物在液相和/或气相中催化反应,以产生C4+化合物,其中C4+化合物包括选自C4+醇、C4+酮、C4+烷烃、C4+链烯烃、C5+环烷烃、C5+环烯烃、芳烃、稠合芳烃及它们的混合物的物质;其中所述液体燃料组合物选自:汽油组合物,所述汽油组合物的初沸点为15-70℃(IP123),终沸点为至多230℃(IP123),RON为85-110(ASTM D2699),和MON为75-100(ASTM D2700);柴油燃料组合物,所述柴油燃料组合物的初沸点为130-230℃(IP123),终沸点为至多410℃(IP123),和辛烷值为35-120(ASTM D613);和煤油组合物,所述煤油组合物的初沸点为80-150℃,终沸点为200-320℃,和在-20℃下的粘度为0.8-10mm2/s(ASTM D445)。

Description

基于催化脱氧和缩合氧化的碳水化合物的液体燃料组合物
技术领域
本发明涉及包含由水溶性氧化烃衍生的组分的液体燃料组合物。
背景技术
开发由化石燃料以外的资源提供能量的新技术受到了极大的关注。生物质是具有作为化石燃料替代品前景的资源。与化石燃料不同,生物质还是可再生的。
一类生物质是植物生物质。植物生物质是世界上最丰富的碳水化合物资源,这是因为在高等植物内组成细胞壁的木质纤维素导致的。植物细胞壁分成两部分,主要的细胞壁和辅助的细胞壁。主要的细胞壁提供使细胞膨胀的结构且由三种主要的多糖(纤维素、果胶和半纤维素)和一组糖蛋白组成。在细胞完成生长之后产生的辅助的细胞壁也含有多糖,且通过共价交联到半纤维素上的聚合物木质素加强。通常发现丰富的半纤维素和果胶,但纤维素是主要的多糖和最丰富的碳水化合物资源。
大部分运输车辆不管是船、火车、飞机还是机动车都要求通过内燃机和/或喷气发动机提供的高的功率密度。这些内燃机和/或喷气发动机要求通常为液体形式或者在较低程度上为压缩气体的清洁燃烧燃料。液体燃料更容易携带,这是因为它们具有高的能量密度和能被泵送而使处理更容易。
目前,生物质提供液体运输燃料唯一的可再生替代品。遗憾的是生产液体生物燃料新技术的开发进展缓慢,特别是在开发适合目前基本设施的液体燃料产品方面。尽管可由生物质资源生产各种燃料,例如乙醇、甲醇、生物柴油、费-托柴油和煤油以及气态燃料如氢气和甲烷,但这些燃料可能要求适合于其特征的新的分配技术和/或燃烧技术。这些燃料的生产也倾向于昂贵。
乙醇例如通过将来自生物质的碳水化合物转化成糖然后在发酵法中将糖转化成乙醇而制备。乙醇是当今最广泛使用的生物燃料,目前的生产能力为43亿加仑/年,基于淀粉作物如玉米计。但相对于生产乙醇所需的能量大小,乙醇作为燃料在其能量值方面具有非常明显的缺点。通过发酵生产的乙醇含有大量水,通常在水/醇发酵产物内只包含约5vol%的乙醇。脱除这一水高度耗能,且常常要求使用天然气作为热源。乙醇还具有比汽油低的能量值,这意味着需要花费更多的燃料行走相同的距离。乙醇对燃料体系具有非常大的腐蚀性,且不能在石油管线内运输。结果,在油槽卡车中陆路运输乙醇,这增加了总的成本和能耗,当考虑农业设备、培养、种植、肥料、杀虫剂、除草剂、石油基杀真菌剂、灌溉体系、收割、运输到加工装置、发酵、蒸馏、干燥、运输到燃料终端和零售泵所消耗的总能量和乙醇燃料较低的能量值时,增加且输送到消费者的净能量值非常小。
生物柴油是另一可能的能源。生物柴油可由植物油、动物脂肪、废植物油、微藻油或回收的饭店油脂制备,且通过其中在催化剂存在下有机衍生的油与醇(乙醇或甲醇)组合形成乙酯或甲酯的方法来生产。然后生物质衍生的乙酯或甲酯可与常规的柴油燃料共混或者用作纯燃料(100%生物柴油)。生物柴油的制备也是昂贵的,且在其使用和燃烧中具有各种问题。例如可能要求特殊处理以避免在低温下胶凝。
生物质也可气化生产主要由氢气和一氧化碳组成的合成气气体,也称为合成气或生物合成气。当今生产的合成气直接用于生成热量和发电,但可由合成气衍生几种生物燃料。氢气可从合成气中回收或者可催化转化成甲醇。所述气体也可通过生物反应器生产乙醇,或者使用费-托催化剂转化成性能与柴油燃料类似的液体物流,称为费-托柴油。但这些方法倾向于昂贵。
需要一种液体燃料组合物,它含有可由生物质衍生并且能在当前的基本设施即相同的分配体系和相同的发动机中使用而不需要特别调整的组分。还需要一种液体燃料组合物,它含有可由生物质衍生不依赖于微生物、酶或其它昂贵和精巧的制备工艺的组分。
发明内容
本发明提供一种液体燃料组合物,它包含通过下述方法制备的由水溶性氧化烃衍生的含至少一种C4+化合物的组分的蒸馏馏分,所述方法包括:
在含水液相和/或气相中提供水和含C1+O1+烃的水溶性氧化烃;
提供氢气;
在脱氧催化剂存在下,在脱氧温度和脱氧压力下,在液相和/或气相中使氧化烃与氢气催化反应,以在反应物流内产生含C1+O1-3烃的含氧化合物;和
在缩合催化剂存在下,在缩合温度和缩合压力下,使含氧化合物在液相和/或气相中催化反应,以产生C4+化合物,
其中C4+化合物包括选自C4+醇、C4+酮、C4+烷烃、C4+链烯烃、C5 +环烷烃、C5+环烯烃、芳烃、稠合芳烃及它们的混合物的物质;
其中所述液体燃料组合物选自:
汽油组合物,所述汽油组合物的初沸点为15-70℃(IP123),终沸点为至多230℃(IP123),RON为85-110(ASTM D2699),和MON为75-100(ASTM D2700);
柴油燃料组合物,所述柴油燃料组合物的初沸点为130-230℃(IP123),终沸点为至多410℃(IP123),和辛烷值为35-120(ASTM D613);和
煤油组合物,所述煤油组合物的初沸点为80-150℃,终沸点为200-320℃,和在-20℃下的粘度为0.8-10mm2/s(ASTM D445)。
本发明还提供汽油组合物,所述汽油组合物包含可由水溶性氧化烃衍生的含至少一种C4+化合物的组分,所述组分的终沸点为150-220℃,在15℃下的密度为700-890kg/m3,硫含量至多5mg/kg,氧含量至多3.5wt%,RON为80-110,和MON为70-100,其中所述汽油组合物的初沸点为15-70℃(IP123),终沸点为至多220℃(IP123),RON为85-110(ASTM D2699),和MON为75-100(ASTM D2700)。
组合物,所述柴油燃料组合物包含可由水溶性氧化烃衍生的含至少一种C4+化合物的组分,所述组分的T95为220-380℃,闪点为30-70℃,在15℃下的密度为700-900kg/m3,硫含量至多5mg/kg,氧含量至多10wt%,和在40℃下的粘度为0.5-6cS t,其中所述柴油燃料组合物的初沸点为130-230℃(IP123),终沸点为至多410℃(IP123),和辛烷值为35-120(ASTM D613)。
本发明还提供煤油组合物,所述煤油组合物包含可由水溶性氧化烃衍生的含至少一种C4+化合物的组分,所述组分的初沸点为120-215℃,终沸点为220-320℃,在15℃下的密度为700-890kg/m3,硫含量至多0.1wt%,总芳烃含量至多30vol%,冻点低于或等于-40℃,烟点至少18mm,在-20℃下的粘度为1-10cSt,和能量密度为40-47MJ/kg,其中所述煤油组合物的初沸点为80-150℃,终沸点为200-320℃,和在-20℃下的粘度为0.8-10mm2/s(ASTM D445)。
本发明还提供本发明的液体燃料组合物的制备方法,所述方法包括混合下述物质:
(a)通过下述方法制备的由水溶性氧化烃衍生的含至少一种C4+化合物的组分的蒸馏馏分,所述方法包括:
在含水液相和/或气相中提供水和含C1+O1+烃的水溶性氧化烃;
提供氢气;
在脱氧催化剂存在下,在脱氧温度和脱氧压力下,在液相和/或气相中使氧化烃与氢气催化反应,以在反应物流内产生含C1+O1-3烃的含氧化合物;和
在缩合催化剂存在下,在缩合温度和缩合压力下,使含氧化合物在液相和/或气相中催化反应,以产生C4+化合物,
其中C4+化合物包括选自C4+醇、C4+酮、C4+烷烃、C4+链烯烃、C5 +环烷烃、C5+环烯烃、芳烃、稠合芳烃及它们的混合物的物质;和
(b)至少一种燃料组分。
附图说明
图1的流程图描述了与本发明有关的各种生产路径。
图2描述了允许碳水化合物例如糖转化成非氧化烃的可能化学路线。
图3描述了山梨醇脱氧成含氧化合物和APR氢气中包括的各种反应路径。
图4描述了在100℃和400℃下将丙酮转化成2-甲基戊烷的反应路径的热力学平衡。
图5的图线描述了与中间反应产物有关的平衡常数以及2mol丙酮与3mol氢气反应形成1mol 2-甲基戊烷和2mol水的总转化率。
图6的流程图描述了构造用于循环氢气、含氧化合物和氧化烃的反应器体系。
图7的流程图描述了构造用于使用空气或油作为控温元件的反应器体系。
图8的流程图描述了本发明的反应器体系。
图9的流程图描述了使用两个反应器的反应器体系。
图10的流程图描述了使用两根原料管线的反应器体系。
图11描述了可用于实施本发明的反应器。
图12的图线描述了由甘油生产的单-含氧化合物的碳分布。
图13的图线描述了当用于由氧化烃原料生产化合物时反应器的轴向温度分布。
图14的图线作为时间函数描述了由含氧化合物原料物流转化成C5+化合物时以含氧化合物形式离开的原料碳%。
图15的图线作为时间函数描述了在含氧化合物原料物流转化时以C5+烃形式离开的原料碳%。
图16的图线作为时间函数描述在含氧化合物原料物流转化时以C5+芳烃形式离开的原料碳%。
图17的图线给出了由蔗糖和木糖的原料物流转化得到的链烷烃和芳族化合物的总重量百分数。
图18的图线作为原料热值百分数描述了由山梨醇生产汽油得到的C5+烃的热值。
图19的图线描述了由山梨醇生产汽油时以芳烃形式回收的碳%,作为原料内的碳%给出。
具体实施方式
本发明的液体燃料组合物包含由水溶性氧化烃衍生的含至少一种C4+化合物的组分。优选地,所述水溶性氧化烃衍生自生物质。
通常,由水溶性氧化烃衍生的含至少一种C4+化合物的组分的制备方法由生物质衍生的氧化烃例如糖、糖醇、纤维素、木质纤维素、半纤维素、糖和类似物生产烃、酮、和醇。
由水溶性氧化烃衍生的组分包括C4+烷烃、C4+链烯烃、C5+环烷烃、C5+环烯烃、芳烃、稠合芳烃、C4+醇、C4+酮、及它们的混合物(此处统称为“C4+化合物”)。C4+烃通常具有4-30个碳原子,且可以是支链或直链的烷烃或链烯烃或者未取代、单取代或多取代的芳烃(芳烃)或环烷烃。C4+醇和C4+酮可以是环状、支链或直链的,且具有4-30个碳原子。
可分离主要为C4-C9的轻质馏分以供汽油使用。可分离中间馏分例如C7-C14用于煤油,例如用于喷气燃料,而可分离重质馏分即C12-C24以供柴油燃料使用。最重的馏分可用作润滑剂,或者裂化生产附加的汽油和/或柴油馏分。衍生自水溶性氧化烃的C4+化合物也可用作工业化学品,例如二甲苯,不管作为中间体还是作为终产物。
由水溶性氧化烃衍生的组分的制备方法
图1中描述了由水溶性氧化烃衍生的组分的通用制备方法。含具有一个或多个碳原子的水溶性氧化烃的原料溶液经脱氧催化剂与氢气反应,产生含氧化合物,然后含氧化合物经缩合催化剂在有效引起产生C4+化合物的缩合反应的温度和压力条件下反应。氢气可来自于任意来源,但优选使用水相重整原位或平行地衍生自生物质。氢气和氧化烃也可利用由所述工艺得到的循环的氢气和氧化烃补充。氧化烃可以是单糖、二糖、多糖、纤维素、半纤维素、木质素、糖、糖醇或其它多元醇,或者可衍生自糖、糠醛、羧酸、酮或呋喃的氢化、或糖、糖醇、多糖、单糖、二糖或多元醇的氢解。
本发明中由水溶性氧化烃衍生的组分的制备方法的一个独特方面是使用催化方法而不是微生物、酶、高温气化或酯交换方法由生物质组分衍生C4+化合物。本发明中由水溶性氧化烃衍生的组分的制备方法也可原位生成氢气,以避免依赖于外部氢气来源,例如由天然气蒸汽重整、或者水电解或热解生成的氢气。本发明中由水溶性氧化烃衍生的组分的制备方法还生成水,水可被循环并在上游工艺中使用或者返回到环境中。本发明中由水溶性氧化烃衍生的组分的制备方法还能生成不可冷凝的燃料气,其目的是在反应器体系内部提供热源或者用于外部工艺。
碳水化合物是地球上最宽泛分布的天然存在的有机化合物。在光合作用中产生碳水化合物,在光合作用中通过组合二氧化碳与水形成碳水化合物和氧气而将太阳能转化成化学能:
通过这一方法,太阳能作为植物内碳水化合物形式的化学能储存。碳水化合物,特别是当为糖形式时,是高度反应性化合物,它容易被活性物质氧化生成能量、二氧化碳和水。植物材料以糖、淀粉、聚合纤维素、和/或半纤维素形式储存这些碳水化合物。
在碳水化合物的分子结构内氧的存在有助于生物体系内糖的反应性。乙醇发酵技术通过在环境温度下形成乙醇利用了这一高度反应性质。发酵技术实质上使高度反应性的糖去官能化而生成部分氧化的烃、乙醇。但如上所述,乙醇在其能量值方面具有非常大的缺点。
图2给出了允许碳水化合物例如糖转化成非氧化烃的可能的化学路线。已知水溶性碳水化合物与氢气经催化剂通过氢化或氢解而反应生成多元醇。历史上,氢气在外部即由天然气或者通过其它方法生成,但现在根据本发明可通过多元醇的水相重整原位或者平行地生成。
通过形成醛进行多元醇的水相重整(APR)(如图2所示),其中醛经催化剂与水反应形成氢气、二氧化碳和少量多元醇。多元醇然后可进一步与氢气经催化剂反应通过一系列的脱氧反应形成醇、酮或者醛物种,它们可经历缩合反应形成更大碳数的直链化合物、支链化合物或环状化合物。缩合反应可以酸催化、碱催化或者酸和碱二者催化。所得化合物可以是烃或含氧烃,其中所述含氧烃中的氧可通过与氢气经催化剂反应而脱除。所得缩合产物包括C4+醇、C4+酮、C4+烷烃、C4+链烯烃、C5+环烷烃、C5+环烯烃、芳烃、稠合芳烃及它们的混合物。所述混合物可分馏和共混,以生产通常在汽油、煤油(例如作为喷气燃料)或柴油燃料中使用的分子的合适混合物。
通过使葡萄糖与氢气在氢化反应或者氢解反应中反应开始去官能化,将环状糖分子转化成其相应的直链醇、山梨醇或低级多元醇如甘油、丙二醇、乙二醇、木糖醇等。如上所述,氢气可以来自任意来源,但优选通过水相重整原位生成的氢气或者从反应器体系中循环的过量氢气。
在水相重整工艺过程中,碳水化合物首先经历脱氢,以提供被吸附的中间体,之后解离C-C或C-O键。C-C键的随后解离导致形成CO和氢气,然后CO与水反应,通过水煤气变换反应形成二氧化碳和氢气。各种APR方法和技术描述于美国专利Nos.6,699,457;6,964,757和6,964,758;和美国专利申请No.11,234,727(所有均属于Cortright等人,和题为“Low-Temperature Hydrogen Production from Oxygenated Hydrocarbons”);和美国专利No.6,953,873(Cortright等人,和题为“Low Temperature Hydrocarbon Production from Oxygenated Hydrocarbons”);和WO 2007/075476 A2(Cortright等人,和题为“Catalyst and Methods for Reforming Oxygenated Compounds”)中,所有这些在此作为参考引入。术语“水相重整”和“APR”通常表示氧化烃和水重整得到氢气和二氧化碳,而与反应是否在气相内或者在冷凝的液相内发生无关。“APR H2”通常指通过APR方法生产的氢气。
所得氧化烃即山梨醇或甘油、丙二醇、乙二醇、木糖醇等通过脱氧反应进一步去官能化,形成含氧化合物如醇、酮、醛、呋喃、二醇、三醇、羟基羧酸,和羧酸以供在随后的缩合反应中使用。图3描述了在山梨醇脱氧成氧化烃和APR氢气中包括的各种反应路径。一般地,在不限于任意特定理论的情况下,据认为脱氧反应包括各种不同反应路径的组合,其中包括但不限于加氢脱氧、连续脱水-氢化、氢解、氢化和脱水反应,导致从氧化烃中脱除氧得到通式为C1+O1-3的烃分子。
然后将所生产的含氧化合物通过缩合转化成C4+化合物。在不限于任意具体理论的情况下,据认为酸缩合反应通常由一系列步骤组成,所述步骤包括:(a)含氧化合物脱水成烯烃;(b)低聚烯烃;(c)裂化反应;(d)环化较大烯烃形成芳烃;(e)链烷烃异构化;和(f)氢转移反应形成链烷烃。据认为碱缩合反应通常由一系列步骤组成,所述步骤包括:(1)醇醛缩合形成β-羟基酮或β-羟基醛;(2)β-羟基酮或β-羟基醛脱水形成共轭烯酮;(3)氢化共轭烯酮形成酮或醛,所述酮或醛可参与进一步的缩合反应或转化成醇或烃;和(4)氢化羰基成醇,或者反之亦然。据认为酸-碱缩合反应通常包括任意前述酸和/或碱反应步骤。
在一些实施方案中,缩合反应在典型的缩合温度和压力下发生。但在各种实施方案中,也可更有利地在与典型的缩合工艺相比高的温度和压力条件下进行缩合反应。一般地,在升高的条件下进行缩合反应导致不利的热力学,这将限制转化成缩合产物的程度。本发明揭示了在以下所述的温度和压力下利用缩合催化剂进行反应克服了这些局限且预料不到地促进了缩合产物直接转化成烃、酮和醇。这种转化反过来从反应中脱除缩合产物,从而克服了体系的热力学局限,以允许发生附加的缩合反应。升高的温度和/或压力条件还避免了含氧化合物过量地直接转化成它们相应的烃。所述方法还具有下述附加的优势:便于在单一反应器内和在稳态平衡下进行缩合反应、脱氧反应和APR反应。
对于任意给定的反应来说,自由能变化是有利于正向反应的指示。自由能的变化越负,则越有利于所述反应。结果,与较大负值的自由能变化有关的反应通常是有利的且可能地显示出高的反应产物转化率。相反,与正的自由能变化有关的反应是不利的且固有地受到反应物转化成产物的程度限制。作为说明,图4给出了对于在100℃和400℃下将丙酮和氢气转化成C6烃(2-甲基戊烷)和水来说,与沿着反应路径的各步骤有关的自由能变化。用实线给出了沿着这一路径衍生的稳定的中间体的已知自由能能级。在所述反应路径中第一步是2分子丙酮醇醛缩合形成1分子的双丙酮醇。在较低温度(100℃)下,该反应的自由能变化为-53KJ/mol且在热力学上是有利的,而在较高温度(400℃)下,该反应不那么有利,这是因为自由能变化为-10KJ/mol。这暗指当温度升高时,对于这一步骤来说,纯丙酮转化成双丙酮醇的最大转化率下降(在100℃下在大气压下大于99%的理论最大转化率到在400℃下在大气压下只有15%)。因此,热力学平衡的局限性对在给定条件下和在不存在其它反应情况下可能产生的双丙酮醇的量产生绝对限制。这进一步描述于图5中,图5提供了与中间反应产物有关的平衡常数和2mol丙酮与3mol氢气反应形成1mol 2-甲基戊烷和2mol水的总转化率。可看出丙酮转化成双丙酮醇的平衡常数随温度升高而下降。
本发明通过将缩合产物立即转化成提供更有利的反应环境的化合物,避免了这一问题。在上述情况下,通过经脱水反应(形成异亚丙基丙酮)从反应混合物中脱除双丙酮醇,可形成附加的双丙酮醇。特别地,缩合和脱水步骤的组合,由丙酮提供异亚丙基丙酮和水,从而提供略微更有利的反应环境。正如图5所示,丙酮转化成异亚丙基丙酮和水在较高温度下略微更有利。
总的反应体系压力也对反应物可形成产物的最大理论程度具有有益的影响。考虑到上述缩合反应的实例,采用纯丙酮原料,丙酮转化成双丙酮醇的转化率在400℃下在大气压下限制为15%,通过增加体系压力到600psi的表压,平衡转化率移动,结果在相同温度下可达到至多76%的转化率。对于与反应物摩尔数相比显示出产物摩尔数净减少的反应来说,体系压力的增加(在所有其它条件保持恒定的情况下)起到增加平衡产物转化率的作用。对于酮转化成烃的总转化率来说,与反应物的摩尔数相比,通常存在产物摩尔数的净减少,从而较高的反应压力会导致较高的可能平衡转化率。
通过采用缩合催化剂和在一定温度与压力条件下操作(所述温度和压力利用转化成其它下游产物的增加抵销在缩合产物生产中的任意降低),在本发明中由水溶性氧化烃衍生的组分的制备方法打破了上述热力学极限平衡。整个体系的动力学也更有利,结果可连续地且以更希望的速率生产产物。就放大规模生产来说,在启动之后,可工艺控制反应器体系,且可在稳态平衡下进行反应。
含氧化合物
C4+化合物衍生自含氧化合物。正如此处相对于由水溶性氧化烃衍生的组分的制备方法所使用的,“含氧化合物”通常是指具有大于或等于1个碳原子和1-3个氧原子的烃化合物(此处称为C1+O1-3烃),例如醇、酮、醛、呋喃、羟基羧酸、羧酸、二醇、和三醇。优选地,含氧化合物具有1-6个碳原子,或2-6个碳原子,或3-6个碳原子。醇可包括但不限于伯、仲、直链、支链或环状C1+醇,例如甲醇、乙醇、正丙醇、异丙醇、丁醇、异丁醇、丁醇、戊醇、环戊醇、己醇、环己醇、2-甲基-环戊醇、庚醇、辛醇、壬醇、癸醇、十一烷醇、十二烷醇及它们的异构体。酮可包括但不限于羟基酮、环酮、二酮、丙酮(acetone)、丙酮(propanone)、2-氧丙醛、丁酮、丁-2,3-二酮、3-羟基丁-2-酮、戊酮、环戊酮、戊-2,3-二酮、戊-2,4-二酮、己酮、环己酮、2-甲基环戊酮、庚酮、辛酮、壬酮、癸酮、十一烷酮、十二烷酮、甲基乙二醛、丁二酮、戊二酮、二酮己烷及它们的异构体。醛可包括但不限于羟基醛、乙醛、丙醛、丁醛、戊醛、己醛、庚醛、辛醛、壬醛、癸醛、十一烷醛、十二烷醛及它们的异构体。羧酸可包括但不限于甲酸、乙酸、丙酸、丁酸、戊酸、己酸、庚酸、它们的异构体和衍生物,其中包括羟化衍生物,例如2-羟基丁酸和乳酸。二醇可包括但不限于乙二醇、丙二醇、1,3-丙二醇、丁二醇、戊二醇、己二醇、庚二醇、辛二醇、壬二醇、癸二醇、十一烷二醇、十二烷二醇及它们的异构体。三醇可包括但不限于甘油、1,1,1-三(羟甲基)乙烷(三羟甲基乙烷)、三羟甲基丙烷、己三醇及它们的异构体。呋喃和糠醛包括但不限于呋喃、四氢呋喃、二氢呋喃、2-呋喃甲醇、2-甲基四氢呋喃、2,5-二甲基四氢呋喃、2-甲基呋喃、2-乙基四氢呋喃、2-乙基呋喃、羟甲基糠醛、3-羟基四氢呋喃、四氢-3-呋喃醇、2,5-二甲基呋喃、5-羟甲基-2(5H)-呋喃酮、二氢-5-(羟甲基)-2(3H)-呋喃酮、四氢-2-糠酸、二氢-5-(羟甲基)-2(3H)-呋喃酮、四氢糠醇、1-(2-呋喃基)乙醇、羟甲基四氢糠醛及它们的异构体。
含氧化合物可来自于任意来源,但优选衍生自生物质。正如此处所使用的,术语“生物质”是指通过植物(例如叶子、根、种子和茎)和微生物与动物新陈代谢废物生产的有机物质,但不限于此。生物质的常见来源包括:(1)农业废物,例如玉米杆、稻草、种子壳、甘蔗残余物、甘蔗渣、坚果壳以及来自家畜、家禽和肥猪的粪肥;(2)木材材料,例如木材或树皮、锯屑、木材废料和加工厂碎片;(3)城市废物,例如废纸和庭院剪取物;和(4)能量作物,例如白杨、柳树、柳枝稷、苜宿、草原牧草、玉米、大豆和类似物。所述术语还指上述的主要组成成分,即糖、木质素、纤维素、半纤维素和淀粉等。
可通过任意已知的方法由生物质生产含氧化合物。这些方法包括使用酶或微生物的发酵技术、生产C2-10 α-醇的费-托反应和由石油生产醇的热解技术。在一个实施方案中,使用催化重整技术,例如由Virent Energy Systems,Inc.(Madison,Wisconsin)开发的BioFormingTM技术,生产含氧化合物。
氧化烃
在一个实施方案中,含氧化合物衍生自氧化烃的催化重整。氧化烃可以是具有一个或多个碳原子和至少一个氧原子的任意水溶性氧化烃(此处称为C1+O1+烃)。优选地,氧化烃具有2-12个碳原子(C1-12O1-11烃),和更优选2-6个碳原子(C1-6O1-6烃)。氧化烃也可具有为0.5∶1-1.5∶1的氧碳比,其中包括比值0.75∶1.0、1.0∶1.0、1.25∶1.0、1.5∶1.0、和在其间的其它比值。在一个实例中,氧化烃具有1∶1的氧碳比。优选的水溶性氧化烃的非限定性实例包括单糖、二糖、多糖、糖、糖醇、糖醛(alditol)、乙二醇、乙二酮、乙酸、丙醇、丙二醇、丙酸、甘油、甘油醛、二羟基丙酮、乳酸、丙酮酸、丙二酸、丁二醇、丁酸、丁醛糖、酒石酸、戊醛糖、己醛糖、酮丁糖、酮戊糖、酮己糖、糖醛、半纤维素、纤维素衍生物、木质纤维素衍生物、淀粉、多元醇和类似物。优选地,氧化烃包括糖、糖醇、糖和其它多元醇。更优选地,氧化烃是糖,例如葡萄糖、果糖、蔗糖、麦芽糖、乳糖、甘露糖或木糖,或者是糖醇,例如阿拉伯糖醇、赤藓醇、甘油、异麦芽(isomalt)、乳糖醇、马里醇(malitol)、甘露糖醇、山梨醇、木糖醇、核糖醇、或二元醇。
氧化烃还应当指且包括通过氢化或氢解任意前述物质衍生的醇。在一些实施方案中,可能优选的是将起始氧化烃转化成另一可能更容易转化成所需含氧化合物(例如伯、仲、叔或多元醇)的氧化烃形式。例如,与它们相应的糖醇衍生物相比,一些糖可能不能同样有效转化成含氧化合物。因此,可期望例如通过氢化转化起始材料例如糖、糠醛、羧酸、酮或呋喃成它们相应的醇衍生物,或者例如通过氢解转化成较小的醇分子。
已知各种方法用于氢化糖、糠醛、羧酸、酮、和呋喃成它们相应的醇形式,其中包括以下公开的那些:B.S.Kwak等人(WO2006/093364A1和WO 2005/021475A1),所述方法包括经钌催化剂氢化由单糖制备糖的糖醛;和Elliot等人(美国专利Nos.6,253,797和6,570,043),它们公开了使用在大于75%金红石氧化钛载体上的不含镍和铼的钌催化剂,将糖转化成糖醇,所有这些在此作为参考引入。Arndt等人在公布的美国专利申请2006/0009661(2003年12月3日申请),和Arena在美国专利Nos.4,380,679(1982年4月12日申请)、4,380,680(1982年5月21日申请)、4,503,274(1983年8月8日申请)、4,382,150(1982年1月19日申请)和4,487,980(1983年4月29日申请)中描述了其它合适的钌催化剂,所有这些在此作为参考引入。氢化催化剂通常包括Cu、Re、Ni、Fe、Co、Ru、Pd、Rh、Pt、Os、Ir及它们的合金或组合物,这些物质单独或者与促进剂一起存在,所述促进剂例如W、Mo、Au、Ag、Cr、Zn、Mn、Sn、B、P、Bi及它们的合金或组合物。氢化催化剂也可包括以下进一步描述的任意一种载体,且取决于所需的催化剂功能。其它有效的氢化催化剂材料包括载带的镍或用铼改性的钌。一般地,在约80-250℃的氢化温度和约100-2000psig的氢化压力下进行氢化反应。所述反应中所使用的氢气可包括原位生成的氢气、外部氢气、循环氢气、或它们的组合。
氢化催化剂也可包括载带的第VIII族金属催化剂和金属海绵材料,例如海绵镍催化剂。活化的海绵镍催化剂(例如阮内镍)是公知的一类对各种氢化反应有效的材料。一类海绵镍催化剂是获自Activated Metals and Chemicals,Inc.,Sevierville,Tenn的A7063类催化剂。A7063类催化剂是钼促进的催化剂,它通常含有约1.5%钼和85%镍。M.L.Cunningham等人在1999年9月9日申请的US 6,498,248中描述了使用海绵镍催化剂与含木糖和右旋糖的原料,在此作为参考引入。在1986年6月4日申请的US 4,694,113中也描述了使用阮内镍催化剂与水解的玉米淀粉,和在此作为参考引入。
A.Yoshino等人在2003年11月7日申请的已公布的美国专利申请2004/0143024中描述了合适的阮内镍氢化催化剂的制备,在此作为参考引入。可通过用碱性水溶液例如含有约25wt%氢氧化钠的水溶液处理大致等重量镍和铝的合金,来制备阮内镍催化剂。通过碱性水溶液选择性溶解铝,从而留下具有海绵结构且主要由镍和少量铝组成的颗粒。也可在起始合金内包括促进剂金属,例如钼或铬,其含量使得在海绵镍催化剂内保留约1-2wt%。
在另一实施方案中,通过用亚硝酰硝酸钌(III)、亚硝酰硝酸钌(III)或氯化钌(III)在水中的溶液浸渍合适的载体材料形成固体,然后所述固体在旋转球烘箱内在120℃下干燥13小时(残留水含量小于1wt%),从而制备氢化催化剂。然后在旋转球炉内,在大气压下,在氢气物流内,在300℃(未煅烧)或400℃(煅烧)下,将所述固体还原4小时。在冷却并用氮气赋予惰性之后,通过在氮气内流过5vol%氧气120分钟的时间段而钝化所述催化剂。
在又一实施方案中,使用含镍-铼的催化剂或钨改性的镍催化剂进行氢化反应。合适的氢化催化剂的一个实例是Werpy等人在2003年9月30日申请的US 7,038,094中公开的碳载带的镍-铼催化剂组合物,在此作为参考引入。
在其它实施方案中,可能还期望转化起始氧化烃例如糖、糖醇或其它多元醇成可更容易地例如通过氢解转化成所需的含氧化合物的较小的分子。这种较小的分子可包括碳原子少于起始氧化烃的伯、仲、叔或多元醇。已知各种方法用于这种氢解反应,其中包括以下公开的那些:Werpy等人的美国专利No s.6,479,713(2001年10月23日申请)、6,677,385(2002年8月6日申请)、6,6841,085(2001年10月23日申请)、和7,083,094(2003年9月30日申请),所有这些在此作为参考引入,并描述了使用含铼的多金属催化剂氢解5和6碳糖和糖醇成丙二醇、乙二醇和甘油。其它体系包括Arena在美国专利No.4,401,823(1981年5月18日申请)中描述的那些,所述专利涉及使用含过渡金属(例如铬、钼、钨、铼、锰、铜、镉)或第VIII族金属(例如铁、钴、镍、铂、钯、铑、钌、铱和锇)的含碳高温聚合物催化剂,由多羟基化的化合物例如糖和糖醇生产醇、酸、酮和醚,和美国专利No.4496780(1983年6月22日申请)描述的那些,所述专利涉及使用含有在含碱土金属氧化物的固体载体上的第VIII族贵金属的催化剂体系由碳水化合物生产甘油、乙二醇和1,2-丙二醇,其中各专利在此作为参考引入。另一体系包括Dubeck等人在美国专利No.4,476,331(1983年9月6日申请)中所述的体系,所述专利涉及使用硫化物改性的钌催化剂由较大的多元醇例如山梨醇生产乙二醇和丙二醇,在此也作为参考引入。其它体系包括Saxena等人在“Effect of Catalyst Constituents on(Ni,Mo and Cu)/Kieselguhr-Catalyzed Sucrose Hydrogenolysis”,Ind.Eng.Chem.Res.44,1466-1473(2005)中所述的那些,它描述了使用在硅藻土载体上的Ni、W和Cu,在此作为参考引入。
在一个实施方案中,氢解催化剂包括Cr、Mo、W、Re、Mn、Cu、Cd、Fe、Co、Ni、Pt、Pd、Rh、Ru、Ir或Os及它们的合金或组合物,这些物质单独或与促进剂一起存在,所述促进剂例如Au、Ag、Cr、Zn、Mn、Sn、Bi、B、O及它们的合金或组合物。其它有效的氢解催化剂材料可包括与碱土金属氧化物组合的上述金属,或者粘附到催化活性载体例如硅藻土或以下进一步描述的任意一种载体上的上述金属。
实施氢解反应的工艺条件随原料类型和所需产物而变化。一般地,在至少110℃、或者110-300℃之间、或者170-240℃之间的温度下进行氢解反应。反应还应当在碱性条件下进行,优选在pH约8-13下或者在pH约10-12下进行。反应还应当在约10-2400psig、或者在约250-2000psig之间、或者在约700-1600psig之间的压力下进行。
反应中所使用的氢气可包括原位生成的氢气、外部氢气、循环氢气或它们的组合。
生产含氧化合物
含氧化合物通过使含有水和水溶性氧化烃的原料水溶液与氢气经催化材料反应产生所需的含氧化合物而制备。优选地,氢气使用水相重整原位生成(原位生成的氢气或APR氢气),或者为APR氢气、外部氢气或循环氢气的组合,或者只简单地为外部氢气或循环氢气。术语“外部氢气”是指不是来自于原料溶液而是从外部来源加入到反应器体系内的氢气。术语“循环氢气”是指来自于原料溶液且被收集和然后循环回到反应器体系内以供进一步使用的未消耗氢气。外部氢气和循环氢气也可统称或者单独地称为“补充氢气”。一般地,可添加补充氢气,其目的是补充APR氢气,或者替代包括APR氢气生产步骤,或者增加体系内的反应压力,或者增加氢气与碳和/或氧的摩尔比,以便提高一些反应产物类型例如酮和醇的收率。
在使用APR氢气的方法中,通过在APR催化剂存在下,在产生APR氢气的重整温度和重整压力下,催化反应含有水和水溶性氧化烃的一部分原料水溶液以产生APR氢气,和在脱氧催化剂存在下,在脱氧温度和脱氧压力下,使APR氢气(和循环氢气和/或外部氢气)与一部分原料溶液催化反应以产生所需含氧化合物,从而制备含氧化合物。在使用循环氢气或外部氢气作为氢气源的体系中,在脱氧催化剂存在下,在脱氧温度和压力下,简单地通过使循环氢气和/或外部氢气与原料溶液催化反应而制备含氧化合物。在上述各情况下,含氧化合物也可包括循环含氧化合物(循环C1+O1-3烃)。除非另有说明,APR催化剂和脱氧催化剂的任意讨论均是合适的催化剂材料的非限定性实例。
脱氧催化剂优选是非均相催化剂,所述非均相催化剂含有能催化氢气和氧化烃之间反应从氧化烃中脱除一个或多个氢原子产生醇、酮、醛、呋喃、羧酸、羟基羧酸、二醇和三醇的一种或多种材料。一般地,所述材料粘附到载体上且包括但不限于Cu、Re、Fe、Ru、Ir、Co、Rh、Pt、Pd、Ni、W、Os、Mo、Ag、Au、及它们的合金和组合物。脱氧催化剂可单独包括这些元素或与一种或多种Mn、Cr、Mo、W、V、Nb、Ta、Ti、Zr、Y、La、Sc、Zn、Cd、Ag、Au、Sn、Ge、P、Al、Ga、In、Tl、及它们的组合物组合。在一个实施方案中,脱氧催化剂包括Pt、Ru、Cu、Re、Co、Fe、Ni、W或Mo。在又一实施方案中,脱氧催化剂包括Fe或Re和至少一种选自Ir、Ni、Pd、P、Rh和Ru的过渡金属。在另一实施方案中,催化剂包括Fe、Re和至少Cu或一种第VIIIB族过渡金属。载体可以是以下进一步描述的任意一种载体,其中包括氮化物、碳、二氧化硅、氧化铝、氧化锆、氧化钛、氧化钒、氧化铈、氧化锌、氧化铬、氮化硼、杂多酸、硅藻土、羟基磷灰石及它们的混合物。脱氧催化剂也可与APR催化剂或缩合催化剂原子等同。
脱氧催化剂也可以是双功能催化剂。例如酸性载体(例如具有低等电点的载体)能催化氧化化合物的脱水反应,接着在氢气存在下,在金属催化剂位点上进行氢化反应,从而再次形成未键合到氧原子上的碳原子。双功能脱水/氢化路径消耗氢气并导致随后形成各种多元醇、二醇、酮、醛、醇和环醚例如呋喃和吡喃。催化剂实例包括钨酸化的氧化锆、氧化钛氧化锆、硫酸化氧化锆、酸性氧化铝、二氧化硅-氧化铝、沸石和杂多酸载体。杂多酸是一组固相酸,例子如H3+xPMo12-xVxO40、H4SiW12O40、H3PW12O40、和H6P2W18O62之类的物种。杂多酸是具有明确定义的局部结构的固相酸,其中最常见的是钨基Keggin结构。
第一元素(即Cu、Re、Fe、Ru、Ir、Co、Rh、Pt、Pd、Ni、W、Os、Mo、Ag、Au、及它们的合金和组合物)在碳上的负载为0.25-25wt%,在其间以0.10%和0.05%的重量百分数递增,例如1.00%、1.10%、1.15%、2.00%、2.50%、5.00%、10.00%、12.50%、15.00%和20.00%。第二元素(即Mn、Cr、Mo、W、V、Nb、Ta、Ti、Zr、Y、La、Sc、Zn、Cd、Ag、Au、Sn、Ge、P、Al、Ga、In、Tl、及它们的组合物)的优选原子比为0.25∶1到10∶1,包括在其间的任意比,例如0.50、1.00、2.50、5.00和7.50∶1。若催化剂粘附到载体上,则催化剂和载体的组合物含主要元素0.25-10wt%。
为了生产含氧化合物,组合氧化烃与水以提供浓度有效引起所需反应产物形成的原料水溶液。以摩尔为基准,水碳比优选为约0.5∶1-100∶1,其中包括比值例如1∶1、2∶1、3∶1、4∶1、5∶1、6∶1、7∶1、8∶1、9∶1、10∶1、15∶1、25∶1、50∶1、75∶1、100∶1、以及在其间的任意比值。所述原料溶液也可表征为全部溶液至少1.0wt%为氧化烃的溶液。例如所述溶液可包括一种或多种氧化烃,其中在溶液内氧化烃的总浓度以重量计为至少约1%、5%、10%、20%、30%、40%、50%、60%、70%、80%或更大,其中包括在其间的任意百分数,且取决于所使用的氧化烃。在一个实施方案中,原料溶液包括以重量计至少约10%、20%、30%、40%、50%、或60%的糖,例如葡萄糖、果糖、蔗糖或木糖,或糖醇,例如山梨醇、甘露糖、甘油或木糖醇。还包括在以上所述范围以外的水碳比和百分数。优选原料溶液的余量为水。在一些实施方案中,原料溶液基本上由水、一种或多种氧化烃和任选的一种或多种此处所述的原料改性剂例如碱或者碱或碱土金属的氢氧化物、盐或酸组成。所述原料溶液也可包括从反应器体系中循环的循环氧化烃。所述原料溶液也可含有可忽略不计量的氢气,优选小于约1.5mol氢气/mol原料。在优选的实施方案中,没有添加氢气到原料溶液中。
在脱氧催化剂存在下,在有效产生所需含氧化合物的脱氧温度和压力条件以及重时空速下,使原料溶液与氢气反应。所生产的特定含氧化合物取决于各种因素,其中包括原料溶液、反应温度、反应压力、水的浓度、氢气浓度、催化剂的反应性、和原料溶液的流量,因为它将影响空速(反应物质量/体积/单位催化剂/单位时间)、气体时空速(GHSV)、和重时空速(WHSV)。例如流量增加,暴露于催化剂的原料随时间减少,这将会限制可能发生的反应程度,从而引起较高级的二醇和三醇收率增加,而酮和醇的收率下降。
优选选择脱氧温度和压力,在反应器出口处维持至少一部分原料在液相内。但要意识到,也可选择温度和压力条件,以更有利地在气相内生产所需的产物。一般地,应当在其中有利于所计划的反应的热力学的工艺条件下进行反应。例如维持一部分原料在液相内所要求的最小压力可能随反应温度而变化。当温度升高时,视需要,通常要求较高的压力维持原料在液相内。高于维持原料在液相内所要求的压力(即气相)也是合适的操作条件。
在冷凝相液体反应中,在反应器内的压力必须足以在反应器入口处维持反应物在冷凝的液相内。对于液相反应来说,反应温度可以是约80-300℃,和反应压力为约72-1300psig。在一个实施方案中,反应温度为约120-300℃,或约200-280℃,或约220-260℃,和反应压力优选约72-1200psig,或约145-1200psig,或约200-725psig,或约365-700psig,或约600-650psig。
对于气相反应来说,应当在其中氧化烃的蒸汽压力为至少约0.1atm(和优选高出许多)和反应热力学有利的温度下进行。这一温度随所使用的具体氧化烃而变化,但对于气相反应来说,通常为约100-600℃。优选地,反应温度为约120-300℃,或约200-280℃,或约220-260℃。
在另一实施方案中,脱氧温度为约100-400℃,或约120-300℃,或约200-280℃,和反应压力优选为约72-1300psig,或约72-1200psig,或约200-725psig,或约365-700psig。
也可使用增加催化剂体系活性和/或稳定性的改性剂进行冷凝的液相方法。优选水和氧化烃在约1.0-10.0的合适的pH下反应,其中包括其间以0.1和0.05递增pH值,和更优选在约4.0-10.0的pH下反应。一般地,与所使用的催化剂体系的总重量相比,改性剂添加到原料溶液中的量为约0.1-10wt%,尽管在这一范围以外的量也包括在本发明以内。
一般地,应当在其中原料溶液经催化剂的停留时间合适生成所需产物的条件下进行反应。例如反应的WHSV可以是至少约0.1g氧化烃/g催化剂/小时,和更优选WHSV为约0.1-40.0g/g hr,包括WHSV为约0.25、0.5、0.75、1.0、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、6、7、8、9、10、11、12、13、14、15、20、25、30、35、40g/g hr。
在脱氧反应中所使用的氢气优选是原位生成的氢气,但也可以是外部或循环氢气。若存在的话,则优选保守地提供外部氢气量。最优选地,外部氢气量的提供量在接触脱氧催化剂之前为原料物流内所有氧化烃内的每个氧原子提供少于1个氢原子。例如,优选选择外部氢气和原料溶液内全部水溶性氧化烃的摩尔比,从而为氧化烃内每个氧子提供不超过1个氢原子。原料内的氧化烃与引入到原料内的外部氢气的摩尔比还优选不大于1∶1,或更优选至多2∶1、3∶1、5∶1、10∶1、20∶1或更大(其中包括4∶1、6∶1、7∶1、8∶1、9∶1、11∶1、12∶1、13∶1、14∶1、15∶1、16∶1、17∶1、18∶1和19∶1)。引入到原料内的外部氢气量(mol)为原料内氧化烃总摩尔数的0-100%、0-95%、0-90%、0-85%、0-80%、0-75%、0-70%、0-65%、0-60%、0-55%、0-50%、0-45%、0-40%、0-35%、0-30%、0-25%、0-20%、0-15%、0-10%、0-5%、0-2%或0-1%,包括在其间的所有中间值。当原料溶液或其任意部分与APR氢气和外部氢气反应时,APR氢气与外部氢气的摩尔比为至少1∶20、1∶15、1∶10、1∶5、1∶3、1∶2、1∶1、2∶1、3∶1、5∶1、10∶1、15∶1、20∶1、和在其间的比值(其中包括4∶1、6∶1、7∶1、8∶1、9∶1、11∶1、12∶1、13∶1、14∶1、15∶1、16∶1、17∶1、18∶1和19∶1,和反之亦然)。优选地,氧化烃与氢气在可忽略不计量的外部氢气存在下反应。
可通过考虑原料溶液内氧化烃的浓度,计算所添加的外部氢气(或补充氢气)量。优选地,所添加的外部氢气量应当提供氧化烃内的氧原子与氢原子摩尔数的摩尔比(即2个氧原子/分子氢气气体)小于或等于1.0。例如在其中原料为由甘油(3个氧原子)组成的水溶液的情况下,加入到原料内的补充氢气量优选不大于约1.5mol氢气/mol甘油(C3H8O3),和优选不大于约1.25、1.0、0.75、0.50或0.25。一般地,所添加的补充氢气量小于提供氧与氢原子的原子比为1∶1的全部氢气(APR氢气和外部氢气)量的0.75倍,和更优选不大于0.67、0.50、0.33、0.30、0.25、0.20、0.15、0.10、0.05、0.01倍。
可通过任意合适的方法确认或检测在反应器内的APR氢气量。可作为原料物流组成、催化剂组合物和反应条件的函数,基于产物物流的组成测定APR氢气,而与原料物流内发生的实际反应机理无关。可基于催化剂、反应条件(例如流量、温度、压力等)和原料以及反应产物的内含物计算APR氢气量。例如可在不存在脱氧催化剂的情况下,使原料与APR催化剂(例如铂)接触,生成原位APR氢气和第一反应产物物流。也可使原料与APR催化剂和脱氧催化剂二者接触,生产第二反应产物物流。通过在相当的反应条件下比较第一反应产物物流和第二反应产物物流的组成,可确认APR氢气的存在并计算所产生的APR氢气量。例如与原料组分相比,反应产物内氢化程度较大的氧化化合物的量增加可表明存在APR氢气。
原位产生氢气
在本发明中,由水溶性氧化烃衍生的组分的制备方法的一个优点是它便于生产和使用原位生成的氢气。在水相重整条件下,使用水相重整催化剂(APR催化剂),由原料生产APR氢气。APR催化剂优选是能在以下所述的条件下催化水和氧化烃反应形成氢气的非均相催化剂。在一个实施方案中,APR催化剂包括载体和至少一种第VIIIB族金属、Fe、Ru、Os、Ir、Co、Rh、Pt、Pd、Ni及它们的合金和组合物。APR催化剂也可包括第VIIIB族、第VIIB族、第VIB族、第VB族、第IVB族、第IIB族、第IB族、第IVA族或第VA族金属中的至少一种附加的材料,例如Cu、B、Mn、Re、Cr、Mo、Bi、W、V、Nb、Ta、Ti、Zr、Y、La、Sc、Zn、Cd、Ag、Au、Sn、Ge、P、Al、Ga、In、Tl及它们的合金和组合物。优选的第VIIB族金属包括Re、Mn或它们的组合物。优选的第VIB族金属包括Cr、Mo、W或它们的组合物。优选的第VIIIB族金属包括Pt、Rh、Ru、Pd、Ni或它们的组合物。载体可包括以下所述的任意一种催化剂载体,这取决于催化剂体系的所需活性。
APR催化剂也可以与脱氧催化剂或缩合催化剂原子等同。例如APR和脱氧催化剂可包括用Ni、Ru、Cu、Fe、Rh、Re、它们的合金和组合物合金化或与之混合的Pt。APR催化剂和脱氧催化剂也可包括用Ge、Bi、B、Ni、Sn、Cu、Fe、Rh、Pt、它们的合金和组合物合金化或与之混合的Ru。APR催化剂也可包括用Sn、Ge、Bi、B、Cu、Re、Ru、Fe、它们的合金和组合物合金化或与之混合的Ni。
主要的第VIIIB族金属在碳上的优选负载为0.25-25wt%,其间以0.10%和0.05%的重量百分数递增,例如1.00%、1.10%、1.15%、2.00%、2.50%、5.00%、10.00%、12.50%、15.00%和20.00%。第二种材料的优选原子比为0.25∶1到10∶1,其中包括在其间的比值,例如0.50、1.00、2.50、5.00和7.50∶1。
通过添加第IIIB族的氧化物和相关的稀土氧化物进一步获得优选的催化剂组合物。在这一情况下,优选的组分是镧或者铈的氧化物。第IIIB族化合物与主要的第VIIIB族金属的优选原子比为0.25∶1到10∶1,其中包括在其间的比值,例如0.50、1.00、2.50、5.00和7.50∶1。
另一优选的催化剂组合物是含有铂和铼的组合物。Pt与Re的优选原子比为0.25∶1到10∶1,其中包括在其间的比值,例如0.50、1.00、2.50、5.00和7.00∶1。Pt的优选负载为0.25-5.0wt%,其间以0.10%和0.05%的重量百分数递增,例如.35%、.45%、.75%、1.10%、1.15%、2.00%、2.50%、3.0%和4.0%。
优选地,APR催化剂和脱氧催化剂具有相同的原子配方。所述催化剂也可具有不同的配方。在这种情况下,APR催化剂与脱氧催化剂的优选原子比为5∶1-1∶5,例如为4.5∶1、4.0∶1、3.5∶1、3.0∶1、2.5∶1、2.0∶1、1.5∶1、1∶1、1∶1.5、1∶2.0、1∶2.5、1∶3.0、1∶3.5、1∶4.0、1∶4.5、和在其间的任意量,但不限于此。
类似于脱氧反应,优选选择温度和压力条件,以在反应器入口处维持至少一部分原料在液相内。也可选择重整温度和压力条件,以更有利地在气相内生产所需产物。一般地,应当在其中热力学有利的温度下进行APR反应。例如维持一部分原料在液相内所要求的最小压力随反应温度而变化。当升温时,通常要求较高的压力维持原料在液相内。比维持原料在液相内所要求的压力高的任意压力(即气相)也是合适的操作压力。对于气相反应来说,反应应当在其中氧化烃化合物的蒸汽压为至少约0.1atm(和优选高出许多)和反应热力学有利的重整温度下进行。该温度随所使用的具体氧化烃化合物而变化,但对于在气相内发生的反应来说,通常为约100-450℃或约100-300℃。对于液相反应来说,反应温度可以是约80-400℃,和反应压力为约72-1300psig。
在一个实施方案中,反应温度为约100-400℃,或约120-300℃,或约200-280℃,或约150-270℃。反应压力优选为约72-1300psig,或约72-1200psig,或约145-1200psig,或约200-725psig,或约365-700psig,或约600-650psig。
也可使用增加APR催化剂体系的活性和/或稳定性的改性剂进行冷凝的液相方法。优选水和氧化烃在约1.0-10.0的合适pH下或者在约4.0-10.0的pH下反应,其间包括为0.1和0.05的pH值递增量。一般地,与所使用的催化剂体系的总重量相比,添加到原料溶液中的改性剂量为约0.1-10wt%,但在这一范围以外的量也包括在本发明内。
碱或碱土盐也可加入到原料溶液中,优化在反应产物内氢的比例。合适的水溶性盐的实例包括选自碱金属或碱土金属的氢氧化物、碳酸盐、硝酸盐或氯化物盐中的一种或多种。例如添加碱(碱性)盐提供约pH4.0-pH10.0可改进重整反应的氢选择性。
添加酸性化合物也可提供在以下所述的氢化反应中对所需反应产物的选择性增加。优选水溶性酸选自硝酸盐、磷酸盐、硫酸盐、氯化物盐及它们的混合物。若使用酸性改性剂,则优选它的存在量足以降低含水原料物流的pH到约pH1.0-pH4.0的数值。按照这一方式降低原料物流的pH可增加最终反应产物内含氧化合物的比例。
一般来说,反应应当在其中原料溶液经APR催化剂的停留时间合适地生成APR氢气且所述APR氢气量足以与第二部分原料溶液经脱氧催化剂反应提供所需的含氧化合物的条件下进行。例如反应的WHSV可以是至少约0.1g氧化烃/g APR催化剂,和优选约1.0-40.0g氧化烃/g APR催化剂,和更优选约0.5-8.0g氧化烃/g APR催化剂。就放大规模生产而言,在启动之后,应当工艺控制APR反应器体系,以便在稳态平衡下进行反应。
缩合步骤
然后将所生产的含氧化合物通过缩合转化成C4+化合物。在不受限于任意特定理论的情况下,据认为酸缩合反应通常由包括下述的一系列步骤组成:(a)含氧化合物脱水成烯烃;(b)低聚化烯烃;(c)裂化反应;(d)环化较大烯烃形成芳烃;(e)链烷烃异构化;和(f)氢转移反应形成链烷烃。据认为碱缩合反应通常由包括下述的一系列步骤组成:(1)醇醛缩合形成β-羟基酮或β-羟基醛;(2)β-羟基酮或β-羟基醛脱水形成共轭烯酮;(3)氢化共轭烯酮形成酮或醛,所述酮或醛可参与进一步的缩合反应或转化成醇或烃;和(4)氢化羰基成醇,或反之亦然。据认为酸-碱缩合反应通常包括任意前述酸和/或碱反应步骤。
在缩合催化剂存在下,通过缩合含氧化合物生产C4+化合物。缩合催化剂通常是能通过新的碳碳键连接两个含氧物种形成较长链化合物并将所得化合物转化成烃、醇或酮的催化剂,例如酸催化剂、碱催化剂、或同时具有酸和碱官能度的多功能催化剂。缩合催化剂可包括但不限于碳化物、氮化物、氧化锆、氧化铝、二氧化硅、硅铝酸盐、磷酸盐、沸石、氧化钛、氧化锌、氧化钒、氧化镧、氧化钇、氧化钪、氧化镁、氧化铈、氧化钡、氧化钙、氢氧化物、杂多酸、无机酸、酸改性的树脂、碱改性的树脂、及它们的组合物。缩合催化剂可单独包括上述物质或与改性剂如Ce、La、Y、Sc、P、B、Bi、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba及它们的组合物组合。缩合催化剂也可包括金属,例如Cu、Ag、Au、Pt、Ni、Fe、Co、Ru、Zn、Cd、Ga、In、Rh、Pd、Ir、Re、Mn、Cr、Mo、W、Sn、Os、它们的合金和组合物,以提供金属官能度。缩合催化剂也可与APR催化剂和/或脱氧催化剂原子等同。
缩合催化剂可以自载带(即所述催化剂不需要其它材料充当载体),或者可要求适合于在反应物物流内悬浮催化剂的单独的载体。一种特别有益的载体是二氧化硅,特别是通过溶胶-胶凝合成、沉淀或热解获得的具有高表面积的二氧化硅(大于100m2/g)。在其它实施方案中,特别当缩合催化剂是粉末时,所述催化剂体系可包括粘合剂以辅助将催化剂形成所需的催化剂形状。可采用的成形工艺包括挤出、造粒、油滴或其它已知的方法。氧化锌、氧化铝和胶溶剂也可一起混合并挤出,以生产成形材料。在干燥之后,在适合于形成催化活性相的温度下煅烧这一材料,这通常要求超过450℃的温度。其它催化剂载体可包括以下进一步详细描述的那些。
酸催化剂
使用酸性催化剂进行酸缩合反应。酸催化剂可包括但不限于硅铝酸盐(沸石)、二氧化硅-氧化铝磷酸盐(SAPO)、磷酸铝(ALPO)、无定形二氧化硅氧化铝、氧化锆、硫酸化氧化锆、钨酸化氧化锆、碳化钨、碳化钼、氧化钛、酸性氧化铝、磷酸化氧化铝、磷酸化二氧化硅、硫酸化碳、磷酸化碳、酸性树脂、杂多酸、无机酸及它们的组合物。在一个实施方案中,催化剂也可包括改性剂,例如Ce、Y、Sc、La、P、B、Bi、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba及它们的组合物。也可通过添加金属,例如Cu、Ag、Au、Pt、Ni、Fe、Co、Ru、Zn、Cd、Ga、In、Rh、Pd、Ir、Re、Mn、Cr、Mo、W、Sn、Os及它们的合金和组合物,来改性催化剂以提供金属官能度和/或Ti、Zr、V、Nb、Ta、Mo、Cr、W、Mn、Re、Al、Ga、In、Fe、Co、Ir、Ni、Si、Cu、Zn、Sn、Cd、P的硫化物和氧化物及它们的组合物。已发现镓特别适合用作本发明方法的促进剂。酸催化剂可以是均匀的自载带催化剂,或者粘附到以下进一步描述的任意一种载体上,其中包括含有碳、二氧化硅、氧化铝、氧化锆、氧化钛、氧化钒、氧化铈、氮化物、氮化硼、杂多酸、及它们的合金和混合物的载体。
Ga、In、Zn、Fe、Mo、Ag、Au、Ni、P、Sc、Y、Ta和镧系元素也可交换到沸石上,以提供具有活性的沸石催化剂。此处所使用的术语“沸石”不仅是指微孔结晶硅铝酸盐,而且指微孔结晶含金属的硅铝酸盐结构,例如镓铝硅酸盐和镓硅酸盐。可利用金属例如Cu、Ag、Au、Pt、Ni、Fe、Co、Ru、Zn、Cd、Ga、In、Rh、Pd、Ir、Re、Mn、Cr、Mo、W、Sn、Os、它们的合金和组合物来提供金属官能度。
合适的沸石催化剂的实例包括ZSM-5、ZSM-11、ZSM-12、ZSM-22、ZSM-23、ZSM-35和ZSM-48。沸石ZSM-5及其常规制备方法描述于美国专利Nos.3,702,886;Re.29,948(高度含硅的ZSM-5);4,100,262和4,139,600中,所有这些在此作为参考引入。沸石ZSM-11及其常规制备方法描述于美国专利No s.3,709,979中,在此也作为参考引入。沸石ZSM-12及其常规制备方法描述于美国专利No.3,832,449中,在此作为参考引入。沸石ZSM-23及其常规制备方法描述于美国专利No.4,076,842中,在此作为参考引入。沸石ZSM-35及其常规制备方法描述于美国专利No.4,016,245中,在此作为参考引入。ZSM-35的另一制备方法描述于美国专利No.4,107,195中,其公开内容在此作为参考引入。美国专利No.4,375,573教导了ZSM-48及其常规制备方法,在此作为参考引入。沸石催化剂的其它实例描述于美国专利5,019,663和美国专利7,022,888中,在此也作为参考引入。
正如美国专利7,022,888中所述,酸催化剂可以是双功能的五元环沸石催化剂,所述催化剂包括选自Cu、Ag、Au、Pt、Ni、Fe、Co、Ru、Zn、Cd、Ga、In、Rh、Pd、Ir、Re、Mn、Cr、Mo、W、Sn、Os及它们的合金和组合物中的至少一种金属元素,或选自Ga、In、Zn、Fe、Mo、Au、Ag、Y、Sc、Ni、P、Ta、镧系元素及它们的组合物中的改性剂。沸石优选具有强酸性和脱氢位点,且可与含有氧化烃的反应物物流在低于500℃的温度下一起使用。双功能五元环沸石可具有由大量的5元氧环即五元环组成的ZSM-5、ZSM-8或ZSM-11型结晶结构。具有ZSM-5型结构的沸石是特别优选的催化剂。双功能五元环沸石催化剂优选是Ga和/或In改性的ZSM-5型沸石,例如Ga和/或In浸渍的H-ZSM-5、Ga和/或In交换的H-ZSM-5、ZSM-5型结构的H-镓硅酸盐、和ZSM-5型结构的H-镓铝硅酸盐。双功能ZSM-5型五元环沸石可含有存在于沸石骨架或晶格内的四面体铝和/或镓及八面体镓或铟。八面体位点优选不存在于沸石骨架内,而是存在于在沸石质子酸性位点附近的沸石通道内,这归因于在沸石内存在四面体铝和镓。据认为四面体或骨架Al和/或Ga对沸石的酸功能负责,并且据认为八面体或非骨架Ga和/或In对沸石的脱氢功能负责。
在一个实施方案中,缩合催化剂可以是ZSM-5型双功能五元环沸石的H-镓铝硅酸盐,其分别具有约10-100和15-150的骨架(四面体)Si/Al和Si/Ga摩尔比,和约0.5-5.0wt%的非骨架(八面体)Ga。当这些五元环H-镓铝硅酸盐沸石用作缩合催化剂时,可通过骨架Al/Si摩尔比控制强酸位点的密度,Al/Si比越高,强酸位点的密度越大。可通过用氢气和蒸汽预处理,使沸石脱镓化,从而获得高度分散的非骨架氧化镓物种。优选含有高密度强酸位点且在沸石酸位点附近具有高度分散的非骨架氧化镓物种的沸石。所述催化剂可任选含有任意粘合剂,例如氧化铝、二氧化硅或粘土材料。所述催化剂可以以不同形状和尺寸的粒料、挤出物和颗粒形式使用。
酸性催化剂可包括一种或多种含二氧化硅-氧化铝的笼状结构的沸石结构。沸石是具有明确定义的孔结构的结晶微孔材料。沸石含有可在沸石骨架内生成的活性位点,通常为酸性位点。可针对特定应用微调活性位点的强度与浓度。用于缩合仲醇和烷烃的合适沸石的实例可包括任选用阳离子例如Ga、In、Zn、Mo、和这些阳离子的混合物改性的硅铝酸盐,如例如美国专利No.3702886中所述,在此作为参考引入。正如本领域中所意识到的,可改变特定沸石的结构,以在产物混合物内提供不同量的各种烃物种。取决于沸石催化剂的结构,所述产物混合物可含有各种量的芳烃和环状烃。
替代地,固体酸催化剂例如用磷酸盐、氯化物、二氧化硅和其它酸性氧化物改性的氧化铝可用于实施本发明。此外,硫酸化氧化锆或钨酸化氧化锆可提供所需的酸度。Re和Pt/Re催化剂以可用于促进含氧化合物缩合成C5+烃和/或C5+单-含氧化合物。Re的酸性足以促进酸催化的缩合。也可通过添加硫酸盐或者磷酸盐增加活性炭的酸度。
碱催化剂
使用碱催化剂进行碱缩合反应。碱催化剂至少包括Li、Na、K、Cs、B、Rb、Mg、Ca、Sr、Si、Ba、Al、Zn、Ce、La、Y、Sc、Y、Zr、Ti、水滑石、铝酸锌、磷酸盐、碱处理过的硅铝酸盐沸石、碱性树脂、碱性氮化物、它们的合金或组合物。碱催化剂也可包括Ti、Zr、V、Nb、Ta、Mo、Cr、W、Mn、Re、Al、Ga、In、Co、Ni、Si、Cu、Zn、Sn、Cd、Mg、P、Fe及它们的组合的氧化物。在一个实施方案中,缩合催化剂进一步包括金属,例如Cu、Ag、Au、Pt、Ni、Fe、Co、Ru、Zn、Cd、Ga、In、Rh、Pd、Ir、Re、Mn、Cr、Mo、W、Sn、Os、它们的合金和组合物。优选的第IA族材料包括Li、Na、K、Cs和Rb。优选的第IIA族材料包括Mg、Ca、Sr和Ba。优选的第IIB族材料包括Zn和Cd。优选的第IIIB族材料包括Y和La。碱性树脂包括显示出碱性官能度的树脂,例如Amberlyst。碱催化剂可以自载带或粘附到以下进一步描述的任意一种载体上,其中包括含碳、二氧化硅、氧化铝、氧化锆、氧化钛、氧化钒、氧化铈、氮化物、氮化硼、杂多酸、及它们的合金和组合物的载体。
碱催化剂也可包括含有第IA族化合物例如Li、Na、K、Cs和Rb的沸石和其它微孔载体。优选地,第IA族材料的存在量大于中和载体的酸性性质所要求的量。这些材料可以以任意组合的方式使用,且也可与氧化铝或二氧化硅组合使用。也可通过添加第VIIIB族金属或Cu、Ga、In、Zn或Sn,来提供金属官能度。
在一个实施方案中,缩合催化剂衍生自MgO和Al2O3的组合物,以形成水滑石材料。另一优选的材料含有铝酸锌尖晶石形式的ZnO和Al2O3。另一优选的材料是ZnO、Al2O3和CuO的组合物。这些材料中的每一种也可含有由第VIIIB族金属例如Pd或Pt提供的附加的金属官能度。在一个实施方案中,碱催化剂是含Cu、Ni、Zn、V、Zr或它们的混合物的金属氧化物。在另一实施方案中,碱催化剂是含Pt、Pd、Cu、Ni、或它们的混合物的铝酸锌金属。
主要金属的优选负载为0.10-25wt%,在其间为0.10%和0.05%的重量百分数递增,例如1.00%、1.10%、1.15%、2.00%、2.50%、5.00%、10.00%、12.50%、15.00%和20.00%。第二金属(如果有的话)的优选原子比为0.25∶1到10∶1,其中包括在其间的比值,例如0.50、1.00、2.50、5.00和7.50∶1。
酸-碱催化剂
使用同时具有酸和碱官能度的多功能催化剂进行酸-碱缩合反应。酸-碱催化剂可包括水滑石、铝酸锌、磷酸盐、Li、Na、K、Cs、B、Rb、Mg、Si、Ca、Sr、Ba、Al、Ce、La、Sc、Y、Zr、Ti、Zn、Cr、及它们的组合物。在进一步的实施方案中,酸-碱催化剂也可包括Ti、Zr、V、Nb、Ta、Mo、Cr、W、Mn、Re、Al、Ga、In、Fe、Co、Ir、Ni、Si、Cu、Zn、Sn、Cd、P、及它们的组合物中的一种或多种氧化物。酸-碱催化剂也可包括由Cu、Ag、Au、Pt、Ni、Fe、Co、Ru、Zn、Cd、Ga、In、Rh、Pd、Ir、Re、Mn、Cr、Mo、W、Sn、Os、它们的合金或组合物提供的金属官能度。在一个实施方案中,催化剂进一步包括Zn、Cd或磷酸盐。在一个实施方案中,缩合催化剂是含Pd、Pt、Cu或Ni的金属氧化物,和甚至更优选含Mg和Cu、Pt、Pd或Ni的铝酸盐或锆的金属氧化物。酸-碱催化剂也可包括与任意一种或多种上述金属组合的羟基磷灰石(HAP)。酸-碱催化剂可以自载带或粘附到以下进一步描述的任意一种载体上,其中包括含碳、二氧化硅、氧化铝、氧化锆、氧化钛、氧化钒、氧化铈、氮化物、氮化硼、杂多酸、它们的合金和混合物的载体。
缩合催化剂也可包括含有第IA族化合物例如Li、NA、K、Cs和Rb的沸石和其它微孔载体。优选地,第IA族材料的存在量小于中和载体的酸性性质所要求的量。也可通过添加第VIIIB族金属或Cu、Ga、In、Zn或Sn,来提供金属官能度。
在一个实施方案中,缩合催化剂衍生自MgO和Al2O3的组合物以形成水滑石材料。另一优选的材料含有MgO和ZrO2的组合物或ZnO和Al2O3的组合物。这些材料中的每一种也可含有由铜或第VIIIB族金属例如Ni、Pd、Pt或前述物质的组合物提供的附加的金属官能度。
若包括第IIB、VIB、VIIB、VIIIB、IIA或IVA族金属,则所述金属的负载为0.10-10wt%,其间为0.10%和0.05%的重量百分数递增量,例如1.00%、1.10%、1.15%、2.00%、2.50%、5.00%和7.50%等。若包括第二金属,则第二金属的优选原子比为0.25∶1到5∶1,其中包括在其间的比值,例如0.50、1.00、2.50和5.00∶1。
缩合反应
所生产的具体C4+化合物取决于各种因素,其中包括但不限于在反应物物流内含氧化合物的类型、缩合温度、缩合压力、催化剂的反应性和反应物物流的流量,因为它会影响空速GHSV和WHSV。优选地,反应物物流与缩合催化剂在适合于生产所需的烃产物的WHSV下接触。WHSV优选为至少约每小时0.1g在反应物物流内的含氧化合物,更优选WHSV为约0.1-40.0g/g hr,其中包括WSHV为约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、20、25、30、35g/g  hr、及在其间的递增值。
一般地,缩合反应应当在所计划的反应的热力学有利的温度下进行。对于冷凝的液相反应来说,在反应器内的压力必须足以在反应器入口处维持至少一部分反应物在冷凝的液相内。对于气相反应来说,应当在其中含氧化合物的蒸汽压为至少约0.1atm(和优选高出许多)和反应热力学有利的温度下进行反应。缩合温度随所使用的具体含氧化合物而变化,但对于在气相内发生的反应来说,通常为约80-500℃,和更优选约125-450℃。对于液相反应来说,缩合温度可以是约80-500℃,和缩合压力为约0-1200psig。优选地,缩合温度为约125-300℃,或约125-250℃,或约250-425℃。反应压力优选为至少约0.1atm,或约0-1200psig,或约0-1000psig,或约0-700psig。
改变上述以及其它因素通常会导致C4+化合物的具体组成和收率改变。例如,改变反应器体系的温度和/或压力或特定的催化剂配方,可导致产生C4+醇和/或酮,而不是C4+烃。C4+烃产物也可含有大量各种大小的烯烃和烷烃(通常为支链烷烃)。取决于所使用的缩合催化剂,烃产物也可包括芳烃和环状烃化合物。C4+烃产物也可含有不希望的高含量的烯烃或者其它不希望的烃产物,所述烯烃可在内燃机内导致结焦或沉积物。在这一情况下,可任选氢化所产生的烃分子,以将酮还原成醇和烃,同时可还原醇和不饱和烃成烷烃,从而形成烯烃、芳烃或醇的含量低的更希望的烃产物。
精制步骤通常是脱除剩余羰基或羟基的氢化反应。在这一情况下,可使用以上所述的任意一种氢化催化剂。这种催化剂可单独包括任意一种或多种下述金属:Cu、Ni、Fe、Co、Ru、Pd、Rh、Pt、Ir、Os、它们的合金或组合物,或者与促进剂例如Au、Ag、Cr、Zn、Mn、Sn、Cu、Bi及它们的合金一起使用,可在以上所述的载体上使用为约0.01-20wt%的各种负载。
一般地,在约80-250℃的精制温度下和在为约100-2000psig的精制压力下进行精制步骤。精制步骤可在气相或液相内进行,或者可视需要使用原位生成的氢气、外部氢气、循环氢气或它们的组合物。
其它因素,例如水或不希望的含氧化合物的浓度也可影响C4+化合物的组成和收率以及缩合催化剂的活性与稳定性。在这一情况下,所述方法可包括在缩合之前脱除一部分水的脱水步骤,或者脱除不希望的含氧化合物的分离单元。例如,可在缩合步骤之前安装分离器单元例如气相分离器、提取器、纯化器或蒸馏塔,以便从含有含氧化合物的反应物物流中脱除一部分水。也可安装分离单元以脱除具体的含氧化合物,从而便于生产含有在特定碳范围内的烃的所需产物物流,或者用作终产物或用于其它体系或工艺中。
C4+化合物
本发明中由水溶性氧化烃衍生的组分的制备工艺的实施导致生产C4+烷烃、C4+链烯烃、C5+环烷烃、C5+环烯烃、芳烃、稠合芳烃、C4+醇、C4+酮、及它们的混合物。C4+烷烃和C4+链烯烃具有4-30个碳原子(C4-30烷烃和C4-30链烯烃),且可以是支化或直链的烷烃或链烯烃。C4+烷烃和C4+链烯烃也可分别包括C4-9、C7-14、C12-24烷烃和链烯烃的馏分,且C4-9馏分指向汽油,C7-14馏分指向煤油(例如喷气燃料),和C12-24馏分指向柴油燃料和其它工业应用。各种C4+烷烃和C4+链烯烃的实例包括但不限于丁烷、丁烯、戊烷、戊烯、2-甲基丁烷、己烷、己烯、2-甲基戊烷、3-甲基戊烷、2,2-二甲基丁烷、2,3-二甲基丁烷、庚烷、庚烯、辛烷、辛烯、2,2,4-三甲基戊烷、2,3-二甲基己烷、2,3,4-三甲基戊烷、2,3-二甲基戊烷、壬烷、壬烯、癸烷、癸烯、十一烷、十一烯、十二烷、十二烯、十三烷、十三烯、十四烷、十四烯、十五烷、十五烯、十六烷、十六烯、十七烷、十七烯、十八烷、十八烯、十九烷、十九烯、二十烷、二十烯、二十一烷、二十一烯、二十二烷、二十二烯、二十三烷、二十三烯、二十四烷、二十四烯、及它们的异构体。
C5+环烷烃和C5+环烯烃具有5-30个碳原子,且可以未取代、单取代或多取代。在单取代和多取代化合物的情况下,取代基可包括支链C3+烷基、直链C1+烷基、支链C3+亚烷基、直链C1+亚烷基、直链C2+亚烷基、苯基或它们的组合。在一个实施方案中,至少一个取代基包括支链C3-12烷基、直链C1-12烷基、支链C3-12亚烷基、直链C1-12亚烷基、直链C2-12亚烷基、苯基或它们的组合。在又一实施方案中,至少一个取代基包括支链C3-4烷基、直链C1-4烷基、支链C3-4亚烷基、直链C1-4亚烷基、直链C2-4亚烷基、苯基或它们的组合。所需的C5+环烷烃和C5+环烯烃的实例包括但不限于环戊烷、环戊烯、环己烷、环己烯、甲基环戊烷、甲基环戊烯、乙基环戊烷、乙基环戊烯、乙基环己烷、乙基环己烯、及它们的异构体。
芳烃通常由未取代(苯基)、单取代或多取代形式的芳烃组成。在单取代和多取代化合物的情况下,取代基可包括支链C3+烷基、直链C1+烷基、支链C3+亚烷基、直链C2+亚烷基、苯基或它们的组合。在一个实施方案中,至少一个取代基包括支链C3-12烷基、直链C1-12烷基、支链C3-12亚烷基、直链C2-12亚烷基、苯基或它们的组合。在又一实施方案中,至少一个取代基包括支链C3-4烷基、直链C1-4烷基、支链C3-4亚烷基、直链C2-4亚烷基、苯基或它们的组合。各种芳烃的实例包括但不限于苯、甲苯、二甲苯(二甲基苯)、乙苯、对二甲苯、间二甲苯、邻二甲苯、C9芳烃。
稠合芳烃通常由未取代、单取代或多取代形式的双环和多环芳烃组成。在单取代和多取代化合物的情况下,取代基可包括支链C3+烷基、直链C1+烷基、支链C3+亚烷基、直链C2+亚烷基、苯基或它们的组合。在另一实施方案中,至少一个取代基包括支链C3-4烷基、直链C1-4烷基、支链C3-4亚烷基、直链C2-4亚烷基、苯基或它们的组合。各种稠合芳烃的实例包括但不限于萘、蒽、四氢萘、和十氢萘、茚满、茚、及它们的异构体。
C4+醇也可以是环状、支链或直链的,且具有4-30个碳原子。一般地,C4+醇可以是化学式为R1-OH的化合物,其中R1选自支链C4+烷基、直链C4+烷基、支链C4+亚烷基、直链C4+亚烷基、取代C5+环烷基、未取代C5+环烷基、取代C5+环烯基、未取代C5+环烯基、芳基、苯基及它们的组合。所需的C4+醇的实例包括但不限于丁醇、戊醇、己醇、庚醇、辛醇、壬醇、癸醇、十一烷醇、十二烷醇、十三烷醇、十四烷醇、十五烷醇、十六烷醇、十七烷醇、十八烷醇、十九烷醇、二十烷醇、十二一烷醇、二十二烷醇、二十三烷醇、二十四烷醇、及它们的异构体。
C4+酮也可以是环状、支链或直链的,且具有4-30个碳原子。一般地,C4+酮可以为下述化学式的化合物:
Figure BPA00001332766200331
其中R3和R4独立地选自支链C3+烷基、直链C1+烷基、支链C3+亚烷基、直链C2+亚烷基、取代C5+环烷基、未取代C5+环烷基、取代C5+环烯基、未取代C5+环烯基、芳基、苯基及它们的组合。所需的C4+酮的实例包括但不限于丁酮、戊酮、己酮、庚酮、辛酮、壬酮、癸酮、十一烷酮、十二烷酮、十三烷酮、十四烷酮、十五烷酮、十六烷酮、十七烷酮、十八烷酮、十九烷酮、二十烷酮、十二一烷酮、二十二烷酮、二十三烷酮、二十四烷酮、及它们的异构体。
可分离上述主要为C4-C9的轻质馏分用于汽油用途。可分离中间馏分例如C7-C14用于煤油用途(例如喷气燃料),同时可分离重质馏分即C12-C24用于柴油燃料用途。最重的馏分可用作润滑剂,或者裂化产生附加的汽油和/或柴油馏分。
催化剂载体
在上述各种实施方案中,催化剂体系包括适合于在原料溶液内悬浮催化剂的载体。载体应当是针对所选催化剂和反应条件提供稳定平台的载体。所述载体可采用在所选反应条件下稳定以便在所需程度下起作用和具体地在原料水溶液中稳定的任意形式。这种载体包括但不限于碳、二氧化硅、二氧化硅-氧化铝、氧化铝、氧化锆、氧化钛、氧化铈、氧化钒、氮化物、氮化硼、杂多酸、羟基磷灰石、氧化锌、氧化铬及它们的混合物。也可使用纳米多孔载体,例如沸石、碳纳米管或碳富勒烯。
一种特别优选的催化剂载体是碳,特别是具有相对高表面积的碳载体(大于100m2/g)。这种碳包括活性炭(粒化、粉化或造粒)、活性炭布料、毡子或纤维、碳纳米管或纳米棒(nanohorn)、碳富勒烯、高表面积的碳蜂窝、碳泡沫(网状碳泡沫)和碳块。可通过化学或者蒸汽活化泥炭、木材、木质素、煤、椰子壳、橄榄核和油-基碳来生产碳。另一优选的载体是由椰子生产的粒化活性炭。在一个实施方案中,APR和脱氧催化剂体系由在碳上的Pt组成,其中Pt进一步用Ni、Ru、Cu、Fe、Rh、Re、它们的合金或组合物合金化或与之混合。
另一优选的催化剂载体是氧化锆。可通过溶胶-胶凝加工、由锆盐沉淀氢氧化锆、或者任意其它方法生产氧化锆。氧化锆优选以通过在超过400℃的温度下煅烧前体材料获得的结晶形式存在,且可包括四面体和单斜晶相二者。可添加改性剂改进氧化锆的构造或催化性能。这种改性剂包括但不限于硫酸盐、钨酸盐、磷酸盐、氧化钛、二氧化硅、和第IIIB族金属(特别是Ce、La或Y)的氧化物。在一个实施方案中,APR和脱氧催化剂由在主要为四面体相的二氧化硅改性氧化锆上的Pt组成,其中Pt进一步用Ni、Ru、Cu、Fe、Rh、Re、及它们的合金和组合物合金化或与之混合。
另一优选的催化剂载体是氧化钛。可通过从钛盐中沉淀、溶胶-胶凝加工或任意其它方法生产氧化钛。氧化钛优选以结晶形式存在且可包括锐钛矿和金红石相二者。可添加改性剂改进氧化钛的构造或催化性能。这种改性剂包括但不限于硫酸盐、二氧化硅、和第IIIB族金属(特别是Ce、La或Y)的氧化物。在一个实施方案中,APR和含氧化合物形成催化剂体系由主要为金红石相氧化钛上的Ru组成,其中Ru进一步用Ge、Bi、B、Ni、Sn、Cu、Fe、Re、Rh、Pt及它们的合金和组合物合金化或与之混合。
另一优选的催化剂载体是二氧化硅。二氧化硅可任选与氧化铝组合,形成二氧化硅-氧化铝材料。在一个实施方案中,APR催化剂体系是在二氧化硅-氧化铝或二氧化硅上的Pt,其中Pt进一步用Ni、Ru、Cu、Fe、Rh、Re及它们的合金和组合物合金化或与之混合。在另一实施方案中,APR催化剂体系是在二氧化硅-氧化铝或二氧化硅上的Ni,其中镍进一步用Sn、Ge、Bi、Bu、Cu、Re、Ru、Fe及它们的合金和组合物合金化或与之混合。
也可处理或改性载体以提高其性能。例如可通过表面改性处理载体,以改性表面部分例如氢和羟基。表面氢和羟基可引起局部pH改变,这种局部pH改变会影响催化效率。也可例如通过用硫酸盐、磷酸盐、钨酸盐、硅烷、镧系元素、碱化合物或碱土化合物处理来改性载体。对于碳载体来说,可用蒸汽、氧气(来自空气)、无机酸或氢过氧化物预处理碳,以提供更多的表面氧位点。优选的预处理可以是使用氧或者氢过氧化物。也可通过添加第IVB族和第VB族的氧化物来改性预处理过的碳。优选使用Ti、V、Zr的氧化物及它们的混合物。
可使用本领域技术人员已知的常规方法,制备单独或一起混合的催化剂体系。这些方法包括但不限于初始润湿、蒸发浸渍、化学气相沉积、洗涤涂布、磁控管溅射技术和类似方法。所选的制备催化剂方法对本发明的功能来说不是特别关键的,条件是不同催化剂将得到不同结果,这取决于诸如总表面积、孔隙度等考虑因素。
补充材料
可在所述工艺的各阶段处添加补充材料和组合物(“补充物”)到原料溶液中,以便强化反应或驱使反应产生所需的反应产物。补充物可包括但不限于酸、盐和附加的氢或原料。补充物可在与相关催化剂接触之前或临近接触时将直接加入到原料物流中,或者直接加入到用于合适反应的反应床中。
在一个实施方案中,补充物可包括附加的原料溶液,以提供附加的氧化烃用于形成含氧化合物。原料可包括以上列举的任意一种或多种氧化烃,其中包括任意一种或多种糖醇、葡萄糖、多元醇、甘油或糖。例如,补充材料可包括甘油。在这一实施方案中,使用粗甘油引发反应并产生氢气,以便避免来自粗甘油中的污染物污染脱氧催化剂。然后在将起始原料溶液与脱氧催化剂接触之前或同时,将纯化的甘油加入到原料溶液中,以增加可用于加工的氧化烃。预期可使用相反的情形,其中粗甘油充当补充物,这取决于APR催化剂和脱氧催化剂的特征。
在另一实施方案中,补充物可包括用于缩合反应的附加的含氧化合物。含氧化合物可包括以上列举的任意一种或多种含氧化合物。例如补充材料可包括丙醇。在这一实施方案中,可在平行的体系中由甘油原料生产丙醇,然后将其与通过加工山梨醇原料生产的甘油组合,以便提供最有效产生含C6-12烃组合物的产物的反应物物流。
在又一实施方案中,补充材料可包括在生产工艺过程中没有完全反应的循环含氧化合物和/或氧化烃。含氧化合物和氧化烃可包括以上列举的任意一种或多种含氧化合物和氧化烃。
在又一实施方案中,补充材料可包括加入到所述工艺中的酸和盐。添加酸性化合物可增加对所需含氧化合物和最终的C4+化合物的选择性。水溶性酸可包括但不限于硝酸盐、磷酸盐、硫酸盐、氯化物盐、及它们的混合物。若使用任选的酸性改性剂,则优选它的存在量足以降低含水原料物流的pH到约pH1.0-pH4.0的值。按照这一方式在含氧化合物形成过程中降低原料物流的pH可增加供进一步缩合的二醇、多元醇、酮或醇的比例。
反应器体系
可在合适设计的任意反应器内进行此处所述的反应,其中包括连续流动、间歇、半间歇或多体系反应器,且对设计、大小、几何形状、流量等没有限制。反应器体系也可使用流化催化床体系、振动床体系、固定床体系、移动床体系、或上述的组合。优选地,本发明在稳态平衡下使用连续流动体系实施。
在连续流动体系中,反应器体系至少包括用于接收原料水溶液以生产氢气的重整床、用于由氢气和一部分原料溶液生产含氧化合物的脱氧床、和由含氧化合物生产C4+化合物的缩合床。构造重整床使原料水溶液在气相或液相内与APR催化剂接触,以在反应物物流内提供氢气。构造脱氧床以接收反应物物流用于与脱氧催化剂接触并产生所需的含氧化合物。构造缩合床以接收反应物物流用于与缩合催化剂接触并产生所需的C4+化合物。对于不包括APR氢气生产步骤的体系来说,可取消重整床。对于不包括氢气或含氧化合物生产步骤的体系来说,可取消重整床和脱氧床。由于APR催化剂、脱氧催化剂和缩合催化剂也可以原子等同,因此催化剂可以以同一床层存在。对于具有氢化或氢解步骤的体系来说,可在脱氧床和/或重整床之前包括附加的反应床。对于具有精制步骤的体系来说,可在缩合床之后包括附加的反应床以供进行精制工艺。
在生产氢气和含氧化合物二者的体系中,缩合床可与重整床一起位于相同的反应器容器内,或者位于与具有重整床的第一反应器容器连通的第二反应器容器内。缩合床可与重整床或脱氧床一起位于相同反应器容器内,或者位于与具有脱氧床的反应器容器连通的单独的反应器容器内。每一反应器容器优选包括用于从反应器容器中脱除产物物流的出口。在包括氢化步骤或氢解步骤的体系中,氢化或氢解反应床可与重整床或脱氧床一起位于相同的反应器容器内,或者位于与具有重整床和/或脱氧床的反应器容器连通的单独的反应器容器内。对于具有精制步骤的体系来说,精制反应床可与缩合床一起位于相同的反应器容器内,或者位于与具有缩合床的反应器容器连通的单独的反应器容器内。
反应器体系也可包括附加的出口便于脱除一部分反应物物流,进一步推进或导引反应到所需的反应产物,并便于收集和循环反应副产物以供在体系的其它部分中使用。反应器体系也可包括附加的入口便于引入补充材料进一步推进或导引反应到所需的反应产物,并便于循环反应副产物以供在重整工艺中使用。例如,可设计所述体系,以便经APR催化剂产生过量的氢气,且一部分过量的氢气被脱除并在所述工艺下游再次引入,以补充含氧化合物经缩合催化剂反应,或者精制缩合产物获得所需的C4+化合物。替代地,可设计所述体系,以便经APR催化剂产生过量的氢气,且一部分过量的氢气被脱除并在其它上游工艺中例如原料预处理工艺和氢化或氢解反应中使用。
反应器体系也可包括便于分离反应物物流成不同组分的元件,所述不同组分可用于不同反应流程中或者简单地促进所需反应。例如可在缩合步骤之前安装分离器单元例如相分离器、提取器、纯化器或蒸馏塔,以从反应物物流中脱除水,其目的是推进缩合反应以有利于生产烃。也可安装分离单元,以脱除特定含氧化合物,便于生产含在特定碳范围内的烃的所需产物物流或者用作终产物或者在其它体系或工艺中使用。
在一个实施方案中,构造反应体系,以便建立原料水溶液的流动方向,确保与原位生成的氢气的最大相互作用。可设计所述反应器,以便反应物物流水平、垂直或与重力平面成角度流动,从而最大化体系的效率。在其中反应物物流垂直或与重力平面成角度流动的体系中,所述物流可反重力流动(上流体系)、在重力下流动(下流体系)或二者的组合。在一个优选的实施方案中,将APR和/或脱氧反应器容器设计为上流体系,同时将缩合反应器容器设计为下流体系。在这一实施方案中,原料溶液首先接触含APR催化剂的重整床产生原位生成的氢气。由于反应器的构造,APR氢气然后能在一定条件下在比大于或等于原料溶液流量下渗滤通过含脱氧催化剂的第二反应床,从而最大化原料溶液与氢气和脱氧催化剂的相互作用。然后将所得反应物物流进料到下流构造的缩合反应器内以供加工。
若APR催化剂和脱氧催化剂在单一室内,则APR催化剂和脱氧催化剂可置于层叠构造内,以允许原料溶液首先接触APR催化剂和然后接触脱氧催化剂或一系列的脱氧催化剂,这取决于所需的反应产物。用于APR催化剂和脱氧催化剂的反应床也可肩并肩地放置,这取决于所采用的特定流动机理。在任意一种情况下,原料溶液可通过一个或多个入口引入到反应容器内,和然后导引穿过催化剂以供加工。在另一实施方案中,将原料溶液导引穿过APR催化剂生产APR氢气,和然后将APR氢气和其余原料溶液二者导引穿过脱氧催化剂生产所需的含氧化合物。在平行构造中,可分离原料溶液,以导引第一部分原料溶液到重整床,在此产生APR氢气,和导引第二部分到脱氧床,在此使用原位生成的APR氢气产生所需的含氧化合物。替代地,可构造反应器,以使用两种单独的原料溶液,其中第一原料溶液导引到APR反应器容器中和第二原料溶液导引到脱氧反应器容器中。在序列构造中,可设计反应器,以便原料溶液流经APR反应器容器并进入到脱氧反应器容器内。在使用组合的APR/脱氧催化剂的实施方案中,同时产生APR氢气和含氧化合物。在这些体系的任意一种中,由于原位产生APR氢气,因此通过还驱动原料溶液通过反应器室的泵送机构提供压力。
图6的工艺流程图描述了可用于实施本发明中由水溶性氧化烃衍生的组分的制备方法的一种可能的反应器体系。在2处混合氧化烃1的原料物流(有或无水)与循环水和循环含氧化合物的物流,以提供原料水溶液3。然后原料溶液3在预处理步骤4中氢化,以提供更容易转化成所需的含氧化合物的原料溶液5。用于氢化步骤的氢气可来自于外部来源22或是如以下的步骤13-21所述的由体系中循环的氢气。原料溶液5在含有APR催化剂和脱氧催化剂的反应器容器8内反应,产生含水、氢气、二氧化碳、烃和含氧化合物的产物物流7。然后在8处脱除产物物流7内的水,以提供含含氧化合物、氢气、二氧化碳和烃的产物物流10。然后在9和15处循环来自脱水步骤8的水以供在2处与氧化烃物流混合。然后产物物流10流经反应器容器11,所述反应器容器11包括缩合催化剂,以产生含C4+化合物、水、氢气和二氧化碳的产物物流。然后产物物流12流经三相分离器13,以分离不可冷凝的气体16(即氢气、二氧化碳、甲烷、乙烷和丙烷)与含C4+化合物的烃产物物流14和水15。来自分离器的水15可循环或者从所述体系中排出。不可冷凝的气体物流16可流经分离单元17,提供纯化的氢气物流19和含二氧化碳、甲烷、乙烷、丙烷和一些氢气的残余物流18。然后纯化的氢气19可从体系中在20处排出,或者流经循环压缩机21以提供循环的氢气物流23。
在图7所示的另一优选的反应器体系中,提供第一反应器体系以供所需的原料溶液转化成C4+化合物。在罐1内储存原料溶液,和然后流经原料管线2进入到加料泵3内。加料泵3增加原料溶液的压力到所需的反应压力,例如600psi,然后经管线4排放所述溶液到电预热器5内,以加热原料到所需的入口温度。加热的溶液6然后流入到具有基本上为套管(在管8内的管7)构造的反应器的工艺侧内。取决于反应器的压力和操作数个阶段时的温度,流经反应器管7的反应物物流通常基本上维持在完全液相内,但可因远端部分7b的缩合热导致气化,结果使经管线15离开反应器出口端的大部分产物为蒸汽形式。
在反应器管7内的各阶段和阶段区域包括APR/脱氧催化剂(组合)和缩合催化剂,其中各催化剂装填在连续的催化剂床内(即一个在另一个之上)。在这一实例中,反应器管7在其近端部分7a内含有APR/脱氧催化剂,和在远端部分7b内含有缩合催化剂。在底部采用固定在不锈钢过滤板上的小网眼不锈钢球支持催化剂体系。不锈钢球也放置在催化剂床顶。为了利于废催化剂分离以供循环或再生,通过多孔材料例如玻璃棉分隔催化剂床。也可将反应器物理分隔成单独的管,其中具有连接各管的导管以允许连续流动。这种布局可允许更好的热管理,从而便于根据数个反应器阶段内的反应要求优化温度。
APR反应通常吸热,而缩合反应通常强放热。优选地,反应器体系允许在缩合反应中生成的热量用于加热APR和脱氧反应。一起进行这两个反应的优点是热量立即从放热缩合反应转移到吸热重整/脱氧反应中。
工艺管道7优选由构造用于将热量从远端部分7b转移到近端部分7a的导热材料形成。另外,所述工艺管道可采用流经工艺管道7和外部管道8之间的环形空间的热油或热空气加热。热空气可通过采用电加热器12加热来自鼓风机10的环境空气生成,并通过管线13输送到反应器中。也可使用热油,并通过加热器和泵(未示出)产生并同样通过管线13输送到反应器中。用于这一体系的流动构造使得管道8内的热空气(或油)与管道7内的工艺流体逆流流动。因此,反应器管道7优选在底部比顶部热。
替代地,工艺管道7可分成两个单独的管道或区域,以利于针对APR和脱氧反应以及针对缩合反应独立地优化反应条件。例如,可按照这一方式简化废催化剂的分离用以再生。在垂直反应器内的两个区域的第二阶段中,可允许在下部区域内缩合生成的热量通过对流移动到上部区域以供在重整反应中使用。也可构造第二区域,以提供混合的重整和缩合催化剂的连续或分阶段的梯度,其中在上端更多的重整催化剂和在下端更多的缩合催化剂。
反应器管道7中流出物15包括气态产物(例如氢气、一氧化碳和二氧化碳)以及含水的有机液体产物。在管道冷凝器16内使用水冷管道冷却流出物到环境温度。然后将来自冷凝器16的流出物17导引到三相分离器中,以分离产物相:不可冷凝的气体18(上部相)、较低密度的有机液相19(中间相)和较高密度的含水液相20(下部相)。通过控制不可冷凝的气体经管线21的流量维持体系压力。通过控制水相组分经管线23的流量维持液面。然后通过管线22从水相顶部撇去有机液相。
通过管线23引出水相20。若水相20含有大量残留的含氧化合物(即不完全重整的产物),则可通过管线23将水相20导引回到原料源6中,在此它用作导引回到反应器内的原料。按照这一方式回收碳含量和中间工艺的能量值。
中间相19含有C5+化合物。通常,这一相含有范围主要是C4-C30的烃和单-含氧化合物。可分离主要是C4-C9的轻质馏分用作汽油。可分离中间馏分即C7-C14用作煤油(例如在喷气燃料中)。可分离重质馏分即C12-C24用作柴油。最重的馏分可用作润滑剂,或者裂化产生附加的汽油和/或柴油馏分。
气相18含有氢气和其它APR反应产物,例如一氧化碳、二氧化碳、甲烷、乙烷、丙烷、丁烷、戊烷和/或己烷气体。这种气体的一部分通过管线22从体系中清除,以防止轻质烃和二氧化碳在体系内累积。所述气体也可用作燃料源,其目的是为反应器体系提供热量。就放大规模生产来说,在启动之后,应当工艺控制反应器体系,并且应当在稳态平衡下进行反应。
含至少一种C4+化合物的组分
可通过以上所述的方法由水溶性氧化烃衍生的含至少一种C4+化合物的组分优选通过任意已知的方式分离成各种蒸馏馏分,之后用于本发明的液体燃料组合物内。优选地,由如上所述的工艺衍生的含至少一种C4+化合物的组分被分离成一种以上蒸馏馏分,其中至少一种蒸馏馏分是以下所述的轻质、中间或重质馏分。
如上所述,可分离主要是C4-C9的轻质馏分用作汽油。可分离中间馏分例如C7-C14用作煤油,例如用作喷气燃料。可分离重质馏分例如C12-C24用作柴油燃料。最重的馏分可用作润滑剂,或者可裂化产生附加的馏分用于汽油、煤油和/或柴油馏分中。
由于可由水溶性氧化烃衍生的含至少一种C4+化合物的组分适宜地衍生自生物质,因此所述组分或其馏分的年龄小于100年,优选小于40年,更优选小于20年,这由所述组分的碳14浓度计算。
轻质馏分
可由水溶性氧化烃衍生的含至少一种C4+化合物的组分的轻质馏分优选具有一种或多种下述性能(LF-i到LF-vi):
(LF-i)终沸点为150-220℃,更优选为160-210℃;
(LF-ii)在15℃下的密度为700-890kg/m3,更优选为720-800kg/m3
(LF-iii)硫含量至多5mg/kg,更优选至多1mg/kg;
(LF-iv)氧含量至多3.5wt%,更优选至多3.0wt%,通常至多2.7wt%;
(LF-v)RON为80-110,更优选为90-100;
(LF-vi)MON为70-100,更优选为80-90。
适宜地,可由水溶性氧化烃衍生的含至少一种C4+化合物的组分的轻质馏分的性能符合以上LF-i到LF-vi中详细列出的每种性能,更适宜地符合以上LF-i到LF-vi中详细列出的每种性能的每一优选值。
中间馏分
可由水溶性氧化烃衍生的含至少一种C4+化合物的组分的中间馏分优选具有一种或多种下述性能(MF-i到MF-vix):
(MF-i)初沸点为120-215℃,更优选为130-205℃;
(MF-ii)终沸点为220-320℃,更优选为230-320℃;
(MF-iii)在15℃下的密度为700-890kg/m3,更优选为730-840kg/m3
(MF-iv)硫含量至多0.1wt%,更优选至多0.01wt%;
(MF-v)总的芳烃含量至多30vol%,更优选至多25vol%,甚至更优选至多20vol%,最优选至多15vol%;
(MF-vi)冻点-40℃或更低,更优选至少-47℃或更低;
(MF-vii)烟点至少18mm,更优选至少19mm,甚至更优选25mm;
(MF-viii)在-20℃下的粘度为1-10cSt,更优选为2-8cSt;
(MF-vix)能量密度为40-47MJ/kg,更优选为42-46MJ/kg。
适宜地,可由水溶性氧化烃衍生的含至少一种C4+化合物的组分的中间馏分的性能符合以上MF-i到MF-vix中详细列出的每种性能,更适宜地符合以上MF-i到MF-vix中详细列出的每种性能的每一优选值。
重质馏分
可由水溶性氧化烃衍生的含至少一种C4+化合物的组分的重质馏分优选具有一种或多种下述性能(HF-i到HF-vi):
(HF-i)T95为220-380℃,更优选为260-360℃;
(HF-ii)闪点为30-70℃,更优选为33-60℃;
(HF-iii)在15℃下的密度为700-900kg/m3,更优选为750-850kg/m3
(HF-iv)硫含量至多5mg/kg,更优选至多1mg/kg;
(HF-v)氧含量至多10wt%,更优选至多8wt%;
(HF-vi)40℃下的粘度为0.5-6cSt,更优选为1-5cSt。
适宜地,可由水溶性氧化烃衍生的含至少一种C4+化合物的组分的重质馏分的性能符合以上HF-i到HF-vi中详细列出的每种性能,更适宜地符合以上HF-i到HF-vi中详细列出的每种性能的每一优选值。
液体燃料组合物
可由水溶性氧化烃衍生的含至少一种C4+化合物的组分在本发明的液体燃料组合物内的存在量为至少0.1vol%,基于液体燃料组合物的总体积计。更优选地,由水溶性氧化烃衍生的组分在本发明的液体燃料组合物内的存在量还符合一个或多个以下列出的参数(i)-(xx):
(i)至少0.5vol%.
(ii)至少1vol%
(iii)至少1.5vol%
(iv)至少2vol%
(v)至少2.5vol%
(vi)至少3vol%
(vii)至少3.5vol%
(viii)至少4vol%
(ix)至少4.5vol%
(x)至少5vol%
(xi)至多99.5vol%.
(xii)至多99vol%.
(xiii)至多98vol%.
(xiv)至多97vol%.
(xv)至多96vol%.
(xvi)至多95vol%.
(xvii)至多90vol%.
(xviii)至多85vol%.
(xix)至多80vol%.
(xx)至多75vol%.
适宜地,可由水溶性氧化烃衍生的含至少一种C4+化合物的组分在本发明的液体燃料组合物内的存在量符合选自以上(i)-(x)中的一个参数和选自以上(xi)-(xx)中的一个参数。
适宜地,对于本发明的汽油组合物来说,可由水溶性氧化烃衍生的含至少一种C4+化合物的组分在所述汽油组合物内的存在量为0.1-60vol%、0.5-55vol%或1-50vol%。
适宜地,对于本发明的柴油燃料组合物来说,可由水溶性氧化烃衍生的含至少一种C4+化合物的组分在所述柴油燃料组合物内的存在量为0.1-60vol%、0.5-55vol%或1-50vol%。
适宜地,对于本发明的煤油组合物来说,可由水溶性氧化烃衍生的含至少一种C4+化合物的组分在所述煤油组合物内的存在量为0.1-90vol%、0.5-85vol%或1-80vol%,例如为0.1-60vol%、0.5-55vol%或1-50vol%。
本发明的液体燃料组合物通常选自汽油、煤油或柴油燃料组合物。
若液体燃料组合物是汽油组合物,则所述汽油组合物的初沸点为15-70℃(IP123),终沸点为至多230℃(IP123),RON为85-110(ASTM D2699),和MON为75-100(ASTM D2700)。
若液体燃料组合物是煤油组合物,则所述煤油组合物的初沸点为110-150℃,终沸点为200-320℃,和在-20℃下的粘度为0.8-10mm2/s(ASTM D445)。
若液体燃料组合物是柴油燃料组合物,则所述柴油燃料组合物的初沸点为130-230℃(IP123),终沸点为至多410℃(IP123),和辛烷值为35-120(ASTM D613)。
优选地,本发明的液体燃料组合物另外包括一种或多种燃料添加剂。
汽油组合物
本发明的汽油组合物通常包括沸点在15-230℃的范围内、更通常在25-230℃范围内(EN-ISO 3405)的烃的混合物。本发明的汽油组合物的初沸点为15-70℃(IP123),优选为20-60℃,更优选为25-50℃。本发明的汽油组合物的终沸点为至多230℃,优选至多220℃,更优选至多210℃。最佳范围和蒸馏曲线通常随每一年的气候和季节而变化。
除了可由水溶性氧化烃衍生的含至少一种C4+化合物的组分以外,汽油组合物内的烃可通过本领域已知的任意方法衍生,适宜地,所述烃可按照任意已知的方式,由直馏汽油、合成生产的芳烃混合物、热或催化裂化的烃、加氢裂化的石油馏分、催化重整的烃或这些的混合物衍生。
本发明的汽油组合物的研究法辛烷值(RON)为85-110(ASTM D2699)。优选地,汽油组合物的RON为至少90,例如为90-110,更优选至少91,例如为91-105,甚至更优选至少92,例如为92-103,甚至更优选至少93,例如为93-102,和最优选至少94,例如为94-100。
本发明的汽油组合物的马达法辛烷值(MON)为75-100(ASTM D2699)。优选地,汽油组合物的MON为至少80,例如为80-100,更优选至少81,例如为81-95,甚至更优选至少82,例如为82-93,甚至更优选至少83,例如为83-92,和最优选至少84,例如为84-90。
通常,汽油组合物包含选自下述组中一种或多种的组分的混合物:饱和烃、烯烃、芳烃、和氧化烃。适宜地,汽油组合物可包括饱和烃、烯烃、芳烃和任选的氧化烃的混合物。
通常,汽油组合物中的烯烃含量为0-40vol%,基于汽油计(ASTM D1319);优选地,汽油组合物中的烯烃含量为0-30vol%,基于汽油组合物计,更优选地,汽油组合物中的烯烃含量为0-20vol%,基于汽油组合物计。
通常,汽油组合物中的芳烃含量为0-70vol%,基于汽油计(ASTM D1319);例如,汽油组合物中的芳烃含量为10-60vol%,基于汽油组合物计;优选地,汽油组合物中的芳烃含量为0-50vol%,基于汽油组合物计;例如,汽油组合物中的芳烃含量为10-50vol%,基于汽油组合物计。
汽油组合物中的苯含量至多10vol%,更优选至多5vol%,特别地至多1vol%,基于汽油组合物计。
汽油组合物优选具有低或超低的硫含量,例如至多1000ppmw(份/百万重量份),优选不大于500ppmw,更优选不大于100,甚至更优选不大于50和最优选不大于甚至10ppmw。
汽油组合物还优选具有低的总铅含量,例如至多0.005g/l,最优选无铅,即不向其中添加铅化合物(即无铅)。
当汽油组合物包含氧化烃时,至少一部分非氧化烃被氧化烃取代。汽油中的氧含量可以至多30wt%(EN 1601),基于汽油组合物计。例如汽油中的氧含量可以是至多25wt%,优选至多10wt%。适宜地,含氧化合物的浓度具有选自下述任意一个的最小浓度:0、0.2、0.4、0.6、0.8、1.0和1.2wt%,和选自下述任意一个的最大浓度:5、4.5、4.0、3.5、3.0和2.7wt%。
除了可存在于可由水溶性氧化烃衍生的含至少一种C4+化合物的组分内的氧化烃以外,可掺入到汽油内的氧化烃的实例包括醇、醚、酯、酮、醛、羧酸及它们的衍生物、和含氧的杂环化合物。优选地,可掺入到汽油内的氧化烃选自:醇(例如甲醇、乙醇、丙醇、异丙醇、丁醇、叔丁醇和异丁醇),醚(优选每一分子含大于或等于5个碳原子的醚,例如甲基叔丁基醚),和酯(优选每一分子含有大于或等于5个碳原子的酯);特别优选的氧化烃是乙醇。
当氧化烃存在于汽油组合物内时,在汽油组合物内的氧化烃量可在宽范围内变化。例如含大部分氧化烃的汽油目前可商购于例如巴西和美国等国家,例如E85,以及含小部分氧化烃的汽油,例如E10和E5。因此,氧化烃在汽油组合物内的存在量优选选自下述量之一:至多85vol%,至多65vol%,至多30vol%,至多20vol%,至多15vol%,和至多10vol%,这取决于汽油的所需最终配方。适宜地,汽油组合物可含有至少0.5、1.0或2.0vol%的氧化烃。
合适的汽油组合物的实例包括烯烃含量为0-20vol%(ASTM D1319)、氧含量为0-5%重量(EN 1601)、芳烃含量0-50vol%(ASTM D1319)和苯含量至多1vol%的汽油。
尽管对于本发明来说并不关键,但本发明的汽油组合物可适宜地另外包含一种或多种燃料添加剂。可包含在本发明汽油组合物内的燃料添加剂的浓度与性质并不关键。可包含在本发明汽油组合物内的燃料添加剂的合适类型的非限定性实例包括抗氧化剂、腐蚀抑制剂、清净剂、除雾剂、抗爆剂、金属失活剂、阀座凹陷保护剂化合物、燃料、摩擦调节剂、载体流体、稀释剂和标识剂。合适的这种添加剂的实例一般描述于美国专利No.5855629中。
适宜地,可使燃料添加剂与一种或多种稀释剂或载体流体共混形成添加剂浓缩物,然后可使所述添加剂浓缩物与本发明的汽油组合物混合。
存在于本发明汽油组合物内的任意添加剂的(活性物质)浓度优选至多1%重量,更优选为5-1000ppmw,有利地为75-300ppmw,例如95-150ppmw。
替代地,本发明的汽油组合物可以是航空汽油。若汽油组合物是航空汽油,则取决于航空汽油的等级,贫混合物的马达法辛烷值为至少80(ASTM D2700),和富混合物的辛烷值为至少87(ASTM D 909),或者贫混合物的马达法辛烷值为至少99.5(ASTM D2700)和性能值为至少130(ASTM D 909)。此外,若汽油组合物是航空汽油,则在37.8℃下的Reid蒸气压为38.0-49.0kPa(ASTM D323),终沸点为至多170℃(ASTM D 86),和四乙基铅含量为至多0.85gPb/l。
煤油燃料组合物
本发明的煤油燃料组合物可用于航空发动机例如喷气式发动机或柴油航空发动机中,而且可用于任意其它合适的电源或光源中。
除了可由水溶性氧化烃衍生的含至少一种C4+化合物的组分以外,煤油燃料组合物可包含两种或更多种不同燃料组分的混合物和/或如下所述添加添加剂。
煤油燃料组合物的沸点通常为80-320℃,优选为110-320℃,更优选为130-300℃,这取决于等级和用途。它们在15℃下的密度通常为775-845kg/m3,优选780-830kg/m3(例如ASTM D4502或IP 365)。它们的初沸点通常为80-150℃,优选为110-150℃,和终沸点为200-320℃。它们在-20℃下的运动粘度(ASTM D445)范围通常为0.8-10mm2/s,优选1.2-8.0mm2/s。
可能希望煤油燃料组合物含有费-托衍生的燃料,若煤油燃料组合物确定含费-托衍生的燃料,则它适宜地含有大于或等于5vol%、优选大于或等于10vol%、或更优选大于或等于25vol%的费-托衍生的燃料。
费-托衍生的燃料应当合适用作煤油燃料。其组分(或大部分,例如大于或等于95wt%)的沸点因此应当在以上给出的范围内,即110-320℃,优选130-300℃。它的90%v/v蒸馏温度(T90)合适地为180-250℃,优选180-230℃。
“费-托衍生的”是指燃料是或者衍生自费-托缩合工艺的合成产物。在合适的催化剂和通常在升高的温度(例如125-300℃,优选175-250℃)和压力(例如500-10000kPa,优选1200-5000kPa)下,费-托反应将一氧化碳和氢气转化成长链的通常为链烷烃的烃:
n(CO+2H2)=(-CH2-)n+nH2O+热量
可视需要使用除了2∶1以外的氢气∶一氧化碳比。
一氧化碳和氢气本身可衍生自有机或无机的天然或合成来源,通常,来自于天然气或有机衍生的甲烷。
煤油产物可由这一反应直接获得,或者例如通过分馏费-托合成产物或者由加氢处理的费-托合成产物间接获得。加氢处理可包括加氢裂化来调节沸程(参见例如GB-B-2077289和EP-A-0147873)和/或加氢异构化以通过增加支链链烷烃的比例来改进基础燃料的冷流动性能。EP-A-0583836描述了两步加氢处理方法,其中首先对费-托合成产物进行加氢转化,其条件使得它基本上不经历异构化或加氢裂化(这将使烯烃和含氧的组分氢化),然后加氢转化至少一部分所得产物,其条件使得发生加氢裂化和异构化以得到基本上为链烷烃的燃料。随后可例如通过蒸馏分离所需的煤油馏分。
可使用其它后合成处理,例如聚合、烷基化、蒸馏、裂化-脱羧、异构化和加氢重整,以调节费-托缩合产物的性能,如例如在US-A-4125566和US-A-4478955中所述。
费-托合成链烷烃的典型催化剂包括周期表中第VIII族的金属(特别是钌、铁、钴或镍)作为催化活性组分。合适的这种催化剂描述于例如EP-A-0583836中(第3和4页)。
费-托基工艺的实例是van der Burgt等人在“The Shell Middle Distillate Synthesis Process”中描述的SMDS(Shell中间馏分油合成)(1985年11月在5th Synfuels Worldwide Symposium,Washington DC发表的论文;还参见1989年11月由Shell International Petroleum Company Ltd.,London,UK公开的相同标题的出版物)。这一方法(有时也称为ShellTM″气至液″或″GTL″技术)通过转化天然气(主要为甲烷)衍生的合成气成为重质长链烃(链烷烃),然后可加氢转化所述长链烃并分馏产生液体运输燃料例如煤油燃料组合物,从而产生中间馏分范围的产物。对于催化转化步骤来说,使用固定床反应器的SMDS方法的变通方案目前用于Bintulu,Malaysia中,和它的产物在可商购的机动车燃料中与石油衍生的瓦斯油共混。
通过SMDS方法制备的瓦斯油和煤油可商购于Royal Dutch/Shell Group of Companies。
合适地,根据本发明,费-托衍生的煤油燃料由至少90wt%、优选至少95wt%、更优选至少98wt%、甚至更优选至少99wt%、最优选至少99.8wt%的链烷烃组分(通常为正和异链烷烃)组成。正与异链烷烃的重量比范围优选如上所述。这一比值的实际值部分地通过用于由费-托合成产物制备煤油的加氢转化工艺决定。也可存在一些环状链烷烃。
借助费-托工艺,费-托衍生的煤油基本上不具有或者具有不可检测水平的硫和氮。含有这些杂原子的化合物倾向于充当费-托催化剂的毒物,因此要从合成气原料中脱除。此外,通常操作的所述方法不产生或者几乎不产生芳烃组分。费-托煤油中的芳烃含量根据ASTM D4629测定通常低于5wt%,优选低于2wt%,更优选低于1wt%和最优选低于0.2wt%。
可在本发明的煤油燃料组合物中使用的费-托衍生的煤油在15℃下的密度通常为730-770kg/m3;在-20℃下运动粘度为1.2-6、优选2-5、更优选2-3.5mm2/s;和硫含量小于或等于20ppmw(份/百万重量份),优选小于或等于5ppmw。
优选地,它是使用氢气/一氧化碳之比小于2.5、优选小于1.75、更优选为0.4-1.5和理想地使用含钴的催化剂通过费-托甲烷缩合反应制备的产物。合适地,它由加氢裂化的费-托合成产物获得(例如GB-B-2077289和/或EP-A-0147873中所述),或更优选由两段加氢转化方法得到的产物,例如EP-A-0583836中所述(参见上面)。在后一情况下,加氢转化工艺的优选特征可以是在EP-A-0583836的第4-6页和实施例中公开的。
本发明的煤油燃料组合物优选含有不大于3000ppmw硫,更优选不大于2000ppmw,或不大于1000ppmw,或不大于500ppmw硫。
煤油燃料组合物或其组分可添加有添加剂(含有添加剂)或者不添加添加剂(不含添加剂)。若添加有添加剂,例如在炼厂处或者在燃料分配的随后阶段中,它将含有少量的一种或多种选自例如下述的添加剂:抗静电剂(例如STADISTM 450(获自Octel)),抗氧化剂(例如取代叔丁基酚),金属失活剂添加剂(例如N,N′-二亚水杨基1,2-丙二胺),燃料体系结冰抑制剂添加剂(例如二甘醇单甲醚),腐蚀抑制剂/润滑改进剂添加剂(例如APOLLOTM PRI 19(获自Apollo),DCI 4A(获自Octel),NALCOTM 5403(获自Nalco)),或热稳定性改进添加剂(例如APA 101TM(获自Shell)),这些添加剂在国际民用和/或军事喷气燃料技术规格中得到批准。
除非另有说明,在添加有添加剂的煤油燃料组合物中每一种这类附加组分的(活性物质)浓度是国际喷气燃料技术规格所要求或允许的水平。
在上述中,组分的量(浓度,vol%,ppmw,wt%)均是活性物质的量,即不包括挥发性溶剂/稀释剂材料,除非在相关说明中另外规定。
本发明的煤油燃料组合物特别适合应用于其中在喷气式发动机中使用或打算使用煤油燃料组合物的情形。
柴油燃料组合物
本发明的柴油燃料组合物通常包括沸点为130-410℃、更通常为150-400℃的烃的混合物。本发明的柴油燃料组合物的初沸点为130-230℃(IP123),优选为140-220℃,更优选为150-210℃。本发明的柴油燃料组合物的终沸点为至多410℃,优选至多405℃,更优选至多400℃。
除了可由水溶性氧化烃衍生的含至少一种C4+化合物的组分以外,柴油燃料组合物可包含两种或更多种不同的柴油燃料组分的混合物,和/或如下所述添加有添加剂。
这种柴油燃料组合物含有一种或多种基础燃料,所述基础燃料通常包括液体烃中间馏分瓦斯油,例如石油衍生的瓦斯油。取决于等级和用途,这种燃料的沸点通常在上述范围内。它们在15℃下的密度通常为750-1000kg/m3,优选780-860kg/m3(例如ASTM D4502或IP 365),和辛烷值(ASTM D613)为35-120,更优选40-85。它们的初沸点范围通常如上所述和终沸点为至多410℃,优选至多405℃,更优选至多400℃,最优选为290-400℃。它们在40℃下的运动粘度(ASTM D445)合适地可以是1.2-4.5mm2/s。
石油衍生的瓦斯油的实例是瑞典1级基础燃料,它在15℃下的密度为800-820kg/m3(SS-EN ISO 3675,SS-EN ISO 12185),T95小于或等于320℃(SS-EN ISO 3405),和在40℃下的运动粘度(SS-EN ISO 3104)为1.4-4.0mm2/s,这根据瑞典国家技术规格EC1来定义。
任选地,非矿物油基燃料例如生物燃料(除了可由水溶性氧化烃衍生的含至少一种C4+化合物的组分以外)或费-托衍生的燃料也可形成柴油燃料或存在于柴油燃料内。这种费-托衍生的燃料可例如衍生自天然气、天然气液体、石油或页岩油、石油或页岩油加工残余物、煤或生物质。
在本发明的柴油燃料组合物中费-托衍生燃料的用量可以是0%到柴油燃料组合物的剩余部分(即柴油燃料组合物中不是可由水溶性氧化烃衍生的含至少一种C4+化合物的组分的那部分),优选5%到柴油燃料组合物的剩余部分,更优选为柴油燃料组合物的5-75vol%。对于这种柴油燃料组合物来说,可期望含有大于或等于10vol%、更优选大于或等于20vol%、仍更优选大于或等于30vol%的费-托衍生燃料。特别优选这种柴油燃料含有30-75vol%、和特别是30或70vol%的费-托衍生燃料。柴油燃料的余量由可由水溶性氧化烃衍生的含至少一种C4+化合物的组分和任选的一种或多种其它柴油燃料组分组成。
这种费-托衍生的燃料组分是中间馏分燃料范围的任意馏分,它可与(任选加氢裂化的)费-托合成产物相分离。典型的馏分在石脑油、煤油或瓦斯油沸程内。优选地,使用在煤油或瓦斯油沸程内的费-托产物,因为这些产物更容易在例如国内环境中处理。这种产物合适地包括大于90wt%在160-400℃、优选到约370℃沸腾的馏分。费-托衍生的煤油和瓦斯油的实例描述于EP-A-0583836、WO-A-97/14768、WO-A-97/14769、WO-A-00/11116、WO-A-00/11117、WO-A-01/83406、WO-A-01/83648、WO-A-01/83647、WO-A-01/83641、WO-A-00/20535、WO-A-00/20534、EP-A-1101813、US-A-5766274、US-A-5378348、US-A-5888376和US-A-6204426中。
费-托产物合适地含有大于80wt%和更合适地大于95wt%的异和正链烷烃和小于1wt%的芳烃,余量是环烷烃化合物。硫和氮的含量非常低,和通常低于这些化合物的检测限。由于这一原因,含有费-托产物的柴油燃料组合物中的硫含量可以非常低。
柴油燃料组合物优选含有不大于5000ppmw硫,更优选不大于500ppmw,或不大于350ppmw,或不大于150ppmw,或不大于100ppmw,或不大于70ppmw,或不大于50ppmw,或不大于30ppmw,或不大于20ppmw,或最优选不大于15ppmw硫。
柴油燃料通常还包含一种或多种燃料添加剂。
柴油基础燃料本身可添加有添加剂(含添加剂)或未添加添加剂(不含添加剂)。若添加的话,例如在炼厂处,它将含有少量的选自例如下述的一种或多种添加剂:抗静电剂、管线减阻剂、流动改进剂(例如乙烯/乙酸乙烯酯共聚物或丙烯酸酯/马来酸酐共聚物)、润滑性添加剂、抗氧化剂和蜡质抗沉降剂。
含清净剂的柴油燃料添加剂是已知且可商购的。这种添加剂可加入到柴油燃料中,其含量用于降低、脱除或减慢发动机沉积物的累积。
对于本发明的目的来说,适合于在柴油燃料添加剂中使用的清净剂的实例包括聚烯烃取代的琥珀酰亚胺或多胺的琥珀酰胺,例如聚异丁烯琥珀酰亚胺或聚异丁烯胺琥珀酰胺、脂族胺、曼尼烯碱或胺和聚烯烃(例如聚异丁烯)马来酸酐。琥珀酰亚胺分散剂添加剂例如描述于GB-A-960493、EP-A-0147240、EP-A-0482253、EP-A-0613938、EP-A-0557516和WO-A-98/42808中。特别优选的是聚烯烃取代的琥珀酰亚胺,例如聚异丁烯琥珀酰亚胺。
柴油燃料添加剂混合物可含有除了清净剂以外的其它组分。实例是:润滑性提高剂;除雾剂,例如烷氧基化苯酚甲醛聚合物;消泡剂(例如聚醚改性的聚硅氧烷);点火改进剂(辛烷改进剂)(例如2-乙基己基硝酸酯(EHN)、环己基硝酸酯、二叔丁基过氧化物和在US-A-4208190的第2栏第27行-第3栏第21行中公开的那些);防锈剂(例如四丙烯基琥珀酸的丙烷-1,2-二醇半酯或琥珀酸衍生物的多元醇酯,所述琥珀酸衍生物在其α-碳原子上具有至少一个含有20-500个碳原子的未取代或取代的脂族烃基,例如聚异丁烯取代的琥珀酸的季戊四醇二酯);腐蚀抑制剂;芳香剂;耐磨添加剂;抗氧化剂(例如酚类,如2,6-二叔丁基苯酚,或苯二胺,如N,N′-二仲丁基对苯二胺);金属失活剂;燃烧改进剂;静电耗散添加剂;冷流动改进剂;和蜡质抗沉降剂。
柴油燃料添加剂混合物可含有润滑性提高剂,特别是当柴油燃料组合物具有低(例如小于或等于500ppmw)的硫含量时。在添加有添加剂的柴油燃料组合物中,润滑性提高剂适宜地以小于1000ppmw、优选50-1000ppmw、更优选70-1000ppmw的浓度存在。合适的可商购的润滑性提高剂包括酯-和酸-基添加剂。其它润滑性提高剂描述于专利文献中,特别是与它们在低硫含量的柴油燃料中使用有关的专利文献中,例如:
-Danping Wei和H.A.Spikes的论文,“The Lubricity of Diesel Fuels”,Wear,III(1986)217-235;
-WO-A-95/33805,冷流动改进剂,以提高低硫燃料的润滑性;
-WO-A-94/17160,羧酸和醇的一些酯作为燃料添加剂用以降低柴油发动机注射体系的磨蚀,其中酸具有2-50个碳原子,和醇具有大于或等于1个碳原子,特别是甘油单油酸酯和己二酸二异癸酯;
-US-A-5490864,一些二硫代磷酸二酯-二醇作为用于低硫柴油燃料的耐磨润滑性添加剂;
-WO-A-98/01516,至少一个羧基连接到其芳核上的一些烷基芳族化合物,以赋予特别是低硫柴油燃料耐磨润滑效果。
也可优选柴油燃料组合物含有消泡剂,更优选与防锈剂和/或腐蚀抑制剂和/或润滑性提高添加剂组合。
除非另有说明,在添加有添加剂的柴油燃料组合物中的每一种这样的添加剂组分的(活性物质)浓度优选至多10000ppmw,更优选为0.1-1000ppmw,有利地为0.1-300ppmw,例如0.1-150ppmw。
在柴油燃料组合物内任意除雾剂的(活性物质)浓度范围优选为0.1-20ppmw,更优选1-15ppmw,仍更优选1-10ppmw,有利地为1-5ppmw。所存在的任意点火改性剂的(活性物质)浓度优选小于或等于2600ppmw,更优选小于或等于2000ppmw,适宜地为300-1500ppmw。在柴油燃料组合物内的任意清净剂的(活性物质)浓度范围优选为5-1500ppmw,更优选10-750ppmw,最优选20-500ppmw。
在柴油燃料组合物的情况下,例如燃料添加剂混合物通常含有任选与以上所述的其它组分一起的清净剂、和柴油燃料相容的稀释剂(它可以是矿物油,溶剂例如由Shell companies以商品名“SHELLSOL”销售的那些,极性溶剂例如酯,和特别是醇,例如己醇、2-乙基己醇、癸醇、异十三烷醇,和醇的混合物,例如由Shell公司以商品名“LINEVOL”销售的那些,特别是LINEVOL 79醇,它是一种C7-9伯醇的混合物,或者可商购的C12-14醇的混合物)。
在柴油燃料组合物内添加剂的总含量可以合适地为0-10000ppmw,和优选低于5000ppmw。
在上述中,各组分的量(浓度,vol%,ppmw,wt%)是活性物质的量,即不包括挥发性溶剂/稀释剂材料。
制备液体燃料组合物的方法
通过混合下述物质制备本发明的液体燃料组合物:
(a)可由水溶性氧化烃衍生的组分,和
(b)至少一种燃料组分
术语“燃料组分”是指用于制备液体燃料组合物的组分,或者液体燃料组合物本身(它不是衍生自水溶性氧化烃的组分)。“燃料组分”的实例包括目前用于制备汽油、煤油和/或柴油燃料的燃料组分,例如石油衍生的产物物流、费-托衍生的产物物流、含氧化合物和生物燃料组分。
通常,石油衍生的产物物流是在炼厂生产的产物物流,此处也称为炼厂物流。这种炼厂物流的非限定性实例包括:
·“C4s”(通常含大于80vol%链烷烃和烯属C4化合物的低沸点馏分)
·直馏塔顶馏分(SR Tops)或石脑油(C4-C7烃的低沸点馏分(终沸点低于约140℃))。这些烃主要是链烷烃且具有低的辛烷额定值。所述物流的芳烃含量低且具有一些环烷烃。
·异构产物(通过异构化SR Tops/石脑油内的C5和C6链烷烃产生更高辛烷值的异构体而获得的低沸点馏分(终沸点低于约110℃))
·轻质全馏程(FR)或重质铂重整产品(或轻质全馏程(FR)或重质重整产品)(通过催化重整加氢处理过的石脑油生产高辛烷值、高芳烃、低烯烃的物流而获得的馏分)
·烷基化物(包括航空烷基化物)(通过用C4和C3烯烃烷基化异丁烷产生高辛烷值的支链链烷烃而生产的馏分)
·轻质或重质催化裂化的汽油(LCCG或HCCG)(通过处理流化催化裂化器内的重质物流产生轻质烃(其中包括烯烃)而生产的馏分)
·直馏煤油(含有高含量链烷烃、通常蒸馏温度为约150℃+/-10℃到约260℃+/-20℃的馏分)
·脱硫煤油(经处理降低硫醇含量以及降低总酸含量的直馏煤油)
·加氢处理或加氢精制的煤油(具有降低的硫醇、硫、烯烃、酸和金属含量的温和地加氢处理的直馏煤油)
·深度加氢处理的煤油(例如深度氢化的煤油、加氢脱硫的煤油、加氢裂化的煤油(进行过比加氢处理的煤油更深的加氢处理的直馏煤油,通常导致较低的硫和氮含量))
·在柴油燃料沸程内的直馏馏分
·加氢裂化的瓦斯油(AGO)
·来自焦化塔的轻质裂化和加氢处理的油
·催化裂化的瓦斯油(VGO)
·热和蒸汽裂化的瓦斯油
含氧化合物和生物燃料组分是适合于在液体燃料组合物中使用的任意这种组分,例如前面所述的那些。
制备汽油组合物的方法
为了制备本发明的汽油组合物,将以上所述的可由水溶性氧化烃衍生的组分、特别是由水溶性氧化烃衍生的组分的轻质馏分与至少一种燃料组分组合。
可以与可由水溶性氧化烃衍生的组分混合制备本发明的汽油组合物的典型燃料组分包括:
·汽油组合物本身;
·炼厂物流,例如C4s、SR Tops、异构产物、轻质铂重整产品、FR铂重整产品、重质铂重整产品、烷基化物、LCCG和HCCG;
·含氧化合物,例如醇和醚。优选的含氧化合物组分包括甲醇、乙醇、丙醇、丁醇、甲基叔丁基醚(MTBE)、和乙基四丁基醚(ETBE);和
·生物燃料组分,例如前面所述的那些。
当在提到燃料组分时使用时,术语“汽油组合物”是指在上述汽油组合物部分中定义的组合物。
通常,通过混合下述物质制备本发明的汽油组合物:
(a)以上所述的由水溶性氧化烃衍生的组分的轻质馏分,和
(b)选自炼厂物流中的至少一种燃料组分。
优选地,通过混合下述物质制备本发明的汽油组合物:
(a)以上所述的由水溶性氧化烃衍生的组分的轻质馏分,和
(b)选自炼厂物流C4s、SR Tops、异构产物、轻质铂重整产品、FR铂重整产品、重质铂重整产品、烷基化物、LCCG和HCCG中的至少一种燃料组分;和任选选自乙醇、MTBE和ETBE的含氧化合物。
更优选地,通过混合下述物质制备本发明的汽油组合物:
(a)以上所述的由水溶性氧化烃衍生的组分的轻质馏分,和
(b)选自炼厂物流C4s、SR Tops、重质铂重整产品、烷基化物和LCCG中的至少一种燃料组分;和任选的乙醇。
取决于所使用的由水溶性氧化烃衍生的组分的轻质馏分量,将变化所使用的燃料组分的量,以制备具有所需性能的汽油组合物。
例如可通过混合下述物质制备本发明的汽油组合物:
(a)基于全部燃料组合物计至少0.1vol%以上所述的由水溶性氧化烃衍生的组分的轻质馏分,和
(b)下述用量的选自炼厂物流中的至少一种燃料组分:1-15vol%C4s,3-25vol%SR Tops,0-50vol%重质铂重整产品,5-20vol%烷基化物,和10-35vol%LCCG,基于全部燃料组合物计;和任选至多85%乙醇,基于全部燃料组合物计。
在本发明的汽油组合物的制备中,可期望降低本发明汽油组合物内的任意SR Tops和/或重质铂重整产品的相对量以增加以上所述的由水溶性氧化烃衍生的组分的轻质馏分量。因此,可以通过用以上所述的由水溶性氧化烃衍生的组分的轻质馏分替代汽油制备中所使用的至少一部分任意SR Tops和/或重质铂重整产品,来制备本发明的汽油组合物。
替代地,通过混合下述物质制备本发明的汽油组合物:
(a)以上所述的由水溶性氧化烃衍生的组分的轻质馏分,和
(b)汽油组合物。
若所制备的汽油组合物是航空汽油,则在本发明的这种航空汽油的制备中不使用含氧化合物。
制备煤油组合物的方法
为了制备本发明的煤油组合物,将以上所述的可由水溶性氧化烃衍生的组分、特别是由水溶性氧化烃衍生的组分的中间馏分与至少一种燃料组分组合。
可以与可由水溶性氧化烃衍生的组分混合制备本发明煤油组合物的典型燃料组分包括:炼厂物流,例如直馏煤油、脱硫煤油、加氢处理或加氢精制的煤油和深度加氢处理的煤油。
通常,通过混合下述物质制备本发明的煤油组合物:
(a)以上所述的由水溶性氧化烃衍生的组分的中间馏分,和
(b)选自炼厂物流、直馏煤油、脱硫煤油、加氢处理或加氢精制煤油和深度加氢处理的煤油中的至少一种燃料组分。
制备柴油燃料组合物的方法
为了制备柴油燃料组合物,将以上所述的可由水溶性氧化烃衍生的组分、特别是由水溶性氧化烃衍生的组分的重质馏分与至少一种燃料组分组合。
可以与可由水溶性氧化烃衍生的组分混合制备本发明柴油燃料组合物的典型燃料组分包括:
·柴油燃料组合物本身;
·炼厂物流,例如在柴油燃料沸程内的直馏馏分、加氢裂化的瓦斯油(AGO)、来自焦化塔的轻质裂化和加氢处理的油、催化裂化的瓦斯油(VGO)、热和蒸汽裂化的瓦斯油;
·生物燃料组分,例如前面所述的那些。
当在提到燃料组分时使用时,术语“柴油燃料组合物”是指在上述柴油燃料组合物部分中定义的组合物。
通常,通过混合下述物质制备本发明的柴油燃料组合物:
(a)以上所述的由水溶性氧化烃衍生的组分的重质馏分,和
(b)选自炼厂物流中的至少一种燃料组分。
优选地,通过混合下述物质制备本发明的柴油燃料组合物:
(a)以上所述的由水溶性氧化烃衍生的组分的重质馏分,和
(b)选自炼厂物流、在柴油燃料沸程内的直馏馏分、加氢裂化的瓦斯油(AGO)、来自焦化塔的轻质裂化和加氢处理的油、催化裂化的瓦斯油(VGO)、热和蒸汽裂化的瓦斯油;和任选的生物燃料组分。
本发明进一步提供操作内燃机、喷气式发动机、或锅炉的方法,所述方法包括将本发明的液体燃料组合物引入到发动机或锅炉的燃烧室内。
通过下述实施例进一步理解本发明。
实施例
例举的反应器体系
实施例1
图8的工艺流程图描述了可用于实施本发明的一个反应器体系。原料罐1充当保持原料溶液的容器。原料溶液从原料罐1经原料管线2输送到原料泵3,在此它流经排放管线4到达预热器5。预热器5可以是通过电阻加热器加热的换热器或者本领域已知的任意其它换热器。然后预热的原料流经管线6,和在一些情况下,与氢气7组合,之后经管线8进入反应器9。图11中给出了可能的反应器9的一个示例且在以下实施例4中更全面地进行了描述。
通过模块加热器10a、10b、10c和10d(在这一情况下,均为电阻加热器),维持反应器9的壁温。当离开反应器9时,反应产物进入反应器出口管线11,并在反应器产物冷却器12内冷却到接近环境温度,从而导致可能的三相产物物流。反应产物从反应器产物冷却器12经管线13行进到压力调节阀14,所述压力调节阀14用于视需要控制反应器出口处的压力。
在阀门14之后,产物经管线15进入相分离器16,在此它分成三个单独的相:(1)主要含氢气、二氧化碳、甲烷、乙烷和丙烷的不可冷凝的气体组分17;(2)含有烃及C3-30醇、酮和羧酸的有机液体馏分18;和(3)主要含水和水溶性氧化化合物例如乙醇、异丙醇、丙酮、丙醇和乙酸的水层19。不可冷凝的气体馏分17可经气体产物管线20导引到降压阀21。通过降压阀21维持分离器16的压力。在交替的操作模式中,可通过开启或切断阀14,分离器16维持在几乎与反应器出口相同的压力下。在交替的操作模式中,然后通过降压阀21的作用控制反应器出口的压力。当经管线22离开体系时,测量气体流量和组成。
有机液体馏分18经管线23离开分离器,之后进入有机排放阀24。通过调节阀门24,控制在分离器内的有机相的液面。在有机馏分经管线25离开体系之后,测定有机馏分的流量和组成。含水液体馏分19经管线26离开分离器,之后进入分离器底部的排放阀27。通过调节阀门27,控制分离器内的水相液面。
可在含水馏分经管线28离开体系之后,测定含水馏分的流量和组成。在交替的操作模式中,有机液体馏分18和含水液体馏分19二者经分离器的底部排放阀27和管线28离开体系,之后在倾析器内分离以供测量各相组成和流量。
在所有情况下,交替的操作模式不会影响所研究的催化工艺。取决于气相17、有机液相18和水相19的相对流量,可使用交替的操作模式,因为谨慎可以实现所述工艺的最佳控制。
在引发原料流动到反应器内之前,除非另有说明,在400℃下,在流动的氢气物流中还原催化剂,而不论是否完全还原,之后将催化剂装载到反应器内。
实施例2
图9的工艺流程图描述了可用于实施本发明的另一反应器体系。这一反应器构造含有两个单独的反应器,其能串联操作这两个反应器或者只操作第一反应器。另外,这一构造允许在第二反应器内的催化剂离线并原位再生。在再生之后,第二反应器可返回到使用状态,且不会影响第一反应器的操作。
所述反应器类似于实施例1的反应器,不同的是来自反应器产物冷却器12的反应产物可经管线14导引到第二反应器内或者通过流入到管线44内被导引旁通过第二反应器。当使用第二反应器时,流动从管线14行进到压力调节阀15。压力调节阀15可用于控制第一反应器出口处的压力。流动从压力调节阀15行进到第二反应器入口分隔阀17并进入到管线18内。流动从管线18继续到管线19并进入到第二反应器预热器20中。在所示的实施方案中,预热器20是通过电阻加热器加热的换热器。
然后预热的原料流经管线19进入到第二反应器22内,以下在实施例4中将更全面描述第二反应器22。通过模块加热器23a、23b、23c和23d(在这一情况下,均为电阻加热器),维持反应器22的壁温。当离开反应器时,反应产物进入第二反应器出口管线24,然后在反应器产物出口冷却器25中冷却。工艺流可从第二反应器的产物冷却器26经管线26和27导引到第二反应器出口分隔阀28,进入到管线29,接着进入30内和然后进入到产物分离器31内。
当期望第二反应器的操作时,阀门17和阀门28开启,同时第二反应器的旁通阀45关闭以防止流动旁通过第二反应器。当期望只操作第一反应器时,或者当第二反应器再生时,关闭阀门17和阀门28,同时开启阀门45。当旁通过第二反应器时,第一反应器产物直接从管线13流入到管线44内,经旁通阀45进入到管线46内并继续到管线30内。在任意一种情况下,不管第二反应器在操作中还是被旁通,流动均从管线30行进到产物分离器内。
在相分离器31中,反应产物分离成气态馏分32、有机馏分33和含水馏分34,如以上实施例1所述。气态馏分32经气体产物管线35被导引到降压阀36中。通过降压阀36维持分离器31的压力。当第二反应器22在使用中时,通过降压阀36的作用控制在第二反应器22出口处的压力。当旁通过第二反应器22时,通过降压阀36的作用控制在第一反应器9出口处的压力。
在经管线37离开体系后,测量气体流量和组成。有机液体馏分33经管线38离开分离器,之后进入到有机排放阀39内。通过调节阀门39,控制在分离器内的有机相的液面。在有机馏分经管线40离开体系之后,测定有机馏分的流量和组成。含水液体馏分34经管线41离开分离器,之后进入分离器的底部排放阀42内。通过调节阀门42,控制分离器内的水相液面。可在含水馏分经管线43离开体系之后,测定含水馏分的流量和组成。在交替的操作模式中,有机液体馏分33和含水液体馏分34二者经分离器的底部排放阀42和管线43离开体系,之后在倾析器内分离以供测量各相的组成和流量。在所有情况下,交替的操作模式不会影响所研究的催化工艺。取决于气相35、有机液相33和水相34的相对流量,可采用交替的操作模式,因为谨慎可以实现所述工艺的最佳控制。
实施例3
图10的工艺流程图描述了可用于实施本发明的双原料泵反应器体系。当原料组分的所需混合物不在单一液相内时,使用双原料泵体系。例如当50wt%2-戊醇和50wt%水的混合物是所需的原料时,使用两个原料泵,一个输送2-戊醇和另一个输送水。也可使用类似的体系混合从两个单独来源得到的原料,例如未加工原料和由反应器体系本身的流出物物流得到的氧化烃原料。
第一原料罐1起到用于第一原料溶液的容器的作用,而第二原料罐40起到用于第二原料溶液的容器的作用。第一原料从第一原料罐1经第一原料管线2输送到第一原料泵3中。然后第一原料流经第一原料泵排放管线4到组合的原料管线44中。第二原料从第二原料罐40经第二原料管线41输送到第二原料泵42。然后第二原料流经第二原料泵排放管线43到组合的原料管线44中。组合的原料从组合的原料管线44流入到预热器5内。所有其它元件如实施例1所述,所不同的是可循环水相19到原料罐40中以供进一步加工或在其它工艺中使用。
实施例4
图11的示意图描述了可在实施例1、2和3中所述的反应器体系内使用的一类反应器。取决于实验,反应器管道1由内径8.5mm或者内径21.2mm的316不锈钢组成。提供入口管线2,允许原料或中间产物例如含氧化合物进入到反应器内。提供出口管线3,从反应器中脱除产物。由不锈钢组成的入口过滤板4起到固定预热介质和催化剂的床定位的作用。由不锈钢珠粒组成的预热介质5充当允许热量从反应器壁转移的区域的作用,以便原料当进入催化剂7内时处在所需温度下。可在预热介质5和催化剂7之间放置不锈钢筛网,防止材料混合。可利用第二不锈钢过滤板8支持催化剂7定位。
在一些情况下,可安装热电偶9以便测量催化剂7和预热区5内的温度。在原料经管线2进入到反应器内之前,通过使用外部预热器实现在反应器入口处的温度控制,且可通过控制在预热介质内发生的传热来进一步调节。在一些情况下,不需要预热介质来实现所需的温度分布。通过使用与反应器外壁接触的外部加热器来控制反应器壁温。视需要,可使用独立控制的加热区控制反应器壁温。
实施例5-分析技术
如下所述,分析以下所述实施例的产物物流。收集有机液相,并使用具有质谱检测或火焰电离检测的气相色谱进行分析。使用具有结合的100%二甲基聚硅氧烷固定相的柱子,实现组分分离。通过峰的积分并除以整个色谱的峰面积之和,估计各组分的相对浓度。通过与标准停留时间相比较和/或比较质谱与编辑的质谱数据库来确认化合物。对于其它气相组分来说,通过具有导热率检测仪和火焰电离或质谱检测仪的气相色谱测定气相组成。在有和无馏分中的有机组分衍生化的情况下,均使用火焰电离检测仪通过气相色谱分析含水馏分。产物收率用每一产物馏分内存在的原料碳表示。重时空速(WHSV)定义为引入到体系内的原料重量/催化剂重量/小时,并只基于氧化烃原料的重量计,不包括存在于原料内的水。
生产含氧化合物
实施例6-氢化催化剂
通过添加溶解的亚硝酰硝酸钌水溶液到碳催化剂载体(UU Carbon,Calgon,其粒度限制为在通过60目筛网之后保留在120目筛网上的那些)上达到2.5%的钌负载,从而制备氢化催化剂。加入超过孔体积的水,然后在真空下蒸发掉直到催化剂自由流动。然后将催化剂在真空烘箱内在100℃下干燥过夜。
实施例7-APR/脱氧催化剂
使用初始浸润技术,通过在水中溶解六氯铂酸和高铼酸和然后将所述混合物加到单斜晶氧化锆催化剂载体(NorPro Saint-Gobain,产品编码SZ31164,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些)上,在金属前体随后分解之后,在催化剂上实现1.8%的铂负载和6.3%的铼负载目标,从而制备组合的APR和脱氧催化剂。所述制剂在真空烘箱内干燥过夜,和随后在400℃下在流动的空气物流内进行煅烧。
实施例8-将蔗糖转化成含氧化合物
使用实施例1中所述的反应器体系,研究实施例6和7中提到的催化剂体系,用于将蔗糖转化成含有含氧化合物的中间产物。使用实施例4所示的内径21.2mm的不锈钢管反应器进行研究,所述分析如实施例5所述完成。
将31g实施例6的氢化催化剂和76g实施例7的APR催化剂装载到反应器内,其中氢化催化剂在APR催化剂上部,并通过不锈钢筛网隔开。在原料进入到反应器内之前将外部氢气与原料组合。在下述反应器壁温下维持如图8中以10a、10b、10c、10d示出的反应器外部加热器:10a-125℃,10b-200℃,10c-265℃,10d-265℃,从而导致约~110-150℃的反应器床层温度用于氢化,和150-265℃用于APR/脱氧催化剂。所述范围分别指出了在每一催化剂床入口和出口处的合适的反应器壁温。表1中给出了操作39小时的实验结果。WHSV基于APR/脱氧催化剂的重量计。总的单-含氧化合物包括醇、酮、四氢呋喃和环状单-含氧化合物。环状单-含氧化合物包括其中所述环不含氧的化合物,例如环戊酮和环己酮。通过针对已知测量组分所计算的碳和总有机碳之间的差别,来测定包含在水相中的未知组分内的原料碳分数。
实施例9-APR/脱氧催化剂
如实施例7所述制备催化剂,所不同的是催化剂载体是四面体氧化锆(NorPro Saint-Gobain,产品编码SZ61152),其粒度限制为在通过18目筛网之后保留在60目筛网上的那些。
实施例10-APR/脱氧催化剂
使用初始浸润技术,将溶解在水中的六氯铂酸和高铼酸加入到单斜晶氧化锆催化剂载体(NorPro Saint-Gobain,产品编码SZ61164,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些)上,在金属前体随后分解之后,在催化剂上达到铂负载为1.9%和铼负载为1.8%的目标。所述制剂在真空烘箱内干燥过夜,和随后在400℃下在流动空气的物流中进行煅烧。
实施例11-APR/脱氧催化剂
如实施例7所述制备催化剂,所不同的是载体是氢过氧化物官能化的活性炭。通过缓慢添加活性炭(Calgon UU 60x120目碳)到30%氢过氧化物溶液中,然后使所述混合物静置过夜,从而首先制备载体。倾析掉水相并用去离子水洗涤碳三次,然后在100℃下真空干燥。然后使用初始浸润技术,将六氯铂酸和高铼酸在水中的溶液加入到载体上,在金属前体随后分解之后,在催化剂上达到铂负载为1.8%和铼负载为6.3%的目标。所述制剂在真空烘箱内在100℃下干燥过夜。
实施例12-山梨醇和甘油的转化
使用实施例1所述的反应器构造,研究实施例9、实施例10和实施例11中提到的催化剂体系将山梨醇或甘油转化成含有含氧化合物的中间产物,并如实施例5所述完成分析。使用实施例4所示的内径8.5mm的不锈钢管反应器进行研究。在所有情况下,维持反应器压力在625psig下。使用图8中以10a、10b、10c、10d所示的反应器外部加热器,控制表2所示的反应器入口和出口温度。表2中给出了这些实验的结果。
表2给出了催化剂组成、原料组成和操作条件对转化性能的影响。图12给出了在实验D和实验E中产生的单-含氧化合物的碳数分布。这两个实验之间的主要差别是反应温度。对于实验D来说,含小于或等于3个碳原子的单-含氧化合物占主导,而对于实验E来说,大部分单-含氧化合物含有大于或等于4个碳原子,从而表明在与氢气生成和脱氧反应相同的反应区内发生缩合反应。WHSV基于APR/脱氧催化剂的重量计。所产生的净氢气是在反应器出口处以H2形式存在的氢气,它不包括原位产生并消耗的氢气。总的单-含氧化合物包括醇、酮、四氢呋喃和环状单-含氧化合物。环状单-含氧化合物包括其中所述环不含氧的化合物,例如环戊酮和环己酮。通过针对已知测量组分所计算的碳和总有机碳之间的差别,来测定包含在水相中的未知组分内的原料碳分数。
Figure BPA00001332766200701
使用碱性催化剂缩合含氧化合物
实施例13
通过混合氧化锌粉末和氧化铝粉末(Dispal 18N4-80,Sasol North America,Houston,Texas)到1.0mol ZnO∶1mol Al2O3的目标比,制备铝酸锌催化剂载体。然后在1wt%HNO3浓度下添加稀硝酸到氧化铝中。通过添加水调节混合物的面团稠度,形成可处理的面团,然后使用实验室规模的挤出机挤出。挤出物在100℃下真空干燥过夜,然后在200℃下在流动的空气中进一步干燥1小时,随后在750℃下在流动的空气中煅烧4小时。然后粉碎所得材料并筛分。回收在通过18目筛网之后保留在60目筛网上的材料。
实施例14
使用初始浸润技术,将六氯铂酸加入到实施例13的煅烧材料中,实现1.0wt%的目标铂负载。催化剂在100℃下真空干燥过夜,并在400℃下在流动的空气中煅烧。
实施例15
使用初始浸润技术,将硝酸铂加入到实施例13的煅烧材料中,实现0.5wt%的目标铂负载。催化剂在100℃下真空干燥过夜,并在400℃下在流动的空气中煅烧。
实施例16
通过在0.11mol CuO和0.9mol ZnO与1molAl2O3的目标比下混合氧化锌、氧化铜(I)和氧化铝粉末(Dispal 18N4-80),制备铝酸铜锌催化剂。然后在1wt%HNO3浓度下添加稀硝酸到氧化铝中。通过添加水调节混合物的面团稠度,形成可处理的面团,然后使用实验室规模的挤出机挤出。挤出物在100℃下真空干燥过夜,然后在200℃下在流动的空气中进一步干燥1小时,随后在750℃下在流动的空气中煅烧4小时。然后粉碎所得材料并筛分。回收在通过18目筛网之后保留在60目筛网上的材料。
实施例17
通过添加在水中溶解的碳酸铯到Siralox二氧化硅-氧化铝催化剂载体(Sasol North America,Houston,Texas)中,制备铯改性的二氧化硅-氧化铝催化剂。基于最终催化剂的重量计,铯的目标负载为25wt%。这一材料在100℃下真空干燥24小时,并在500℃下在流动的空气中煅烧6小时。在煅烧之后,使用初始浸润技术添加铂,以实现1wt%的最终铂负载。在浸渍之后,干燥催化剂,和然后在500℃下在流动的空气中煅烧6小时。
实施例18
通过添加硝酸铈溶液到硅胶(Davisil grade 636,WR Grace Company)中达到25wt%CeO2的最终负载,从而制备铈改性的二氧化硅。然后所得材料在120℃下干燥6小时,并在550℃下在流动的空气中进一步煅烧6小时。使用初始浸润技术,将硝酸钯加入到煅烧过的材料中,实现0.5wt%的最终钯负载。然后这一材料在120℃下干燥6小时,并在550℃下在流动的空气中进一步煅烧6小时。
实施例19
针对各种含氧化合物的气相缩合,研究实施例14-18中提到的催化剂体系。使用实施例4中所述的内径大小为8.5mm和21.2mm的不锈钢管反应器并在图8与10中所示的反应器体系中进行研究。将15-18ml催化剂负载到较小的反应器内,和将50-70ml催化剂负载到较大的反应器内。在所有情况下,在使用之前,在400℃下在流动的氢气中还原催化剂。
如实施例5所述收集并分析有机液相。对于以上实施例14-18中所述的催化剂,表3作为操作条件、原料组成和所添加的金属组分的函数给出了有机产物的收率与组成。大于100%的报道有机相收率源于在工艺物流流量或组成的测量中的实验不确定性。未缩合组分是不要求由给定原料形成新碳碳键的那些组分。为了简便起见,含有小于或等于5个碳原子的所有化合物均视为未缩合组分。全部缩合产物是含有大于或等于6个碳原子的那些化合物,它们要求由给定原料形成新的碳碳键。
实验F和G证明可通过选择氢化功能例如Pt或Pd来影响产物的选择性。与含0.5%钯的催化剂相比,含1%铂的催化剂在较大程度上产生链烷烃。含0.5%钯的催化剂有利于产生单-含氧化合物,主要为酮。实验H和I进一步强化了这一概念。实验H表明可使用异丙醇作为原料在高收率下获得缩合的单-含氧化合物组分,从而在反应器出口处有机产物>97%和含有>90%的全部碳。通过提高反应温度和用铜驱动氢化反应可改变选择性,以获得大的烯烃收率(实验I)。实验J、K和L表明可使用许多其它非均相催化剂促进含氧化合物的缩合,然后氢化起始缩合产物。实验K和L表明当温度从300℃下降到250℃时,缩合速度下降,结果在所得有机相内缩合产物的转化率从81wt%下降到18wt%。
Figure BPA00001332766200741
使用酸-碱催化剂缩合含氧化合物
实施例20
通过粉碎可商购的水滑石载体(ESM-350,ASM Catalysts,Baton Rouge,LA)并通过分级筛网,实现大于60目和小于18目的粒度,从而由所述材料制备水滑石催化剂。然后在石英管反应器内,在450℃下,在流动的氮气中煅烧所述材料6小时。
实施例21
使用初始浸润技术,将铂加入到实施例20的水滑石催化剂中,实现1wt%的最终目标铂负载。含铂的前体是六氯铂酸H2PtCl6。将浸渍材料在100℃下真空干燥过夜,和随后在400℃下在流动的空气中煅烧2小时。
实施例22
使用初始浸润技术,将铂和锡加入到实施例20的水滑石催化剂中,实现1wt%Pt和0.2wt%Sn的最终目标负载。含铂的前体是六氯铂酸H2PtCl6,而锡衍生自氯化锡SnCl2·2H2O。将浸渍材料在100℃下真空干燥过夜,和随后在450℃下在流动的空气中煅烧8小时。
实施例23
使用初始浸润技术,实现5wt%Mg的最终目标负载,制备在粒状氧化锆上载带的5%氧化镁催化剂。以硝酸镁形式添加镁,并在100℃下真空干燥过夜,随后在450℃下在流动的空气中煅烧8小时。使用初始浸润技术,将硝酸钯水溶液加入到煅烧的材料中,实现0.5wt%目标钯负载。第二次干燥所述催化剂,并在400℃下在流动的空气中煅烧6小时。
实施例24
通过混合氧化锌粉末和氧化铝粉末(Dispal 18N4-80,Sasol North America,Houston,Texas),达到0.85mol ZnO与1mol Al2O3的目标比,制备铝酸锌催化剂载体。在1wt%HNO3浓度下添加稀硝酸到全部固体中。通过添加水调节面团稠度形成适合于挤出的可处理的面团,和使用实验室规模的挤出机挤出所述混合物。挤出物在100℃下真空干燥过夜,和然后在750℃下在流动的空气中煅烧8小时。然后筛分所述材料为18×60目。使用初始浸润技术,将硝酸钯的水溶液加入到煅烧的材料中,实现0.5wt%的目标钯负载。然后第二次干燥这一催化剂,并在400℃下在流动的空气中煅烧6小时。
实施例25
使用在实施例21-24中提到的催化剂体系,利用各种含氧化合物进行气相缩合反应。使用实施例4所述的内径大小为8.5mm和21.2mm的不锈钢管反应器和实施例1与3所述的反应器体系进行研究。将15-18ml催化剂装载到较小的反应器内,而将50-70ml催化剂负载到较大的反应器内。在所有情况下,在使用之前,在400℃下,在流动的氢气中还原催化剂。
如实施例5所述收集并分析有机液相。对于以上实施例21和22中所述的水滑石催化剂,表4作为操作条件、原料组成和所添加的金属组分的函数给出了有机产物的收率与组成。实验数据表明在不存在添加的金属氢化组分的情况下,可由丙酮和异丙醇形成主要的烃产物。在实验M中,有机相产物主要含有9个碳的甲基取代的环己烯,在表4中将其分类为其它C6+烃。添加铂(实验N)到这一催化剂中有利于形成缩合的单-含氧化合物产物,主要为酮和醇,且由于酮和醇脱氧的结果形成一些链烷烃。通过用锡削弱铂,并在较高压力下操作(实验O),选择性进一步向有利于缩合的单-含氧化合物方向转移。实验P、Q、R和S描述了对于含有戊醇和戊酮的混合原料的缩合来说反应温度的影响。当温度从300℃升高到375℃时,产物组成的逐渐变化变得明显,和当温度升高时,对缩合的单-含氧化合物的选择性下降和对缩合的链烷烃的选择性增加。
表5给出了对于实施例23和24的催化剂来说原料组分和反应温度对有机产物收率和组成的影响。实验T和U比较了2-戊酮和2-甲基四氢呋喃的缩合。总之,2-戊酮的缩合快于2-甲基四氢呋喃。但约30%四氢呋喃在这些条件下转化成缩合产物。实验10和11表明当使用纯异丙醇原料时反应温度的影响。在300℃(实验V)下单-含氧缩合产物占主导,而在400℃(实验W)下大部分产物由烃组成。与表4和5中列出的其它实验相比,实验W是值得注意的,因为有机产物含有较高含量的烯烃。添加戊酸到原料(实验X)中抑制总的缩合速度并使选择性由链烷烃朝向其它烃(主要为取代的芳烃化合物)偏移。
大于100%的报道有机相收率源于在工艺物流流量或组成的测量中的实验不确定性。未缩合组分是不要求由给定原料形成新碳碳键的那些组分。为了简便起见,含有小于或等于5个碳原子的所有化合物均被视为未缩合组分。全部缩合产物是含有大于或等于6个碳原子的那些化合物,它们要求由给定原料形成新的碳碳键。
Figure BPA00001332766200781
Figure BPA00001332766200791
含氧化合物碱缩合后接着脱氧
实施例26
类似于实施例13制备铝酸锌催化剂载体,所不同的是降低氧化锌的量,实现0.85mol ZnO与1mol Al2O3的目标比值。
实施例27
使用初始浸润技术,将六氯铂酸加入到实施例26的煅烧材料中,实现1.0wt%的目标铂负载。催化剂在100℃下真空干燥过夜,并在400℃下在流动的空气中进行煅烧。
实施例28
针对各种含氧化合物气相缩合和随后转化成烃,研究实施例27和15中提到的催化剂体系。使用实施例4中所述的内径大小为21.2mm的不锈钢管反应器和实施例2与3中所述的反应器体系进行研究。将每种催化剂约100ml装载到两个单独的反应器内。排列两个反应器,以便第一反应器的流出物流入到第二反应器内。第一反应器含有实施例15的催化剂和第二反应器含有实施例27的催化剂。在使用之前,在400℃下,在流动的氢气中还原催化剂。在所有情况下,在进入反应器内之前,使氢气与原料组合。
如实施例5所述收集并分析产物。表6作为操作条件和由连续反应获得的原料组成的函数给出了有机产物的收率与组成。未缩合组分是不要求由给定原料形成新碳碳键的那些组分。为了简便起见,含有小于或等于5个碳原子的所有化合物均被视为未缩合组分。全部缩合产物是含有大于或等于6个碳原子的那些化合物,它们要求由给定原料形成新的碳碳键。
实验AA、BB、CC和DD证明,可在连续缩合和脱氧反应中使用各种含氧化合物,以得到主要含C6+烷烃的产物。与表3所示的结果相比,所述产物含有更大部分烷烃和低含量的氧化化合物。这证明与使用只具有碱性和氢化功能的催化剂相比,使用具有不同功能的催化剂(即在第一反应器内为碱+氢化催化剂,接着在第二反应器内为酸+碱+氢化催化剂)可更有效地由氧化化合物生产烃。在实验EE中,在实验AA-DD中生产的有机产物通过反应体系循环。在这一处理之后,最终产物主要含有烷烃和只含痕量含氧组分。如此生产的烃作为液体燃料例如汽油、柴油和喷气燃料是有价值的。
表6-含氧化合物的气相缩合和脱氧
原料B-100%异丙醇
原料D-100%2-戊酮
原料G-50%异丙醇,50%2-戊酮
原料H-50%丙酮,50%2-戊酮
原料I-来自AA-DD的有机相
产物分馏
实施例29
收集实施例28中实验EE的材料并进行蒸馏步骤。使用简单的单段实验室间歇蒸馏装置在大气压下进行蒸馏。将2.950升液体产物加入到加热的圆底烧瓶中,所述加热的圆底烧瓶在实验开始时作为再沸器。冷凝塔顶产物,并基于与沸腾液体平衡的气相温度分成单独的样品,如实施例5所述完成馏分的分析。表7中给出了产物馏分的碳数分布。所有馏分主要含有烷烃。
回收的沸点低于150℃的馏分含有主要在C5-10范围内且适合于用作汽油共混组分的烷烃。较高沸点范围的材料可能掺入到馏分燃料、煤油和柴油内。
实施例30
根据ASTM测试方法D1655,通过商业测试服务(Intertek Testing Services,Illinois),分析在150-250℃范围内沸腾的蒸馏产物是否适合作为喷气燃料。样品通过所有要求的技术规格,闪点和密度技术规格除外。可能的情形是,闪点技术规格可通过利用改进的产物蒸馏来满足,而低密度可归因于样品内高的烷烃含量。
表7-实施例30的产物的蒸馏结果
Figure BPA00001332766200821
使用单一催化剂体系由甘油生产C5+化合物
实施例31
使用初始浸润技术,制备载带在活性炭(Calgon UU 60x120目碳)上的含有铂和铼的双金属催化剂体系(5wt%铂且Pt∶Re的摩尔比为1∶2.5)。将活性炭缓慢地加入到30%氢过氧化物溶液中。在完成碳的添加之后,静置混合物过夜。倾析掉水相,并用去离子水洗涤碳三次,然后在100℃下真空干燥。在搅拌的同时逐滴施加体积等于待浸渍的碳的初始润湿体积10.4mL且含有六水合二氢六氯铂酸(IV)的水溶液(Alfa Aesar,39.85%Pt)和高铼酸溶液(Alfa Aesar,76.41%HReO4)到氢过氧化物官能化的碳上。在100℃下真空干燥润湿的碳。
实施例32
将104.4g 1∶2.5Pt/Re催化剂装载到实施例4和实施例1中所述的63.5cm长的反应器管内,所不同的是如图7所示通过与鼓风机和加热器提供的热空气物流换热控制温度分布。在将原料液体引入到催化剂床内之前,在350℃下用流动的氢气还原催化剂2小时。在预热到182℃之后,在0.97g甘油/g催化剂/小时的重时空速下,将含有在水溶液内的约20ppm硫酸盐的50wt%甘油(Colgate Palmolive USP Grade)下流进料穿过反应器。在409℃下,热空气上流进料通过环状空间。使用实施例4所示的滑动热电偶,测量在催化剂床层中心内的轴向温度分布,并描述于图13中。维持分离器的压力在600psig下。反应器的流出物用水冷冷凝器冷却,并在三相分离器内分离。采用气相色谱分析气相产物,所述气相色谱允许分析氢气、二氧化碳、甲烷、乙烷、丙烷、丁烷、戊烷和己烷。收集有机相,称重,并输送到Southwest Research Institute(San Antonio,Texas)用于汽油分析。收集水相并称重,然后使用GCMS以及GC-FID进行分析。在这一体系中,甘油完全转化。下表8给出了氢气的收率以及含碳的产物化合物的收率。
表8-实施例32中甘油转化的收率
  产物
  H2mol/甘油原料mol   1.03
  %碳/原料内的碳
  CO2   31.79
  甲烷   7.35
  乙烷   7.28
  丙烷   5.25
  丁烷   0.56
  戊烷   1.40
  己烷   2.05
  C7-C13正   0.87
  C4-C13异   2.87
  C6-C12芳烃   3.87
  C8-C11萘/环烷烃   1.89
  C5-C10烯烃   5.67
  有机相内的C4-C6氧化化合物   1.86
  水相内的乙醇   0.39
  水相内的乙酸   1.33
  水相内的丙酮   13.19
  水相内的丙酸   4.69
  水相内的丙二醇   2.79
  水相内的1-丙醇   1.71
  水相内的异丙醇   1.28
  水相内的C4/C5/C6   2.20
由糖醇生产C5+化合物
实施例33
采用引入到实施例1的反应器体系内的氧化烃(例如50wt%甘油/水混合物或50wt%山梨醇/水混合物)进行实验。通过在各种浓度(1、20或50ppm)下添加硫酸钾进一步改性原料。
实施例34
将总计10.61g 1∶2.5Pt/Re催化剂装载到实施例4中所述的8.5mm不锈钢反应器管内。在将液体原料引入到催化剂床内之前,在350℃下,用流动的氢气还原催化剂2小时。将含有在水溶液内的约1ppm硫酸盐的50wt%甘油溶液在1.24g甘油/g催化剂/小时的WHSV下下流进料穿过反应器。利用作为硫酸钾添加的20ppm和50ppm硫酸盐,进行随后的实验。模块加热器控制在260℃下,并将反应器压力维持在600psig下。
收集有机相,分离、称重,并采用实施例5中所述的GC-MS进行分析。对于加入到体系中的不同量的硫酸盐,下表9给出了氢气的收率以及含碳的产物化合物的收率。在这一体系中,甘油转化完全。该表给出了在添加大于20ppm硫酸盐时生成液体有机相。
表9-实施例34中氢气和含碳的产物的收率
Figure BPA00001332766200851
实施例35
将总计10.61g 1∶2.5Pt/Re催化剂装载到实施例4中所述的8.5mm不锈钢反应器管和实施例1所述的反应器体系内。在将液体原料引入到催化剂床内之前,在350℃下,用流动的氢气还原催化剂2小时。将含有在水内的约1ppm或20ppm硫酸盐的50wt%甘油溶液在1.24g甘油/g催化剂/小时的WHSV下下流进料穿过反应器。控制模块加热器,以便反应器第一10.1cm保持在260℃下,反应器第二10.1cm保持在约306℃下,反应器下一个10.1cm保持在约355℃下,和反应器最后一个10.1cm保持在400℃下。分离器压力维持在600psig下。
反应器的流出物用水冷冷凝器冷却,在三相分离器内分离,然后如实施例5所述分析。在这一体系中,甘油完全转化。下表10给出了氢气的收率以及含碳的产物化合物的收率。
表10-实施例35的氢气和含碳的产物的收率
实施例36
使用初始浸润技术,制备在活性炭(Calgon UU 60×120目碳)上载带的含铂和铼的双金属催化剂体系(5wt%铂,且Pt∶Re的摩尔比为1∶5)。将活性炭缓慢地加入到30%氢过氧化物溶液中。在碳的添加完成之后,静置混合物过夜。倾析掉水相并且用去离子水洗涤碳三次,然后在100℃下真空干燥。在搅拌的同时逐滴施加体积等于待浸渍的碳的初始润湿体积且含有六水合二氢六氯铂酸(IV)的水溶液(Alfa Aesar,39.85%Pt)和高铼酸溶液(Alfa Aesar,76.41%HReO4)到氢过氧化物官能化的碳上。在100℃下真空干燥润湿的碳。
实施例37
将11.97g实施例36中所述的1∶5 Pt/Re催化剂装载到实施例4中所述的直径8.5mm的不锈钢管和实施例1所述的反应器体系内。在将液体原料引入到催化剂床内之前,在350℃下,用流动的氢气还原催化剂2小时。含有在水溶液内的0ppm硫酸盐的57.2wt%山梨醇溶液在1.20g山梨醇/g催化剂/小时的WHSV下下流进料穿过反应器。控制模块加热器,以便反应器第一10.1cm保持在260℃下,反应器第二10.1cm保持在约260℃下,反应器下一个10.1cm保持在约360℃下,和反应器最后一个10.1cm保持在410℃下。分离器压力维持在600psig下。反应器的流出物用水冷冷凝器冷却,在三相分离器内分离,然后如实施例5所述分析产物馏分。另外,收集有机相,分离,并称重,并将样品输送到Southwest Research Institute(San Antonia,Texas)用于汽油分析。在这一体系中,山梨醇完全转化。下表11给出了氢气的收率以及含碳的产物化合物的收率。
表11-实施例37的氢气和含碳的产物的收率
使用酸性催化剂将含氧化合物转化成C5+化合物
实施例38
制备1.0mol硝酸镧水溶液并加入到H-丝光沸石挤出物(BASF 712A-5-2641-1)上,在金属前体随后分解之后在催化剂上的目标为3wt%La。简短地混合La溶液与催化剂,然后在80℃下浸泡6小时。然后脱除过量液体,并用去离子水漂洗催化剂。然后催化剂在真空烘箱内干燥,并在550℃下在空气中煅烧。接着粉碎催化剂并筛分,以限制粒度为在通过18目筛网之后保留在60目筛网上的那些。
实施例39
将去离子水加入到H-丝光沸石挤出物(BASF 712A-5-2641-1,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些)上,直到额外的水覆盖载体。然后将0.36mol硝酸镍的水溶液加入到润湿的载体中,在金属前体分解之后,实现1wt%Ni的目标。简短地混合催化剂并静置浸泡48小时。然后催化剂在真空烘箱内干燥,并在400℃下在空气中煅烧。
实施例40
制备1.0mol氯化铕水溶液,并加入到H-丝光沸石挤出物(BASF 712A-5-2641-1,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些)上,在金属前体随后分解之后,在催化剂上实现3wt%Eu的目标。简短地混合Eu溶液与催化剂,然后在80℃下浸泡6小时。然后脱除过量液体,并用去离子水漂洗催化剂。然后催化剂在真空烘箱内干燥,并在550℃下在空气中煅烧。接着,粉碎催化剂并筛分,以限制粒度为在通过18目筛网之后保留在60目筛网上的那些。
实施例41
粉碎H-β沸石挤出物(直径1.6mm的挤出物)并筛分,以限制粒度为在通过18目筛网之后保留在60目筛网上的那些。通过初始润湿添加硝酸镓水溶液,在金属前体分解之后,在催化剂上实现1.2wt%Ga的目标。然后催化剂在真空烘箱内干燥,并在400℃下在空气中煅烧。
实施例42
用去离子水稀释磷酸,并通过初始润湿添加到Davicat SiO2/Al2O3载体(Grace-Davis,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些)上,在催化剂上实现5wt%磷的目标。然后催化剂在真空烘箱内干燥过夜,随后在500℃下在流动的空气物流中煅烧。
实施例43
使用初始浸润技术,将硝酸镍水溶液加入到氧化铝粘合的ZSM-5沸石制剂(SiO2∶Al2O3 30∶1,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些)中,实现1.0wt%的镍负载目标。所述制剂在真空烘箱内干燥过夜,随后在400℃下在流动的空气物流中煅烧。
实施例44
使用初始浸润技术,将硝酸镓水溶液加入到氧化铝粘合的ZSM-5沸石制剂(SiO2∶Al2O3 80∶1,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些)中,实现1.2wt%的镓负载目标。所述制剂在真空烘箱内干燥过夜,随后在400℃下在流动的空气物流中煅烧。
实施例45
在325-375℃的温度和200-625psig的总压力下以及在WHSV为1.9-42.8下,针对各种含氧化合物的气相缩合,研究使用实施例38-44的方法生产的催化剂体系。在这些研究中,使用两种不同尺寸的反应器;将15和18ml催化剂装载到8.5mm内径的不锈钢管反应器内,或者将50-70ml催化剂装载到21.2mm内径的不锈钢管反应器(实施例4)内。取决于原料,反应工艺流程如实施例1或实施例3所述,且如实施例5所述完成分析。
表12中给出了这些实验的操作条件和结果,在其中原料组成的加合小于100%的情况下,余量为水。正如这些结果所述,各种含氧化合物(其中包括醇和酮(3碳和5碳二者))是可在宽范围的条件下转化成C5+烃的底物。沸石特别适用于这些转化中,正如实验FF、GG、HH、II、JJ、LL和MM所示。实验FF、GG、HH、II和JJ表明经丝光沸石和β沸石醇转化的主要产物是烯属缩合产物。磷浸渍的二氧化硅氧化铝催化剂(实验KK)证明了类似的产物选择性曲线。相反,ZSM-5基催化剂(实验LL和MM)产生大部分芳烃和链烷烃组分。
Figure BPA00001332766200911
由氧化烃生产C5+化合物
实施例46
进行与实施例44相同的催化剂制备技术,所不同的是氧化铝粘合的ZSM-5材料中SiO2∶Al2O3之比为30∶1。
实施例47
针对在375℃和200psig下气相缩合含氧化合物的混合物,研究使用实施例46的方法生产的催化剂。在这一研究中,将11.3g催化剂装载到实施例4所述的8.5mm内径的不锈钢管反应器内。反应工艺流程如实施例3所述。含氧化合物混合物包括以重量计25%2-戊酮、20%3-戊酮、20%2-戊醇、10%异丙醇、10%戊酸、5%2-甲基四氢呋喃。使用实施例3的反应器体系中的一个泵添加这一混合物,同时第二泵添加水,以便全部组合原料含有60wt%水和40wt%混合含氧化合物。
监控所述工艺128小时的时间段,并周期性从体系中取出样品,以分析工艺性能。如实施例5所述完成每一分析。图15作为时间的函数给出了以C5+化合物形式离开反应器体系的原料碳的分数。图16作为时间的函数给出了以芳烃形式离开反应器体系的原料碳的分数。图14作为时间的函数给出了以含氧化合物形式离开反应器体系的原料碳分数。
如图14、15和16所示,采用含有含氧化合物(其中包括醇、酮、酸和四氢呋喃)的含氧化合物混合物,所述催化剂体系能操作长的时间段。随着时间流逝,C5+化合物的生产保持相对稳定,而存在于产物内的芳烃含量下降,和氧化化合物的穿透时间增加(图14)。据认为催化剂失活主要是由于含碳沉积物累积限制了反应物接近活性位点所致。
实施例48
使用初始浸润技术,将六氯铂酸和高铼酸的水溶液加入到碳催化剂载体(OLC-AW,Calgon,其粒度限制为在通过120目筛网之后保留在50目筛网上的那些)中,在金属前体随后分解之后,在催化剂上达到1.8%的铂负载和6.3%的铼负载的目标。所述制剂在真空烘箱内干燥过夜,随后在400℃下在流动的氢气物流内还原。在还原之后,将催化剂储存在氮气氛围内备用。
实施例49
进行与实施例44相同的催化剂制备技术,所不同的是氧化铝粘合的ZSM-5材料中SiO2∶Al2O3之比为150∶1。
实施例50
使用初始浸润技术,将在水中溶解的六氯铂酸和高铼酸加入到单斜晶氧化锆催化剂载体(NorPro Saint Gobain,产品编码SZ31164,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些)中,在金属前体随后分解之后,在催化剂上达到1.8%的铂负载和6.3%的铼负载的目标。所述制剂在真空烘箱内干燥过夜,随后在400℃下在流动的空气物流内煅烧。
实施例51
进行实施例50制备催化剂所使用的相同的工序,所不同的是目标铼负载为1.8%。
实施例52
混合SiO2∶Al2O3比为80∶1的ZSM-5沸石(Zeolyst International,CBV 8014)与摩尔比为1∶1的ZnO和Al2O3粉末,以便组合的ZnO和Al2O3(Dispal 18N4-80,Sasol North America,Houston,Texas)占全部固体的30wt%。在2wt%HNO3浓度下添加稀硝酸到组合的ZnO和Al2O3中。通过添加水调节面团稠度形成适合于挤出的可处理的面团,并使用实验室规模的挤出机挤出所述混合物。挤出物在100℃下真空干燥过夜,随后在600℃下在流动的空气中煅烧。
实施例53
使用初始浸润技术,将硝酸镓的水溶液加入到实施例52的材料中,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些,得到1.2wt%的镓负载目标。所述制剂在真空烘箱内干燥过夜,随后在400℃下在流动的氢气物流中煅烧。
实施例54
使用初始浸润技术,将硝酸镍的水溶液加入到实施例52的材料中,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些,得到1.0wt%的镍负载目标。所述制剂在真空烘箱内干燥过夜,随后在400℃下在流动的氢气物流中煅烧。
实施例55
使用实施例2所述的反应器构造,针对甘油、山梨醇、蔗糖和木糖转化成烃,研究实施例6、46、48、49、51、53和54中提到的催化剂体系。使用两个实施例4所述的21.2mm内径的不锈钢管反应器进行研究,且如实施例5所述完成分析。将钨酸化氧化锆(NorPro-SaintGobain,产品编码SZ61143,其粒度限制为在通过18目筛网之后保留在60目筛网上的那些)置于在第二反应器内安装的缩合催化剂之上,提供第一反应器流出物在进入缩合催化剂之前的气化区。
表13给出了这些研究的结果。对于实验NN(38%蔗糖+7%木糖)来说,在进入到反应器内之前,将目标流量等于3倍蔗糖摩尔数加上1.5倍木糖摩尔数的氢气物流与原料组合。其它实验在没有外部供应氢气的情况下进行。使用图9中以10a、10b、10c、10d、23a、23b、23c和23d示出的反应器外部加热器维持反应器壁温,正如表13所示。表13中公开的这些研究的烃产物分成C4-馏分(它在环境温度和压力下主要存在于气相内)和C5+馏分(它通常适合掺入到液体燃料内)。结果表明各种糖和多元醇可通过此处所述的方法容易地转化成C5+烃。产物主要含有链烷烃和芳烃成分。以下给出了链烷烃和芳烃的细分。
Figure BPA00001332766200951
Figure BPA00001332766200961
实施例56
将实施例55中所述且在表13中通过实验QQ例举的方法操作大于400小时的时间段。在操作中在起始时间段之后转化成芳烃组分的转化率和烃的收率下降,如图18和19中作为周期1所示。在图18中,作为原料热值的百分数给出了在第二反应器出口处存在的C5+烃的热值。在图19中,作为原料内存在的碳的百分数给出了在第二反应器出口处以芳烃形式存在的碳。在投入生产约120小时之后,旁通过第二反应器,而第一反应器继续操作。然后在第二反应器内进行催化剂的氧化再生。在再生过程中,启动氮气和空气流,使得在第二反应器入口处的目标氧浓度为1mol%。然后升高第二反应器模块温度到500℃,且继续氮气和氧气流直到在第二反应器出口处不再检测到二氧化碳。然后升高氧浓度到5mol%的目标水平。继续这一流动,直到在第二反应器出口处不再检测到二氧化碳。此刻,中断氧气流而继续氮气流。然后降低第二反应器模块温度到400℃,同时将流经催化剂床的气体组成变化为氢气。然后调节第二反应器模块温度到表13中针对实验QQ所示的那些。然后将第二反应器返回到在线状态,目标是表13中针对实验QQ所示的条件。然后对第二反应器进行多个周期的操作和再生,其结果是图18和19中所示的操作时间段。这些结果表明,缩合催化剂的再生导致活性恢复,这与含碳材料沉积是催化剂性能随时间下降的主要原因的理论一致。此外,结果表明,缩合催化剂可以多次再生,而性能没有明显损失。
制备汽油组合物
实施例57
通过混合基础汽油与基于最终汽油组合物的体积计5vol%实施例55中所述方法且在表13中通过实验PP例举的产物,来制备汽油组合物(汽油组合物GC1)。
表14中详细描述了所使用的基础汽油和所制备的汽油组合物。
实施例58
通过混合基础汽油与基于最终汽油组合物的体积计10vol%实施例55中描述的方法且在表13的实验OO例举的产物,制备汽油组合物(汽油组合物GC2)。
表14中详细描述了所使用的基础汽油和所制备的汽油组合物。
表14
  性能   单位   基础汽油   GC1   GC2
  RVP   kPa   92.9   88.7   85.8
  密度   Kg/m3   727.5   735.2   736.6
  IBP   ℃   26.9   27.6   27.6
  FBP   ℃   194.3   206.8   198.2
  残余物   vol%   1   1.2   1.1
  回收率   vol%   95.9   95.8   95.8
  损失   vol%   3.1   3   3.1
  T10   ℃   39.9   40.2   41.2
  T20   ℃   51   51.5   52.8
  T30   ℃   63.4   64.3   65.9
  T40   ℃   76.4   78.4   79.8
  T50   ℃   89.9   92.5   94.2
  T60   ℃   102.6   106   107.4
  T70   ℃   114.8   118.8   120.1
  T80   ℃   129   134   136.1
  T90   ℃   149   154.1   155.6
  T95   ℃   165   170.4   171
  E70   vol%   35.1   34.1   32.9
  E100   vol%   57.9   55.3   54
  E120   vol%   74   70.7   69.8
  E150   vol%   90   88   87
  E180   vol%   97.5   96.6   96.7
  RON   95.6   96.4   96.3
  MON   85.4   85.5   85.1
根据上表14中列出的信息可看出,含通过实施例55所述方法制备的产物的汽油组合物具有与基础汽油非常类似的蒸馏特征,和有利地具有比基础汽油高的道路辛烷值(RON)。根据上表14中列出的信息也可看出,与基础汽油相比,含通过实施例55所述方法制备的产物的汽油组合物具有较低的Reid蒸气压(RVP),这可有利地用于降低汽油的RVP,以便满足汽油组合物的特定技术规格,或者允许添加更大量的由于挥发性导致可能被限制添加到汽油组合物内的汽油组分。
实施例59
使用山梨醇和蔗糖作为原料制备两种单独的汽油组合物,然后与石油基汽油相比分析它们的碳14(14C)浓度。
使用类似于实施例55中描述的反应器体系(不同的是所述体系包括领先/滞后结构中的第二缩合反应器),由50%山梨醇在水中的溶液生产第一汽油样品(V-18510)。如实施例50所述制备APR/脱氧催化剂,同时如实施例43所述制备缩合催化剂。在各种温度和条件下进行使用山梨醇原料的多次试验。在单一反应器内,在低到高的温度曲线下进行APR/脱氧反应,其中温度在入口处从110℃变化到130℃和在出口处从235℃变化到250℃。在两个反应器体系内进行缩合反应,其中在领先反应器内的温度从345℃变化到385℃,和滞后反应器内的温度从260℃变化到385℃。对于APR/脱氧反应来说,压力条件也从620psig变化到630psig,和对于缩合反应来说,从95psig变化到105psig。对于APR/脱氧催化剂来说,WHSV从0.9变化到1.1hr-1
使用图6所示的反应器体系,由蔗糖生产的汽油的集合样品制备第二汽油样品(V-18512)。在各种温度、压力和WHSV下,经在UU碳(Calgon,其粒度限制为在通过60目筛网之后保留在120目筛网上的那些)上含有2.5%铼的氢化催化剂进料蔗糖,和对于山梨醇原料使用以上所述的APR/脱氧催化剂和缩合催化剂。氢化反应的条件随在115-140℃范围内的温度和在620-680psig范围内的压力而变化。对于APR/脱氧来说,WHSV、温度和压力条件与针对山梨醇所述的一样。在单一的缩合反应器内进行缩合反应,其中WHSV、温度和压力条件与以上针对领先反应器所述的相同。
将来自山梨醇各次试验的产物物流组合成单一的样品(V-18510),然后进行实施例29中所述的蒸馏步骤。还将来自蔗糖各次试验的产物物流组合成单一的样品(V-18512),然后进行实施例29中所述的蒸馏步骤。为了进一步共混成最终的燃料组合物,收集沸点低于210℃的蒸馏馏分。还收集每一馏分的样品用于14C测试。
使用ASTM-D6866(使用放射性碳和同位素比质谱分析测定天然材料中生物基内含物的测试方法),由Beta Analytical Inc(Miami,Florida USA),进行碳14测试。除了对样品V-18510和V-18512进行14C测试以外,还对从Madison,Wisconsin的独立零售气油站收集的两个附加的样品进行生物基测定。第一样品(V-RRGWE)是确认为含至多10%乙醇的常规的无铅汽油,而第二样品(V-SVPNE)则是高级汽油。下表15中列出了研究结果。
  样品No.   ASTM-D6866方法   生物基材料的平均百分数
  V-18510   方法-B   99%
  V-18512   方法-B   99%
  V-RRGWE   方法-B   7%
  V-SVPNE   方法-B   2%

Claims (10)

1.一种液体燃料组合物,它包含通过下述方法制备的由水溶性氧化烃衍生的含至少一种C4+化合物的组分的蒸馏馏分,所述方法包括:
在含水液相和/或气相中提供水和含C1+O1+烃的水溶性氧化烃;
提供氢气;
在脱氧催化剂存在下,在脱氧温度和脱氧压力下,在液相和/或气相中使氧化烃与氢气催化反应,以在反应物流内产生含C1+O1-3烃的含氧化合物;和
在缩合催化剂存在下,在缩合温度和缩合压力下,使含氧化合物在液相和/或气相中催化反应,以产生C4+化合物,
其中C4+化合物包括选自C4+醇、C4+酮、C4+烷烃、C4+链烯烃、C5+环烷烃、C5+环烯烃、芳烃、稠合芳烃及它们的混合物的物质;
其中所述液体燃料组合物选自:
汽油组合物,所述汽油组合物的初沸点为15-70℃(IP123),终沸点为至多230℃(IP123),RON为85-110(ASTM D2699),和MON为75-100(ASTM D2700);
柴油燃料组合物,所述柴油燃料组合物的初沸点为130-230℃(IP123),终沸点为至多410℃(IP123),和辛烷值为35-120(ASTM D613);和
煤油组合物,所述煤油组合物的初沸点为80-150℃,终沸点为200-320℃,和在-20℃下的粘度为0.8-10mm2/s(ASTM D445)。
2.权利要求1的液体燃料组合物,其中由水溶性氧化烃衍生的含至少一种C4+化合物的组分的年龄小于100年,这由所述组分的碳14浓度计算。
3.权利要求1或2的液体燃料组合物,其中所述液体燃料组合物另外包含一种或多种燃料添加剂。
4.一种汽油组合物,所述汽油组合物包含可由水溶性氧化烃衍生的含至少一种C4+化合物的组分,所述组分的终沸点为150-220℃,在15℃下的密度为700-890kg/m3,硫含量至多5mg/kg,氧含量至多3.5wt%,RON为80-110,和MON为70-100,其中所述汽油组合物的初沸点为15-70℃(IP123),终沸点为至多220℃(IP123),RON为85-110(ASTM D2699),和MON为75-100(ASTM D2700)。
5.一种柴油燃料组合物,所述柴油燃料组合物包含可由水溶性氧化烃衍生的含至少一种C4+化合物的组分,所述组分的T95为220-380℃,闪点为30-70℃,在15℃下的密度为700-900kg/m3,硫含量至多5mg/kg,氧含量至多10wt%,和在40℃下的粘度为0.5-6cSt,其中所述柴油燃料组合物的初沸点为130-230℃(IP123),终沸点为至多410℃(IP123),和辛烷值为35-120(ASTM D613)。
6.一种煤油组合物,所述煤油组合物包含可由水溶性氧化烃衍生的含至少一种C4+化合物的组分,所述组分的初沸点为120-215℃,终沸点为220-320℃,在15℃下的密度为700-890kg/m3,硫含量至多0.1wt%,总芳烃含量至多30vol%,冻点低于或等于-40℃,烟点为至少18mm,在-20℃下的粘度为1-10cSt,和能量密度为40-47MJ/kg,其中所述煤油组合物的初沸点为80-150℃,终沸点为200-320℃,和在-20℃下的粘度为0.8-10mm2/s(ASTM D445)。
7.权利要求1的液体燃料组合物的制备方法,所述方法包括混合下述物质:
(a)通过下述方法制备的由水溶性氧化烃衍生的含至少一种C4+化合物的组分的蒸馏馏分,所述方法包括:
在含水液相和/或气相中提供水和含C1+O1+烃的水溶性氧化烃;
提供氢气;
在脱氧催化剂存在下,在脱氧温度和脱氧压力下,在液相和/或气相中使氧化烃与氢气催化反应,以在反应物流内产生含C1+O1-3烃的含氧化合物;和
在缩合催化剂存在下,在缩合温度和缩合压力下,使含氧化合物在液相和/或气相中催化反应,以产生C4+化合物,
其中C4+化合物包括选自C4+醇、C4+酮、C4+烷烃、C4+链烯烃、C5+环烷烃、C5+环烯烃、芳烃、稠合芳烃及它们的混合物的物质;和
(b)至少一种燃料组分。
8.权利要求4的汽油组合物的制备方法,所述方法包括混合下述物质:
(a)可由水溶性氧化烃衍生的含至少一种C4+化合物的组分,所述组分的终沸点为150-250℃,在15℃下的密度为700-890kg/m3,硫含量至多5mg/kg,氧含量至多3.5wt%,RON为80-110,和MON为70-100,和
(b)至少一种燃料组分。
9.权利要求5的柴油燃料组合物的制备方法,所述方法包括混合下述物质:
(a)可由水溶性氧化烃衍生的含至少一种C4+化合物的组分,所述组分的T95为220-380℃,闪点为30-70℃,在15℃下的密度为700-900kg/m3,硫含量至多5mg/kg,氧含量至多10wt%,和在40℃下的粘度为0.5-6cSt,和
(b)至少一种燃料组分。
10.权利要求6煤油组合物的制备方法,所述方法包括混合下述物质:
(a)可由水溶性氧化烃衍生的含至少一种C4+化合物的组分,所述组分的初沸点为120-215℃,终沸点为220-340℃,在15℃下的密度为700-890kg/m3,硫含量至多0.1wt%,总芳烃含量至多30vol%,冻点低于或等于-40℃,烟点为至少18mm,在20℃下的粘度为1-10cSt,和能量密度为40-47MJ/kg,和
(b)至少一种燃料组分。
CN200980138177.5A 2008-09-05 2009-09-04 基于催化脱氧和缩合氧化的碳水化合物的液体燃料组合物 Active CN102203217B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9448208P 2008-09-05 2008-09-05
US61/094,482 2008-09-05
PCT/US2009/055976 WO2010028206A1 (en) 2008-09-05 2009-09-04 Liquid fuel compositions based on catalytically deoxygenated and condensated oxygenated carbonhydrates

Publications (2)

Publication Number Publication Date
CN102203217A true CN102203217A (zh) 2011-09-28
CN102203217B CN102203217B (zh) 2015-01-07

Family

ID=41213260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980138177.5A Active CN102203217B (zh) 2008-09-05 2009-09-04 基于催化脱氧和缩合氧化的碳水化合物的液体燃料组合物

Country Status (15)

Country Link
US (4) US8697924B2 (zh)
EP (1) EP2334758A1 (zh)
JP (2) JP2012512916A (zh)
KR (1) KR101645422B1 (zh)
CN (1) CN102203217B (zh)
AU (1) AU2009289572B2 (zh)
BR (1) BRPI0918490A2 (zh)
CA (1) CA2735654C (zh)
CO (1) CO6410242A2 (zh)
MX (1) MX2011002376A (zh)
MY (1) MY160269A (zh)
NZ (1) NZ591280A (zh)
RU (1) RU2542990C2 (zh)
WO (1) WO2010028206A1 (zh)
ZA (1) ZA201101318B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721702A (zh) * 2013-11-26 2014-04-16 沃太能源南通有限公司 一种生产生物柴油用的催化剂的制备方法
CN104560102A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 一种提高生物油品质的方法
CN104698027A (zh) * 2015-03-26 2015-06-10 广东石油化工学院 用于获得渣油高温焦化反应过程中间相物质的试验装置
CN105143406A (zh) * 2013-03-14 2015-12-09 维仁特公司 从二氧化合物和多氧化合物产生芳香族化合物
CN105132003A (zh) * 2015-08-27 2015-12-09 中国科学院青岛生物能源与过程研究所 一种生物基航空燃料的制备方法
CN106414377A (zh) * 2014-03-24 2017-02-15 加利福尼亚大学董事会 制备环状和非环状酮的方法
CN107922860A (zh) * 2015-08-13 2018-04-17 国际壳牌研究有限公司 燃料配制品
CN109897659A (zh) * 2017-12-11 2019-06-18 中国科学院大连化学物理研究所 一种液体燃料的制备方法
CN111836874A (zh) * 2018-01-10 2020-10-27 斯蒂珀能源有限公司 含氧可再生油的改质方法
WO2024073667A1 (en) * 2022-09-30 2024-04-04 Uop Llc Process for the hydrogenation of olefins

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2561665A1 (en) * 2004-04-02 2005-10-20 Skill Associates, Inc. Biomass converters and processes
US8017818B2 (en) * 2007-03-08 2011-09-13 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
SE531491C2 (sv) * 2007-03-29 2009-04-28 Reac Fuel Ab Bränsle framställt från biomassa
US10590571B2 (en) * 2007-12-28 2020-03-17 Albany International Corp. Ultra-resilient pad
US8697924B2 (en) 2008-09-05 2014-04-15 Shell Oil Company Liquid fuel compositions
JP5368073B2 (ja) * 2008-12-11 2013-12-18 昭和シェル石油株式会社 ガソリンエンジン用燃料組成物の製造方法及びその製造方法に使用する自動車エンジン用燃料基材
JP5368072B2 (ja) * 2008-12-11 2013-12-18 昭和シェル石油株式会社 ガソリンエンジン用燃料組成物
JP5368074B2 (ja) * 2008-12-11 2013-12-18 昭和シェル石油株式会社 ガソリンエンジン用燃料組成物
US8308911B2 (en) 2009-01-09 2012-11-13 Cool Planet Biofuels, Llc System and method for atmospheric carbon sequestration
US9909067B2 (en) 2009-01-21 2018-03-06 Cool Planet Energy Systems, Inc. Staged biomass fractionator
CN102292414A (zh) 2009-01-21 2011-12-21 酷星生物燃料有限公司 用于生物质分馏的系统和方法
US9162212B2 (en) 2009-03-09 2015-10-20 Wayne State University Supported catalyst systems and method of making biodiesel products using such catalysts
CA2767726C (en) 2009-09-30 2015-03-24 Tso3 Inc. Sterilization method and apparatus
ES2362248B1 (es) * 2009-12-11 2012-05-10 Universidad Politecnica De Valencia Producción de combustibles l�?quidos (sylvan-liquid fuels) a partir de 2 -metilfurano.
US9447347B2 (en) 2009-12-31 2016-09-20 Shell Oil Company Biofuels via hydrogenolysis-condensation
US9303226B2 (en) 2009-12-31 2016-04-05 Shell Oil Company Direct aqueous phase reforming of bio-based feedstocks
AU2011253083B2 (en) 2010-05-12 2014-08-21 Shell Internationale Research Maatschappij B.V. Process including hydrogenolysis of biomass followed by dehydrogenation and aldol condensation to produce alkanes
EP2569264A1 (en) 2010-05-12 2013-03-20 Shell Oil Company Process including hydrogenolysis of biomass followed by dehydrogenation and aldol condensation for producing alkanes
US8366907B2 (en) * 2010-08-02 2013-02-05 Battelle Memorial Institute Deoxygenation of fatty acids for preparation of hydrocarbons
WO2014046982A1 (en) * 2012-09-24 2014-03-27 Xf Technologies Inc. Fuels and fuel additives comprising ester derivatives of 5-methyl-2-furoic acid
US9062264B2 (en) * 2010-10-29 2015-06-23 Kior, Inc. Production of renewable bio-gasoline
US8377152B2 (en) * 2010-10-29 2013-02-19 Kior, Inc. Production of renewable bio-distillate
US9382489B2 (en) 2010-10-29 2016-07-05 Inaeris Technologies, Llc Renewable heating fuel oil
US9447350B2 (en) 2010-10-29 2016-09-20 Inaeris Technologies, Llc Production of renewable bio-distillate
US9315739B2 (en) 2011-08-18 2016-04-19 Kior, Llc Process for upgrading biomass derived products
US8431757B2 (en) 2011-03-24 2013-04-30 Cool Planet Biofuels, Inc. Method for making renewable fuels
US8137628B2 (en) * 2011-03-24 2012-03-20 Cool Planet Biofuels, Inc. System for making renewable fuels
US8951476B2 (en) 2011-03-24 2015-02-10 Cool Planet Energy Systems, Inc. System for making renewable fuels
US8143464B2 (en) * 2011-03-24 2012-03-27 Cool Planet Biofuels, Inc. Method for making renewable fuels
WO2012143568A2 (en) 2011-04-21 2012-10-26 Shell Internationale Research Maatschappij B.V. Liquid fuel composition
US8367881B2 (en) 2011-05-09 2013-02-05 Cool Planet Biofuels, Inc. Method for biomass fractioning by enhancing biomass thermal conductivity
US8173044B1 (en) 2011-05-09 2012-05-08 Cool Planet Biofuels, Inc. Process for biomass conversion to synthesis gas
BR112013029901B1 (pt) * 2011-05-23 2019-10-15 Virent, Inc. Método para converter biomassa em produtos químicos e combustíveis derivados de biomassa, composição química, composição de gasolina, composição de querosene, e composição de diesel
EA032615B1 (ru) 2011-05-27 2019-06-28 Дзе Риджентс Оф Дзе Юниверсити Оф Калифорния Способ превращения ферментационной смеси в топливо
US20120304531A1 (en) 2011-05-30 2012-12-06 Shell Oil Company Liquid fuel compositions
US9493379B2 (en) 2011-07-25 2016-11-15 Cool Planet Energy Systems, Inc. Method for the bioactivation of biochar for use as a soil amendment
US8568493B2 (en) 2011-07-25 2013-10-29 Cool Planet Energy Systems, Inc. Method for producing negative carbon fuel
US10550044B2 (en) 2011-06-06 2020-02-04 Cool Planet Energy Systems, Inc. Biochar coated seeds
US10696603B2 (en) 2011-06-06 2020-06-30 Carbon Technology Holdings, LLC Mineral solubilizing microorganism infused biochars
US10173937B2 (en) 2011-06-06 2019-01-08 Cool Planet Energy Systems, Inc. Biochar as a microbial carrier
US9216916B2 (en) 2013-10-25 2015-12-22 Cool Planet Energy Systems, Inc. System and method for purifying process water produced from biomass conversion to fuels
US10252951B2 (en) 2011-06-06 2019-04-09 Cool Planet Energy Systems, Inc. Biochars and biochar treatment processes
US9809502B2 (en) 2011-06-06 2017-11-07 Cool Planet Energy Systems, Inc. Enhanced Biochar
US10059634B2 (en) 2011-06-06 2018-08-28 Cool Planet Energy Systems, Inc. Biochar suspended solution
US10640429B2 (en) 2011-06-06 2020-05-05 Cool Planet Energy System, Inc. Methods for application of biochar
US9493380B2 (en) 2011-06-06 2016-11-15 Cool Planet Energy Systems, Inc. Method for enhancing soil growth using bio-char
US11279662B2 (en) 2011-06-06 2022-03-22 Carbon Technology Holdings, LLC Method for application of biochar in turf grass and landscaping environments
US9980912B2 (en) 2014-10-01 2018-05-29 Cool Planet Energy Systems, Inc. Biochars for use with animals
US10118870B2 (en) 2011-06-06 2018-11-06 Cool Planet Energy Systems, Inc. Additive infused biochar
US10322389B2 (en) 2014-10-01 2019-06-18 Cool Planet Energy Systems, Inc. Biochar aggregate particles
US11214528B2 (en) 2011-06-06 2022-01-04 Carbon Technology Holdings, LLC Treated biochar for use in water treatment systems
US8317891B1 (en) 2011-06-06 2012-11-27 Cool Planet Biofuels, Inc. Method for enhancing soil growth using bio-char
US10233129B2 (en) 2011-06-06 2019-03-19 Cool Planet Energy Systems, Inc. Methods for application of biochar
US10392313B2 (en) 2011-06-06 2019-08-27 Cool Planet Energy Systems, Inc. Method for application of biochar in turf grass and landscaping environments
WO2012177348A1 (en) * 2011-06-21 2012-12-27 W. R. Grace & Co.-Conn. Catalytic purification of fatty acid alkyl esters used in fuels
US20130015099A1 (en) 2011-07-14 2013-01-17 Cool Planet Biofuels, Inc. Liquid fuel composition
US9260666B2 (en) 2011-07-25 2016-02-16 Cool Planet Energy Systems, Inc. Method for reducing the carbon footprint of a conversion process
US10427069B2 (en) 2011-08-18 2019-10-01 Inaeris Technologies, Llc Process for upgrading biomass derived products using liquid-liquid extraction
WO2013034950A1 (en) 2011-09-08 2013-03-14 Société Anonyme Des Eaux Minerales D'evian Method for producing a bio-pet polymer
FI20110300A0 (fi) 2011-09-11 2011-09-11 Neste Oil Oyj Bensiinikoostumukset ja menetelmä niiden valmistamiseksi
US20130151167A1 (en) * 2011-12-08 2013-06-13 Marathon Petroleum Company Lp Method To Determine The DRA In A Hydrocarbon Fuel
EP2791090B1 (en) 2011-12-15 2016-02-24 Dow Global Technologies LLC Dehydroxylation of crude alcohol streams using a halogen-based catalyst
EP2791088B1 (en) 2011-12-15 2017-02-01 Dow Global Technologies LLC Non-reductive dehydroxylation of vicinal compounds to olefins using a halogen-based catalyst
EP2791087B1 (en) 2011-12-15 2016-05-18 Dow Global Technologies LLC Iodine-based catalyst for reductive dehydroxylation of vicinal polyols to olefins
BR112014014209A2 (pt) 2011-12-15 2017-06-13 Dow Global Technologies Llc processo para preparar uma olefina
EP2791089B1 (en) 2011-12-15 2017-08-30 Dow Global Technologies LLC Reductive dehydroxylation of vicinal polyols to olefins using an iodine-based catalyst having enhanced solubility
US9005380B2 (en) * 2012-03-23 2015-04-14 Johann Haltermann Limited High performance liquid rocket propellant
JP6291482B2 (ja) 2012-05-17 2018-03-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap バイオマス材料を処理する方法およびシステム
DE102012208417A1 (de) * 2012-05-21 2013-11-21 INGEN GTL Ltd. Verfahren zur Herstellung eines isoparaffinischen Kohlenwasserstoffgemisches
CN102757310B (zh) * 2012-07-04 2015-04-29 易高环保能源研究院有限公司 催化转化纤维素制异丙醇的方法
US9302250B2 (en) 2012-11-15 2016-04-05 Phillips 66 Company Catalysts for renewable hydrogen production from oxygenated feedstocks
WO2014096250A1 (en) 2012-12-21 2014-06-26 Shell Internationale Research Maatschappij B.V. Liquid fuel compositions comprising organic sunscreen compounds
RU2502790C1 (ru) * 2013-01-14 2013-12-27 Игорь Николаевич Куликов Способ получения и состав присадки к жидкому топливу
EP2963097A4 (en) * 2013-03-01 2017-03-22 TonenGeneral Sekiyu Kabushiki Kaisha Fuel oil
FI126330B (en) * 2013-04-02 2016-10-14 Upm Kymmene Corp Renewable hydrocarbon composition
FI126331B (en) 2013-04-02 2016-10-14 Upm Kymmene Corp Renewable hydrocarbon composition
CN105308015A (zh) * 2013-04-26 2016-02-03 加利福尼亚大学董事会 燃料制造方法
WO2014190124A1 (en) * 2013-05-22 2014-11-27 Virent, Inc. Hydrogenation of carboxylic acids to increase yield of aromatics
US9873836B2 (en) * 2013-05-22 2018-01-23 Virent, Inc. Process for converting biomass to aromatic hydrocarbons
US8815963B1 (en) 2013-11-04 2014-08-26 Auxilium Green, LLC Catalyst composition formulated for synthesis of alcohols and method of preparing the same
WO2015091458A1 (en) 2013-12-16 2015-06-25 Shell Internationale Research Maatschappij B.V. Liquid fuel compositions
US20150259619A1 (en) * 2014-03-11 2015-09-17 Swift Fuels, Llc Motor fuel formulation
WO2015172208A1 (en) 2014-05-12 2015-11-19 Katholieke Universiteit Leuven Ku Leuven Research & Development Biphasic solvent catalytic process for the direct production of light naphtha from carbohydrate-containing feedstock.
EP2949733A1 (en) 2014-05-28 2015-12-02 Shell Internationale Research Maatschappij B.V. Gasoline compositions comprising oxanilide uv filter compounds
WO2016012974A1 (en) 2014-07-25 2016-01-28 Sabic Global Technologies B.V. Synthesis of diacetone alcohol and mesityl oxide
WO2016044452A1 (en) * 2014-09-17 2016-03-24 Crc Industries, Inc. Systems for the reduction of intake valve deposits and methods
US10870608B1 (en) 2014-10-01 2020-12-22 Carbon Technology Holdings, LLC Biochar encased in a biodegradable material
US11097241B2 (en) 2014-10-01 2021-08-24 Talipot Cool Extract (Ip), Llc Biochars, biochar extracts and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
WO2016054431A1 (en) 2014-10-01 2016-04-07 Cool Planet Energy Systems, Inc. Biochars and biochar treatment processes
US10472297B2 (en) 2014-10-01 2019-11-12 Cool Planet Energy System, Inc. Biochars for use in composting
US11053171B2 (en) 2014-10-01 2021-07-06 Carbon Technology Holdings, LLC Biochars for use with animals
US11426350B1 (en) 2014-10-01 2022-08-30 Carbon Technology Holdings, LLC Reducing the environmental impact of farming using biochar
CN104368346B (zh) * 2014-10-20 2016-08-24 中科合成油淮南催化剂有限公司 用于糠醛气相加氢制备2-甲基呋喃的催化剂及其制备方法
US10106480B2 (en) 2014-10-29 2018-10-23 The Regents Of The University Of California Methods for producing fuels, gasoline additives, and lubricants using amine catalysts
BR112017008899A2 (pt) 2014-10-29 2017-12-19 Bp Corp North America Inc métodos para produzir combustíveis, aditivos de gasolina e lubrificantes usando catalisadores de amina
JP6855375B2 (ja) 2014-11-12 2021-04-07 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap 燃料組成物
US20160186081A1 (en) * 2014-12-30 2016-06-30 Chih-Jung Chao Environmental protection liquid fuel generator
US20180037838A1 (en) 2015-02-27 2018-02-08 Shell Oil Company Use of a lubricating composition
WO2017209778A2 (en) 2015-08-13 2017-12-07 Virent, Inc. Production of alternative gasoline fuels
MY186778A (en) 2015-09-22 2021-08-19 Shell Int Research Fuel compositions
US10596558B2 (en) * 2015-11-20 2020-03-24 Reliance Industries Limited Naphtha reforming catalyst and processes thereof
EP3397734B1 (en) 2015-11-30 2020-07-29 Shell International Research Maatschappij B.V. Fuel composition
EP3387038A1 (en) 2015-12-11 2018-10-17 Societe Anonyme des Eaux Minerales d'Evian Et en Abrege "S.A.E.M.E" Pet polymer with an anti-crystallization comonomer that can be bio-sourced
BR112018012536B1 (pt) 2015-12-21 2021-06-22 Shell Internationale Research Maatschappij B.V. Métodos para melhorar um combustível de querosene para atender especificação jato a- 1 ou especificação jp-8, para atender especificação an-8, e, para atender à especificação jato a ou f-24
US10968408B2 (en) * 2016-07-26 2021-04-06 Idemitsu Kosan Co., Ltd Gasoline composition and production process therefor
WO2018093529A1 (en) * 2016-11-15 2018-05-24 Exxonmobil Research And Engineering Company Fuel compositions for controlling combustion in engines
EP3541771B1 (en) * 2016-11-16 2021-01-06 Archer Daniels Midland Company Process for producing 1,2-propanediol from glycerol
RU2678457C2 (ru) * 2017-01-18 2019-01-29 Общество с ограниченной ответственностью "НаноТехЦентр" Применение композиции, включающей минеральное моторное масло или индустриальное масло, суспензию наноматериала (УНМ) и поверхностно-активное вещество (ПАВ) для маркировки нефтепродукта, и способ идентификации продукта
JP2021500427A (ja) 2017-10-18 2021-01-07 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap 低速早期点火を低減するための方法
WO2019084657A1 (en) * 2017-11-06 2019-05-09 The Saskatchewan Research Council Process for the production of hydrocarbon biofuels
WO2019118986A1 (en) 2017-12-15 2019-06-20 Cool Planet Energy Systems, Inc. Biochars and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
US11306039B1 (en) * 2018-06-05 2022-04-19 Triad National Security, Llc System and method for making fuels
MX2020013813A (es) 2018-07-02 2021-03-09 Shell Int Research Composiciones de combustible liquido.
EP3947608B1 (en) 2019-04-01 2023-08-09 Shell Internationale Research Maatschappij B.V. Use for reducing low speed pre-ignition
EP3986988A1 (en) 2019-06-20 2022-04-27 Shell Internationale Research Maatschappij B.V. Gasoline fuel composition
EP3990419A1 (en) 2019-06-28 2022-05-04 Shell Internationale Research Maatschappij B.V. Process for producing triptane and/or triptene
US11912949B2 (en) 2019-10-22 2024-02-27 Shell Usa, Inc. Method for reducing intake valve deposits
RU2734918C1 (ru) * 2019-12-30 2020-10-26 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Альтернативное автомобильное топливо для бензиновых двигателей, содержащее производное фурфурола
WO2021138367A1 (en) * 2020-01-02 2021-07-08 Clearrefining Technologies, Llc System and method for making a kerosene fuel product
EP4237515A1 (en) 2020-10-29 2023-09-06 Marathon Petroleum Company L.P. Systems and methods for separating water and removing solids from pre-treated and unfiltered feedstock
KR102561034B1 (ko) * 2021-03-17 2023-07-31 한국과학기술연구원 바이오매스의 액상 개질용 세리아 기반 불균일계 합금 촉매, 그 제조방법, 및 이를 이용하는 고순도 수소 생산 방법
CN117178047A (zh) 2021-04-26 2023-12-05 国际壳牌研究有限公司 燃料组合物
BR112023021674A2 (pt) 2021-04-26 2023-12-19 Shell Int Research Composição combustível, e, métodos para melhorar a potência de saída, para melhorar a aceleração, para reduzir a duração da queima de uma composição combustível e para aumentar a velocidade da chama de uma composição combustível em um motor de combustão interna
CN117769589A (zh) 2021-08-12 2024-03-26 国际壳牌研究有限公司 汽油燃料组合物
WO2023052286A1 (en) 2021-09-29 2023-04-06 Shell Internationale Research Maatschappij B.V. Fuel compositions
US11613715B1 (en) * 2021-10-12 2023-03-28 Marathon Petroleum Company Lp Systems and methods of converting renewable feedstocks into intermediate hydrocarbon blend stocks and transportation fuels
US11891579B2 (en) * 2022-04-18 2024-02-06 Greyrock Technology, Llc Process for the synthesis of high-value, low carbon chemical products
WO2024017743A1 (en) 2022-07-20 2024-01-25 Shell Internationale Research Maatschappij B.V. Fuel compositions
WO2024068384A1 (en) 2022-09-30 2024-04-04 Shell Internationale Research Maatschappij B.V. Fuel composition
EP4345152A1 (en) 2022-09-30 2024-04-03 Afton Chemical Corporation Fuel composition
WO2024083782A1 (en) 2022-10-21 2024-04-25 Shell Internationale Research Maatschappij B.V. Fuel compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030167679A1 (en) * 2000-04-14 2003-09-11 Jordan Frederick L. Organic cetane improver
US6761745B2 (en) * 2000-01-24 2004-07-13 Angelica Hull Method of reducing the vapor pressure of ethanol-containing motor fuels for spark ignition combustion engines
US20070142633A1 (en) * 2005-12-16 2007-06-21 Jianhua Yao Process for converting carbohydrates to hydrocarbons
WO2007075476A2 (en) * 2005-12-21 2007-07-05 Virent Energy Systems Inc. Catalysts and methods for reforming oxygenated compounds
CN101360809A (zh) * 2005-12-12 2009-02-04 耐思特石油公司 生产支链烃组分的方法

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013734A (en) * 1973-12-14 1977-03-22 Exxon Research And Engineering Company Novel catalyst and its use for steam hydroconversion and dealkylation processes
US4223001A (en) * 1978-06-20 1980-09-16 Allied Chemical Corporation Production of hydrogen from carbon monoxide and water
US4382150A (en) * 1982-01-19 1983-05-03 Uop Inc. Method for hydrogenating aqueous solutions of carbohydrates
US4487980A (en) 1982-01-19 1984-12-11 Uop Inc. Method for hydrogenating aqueous solutions of carbohydrates
US4380679A (en) * 1982-04-12 1983-04-19 Uop Inc. Hydrogenation of saccharides
US4380680A (en) * 1982-05-21 1983-04-19 Uop Inc. Method for hydrogenating aqueous solutions of carbohydrates
US4541836A (en) * 1982-12-09 1985-09-17 Union Carbide Corporation Fuel compositions
US4456779A (en) * 1983-04-26 1984-06-26 Mobil Oil Corporation Catalytic conversion of olefins to higher hydrocarbons
US4503274A (en) * 1983-08-08 1985-03-05 Uop Inc. Ruthenium hydrogenation catalyst with increased activity
US4554260A (en) * 1984-07-13 1985-11-19 Exxon Research & Engineering Co. Two stage process for improving the catalyst life of zeolites in the synthesis of lower olefins from alcohols and their ether derivatives
AU576030B2 (en) * 1984-12-31 1988-08-11 Mobil Oil Corporation Process for producing high boiling jet fuel
US4543435A (en) * 1985-01-17 1985-09-24 Mobil Oil Corporation Multistage process for converting oxygenates to liquid hydrocarbons with ethene recycle
US5019135A (en) * 1987-10-13 1991-05-28 Battelle Memorial Institute Method for the catalytic conversion of lignocellulosic materials
US5001292A (en) * 1987-12-08 1991-03-19 Mobil Oil Corporation Ether and hydrocarbon production
US4885421A (en) 1987-12-08 1989-12-05 Harandi Mohsen N Multistage reactor system for production of fuels
US4919896A (en) * 1987-12-28 1990-04-24 Mobil Oil Corporation Multistage catalytic reactor system for production of heavy hydrocarbons
US4828812A (en) * 1987-12-29 1989-05-09 Mobil Oil Corporation Titanosilicates of enhanced ion exchange capacity and their preparation
US5180868A (en) * 1988-06-20 1993-01-19 Battelle Memorial Institute Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline
US4935568A (en) * 1988-12-05 1990-06-19 Mobil Oil Corporation Multistage process for oxygenate conversion to hydrocarbons
US5130101A (en) * 1989-04-28 1992-07-14 Mobil Oil Corporation Reactor system for conversion of alcohols to ether-rich gasoline
US5105044A (en) * 1989-12-29 1992-04-14 Mobil Oil Corp. Catalyst and process for upgrading methane to higher hydrocarbons
US5238898A (en) * 1989-12-29 1993-08-24 Mobil Oil Corp. Catalyst and process for upgrading methane to higher hydrocarbons
US5177279A (en) * 1990-10-23 1993-01-05 Mobil Oil Corporation Integrated process for converting methanol to gasoline and distillates
US5139002A (en) * 1990-10-30 1992-08-18 Hydrogen Consultants, Inc. Special purpose blends of hydrogen and natural gas
US5344849A (en) * 1990-10-31 1994-09-06 Canada Chemical Corporation Catalytic process for the production of hydrocarbons
US5095159A (en) * 1990-11-21 1992-03-10 Mobil Oil Corporation Ether and hydrocarbon production
US5096159A (en) * 1991-01-18 1992-03-17 Advantage Lift Systems, Inc. Automotive lift system
AU666752B2 (en) * 1992-06-05 1996-02-22 Battelle Memorial Institute Method for the catalytic conversion of organic materials into a product gas
AU2466595A (en) * 1994-05-04 1995-11-29 University Of Central Florida Hydrogen-natural gas motor fuel
US5666923A (en) * 1994-05-04 1997-09-16 University Of Central Florida Hydrogen enriched natural gas as a motor fuel with variable air fuel ratio and fuel mixture ratio control
CA2149685C (en) * 1994-06-30 1999-09-14 Jacques Monnier Conversion of depitched tall oil to diesel fuel additive
JP2671944B2 (ja) * 1994-08-25 1997-11-05 工業技術院長 セルロース系バイオマスからの水素の製造方法
US5578647A (en) * 1994-12-20 1996-11-26 Board Of Regents, The University Of Texas System Method of producing off-gas having a selected ratio of carbon monoxide to hydrogen
US5787863A (en) * 1996-01-23 1998-08-04 Caterpillar Inc. Fuel system having priming actuating fluid accumulator
US5697987A (en) * 1996-05-10 1997-12-16 The Trustees Of Princeton University Alternative fuel
US5861137A (en) * 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
US7462207B2 (en) * 1996-11-18 2008-12-09 Bp Oil International Limited Fuel composition
US5977013A (en) * 1996-12-19 1999-11-02 Battelle Memorial Institute Catalyst and method for aqueous phase reactions
DE19725006C2 (de) * 1997-06-13 1999-04-29 Dbb Fuel Cell Engines Gmbh Methanolreformierungsreaktor und Behandlungsverfahren für einen Katalysator hierfür
DE19725009C1 (de) * 1997-06-13 1999-03-04 Dbb Fuel Cell Engines Gmbh Verfahren zur Behandlung eines Methanolreformierungskatalysators
US5959167A (en) * 1997-08-25 1999-09-28 The University Of Utah Research Foundation Process for conversion of lignin to reformulated hydrocarbon gasoline
CN1502546A (zh) * 1997-10-07 2004-06-09 JFE�عɹ�˾ 制造氢或合成气体用的催化剂及制造氢或合成气体的方法
DE69925052T2 (de) * 1998-01-21 2006-03-02 Haldor Topsoe A/S Verfahren zur Herstellung von wasserstoffreichem Gas
JPH11217343A (ja) * 1998-01-30 1999-08-10 Sangi Co Ltd 化学工業原料及びハイオク燃料の合成法
US6054041A (en) * 1998-05-06 2000-04-25 Exxon Research And Engineering Co. Three stage cocurrent liquid and vapor hydroprocessing
GR1003235B (el) * 1998-05-22 1999-10-13 Διεργασια παραγωγης υδρογονου και ηλεκτρικης ενεργειας απο αναμορφωση βιο-αιθανολης, με χρηση κυψελιδων καυσιμου και με μηδενικη εκπομπη ρυπων
WO1999064150A1 (fr) * 1998-06-09 1999-12-16 Idemitsu Kosan Co., Ltd. Catalyseur et procede de reformage d'hydrocarbures
US6479428B1 (en) * 1998-07-27 2002-11-12 Battelle Memorial Institute Long life hydrocarbon conversion catalyst and method of making
US6440895B1 (en) * 1998-07-27 2002-08-27 Battelle Memorial Institute Catalyst, method of making, and reactions using the catalyst
US6172272B1 (en) * 1998-08-21 2001-01-09 The University Of Utah Process for conversion of lignin to reformulated, partially oxygenated gasoline
US6353143B1 (en) * 1998-11-13 2002-03-05 Pennzoil-Quaker State Company Fuel composition for gasoline powered vehicle and method
US6207132B1 (en) * 1998-12-04 2001-03-27 Chinese Petroleum Corporation Process for producing high purity hydrogen
US7273957B2 (en) * 1999-05-04 2007-09-25 Catalytic Distillation Technologies Process for the production of gasoline stocks
EP1063011B1 (de) * 1999-05-22 2001-12-12 OMG AG & Co. KG Verwendung eines Katalysators für die Dampfreformierung von Methanol
US20020020107A1 (en) * 1999-07-02 2002-02-21 Bailey Brent K. Low molecular weight compression ignition fuel
US6372680B1 (en) * 1999-07-27 2002-04-16 Phillips Petroleum Company Catalyst system for converting oxygenated hydrocarbons to aromatics
US6969506B2 (en) 1999-08-17 2005-11-29 Battelle Memorial Institute Methods of conducting simultaneous exothermic and endothermic reactions
US6235797B1 (en) * 1999-09-03 2001-05-22 Battelle Memorial Institute Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations
US6570043B2 (en) * 1999-09-03 2003-05-27 Battelle Memorial Institute Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation
US6291725B1 (en) * 2000-03-03 2001-09-18 Board Of Trustees Operating Michigan State University Catalysts and process for hydrogenolysis of sugar alcohols to polyols
US6508209B1 (en) * 2000-04-03 2003-01-21 R. Kirk Collier, Jr. Reformed natural gas for powering an internal combustion engine
US6397790B1 (en) * 2000-04-03 2002-06-04 R. Kirk Collier, Jr. Octane enhanced natural gas for internal combustion engine
JP2004526686A (ja) * 2000-12-23 2004-09-02 デグサ アクチエンゲゼルシャフト カルボニル化合物の水素化によるアルコールの製法
US6765101B1 (en) * 2001-05-01 2004-07-20 Union Carbide Chemicals & Plastics Technology Corporation Synthesis of lower alkylene oxides and lower alkylene glycols from lower alkanes and/or lower alkenes
DE10128203A1 (de) * 2001-06-11 2002-12-12 Basf Ag Verfahren zur Herstellung von Sorbit
US6670300B2 (en) * 2001-06-18 2003-12-30 Battelle Memorial Institute Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions
US6607707B2 (en) * 2001-08-15 2003-08-19 Ovonic Battery Company, Inc. Production of hydrogen from hydrocarbons and oxygenated hydrocarbons
US20030100807A1 (en) * 2001-10-05 2003-05-29 Shabtai Joseph S Process for converting lignins into a high octane additive
US20030115792A1 (en) * 2001-10-05 2003-06-26 Shabtai Joseph S Process for converting lignins into a high octane blending component
US6479713B1 (en) * 2001-10-23 2002-11-12 Battelle Memorial Institute Hydrogenolysis of 5-carbon sugars, sugar alcohols, and other methods and compositions for reactions involving hydrogen
US6841085B2 (en) * 2001-10-23 2005-01-11 Battelle Memorial Institute Hydrogenolysis of 6-carbon sugars and other organic compounds
JP5081368B2 (ja) 2001-11-29 2012-11-28 ウィスコンシン アルムニ リサーチ ファンデイション 酸化炭化水素からの低温水素生成
US6699457B2 (en) * 2001-11-29 2004-03-02 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons
NZ536672A (en) * 2002-05-10 2007-01-26 Wisconsin Alumni Res Found Low-temperature hydrocarbon production from oxygenated hydrocarbons
US6739125B1 (en) * 2002-11-13 2004-05-25 Collier Technologies, Inc. Internal combustion engine with SCR and integrated ammonia production
JP4150579B2 (ja) * 2002-12-03 2008-09-17 昭和シェル石油株式会社 灯油組成物
US7199250B2 (en) * 2002-12-20 2007-04-03 Battelle Memorial Institute Process for producing cyclic compounds
US6982328B2 (en) * 2003-03-03 2006-01-03 Archer Daniels Midland Company Methods of producing compounds from plant material
US20050203195A1 (en) * 2003-08-05 2005-09-15 Yong Wang Tailored Fischer-Tropsch synthesis product distribution
FR2867464B1 (fr) * 2004-03-10 2006-06-09 Inst Francais Du Petrole Procede de production d'hydrogene a tres haute purete a partir d'alcools comportant au moins deux atomes de carbone
EP1753694A2 (en) 2004-06-03 2007-02-21 Charles J. Rogers Low temperature methods for hydrogen production
US20060013759A1 (en) * 2004-07-13 2006-01-19 Conocophillips Company Systems and methods for hydrogen production
CN101171324B (zh) 2005-05-02 2012-12-12 犹他大学研究基金会 用来将木质素催化转化为液体生物燃料的方法
US7288685B2 (en) * 2005-05-19 2007-10-30 Uop Llc Production of olefins from biorenewable feedstocks
US7814091B2 (en) * 2005-09-27 2010-10-12 Oracle International Corporation Multi-tiered query processing techniques for minus and intersect operators
US8053614B2 (en) * 2005-12-12 2011-11-08 Neste Oil Oyj Base oil
BRPI0619625B1 (pt) * 2005-12-12 2016-05-17 Neste Oil Oyj processo para produzir um componente de hidrocarboneto ramificado
US7649099B2 (en) * 2006-01-26 2010-01-19 Battelle Memorial Institute Method of forming a dianhydrosugar alcohol
US7615652B2 (en) * 2006-01-26 2009-11-10 Battelle Memorial Institute Two-stage dehydration of sugars
ES2547913T3 (es) * 2006-05-08 2015-10-09 Virent, Inc. Métodos para generar polioles
US7880049B2 (en) * 2006-06-06 2011-02-01 Wisconsin Alumni Research Foundation Production of liquid alkanes in the jet fuel range (C8-C15) from biomass-derived carbohydrates
JP2008088140A (ja) * 2006-10-05 2008-04-17 Sangi Co Ltd 化学工業原料及び燃料組成物の合成方法
ES2446542T3 (es) 2007-03-08 2014-03-10 Virent, Inc. Síntesis de combustibles líquidos y compuestos químicos a partir de hidrocarburos oxigenados
US8017818B2 (en) * 2007-03-08 2011-09-13 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US7425657B1 (en) * 2007-06-06 2008-09-16 Battelle Memorial Institute Palladium catalyzed hydrogenation of bio-oils and organic compounds
US8048290B2 (en) * 2007-06-11 2011-11-01 Neste Oil Oyj Process for producing branched hydrocarbons
FI121308B (fi) * 2007-06-11 2010-09-30 Neste Oil Oyj Prosessi haaroittuneiden hiilivetyjen valmistamiseksi
US8143469B2 (en) * 2007-06-11 2012-03-27 Neste Oil Oyj Process for producing branched hydrocarbons
US20090000185A1 (en) * 2007-06-29 2009-01-01 Energy & Environmental Research Center Foundation Aviation-grade kerosene from independently produced blendstocks
JP2011505490A (ja) * 2007-12-03 2011-02-24 ジーヴォ,インコーポレイテッド 再生可能組成物
US8075642B2 (en) * 2008-04-14 2011-12-13 Wisconsin Alumni Research Foundation Single-reactor process for producing liquid-phase organic compounds from biomass
AU2009285699B2 (en) * 2008-08-27 2014-04-10 Virent, Inc. Synthesis of liquid fuels from biomass
US8697924B2 (en) 2008-09-05 2014-04-15 Shell Oil Company Liquid fuel compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761745B2 (en) * 2000-01-24 2004-07-13 Angelica Hull Method of reducing the vapor pressure of ethanol-containing motor fuels for spark ignition combustion engines
US20030167679A1 (en) * 2000-04-14 2003-09-11 Jordan Frederick L. Organic cetane improver
CN101360809A (zh) * 2005-12-12 2009-02-04 耐思特石油公司 生产支链烃组分的方法
US20070142633A1 (en) * 2005-12-16 2007-06-21 Jianhua Yao Process for converting carbohydrates to hydrocarbons
WO2007075476A2 (en) * 2005-12-21 2007-07-05 Virent Energy Systems Inc. Catalysts and methods for reforming oxygenated compounds

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143406A (zh) * 2013-03-14 2015-12-09 维仁特公司 从二氧化合物和多氧化合物产生芳香族化合物
CN104560102A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 一种提高生物油品质的方法
CN104560102B (zh) * 2013-10-29 2016-05-18 中国石油化工股份有限公司 一种提高生物油品质的方法
CN103721702B (zh) * 2013-11-26 2015-06-10 河北隆海生物能源科技有限公司 一种生产生物柴油用的催化剂的制备方法
CN103721702A (zh) * 2013-11-26 2014-04-16 沃太能源南通有限公司 一种生产生物柴油用的催化剂的制备方法
US10207961B2 (en) 2014-03-24 2019-02-19 The Regents Of The University Of California Methods for producing cyclic and acyclic ketones
US10618856B2 (en) 2014-03-24 2020-04-14 The Regents Of The University Of California Methods for producing cyclic and acyclic ketones
CN106414377A (zh) * 2014-03-24 2017-02-15 加利福尼亚大学董事会 制备环状和非环状酮的方法
CN104698027A (zh) * 2015-03-26 2015-06-10 广东石油化工学院 用于获得渣油高温焦化反应过程中间相物质的试验装置
CN107922860A (zh) * 2015-08-13 2018-04-17 国际壳牌研究有限公司 燃料配制品
CN107922860B (zh) * 2015-08-13 2021-07-13 国际壳牌研究有限公司 燃料配制品
CN105132003A (zh) * 2015-08-27 2015-12-09 中国科学院青岛生物能源与过程研究所 一种生物基航空燃料的制备方法
CN109897659A (zh) * 2017-12-11 2019-06-18 中国科学院大连化学物理研究所 一种液体燃料的制备方法
CN109897659B (zh) * 2017-12-11 2021-02-05 中国科学院大连化学物理研究所 一种液体燃料的制备方法
CN111836874A (zh) * 2018-01-10 2020-10-27 斯蒂珀能源有限公司 含氧可再生油的改质方法
CN111836874B (zh) * 2018-01-10 2022-09-13 斯蒂珀能源有限公司 含氧可再生油的改质方法
WO2024073667A1 (en) * 2022-09-30 2024-04-04 Uop Llc Process for the hydrogenation of olefins

Also Published As

Publication number Publication date
RU2542990C2 (ru) 2015-02-27
US8273138B2 (en) 2012-09-25
US20100077655A1 (en) 2010-04-01
BRPI0918490A2 (pt) 2017-03-21
JP2014159597A (ja) 2014-09-04
CA2735654C (en) 2017-06-20
US20140187828A1 (en) 2014-07-03
AU2009289572B2 (en) 2014-01-23
WO2010028206A1 (en) 2010-03-11
KR20110048590A (ko) 2011-05-11
RU2011112940A (ru) 2012-10-10
ZA201101318B (en) 2011-10-26
US9206366B2 (en) 2015-12-08
CO6410242A2 (es) 2012-03-30
CA2735654A1 (en) 2010-03-11
NZ591280A (en) 2013-03-28
US20130055626A1 (en) 2013-03-07
US8697924B2 (en) 2014-04-15
MY160269A (en) 2017-02-28
CN102203217B (zh) 2015-01-07
US8466330B2 (en) 2013-06-18
KR101645422B1 (ko) 2016-08-04
JP2012512916A (ja) 2012-06-07
EP2334758A1 (en) 2011-06-22
US20100218417A1 (en) 2010-09-02
MX2011002376A (es) 2011-06-20
AU2009289572A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
CN102203217B (zh) 基于催化脱氧和缩合氧化的碳水化合物的液体燃料组合物
US9944869B2 (en) Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
RU2616620C2 (ru) Производство химических веществ и топлив из биомассы
JP5519296B2 (ja) 酸素化炭化水素からの液体燃料および化学物質の合成
AU2014202232B2 (en) Liquid fuel compositions based on catalytically deoxygenated and condensated oxygenated carbohydrates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant