CN102061187A - 减少流化催化裂化的汽油硫的改进方法 - Google Patents

减少流化催化裂化的汽油硫的改进方法 Download PDF

Info

Publication number
CN102061187A
CN102061187A CN2010102839450A CN201010283945A CN102061187A CN 102061187 A CN102061187 A CN 102061187A CN 2010102839450 A CN2010102839450 A CN 2010102839450A CN 201010283945 A CN201010283945 A CN 201010283945A CN 102061187 A CN102061187 A CN 102061187A
Authority
CN
China
Prior art keywords
catalyst
cracking
additive
zeolite
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102839450A
Other languages
English (en)
Other versions
CN102061187B (zh
Inventor
纳泽尔·A·博尔
阿瑟·W·切斯特
刘克
赵惠京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co
ExxonMobil Oil Corp
Original Assignee
WR Grace and Co
ExxonMobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23580335&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102061187(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by WR Grace and Co, ExxonMobil Oil Corp filed Critical WR Grace and Co
Publication of CN102061187A publication Critical patent/CN102061187A/zh
Application granted granted Critical
Publication of CN102061187B publication Critical patent/CN102061187B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4093Catalyst stripping
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及减少流化催化裂化的汽油硫的改进方法。采用一种具有产品减硫组分的催化剂,其内含零价以上氧化态的金属组分,使催化裂化方法中裂化液态产品尤其裂化汽油中的硫含量降低,其中常规催化剂再生之后,进行氧化步骤提高该金属组分的平均氧化态。这种催化剂通常是一种分子筛,诸如沸石Y、REY、USY、REUSY、β或ZSM-5。这种金属组分通常为元素周期表中第5、7、8、9、12或13族的一种金属,优选为钒或锌。此减硫组分可以是一种单独的颗粒添加剂或部分组合裂化/减硫催化剂。也提供了一种提高汽油减硫添加剂中金属组分氧化态的体系。

Description

减少流化催化裂化的汽油硫的改进方法
此案是申请日为2000年9月20日、中国申请号为00813114.7(国际申请号为PCT/US00/25731)、发明名称为“减少流化催化裂化的汽油硫的改进方法”的发明申请的分案申请。
发明背景
本发明涉及减少催化裂化方法生产的汽油及其它石油产品中的硫。尤其,本发明涉及用催化剂组合物减少产品硫含量的一种改良方法。
催化裂化是一种超大工业应用规模的石油炼制方法,特别是在美国,大多数炼油厂的汽油调合物都由催化裂化方法生产,而且几乎所有这种汽油调合物都来自流化催化裂化(FCC)方法。在这种催化裂化方法中,重质烃馏分被转化成轻质产品,都通过高温及催化剂存在下进行的反应,而且大多数转化或裂化都是发生在汽相。这种进料被转化成汽油、馏分油及其它液态裂化产品以及每分子有4个或不足4个碳原子的轻质气态裂化产品。这种气体部分由烯烃和部分饱和烃类组成。
在裂化反应过程中,某些被称为焦炭的重质物沉积在催化剂上。这样降低了其催化活性,而需再生。在脱出了用后裂化催化剂上滞留的烃类后,烧掉焦炭,完成再生,恢复催化剂的活性。典型催化裂化方法有三个特征步骤,可认同为如下:裂化步骤,将烃类转化成轻质产品;汽提步骤(stripping step),脱出催化剂上吸附的烃液;和再生步骤,烧掉催化剂上的焦炭。接着将再生催化剂再用于裂化步骤。
催化裂化进料通常含有机硫化合物形式的硫,诸如硫醇、硫化物和噻吩。即使在裂化过程中约一半的硫被转化为硫化氢(主要通过非噻吩硫化合物的催化分解),裂化过程的产物也相应趋于含有硫杂质。尽管裂化产物中硫量和类型受进料、催化剂类型、添加剂的存在、转化率及其他操作条件的影响,但很大部分的硫一般都保留在产品中。随着对石油产品实施的环境条例增多,例如在重订汽油条例(Reformulated Gasoline Regulation(RFG))中,为了响应对硫氧化物及其它硫化合物随燃烧排放至空气中的关注,产品允许硫含量一般被减少。
一种方法是在开始裂化之前通过加氢处理脱出FCC进料中的硫。尽管非常有效,但从设备投资及操作氢耗高上看,这种方法往往昂贵。另一种方法是通过加氢处理脱出裂解产物中的硫。尽管也有效,但这种解决方案也有缺点,因为在高辛烷值的烯烃被饱和时也损失了宝贵的产品辛烷值。
从经济学观点来看,应当最好实现在裂化本身的过程中脱硫,因为这样会更有效地使汽油调合物的主要组分脱硫,而不必补充精制。已经开发出了可用在FCC过程循环中脱硫的各种催化剂材料,但迄今为止大多数开发都集中在对再生器的烟道气脱硫。由谢弗龙公司(Chevron)早期开发的一种方法,采用氧化铝化合物作为添加剂,加至裂化催化剂装料中,吸附FCC再生器中的硫氧化物;进入进料过程的被吸附硫化合物在周期的裂化部分以硫化氢形式释放出来,并被输送至装置的产品回收段脱出。参见Krishna等著“添加剂改善FCC方法”,烃加工,1991年11月,59-66页。硫从再生器的烟道气中被脱出,但对产品硫含量即使有也影响不大。
另一种从再生器脱除硫氧化物的脱出技术,是基于用镁铝尖晶石作为添加剂,加到循环FCCU催化剂装料中。以牌号DESOXTM命名用于这种方法的添加剂的这种技术已经获得了显著工业成功。对这类脱硫添加剂的示范专利包括US 4,963,520;4,957,892;4,957,718;4,790,982等。但是,对产品硫含量也没有降低很多。
Wormsbecher和Kim在US 5,376,608及5,525,210中提出了一种减少液态裂化产品中硫含量的催化剂的添加剂,利用了一种氧化铝负载路易斯酸的裂化催化剂的添加剂,生产低硫汽油,但是这种体系没有取得显著商业成功。因此,仍然需求能降低液态催化裂化产品硫含量的有效添加剂。
在1998年8月31日提出的申请书No.09/144,607中,描述了用于催化裂化方法中能降低裂化过程液态产物硫含量的催化剂材料。这些减少硫的催化剂,除包括多孔分子筛组分外,在该分子筛孔隙结构内部还包括一种其氧化态在零价以上的金属。在大多数情况下,这种分子筛是一种沸石,而且它可能是一种具有与大孔沸石诸如β沸石或USY(超稳Y)沸石,或与诸如ZSM-5的中孔尺寸沸石特征一致的沸石。非沸石分子筛,如MeAPO-5,MeAPSO-5以及中孔结晶材料如MCM-41,可用作这种催化剂的筛组分。金属诸如钒、锌、铁、钴及镓被认为对汽油减硫是有效的,而以钒是其优选金属。当作为单独的颗粒添加剂催化剂时,这些材料是与活性催化裂化催化剂(通常为八面沸石如沸石Y及REY,尤其USY沸石及REUSY沸石)结合使用的,来处理流化催化裂化(FCC)装置中的烃类进料,生产低硫产品。由于减硫催化剂的筛组分本身可以是一种活性裂化催化剂,例如沸石Y、REY、USY及REUSY,所以也有可能采用组合的裂化/减硫催化剂体系型的减硫催化剂,例如包括USY作为活性裂化组分及减硫体系的筛组分,与所添加的基质材料诸如二氧化硅、粘土及金属如钒一起,构成减硫功能。
在申请书No.09/221,539及09/221,540中,二者均于1998年12月28日提出,描述了类似于申请No.09/144,607中描述的减硫催化剂,但是,在那些申请书中的催化剂组合物也分别包括了至少一种稀土金属组分(如镧)及一种铈组分。
发明综述
现在已经开发了一种改良催化裂化方法,能使裂化过程的液态产物包括汽油及中间馏出物裂化馏分的硫含量减少更多。本方法应用了类似于申请书No 09/144,607,09/221,539及09/221,540中所述的一种减硫催化剂,在此对其完全引以参考,因为本发明所用裂化催化剂含有一种产品减硫组分(product sulfur reducing component),其含零价以上氧化态金属组分,以钒为优选的。优选地是,该减硫组分应包括一种在筛孔隙结构内部含有该金属组分的分子筛。按照本发明这种改进包括升高已被再生催化剂中的金属组分平均氧化态的步骤。现已发现提高这种金属组分氧化态,可以提高了催化剂减硫活性。
本发明可采用以汽油减硫(GSR)添加剂与裂化装置中活性裂化催化剂相结合型的减硫催化剂,也就是说,与循环裂化催化剂装料中常规主组分相结合的,它一般为含基于八面沸石,通常为沸石Y、REY、USY及REUSY的催化剂的基质骨架化(matrixed)沸石。另外,这种催化剂可以是组合型的裂化/产品减硫催化剂体系。
这种减硫组分可包括一种多孔分子筛,该分子筛在其筛孔隙结构内包含一种零价以上氧化态的金属。这种减硫组分也可包括一种被分散在催化剂载体结构(包括多孔氧化物载体结构)任何处的零价以上氧化态的金属。当使用时,此分子筛大多数情况下是一种沸石,而且可能是一种具有与大孔沸石诸如β沸石或USY沸石,或与诸如ZSM-5中孔尺寸沸石特征一致的沸石。非沸石分子筛如MeAPO-5,MeAPSO-5以及中孔结晶材料诸如MCM-41也可用作这种催化剂的筛组分。金属诸如钒、锌、铁、钴、锰及镓是有效的。如果所选筛材料具有足够裂化活性,它就可用作为催化裂化催化剂活性组分(通常为八面沸石如沸石Y)或,除作为活性裂化组分外,另一方面也可采用它,而不管它本身是否有裂化活性。
在一组实施方案中,通过与一种含氧气体接触,使至少一部分具有产品减硫组分的催化剂装料受到氧化处理,其处理还有对再生裂化催化剂所用的处理。优选地是,此附加氧化处理是在足以使减硫组分中金属组分基本完全氧化的条件下完成。
在另一实施方案中,其中减硫组分是对活性裂化催化剂的单独GSR添加剂型,在将氧化的GSR添加剂及再生的裂化催化剂返回FCC装置催化裂化区(如提升管)之前,采用一种氧化设备分离GSR添加剂和再生裂化催化剂,及选择性地氧化该GSR添加剂。
发明详述
按照本发明,提供了一种改良催化裂化方法,用于降低由含有机硫化合物的烃类进料所产生的液体产物的硫含量。本方法采用了一种具有其内含零价以上氧化态金属组分的减硫组分的催化剂体系。采用提高引入催化裂化区前的催化剂体系中金属组分氧化价态的方法,提高催化剂体系的减硫活性。
FCC方法
除按照本发明改变方法外,如以下论述,操作方法方式一般与常规FCC方法一致。因此,在本发明一个实施方案中,可采用常规FCC裂化催化剂,例如,具有八面沸石裂化组分的沸石基催化剂,如Venuto和Habib著:“沸石催化剂的流化催化裂化”(Marcel Dekker,New York 1979,ISBN 0-8247-6870-1)以及许多其它资料来源诸如Sadeghbeigi著“流化催化裂化手册”(GulfPubl.Co.Houston,1995,ISBN 0 0-88415-290-1)中所述。
一般,对于常规流化床催化裂化方法,应通过周期的催化剂循环裂化过程中进料与循环催化裂化催化剂的接触,使含有机硫化合物的重质烃进料裂化为较轻的产品,其催化剂装料由约20-100微米粒度范围可流化颗粒组成。在这种周期过程中重要的步骤是:
(i)、催化裂化进料:在催化裂化区内,通常为提升管裂化区,操作在催化裂化条件下,通过进料与炽热的再生后裂化催化剂源(以下简称“平衡催化剂或”“E-Cat”)的接触,使进料催化裂化,产生其内包括裂化产物和含焦炭及可汽提烃类的废催化剂的流出物;
(ii)、卸出并分离该流出物,通常在一个或更多个旋流分离器中,将其分离为富裂化产物的汽相和包括废催化剂的富固体颗粒相;
(iii)、脱出汽相产品,并在FCC主分馏塔和其相连的侧塔内对其分馏,形成包括汽油的液态裂化产品,
(iv)、汽提废催化剂,通常用蒸汽,脱出滞留催化剂上的烃类,其后氧化再生该汽提后的催化剂,得到平衡催化剂(E-Cat),接着将平衡催化剂再循环到裂化区,用于裂化另外大量的进料。
除常规FCC方法外,如上所述,本发明采用一种具有其内含零价以上氧化态金属组分的减硫组分的催化剂,并包括一个使再生后催化剂的金属组分平均氧化态提高的步骤,然后将此催化剂再循环至裂化区。
在本发明的一个实施方案中,提高金属组分平均氧化态的步骤包括,通过催化剂与一种含氧气体的接触,使至少一部分含减硫组分的催化剂受到附加的氧化处理。该附加氧化处理的条件包括:O2分压在约1-20磅/平方英寸(psia)范围,优选约8-16psia;系统总压力约20-100psia,优选约40-70psia;催化剂停留时间约1-60分钟,优选约1-10分钟;和温度在约1100-1550°F范围,优选约1200-1450°F的范围。
优选地是,该催化剂要在足以使其金属组分基本完全氧化的条件下受到附加氧化处理,即升高该金属阳离子的氧化态达到其最高水平。
FCC裂化催化剂
本发明可采用一种减硫组分,属于加至FCC装置(FCCU)主裂化催化剂(E-Cat)的单独的颗粒添加剂(GSR添加剂),或另一方面,可以是一种构成组合裂化/减硫催化剂体系的裂化催化剂的组分。催化剂的裂化组分,其存在通常影响目的裂化反应和产生较低沸点裂化产品,一般是基于八面沸石的活性裂化组分的,通常为诸如焙烧稀土交换Y型沸石(CREY)类中的一种沸石Y(其制备披露于US 3,402,996中),如披露于US 3,293,192中的超稳Y型沸石(USY)以及如披露于US 3,607,043和3,676,368中的各种部分交换Y型沸石。诸如这些裂化催化剂都是由各供应商广泛大批提供的。活性裂化组分通常是与基质材料相结合的,诸如与二氧化硅或氧化铝以及粘土结合,以构成所需机械特性(抗磨性等等)以及控制非常活性的沸石组分或几种组分的活性。裂化催化剂粒度一般在约10-100微米范围可达到有效流化。
减硫系统-筛组分
减硫组分优选应包括一种多孔分子筛,在其筛孔隙结构内部包含一种零价以上氧化态的金属。该分子筛在大多数情况下是一种沸石,而且它可以是具有与大孔沸石诸如沸石Y、优选沸石USY、或β沸石,或与诸如ZSM-5中孔尺寸沸石特征一致的沸石,而以前种类型是优选的。
本发明减硫催化剂的分子筛组分如上所述可以是一种沸石,或一种非沸石的分子筛。在使用时,沸石可选自大孔沸石或中孔沸石(参见陈等著:“工业应用中的择形催化剂”,(Marcel Dekker Inc.,New York 1989 ISBN 0-8247-7856-1),对于按照由Frilette等在J Catalysis 67,218-222(1981)中提出的基本方案以孔径大小对沸石分级的讨论)。小孔沸石,诸如沸石A和毛沸石(erionite),除催化裂化过程中使用稳定性不足之外,一般也不会是优选的,因为其分子尺寸排斥性质,往往会排斥裂化进料组分和裂解产物的许多组分。但是,这种筛的孔尺寸仿佛并不是关键的,因为中孔径及大孔径沸石二者都被发现是有效的,如下所示,如具有中孔的结晶材料诸如MCM-41。
可用于制备本发明减硫催化剂的具有与大孔(12碳环)结构存在一致性质的沸石包括各种类型的沸石Y,诸如Y、REY、CREY、USY,以其最后一个是优选的,以及其它沸石,诸如L沸石、β沸石、丝光沸石,包括脱含明矾的丝光沸石(de-aluminated mordenite)、和ZSM-18沸石。一般,大孔径沸石的特征在于具有至少0.7nm开环的孔结构,和中等或中间孔尺寸的沸石具有小于0.7nm但大于约0.56nm的孔口。适宜中等孔尺寸的可用沸石包括Pentasil沸石,诸如ZSM-5、ZSM-22、ZSM-23、ZSM-35、ZSM-50、ZSM-57、MCM-22、MCM-49、MCM-56等所有已知的材料。可采用具有非铝骨架结构的金属元素,例如,硼、镓、铁或铬。
使用USY沸石尤其理想,因为这种沸石一般用作裂化催化剂的活性裂化组分,因此可以采用这种组合型裂化/减硫催化剂体系型减硫催化剂。用于裂化组分的USY沸石也可能有利地用于单独的颗粒添加剂催化剂的筛组分,因为它会继续促进装置中存在的整个催化剂的裂化活性。稳定性与USY单胞尺寸(UCS)相关,为了最佳结果,对于在成品催化剂中USY沸石的UCS应该为约2.420-2.458nm,优选约2.420-2.445nm,而以2.435-2.440nm范围是非常适宜的。在置于FCC周期重复蒸汽处理之后,会发生UCS进一步减小,达到一个通常在约2.420-2.430nm范围的最终值。
除沸石之外,也可使用其它分子筛,不过它们可能不会那么有利,因为看来达到最佳性能要求有一些酸性活性(通常采用α值量度)。实验数据表明α值超过约10(无金属含量的分子筛)适用于适度的脱硫活性,通常α值在0.2-2000范围是适宜的注1。0.2-300的α值代表这些材料用作添加剂时的酸性活性正常范围。
可构成本减硫催化剂金属组分的适宜载体组分的示范非沸石筛材料包括:不同硅铝比的硅酸盐(如金属硅酸盐和钛硅酸盐(titanositicate))、金属铝酸盐(如锗铝酸盐)、金属磷酸盐、铝磷酸盐如硅-和金属铝-磷酸盐(MeAPO和ELAPO),被称为金属组合铝磷酸盐、金属组合硅铝磷酸盐(MeAPSO和ELAPSO)、硅铝磷酸盐(SAPO)、镓锗酸盐和这些盐的组合。
可使用的另一类结晶载体材料是中孔结晶材料族,可以MCM-41和MCM-48材料作为举例。这些中孔结晶材料被描述于US 5,098,684、5,102,643和5,198,203中。
也可考虑无定形和次晶(paracrystalline)载体材料,诸如2、4、13和14族元素的不定型耐热无机氧化物,例如,Al2O3、SiO2、ZrO2、TiO2、MgO和其混合物,和次晶材料诸如过渡态氧化铝(transitional aluminas)。
注1:α测试是一种测定固体物料诸如分子筛的总酸性的常规方法,总酸性包括其内外的酸性。此测试方法被描述于US 3,354,078、杂志“Journal of Catalysis”,Vol.4,p.527(1965);Vol.6,p.278(1966)和Vol.61p.395(1980)中。本说明书中所报告的α值是在恒温538C下测定的。
金属组分
用于本发明催化剂的减硫组分中所含金属组分包括那些披露于专利申请号09/144,607、09/221,539和09/221,540中的那些金属,其每个均在此引以参考。尽管考虑了呈现有减硫活性的任一金属阳离子,但这种金属或金属类都不应呈现明显的加氢活性,因为这涉及裂化过程中产生过多焦炭和氢气的问题。因此贵金属诸如铂和钯,具有强的加氢脱氢功能,是不符合需要的。具有强的加氢功能的碱金属和碱金属的组合,诸如镍、钼、镍-钨、钴-钼和镍-钼,由于同样理由也不符合需要。优选碱金属为金属值(metalvalues)为周期3、周期表中族5、7、8、9、12和13的(按以前IUPAC分类,为族IIB、VB、VIIB和VIIIB)。钒、锌、铁、钴、锰及镓是有效的,钒是优选的金属组分。在多孔分子筛孔结构内应当优选包含碱金属,如钒。据认为,在筛孔结构内的钒位置固定了钒,并阻止了它变成可与筛组分有害结合的钒酸物种;不论怎样,目前含钒作为金属组分的沸石基减硫催化剂,在代表FCC周期的还原及氧化/蒸汽处理条件之间,表示金属处在不同环境下,已经受了反复循环,却保持了其特征的沸石结构。
在用沸石USY负载钒时,钒尤其适合于汽油减硫。V/USY减硫催化剂的产率结构特别有意思。尽管其它沸石在添加金属之后表现对汽油减硫的作用,但它们趋向于将汽油转化为C3和C4气体。尽管可使大部分转化的C3和C4烷基化并可将其再调合回汽油调合物中,但富C4-湿气产率可能受到关注,因为许多炼油厂都受到它们的湿气压缩机容量的限制。含金属USY具有与当今FCC催化剂同样的产率结构;这个优点可使催化剂掺合物中V/USY沸石含量调节到目标脱硫水平,而不会受流化催化裂化装置约束的限制。因此,在以USY为代表的Y沸石催化剂上的钒,对FCC中汽油减硫是一种特别有利的组合。已发现获得特别好结果的USY是一种低单胞尺寸USY,其单胞尺寸范围在约2.420-2.458nm,优选约2.420-2.445nm(处理后),而且相应α值低。碱金属组合,诸如钒/锌的组合,作为主要减硫组分,在总减硫方面也可能是有利的。
减硫组分中金属量通常为0.1-10重量%,典型为0.15-5重量%(按相对于筛组分重量的金属计),但超出此范围外的数量,例如最多10重量%,仍然可发现会取得一些脱硫效果。在此分子筛被基质骨架化(matrixed)时,以相对于催化剂组合物总重量表示,实际配方中主要减硫金属组分的数量一般为整个催化剂的0.05-5重量%,更典型在0.05-3重量%。可在减硫组分中添加第二金属,如铈,使之处于分子筛孔结构内,如申请书No 09/221,540中所述。
在按组合催化剂体系配制催化剂时,为了制造简单又保持对裂化性质的控制,优选使用该催化剂的活性裂化组分作为减硫体系的筛组分,优选沸石USY。但是,在组合催化剂体系中可以加入另一种活性裂化分子筛材料,诸如沸石ZSM-5,而且这些体系在第二活性分子筛材料的性质如ZSM-5的性质是所需要的时侯可能有用。在此两情况下,应在控制金属量下完成浸渍/交换过程,以保留分子筛催化裂化反应所需活性中心数,这对活性裂化组分或已存在的任何二次裂化组分如ZSM-5可能是所希望的。
单独添加剂作为减硫组分的使用
优选地是,对催化剂装料,该减硫催化剂应是作为单独的颗粒添加剂(GSR添加剂)。在其优选类型中,用沸石USY为筛组分,对该装置总催化剂装料添加GSR添加剂不会导致总裂化明显减少,因为USY沸石有裂化活性。采用另外的活性裂化材料作为筛组分时,也同样如此。用此方法时,可采用纯分子筛结晶型的这种化合物,将其制成丸粒,达到FCC使用适宜粒度(无基质但加有金属组分)。但是,通常含金属分子筛应当是有基质的,以便达到足够的颗粒磨损强度和保持良好的流态化。常规裂化催化剂的基质材料诸如氧化铝或二氧化硅-氧化铝,通常还与所加的粘土一起,就适合于这个目的。相对于该分子筛,基质数量按重量计通常是20∶80-80∶20。可采用常规基质骨架化(matrixing)的方法。
采用GSR添加剂,允许按照进料硫含量和所需脱硫度使减硫与裂化催化剂组分的比例达到最佳;采用这种方式时,一般用量为约FCC装置中整个催化剂藏量的1-50重量%;在大多数情况下,该数量应约5-25重量%,如5-15重量%。约10%代表最实际的定额。GSR添加剂可使脱硫活性保持更长的时间,不过硫含量很高的进料会在更短时间内导致脱硫活性丧失。
除裂化催化剂和脱硫添加剂外,可对催化剂材料的循环装料提供其它催化活性组分。这些其它材料的实例包括:基于沸石ZSM-5的辛烷值增高催化剂、基于负载贵金属如铂的CO助燃剂、烟气脱硫添加剂如DESOXTM(镁铝合金尖晶石)、捕钒剂和残渣裂化添加剂,诸如在Krishna,Sadeghbeigi opcit.and Scherzer的“增高辛烷值沸石的FCC催化剂”(Marcel Dekker,NewYork,1990,ISBN 0-8247-8399-9)中所述的那些。对这些其它组分可按常规量使用。
本发明GSR添加剂的作用在于降低液态裂化产品的硫含量,尤其降低轻质和重质汽油馏分的硫含量,不过轻循环油中的降低也显著,使其更适合于用作柴油或家用燃料油的调合组分。由催化剂脱除的这种硫是被转化为无机物的形式以硫化氢释放的,硫化氢可按普通方法在FCC装置的产品回收段加以回收,其方法同于对裂化过程通常释放的硫化氢一样。硫化氢负荷增加可能提出了附加酸气/水处理的要求,但它却使汽油硫明显减少,这些不太可能被认为是有限制的。
在一组实施方案中,GSR添加剂颗粒优选具有比平衡催化剂(E-cat)颗粒高的密度或大的平均粒度。对于GSR添加剂,这一点可采用比平衡催化剂更重的粘合剂(如重的粘土)来实现,或采用平均粒度(ASP)比平衡催化剂更大的GSR添加剂,例如,一种其APS约100微米GSR添加剂和一种其APS约70微米的裂化催化剂。
更重或更大颗粒的GSR添加剂可使它们在再生器的底部有相对较长的停留时间,再生器底部的O2分压也较高。这样较长的停留时间可促进再生器烧去GSR添加剂上的焦炭,使这些添加剂选择性地受到附加的氧化处理,而不同于典型再生催化剂的。优选,可使颗粒密度及/或粒度最佳化,以增加其在再生器底部的停留时间,以充分氧化添加剂的金属组分。
在另一组实施方案中,可在常规FCC方法中各不同点处引入附加空气或氧气,构成对于GSR添加剂的附加氧化处理。例如,可将空气或氧气引入再生器竖管或竖管抽取圆锥体中,继续对GSR添加剂和E-Cat氧化。也可将附加空气或氧气加至两段再生器的第二段,增加O2分压到足使GSR添加剂中金属组分的平均氧化态升高。
在还有另一个实施方案中,可改进常规FCC方法的工艺设备或添加新设备,与系统中补充附加空气或氧气连接一起。例如,可调整再生器竖管或竖管圆锥体,以减少催化剂流量或增加催化剂停留时间,同时使催化剂受到附加氧化处理。在另一实施例中,可在再生器之后设置催化剂冷却器,将空气或氧气引入该催化剂冷却器,对再生催化剂在引入催化裂化区之前继续氧化。
一种催化裂化方法利用了一种如图1所示的单独的氧化设备,特别适合于采用其内包括本发明改良方法GSR添加剂的催化剂体系。应当注意,图1所述氧化设备仅仅是用来示范的。尽管使用这种设备是一种优选实施方案,但实施本发明仍可采用任何能够增加引入催化裂化区前催化剂体系中金属组分的平均氧化态的常规流化催化裂化装置。
现参看图1,单独的氧化设备1包括一个氧化区2和一个净空区(freeboard zone)3。根据通过进口管4流入该容器的再生FCC催化剂(如残碳、钒含量等)和其所需氧化条件(如催化剂流量和停留时间、空气流率和其分压等),设备1尺寸可在主再生器尺寸约5-80%范围,主再生器尺寸优选约5-20%范围变化。设备1的高径比可变化于约1-20的范围,优选约3-7。
设备1按下述方式操作:含约0-50%的GSR添加剂,优选约0-30%的添加剂,其上有某些残碳的再生FCC催化剂混合物,经催化剂入口4从主再生器底部流入设备1。GSR添加剂平均粒度及/或密度比平衡催化剂颗粒较大和高。优选GSR添加剂颗粒平均粒度(APS)在90微米以上,平衡催化剂颗粒平均粒度在90微米以下。可任选将富GSR添加剂流从再生FCC催化剂混合物中分离出,并只将该富GSR添加剂流引入设备1中。预热空气经由空气分配板5进入此设备。为了保持氧化区流化床2处于悬浮和有活力的状态,一般使流过该设备的空气空塔气速(SGV)(superficial gas velocity)超过流态化所需的最小流率,一般约0.2英尺/秒(0.61米/秒)-0.5英尺/秒(0.153米/秒)。优选应保持不少于约1.0英尺/秒(0.306米/秒)的高空塔气速。高空气流量会使大部分细平衡催化剂颗粒(<90微米)立刻经由出口6夹带回到再生器。未耗用的氧气会不断被用于燃烧再生器中的焦炭。此外,高空气流率会保证氧化区2中的氧分压足够的高,以烧去所有催化剂上的焦炭,构成氧化环境,使较大添加剂颗粒(>90微米)上的金属完全氧化。SGV应该优选不超过约10.0英尺/秒(3.0米/秒),更优选不超过约5.0英尺/秒(1.5米/秒)。完全氧化的富GSR添加剂催化剂7会返流回至再生器竖管底部,并经由催化剂出口管9与再生催化剂8的主流混合。催化剂流7的流量应在主再生催化剂8流量的约1-50%范围,优选在主流量8的10%左右。
实施例
进行以下实施例是为了说明并描述目前本发明实施方案的最佳方式。无论如何,以下所列实施例不是对本发明范围的限制。这些实施例包括制备含钒β沸石减硫添加剂、制备含钒USY沸石减硫添加剂及评价这些作为减硫添加剂的催化剂性能。
实施例1
用二氧化硅对氧化铝比为35的工业NH4型β沸石制备一种钒/β沸石/二氧化硅-氧化铝-粘土催化剂,即催化剂A。在900°F(482℃)N2气中焙烧此NH4型β沸石3小时,然后在1000°F(534℃)空气中焙烧6小时,产生一种H型β沸石。用1M VOSO4水溶液对所得H型β沸石进行V4+离子交换。对交换后β沸石进一步洗涤、干燥及空气焙烧。所得钒/β沸石含1.3重量%的钒。然后,通过制备一种含钒/β结晶的水浆液和一种二氧化硅/氧化铝-胶凝/粘土基质的方法,使该钒/β沸石与一种流体型基质合并一起。此后喷雾干燥此浆液,形成一种其内含约40重量%的钒/β结晶、25重量%的二氧化硅、5重量%的氧化铝和30重量%的高岭土的催化剂。在1000°F(534℃)下焙烧此喷雾干燥的催化剂3小时。最后催化剂含0.56重量%的钒。
然后,在流化床蒸汽发生器中1420°F(771℃)下,用50体积%蒸汽和50体积%气体,使此催化剂受到周期的丙烯蒸汽(CPS)处理20小时的方法,对此形成的催化剂(即催化剂A)进行蒸汽减活,模拟FCC装置中催化剂的减活。此CPS过程包括按以下周期每10分钟变换气体:N2、丙烯与N2混合物、N2、和空气,以模拟FCC装置的结焦/再生周期(周期的蒸汽吹扫)。收集两批减活催化剂的样品:第一批含用空气燃烧结束CPS周期(氧化结束)的催化剂和第二批含用丙烯进料结束的CPS周期的催化剂(还原结束)。“还原结束”催化剂的焦炭含量在0.05重量%C以下。此焙烧和蒸汽减活催化剂的物理性能概括于下表1中。
实施例2
用平均单胞尺寸(UCS)
Figure BSA00000272733100121
和体相硅铝比(bulk silica-to aluminaratio)5.4的一种低单胞尺寸USY,制备一种V/USY/二氧化硅-粘土催化剂,催化剂B。通过类似于实施例1形成一种浆液的方法,使所得USY与流体型的一种二氧化硅溶胶/粘土基质合并一起。雾化干燥所得浆液,形成一种催化剂,其内含约50重量%USY结晶,20重量%二氧化硅和30重量%高岭土。采用硫酸铵对此喷雾干燥催化剂进行铵交换,脱出Na+,然后在1000°F空气中焙烧。用氧钒基乙二酸盐溶液进行初始湿浸渍加钒,使最后催化剂上达到有0.5重量%钒的指标。然后在空气中焙烧所得钒/USY催化剂。最后催化剂含0.52重量%的钒。
用50体积%蒸汽和50体积%气体,在1420°F下在流化床蒸汽发生器中经CPS过程,使此催化剂蒸汽减活20小时。收集两批减活催化剂样品:第一批含经氧化结束的蒸汽减活催化剂和第二批含经还原结束的催化剂。还原结束的催化剂的焦碳含量在0.05重量%C以下。此焙烧和蒸汽减活催化剂的物理性能概括于下表1中。
对催化剂A和B分别用低金属平衡催化剂(E-Cat)混合,以评价其作为减硫添加剂的性能。此平衡催化剂的物理性能列于下表1中。
表1
催化剂物理性质
实施例3
对此实施例1的二批蒸汽减活钒/β沸石催化剂样品按汽油S减低添加剂进行评价。将此二批样品,即氧化结束批和还原结束批,与平衡催化剂掺合,分别构成含10重量%添加剂的混合物。所用平衡催化剂具有极低金属含量(即120ppm V和60ppm Ni)。
采用ASTM微活性测试方法(ASTM procedure D-3907),用减压瓦斯油(VGO)进料,测试各添加剂对粗柴油的裂化活性和选择性。此减压瓦斯油性质示于下表2中。
表2
减压瓦斯油性质
  进料性质   减压瓦斯油
  API比重   26.6
  苯胺点,°F   182
  CCR,重量%   0.23
  硫,重量%   1.05
  氨,ppm   600
  碱氮,ppm   310
  Ni,ppm   0.32
  V,ppm   0.68
  Fe,ppm   9.15
  Cu,ppm   0.05
  Na,ppm   2.93
  馏程
  IBP,°F   358
  50重量%,°F   716
  99.5%,°F   1130
在测试实施例1的有添加剂样品的催化剂之前,单独测试该平衡催化剂,以确定产品基础水平。采用不同催化剂对油料比,对各催化剂(即单独E-Cat,E-Cat/10重量%钒/β沸石(还原结束)和E-Cat/10重量%钒/β沸石(氧化结束))进行测试,使转化率达到一个范围,同时保持恒温约980°F(527℃)。采用合成原油样品的模拟蒸馏数据(SimDis,ASTM Method D2887)确定汽油、LCO和HFO的收率。用气体色谱仪(AED)分析汽油范围产品的各物料平衡,确定汽油S浓度。为减少与硫浓度及汽油蒸馏切割点波动有关的实验误差,将合成原油中从噻吩到C4-噻吩范围的硫物种(排除苯并噻吩和高沸点S物种)定量,并将总计量定义为“馏分汽油硫”(cut-gasoline S)。
催化剂的性能概括于表3中,其中各催化剂对产物选择性是在70重量%进料转化为汽油范围产品(即产品沸点430°F(221℃)以下)的恒定转化率下内插的。
表3
在氧化及还原环境中钒/β沸石添加剂催化剂的催化裂化性能
从表3可看出,催化剂A对降低汽油硫含量非常有效。在用E-Cat与10重量%催化剂A(加4重量%的β沸石)混合时,汽油硫浓度降低8%及30%,这与汽油硫降低添加剂的氧化态有关。此外,钒/β沸石催化剂表明仅中等程度地增加了H2及焦炭产率。
实施例4
对实施例2的二批蒸汽减活钒/USY催化剂样品作为汽油硫降低添加剂进行评价。将此二批样品与E-Cat混合,分别构成含各批25重量%的混合物。用减压瓦斯油(VGO)进料及在实施例3同样条件下测试该添加剂。这些催化剂的性能概括于下表4中。
表4
在氧化及还原环境中V/USY添加剂催化剂的催化裂化性能
Figure BSA00000272733100161
从表4可看出,催化剂B对降低汽油硫含量非常有效。在用平衡催化剂与25重量%催化剂B(加10重量%V/USY沸石)混和时,达到了汽油硫浓度分别减少6%及48%,这取决于GSR添加剂的氧化态。钒/USY催化剂表明仅中等程度地增加了H2及焦炭产率。
由表3和4可以看出,具有10%钒/β沸石及25%钒/USY的氧化结束的催化剂,在对汽油减硫方面比还原结束的催化剂更有效得很多(对馏分汽油减硫为31%对8%及48%对6%)。这表明钒在其处于V5+氧化状态时,对汽油的减硫作用更有效得多。在它们的还原型中,含钒催化剂对汽油减硫不太有效。
附图说明:
图1表示本发明的系统的一种示例性实施方案。

Claims (4)

1.一种对再生汽油减硫(GSR)添加剂的金属值进行氧化的系统,包括:
(i)一个主再生器,用于产生再生裂化催化剂和再生GSR添加剂流;
(ii)一个封闭氧化区,用于在流化床条件下使含氧物流与所述来自主再生器的再生裂化催化剂及再生GSR添加剂的流进行接触,其接触温度足以氧化所述进料物流中所存在的金属值;
(iii)一个进料口,与所述氧化区流体连通引入所述进料物流;
(iv)一个氧气流分配器,与所述氧化区流体连通,处于对所述流化床提供所述含氧物流的位置;及
(v)一个氧化后的GSR添加剂出口,与所述氧化区流体连通,用于抽取被氧化的GSR添加剂。
2.按照权利要求1的系统,还包括一个裂化催化剂出口,与所述氧化区流体连通,用于抽取所述再生裂化催化剂。
3.按照权利要求2的系统,其中所述进料口是与催化剂再生器流体连通,用于引入所述进料物流至该进料口,而所述裂化催化剂出口是与所述催化剂再生器流体连通,用于再循环所述再生裂化催化剂至所述催化剂再生器中。
4.按照权利要求1的系统,其中所述氧化后的GSR添加剂出口与流化催化反应器的催化裂化区流体连通,用于引入所述氧化后的GSR添加剂至所述裂化区。
CN2010102839450A 1999-09-20 2000-09-20 减少流化催化裂化的汽油硫的改进方法 Expired - Fee Related CN102061187B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/399,637 US6635169B1 (en) 1999-09-20 1999-09-20 Method for reducing gasoline sulfur in fluid catalytic cracking
US09/399,637 1999-09-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN008131147A Division CN1378583B (zh) 1999-09-20 2000-09-20 减少流化催化裂化的汽油硫的改进方法

Publications (2)

Publication Number Publication Date
CN102061187A true CN102061187A (zh) 2011-05-18
CN102061187B CN102061187B (zh) 2013-11-06

Family

ID=23580335

Family Applications (2)

Application Number Title Priority Date Filing Date
CN008131147A Expired - Fee Related CN1378583B (zh) 1999-09-20 2000-09-20 减少流化催化裂化的汽油硫的改进方法
CN2010102839450A Expired - Fee Related CN102061187B (zh) 1999-09-20 2000-09-20 减少流化催化裂化的汽油硫的改进方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN008131147A Expired - Fee Related CN1378583B (zh) 1999-09-20 2000-09-20 减少流化催化裂化的汽油硫的改进方法

Country Status (13)

Country Link
US (2) US6635169B1 (zh)
EP (3) EP2325283A1 (zh)
JP (2) JP4864261B2 (zh)
KR (1) KR100735970B1 (zh)
CN (2) CN1378583B (zh)
AT (2) ATE472589T1 (zh)
CA (2) CA2384030C (zh)
DE (2) DE60044610D1 (zh)
ES (2) ES2345972T3 (zh)
HK (1) HK1051052A1 (zh)
PT (1) PT1228167E (zh)
WO (1) WO2001021733A1 (zh)
ZA (1) ZA200201945B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028432A (zh) * 2013-01-11 2013-04-10 华东理工大学 一种抗磨损的可降低汽油硫含量的重油催化裂化催化剂及其制备方法
CN105814174A (zh) * 2013-12-20 2016-07-27 陶氏环球技术有限责任公司 丙烷脱氢硫管理

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7101473B2 (en) * 2002-05-31 2006-09-05 Engelhard Corporation Method of enhancing the activity of FCC catalysts
US7375053B2 (en) * 2003-04-07 2008-05-20 W. R. Grace & Co.- Conn. Nickel and cobalt plated sponge catalysts
CN1261216C (zh) 2003-05-30 2006-06-28 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
CN1261528C (zh) * 2003-06-30 2006-06-28 中国石油化工股份有限公司 一种具有脱硫作用的裂化催化剂
CN1333044C (zh) * 2003-09-28 2007-08-22 中国石油化工股份有限公司 一种烃油裂化方法
US8084383B2 (en) * 2004-03-16 2011-12-27 W.R. Grace & Co.-Conn. Gasoline sulfur reduction catalyst for fluid catalytic cracking process
US20050205466A1 (en) * 2004-03-19 2005-09-22 Beswick Colin L Zn-containing FCC catalyst and use thereof for the reduction of sulfur in gasoline
JP4859358B2 (ja) * 2004-09-22 2012-01-25 日揮触媒化成株式会社 接触分解ガソリンの脱硫触媒およびそれを用いた接触分解ガソリンの脱硫方法
TWI523688B (zh) * 2005-02-25 2016-03-01 W R 康格雷氏公司 減少觸媒裂解石油餾分之硫含量之方法及流體觸媒裂解程序
CN100451090C (zh) * 2005-05-12 2009-01-14 中国石油天然气股份有限公司 一种高效降低汽油硫含量的催化裂化方法
CN1958730B (zh) * 2005-10-31 2010-05-12 中国石油化工股份有限公司 一种降低汽油硫含量的方法
CN1978593B (zh) * 2005-11-30 2010-12-01 中国石油化工股份有限公司 一种裂化催化剂
US7960307B2 (en) * 2006-03-15 2011-06-14 Basf Corporation Catalyst composition for reducing gasoline sulfur content in catalytic cracking process
US7763164B1 (en) * 2006-05-04 2010-07-27 Marathon Petroleum Company Llc Gasoline sulfur reduction in FCCU cracking
CN101081995B (zh) * 2006-05-31 2010-08-25 中国石油化工股份有限公司 一种降低催化裂化汽油硫含量的方法
US8623199B2 (en) * 2006-06-28 2014-01-07 Saudi Arabian Oil Company Clay additive for reduction of sulfur in catalytically cracked gasoline
US8409428B2 (en) 2006-06-28 2013-04-02 Saudi Arabian Oil Company Catalyst additive for reduction of sulfur in catalytically cracked gasoline
CN101190416B (zh) * 2006-12-01 2011-06-15 石大卓越科技股份有限公司 一种催化裂化催化剂及其制备方法
BRPI0807925B1 (pt) * 2007-02-21 2017-02-14 W R Grace & Co -Conn catalisador de redução de enxofre de gasolina para processo de craqueamento catalítico de fluido
CN101486925B (zh) * 2008-05-13 2012-09-05 北京三聚环保新材料股份有限公司 一种稳定的fcc降硫助剂以及采用该助剂的fcc脱硫复合剂
US9211525B2 (en) * 2008-07-30 2015-12-15 Saudi Arabian Oil Company Metallic clay based FCC gasoline sulfur reduction additive compositions
US20110011772A1 (en) * 2009-07-15 2011-01-20 Stephen Raymond Schmidt Nickel and Cobalt Plated Sponge Catalysts
US9068132B2 (en) 2009-07-21 2015-06-30 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8759242B2 (en) 2009-07-21 2014-06-24 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8927448B2 (en) 2009-07-21 2015-01-06 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8905478B2 (en) * 2010-03-17 2014-12-09 Britax Child Safety, Inc. Child safety seat with structural support
CN102811812A (zh) 2010-03-18 2012-12-05 格雷斯公司 由粘土得到的沸石制备改进的催化剂的方法
JP5640142B2 (ja) 2010-03-18 2014-12-10 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット 高軽質オレフィン用fcc触媒組成物
BR112012023069B1 (pt) 2010-03-18 2018-11-21 W.R. Grace & Co - Conn. processo para fabricar um catalisador e método de reduzir a perda da área da superfície do zeólito em um catalisador contendo zeólito
US10093872B2 (en) 2010-09-07 2018-10-09 Saudi Arabian Oil Company Oxidative desulfurization of oil fractions and sulfone management using an FCC
US9574144B2 (en) 2010-09-07 2017-02-21 Saudi Arabian Oil Company Process for oxidative desulfurization and denitrogenation using a fluid catalytic cracking (FCC) unit
US10087377B2 (en) 2010-09-07 2018-10-02 Saudi Arabian Oil Company Oxidative desulfurization of oil fractions and sulfone management using an FCC
US8846560B2 (en) 2010-12-30 2014-09-30 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
EP2737012B1 (en) 2011-07-29 2016-01-13 Saudi Arabian Oil Company Oxidative desulfurization in fluid catalytic cracking process
SG188753A1 (en) 2011-09-30 2013-04-30 Bharat Petroleum Corp Ltd Sulphur reduction catalyst additive composition in fluid catalytic cracking and method of preparation thereof
CN103055919B (zh) * 2011-10-18 2015-08-26 中国石油化工股份有限公司 一种蒸汽裂解制丙烯的规整结构催化剂
US9321037B2 (en) 2012-12-14 2016-04-26 Chevron U.S.A., Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
US9687823B2 (en) 2012-12-14 2017-06-27 Chevron U.S.A. Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
US20150360216A1 (en) * 2014-06-12 2015-12-17 Uop Llc Process and apparatus for fluidizing a regenerator
BR112019005288A2 (pt) 2016-09-16 2019-06-04 Lummus Technology Llc processo de craqueamento catalítico fluidizado e aparelho para maximizar o rendimento de olefinas leves e outras aplicações
US11286431B2 (en) 2019-07-02 2022-03-29 Lummus Technology Llc Fluid catalytic cracking processes and apparatus
MY197653A (en) 2019-07-15 2023-06-30 Lummus Technology Inc Fluid catalytic cracking process and apparatus for maximizing light olefin yield and other applications
US10947458B1 (en) * 2020-03-18 2021-03-16 Chevron U.S.A. Inc. Upgrading of renewable feedstocks with spent equilibrium catalyst

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2417275A (en) 1941-01-31 1947-03-11 Standard Oil Dev Co Regeneration of powdered catalyst
US3293192A (en) 1965-08-23 1966-12-20 Grace W R & Co Zeolite z-14us and method of preparation thereof
US3402996A (en) 1966-12-19 1968-09-24 Grace W R & Co Ion exchange of crystalline zeolites
US3607043A (en) 1969-11-19 1971-09-21 Grace W R & Co Cation and thermal stabilization of a faujasite-type zeolite
US3676368A (en) 1970-08-26 1972-07-11 Grace W R & Co Rare earth-hydrogen exchanged zeolites
US3873470A (en) 1971-01-11 1975-03-25 Universal Oil Prod Co Method of manufacturing a hydrodesulfurization catalyst
US3926778A (en) 1972-12-19 1975-12-16 Mobil Oil Corp Method and system for controlling the activity of a crystalline zeolite cracking catalyst
US3977963A (en) 1975-04-17 1976-08-31 Gulf Research & Development Company Method of negating the effects of metals poisoning on cracking catalysts
US4153535A (en) 1975-12-19 1979-05-08 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4115252A (en) 1976-11-22 1978-09-19 Uop Inc. Hydrocarbon conversion with an acidic multimetallic catalytic composite
US4489169A (en) 1980-03-17 1984-12-18 Phillips Petroleum Company Cracking catalyst
JPS5827837B2 (ja) * 1979-03-22 1983-06-11 日本鉱業株式会社 含硫黄重質油の処理方法
US4337144A (en) 1980-05-19 1982-06-29 Atlantic Richfield Company Aluminum passivation process
US4957892A (en) 1980-07-29 1990-09-18 Uop Process for combusting solid sulfur containing material
US4432890A (en) * 1981-03-30 1984-02-21 Ashland Oil, Inc. Immobilization of vanadia deposited on catalytic materials during carbo-metallic oil conversion
US5045176A (en) 1981-05-13 1991-09-03 Ashland Oil, Inc. Carbometallic oil conversion with ballistic separation
US4464252A (en) * 1982-08-23 1984-08-07 Exxon Research & Engineering Co. Adsorbents for sulfur removal
US4497903A (en) 1982-12-17 1985-02-05 Gulf Research & Development Company Activated cobalt-substituted layered aluminosilicate for synthesis gas conversion
US4588702A (en) * 1983-04-07 1986-05-13 Ashland Oil, Inc. High performance catalysts for carbometallic oil conversion and their manufacture and use
US4507397A (en) 1983-07-28 1985-03-26 Chevron Research Company Semi-continuous regeneration of sulfur-contaminated catalytic conversion systems
US4615996A (en) * 1983-08-25 1986-10-07 Gulf Research & Development Company Dual function cracking catalyst (DFCC) composition
US4735705A (en) * 1984-05-30 1988-04-05 Katalistiks International Inc. Composition of matter and process useful for conversion of hydrocarbons
US5104519A (en) 1984-11-02 1992-04-14 Mobil Oil Corporation Method and apparatus for removing small catalyst particles in FCC systems
US4943366A (en) 1985-06-03 1990-07-24 Mobil Oil Corporation Production of high octane gasoline
US4944864A (en) * 1985-06-11 1990-07-31 Exxon Research And Engineering Company Process using cracking calalyst containing strontium carbonate
US4642177A (en) 1985-09-30 1987-02-10 Union Oil Company Of California Process for reducing sulfur oxide emissions from catalytic cracking units
US4832921A (en) 1985-12-27 1989-05-23 Uop Inc. Apparatus for regeneration of hydrocarbon conversion catalyst
US4790982A (en) 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
US4690806A (en) * 1986-05-01 1987-09-01 Exxon Research And Engineering Company Removal of sulfur from process streams
US4834867A (en) * 1986-08-25 1989-05-30 W. R. Grace & Co.-Conn. A process for producing gasoline under FCC conditions employing a cracking catalysts having aromatic selectivity
US4946578A (en) * 1986-11-17 1990-08-07 Ensci, Inc. Process for treating hydrocarbons
US4846960A (en) 1987-07-02 1989-07-11 Phillips Petroleum Company Catalytic cracking
US4794095A (en) 1987-07-02 1988-12-27 Phillips Petroleum Company Catalytic cracking catalyst
US4781816A (en) * 1987-10-19 1988-11-01 Phillips Petroleum Company Cracking process
US4957718A (en) 1987-11-24 1990-09-18 Uop Process for reducing emissions of sulfur oxides and composition useful in same
US4859643A (en) 1988-05-11 1989-08-22 Uop Regeneration method with reduced catalyst heat exposure
US4929337A (en) * 1988-12-30 1990-05-29 Mobil Oil Corporation Process for catalytic cracking of heavy hydrocarbon feed to lighter products
US5168086A (en) 1989-03-02 1992-12-01 W. R. Grace & Co.-Conn. Catalytic cracking catalysis
US4980051A (en) * 1989-11-21 1990-12-25 Mobil Oil Corporation Process and apparatus for preheating heavy feed to a catalytic cracking unit
US5002653A (en) * 1989-12-29 1991-03-26 Chevron Research Company Catalytic cracking process with vanadium passivation and improved
US5260240A (en) * 1989-12-29 1993-11-09 Chevron Research And Technology Company Process for the demetallization of FCC catalyst
US4988654A (en) * 1989-12-29 1991-01-29 Chevron Research Company Dual component cracking catalyst with vanadium passivation and improved sulfur tolerance
US5198203A (en) 1990-01-25 1993-03-30 Mobil Oil Corp. Synthetic mesoporous crystalline material
US5102643A (en) 1990-01-25 1992-04-07 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis
US5108968A (en) 1990-04-06 1992-04-28 Recat, Inc. Process for treating a material wherein the material is suspended in a gaseous atmosphere
US5110775A (en) * 1990-12-28 1992-05-05 Mobil Oil Corporation Two stage combustion process for cracking catalyst regeneration
SU1822529A3 (ru) * 1991-06-17 1995-02-27 Институт катализа СО РАН Катализатор для очистки отходящих промышленных газов по реакции клауса
US5275990A (en) 1991-10-31 1994-01-04 Amoco Corporation Process for regenerating a spent resid hydroprocessing catalyst using a group IIA metal
US5198397A (en) 1991-11-25 1993-03-30 Mobil Oil Corporation Two-stage fluid bed regeneration of catalyst with shared dilute phase
DE69314819T2 (de) * 1992-02-05 1998-06-10 Grace W R & Co Metallpassivierung/SOx-Kontrollzusammensetzungen für katalytisches Fluidkracken
US5288675A (en) 1992-02-05 1994-02-22 W. R. Grace & Co.-Conn. SOx control compositions
US5880050A (en) 1992-03-26 1999-03-09 Institut Francais Du Petrole Process for the regeneration of catalyst containing sulphur
US5376608A (en) 1993-01-27 1994-12-27 W. R. Grace & Co.-Conn. Sulfur reduction in FCC gasoline
US5482617A (en) * 1993-03-08 1996-01-09 Mobil Oil Corporation Desulfurization of hydrocarbon streams
US5401391A (en) * 1993-03-08 1995-03-28 Mobil Oil Corporation Desulfurization of hydrocarbon streams
US5599439A (en) 1993-03-13 1997-02-04 Mobil Oil Corporation Gasoline and reformate upgrading process
US5545604A (en) 1993-07-30 1996-08-13 Intercat, Inc. Processes for reacting bastnaesite with alkaline-earth metals
US5346613A (en) 1993-09-24 1994-09-13 Uop FCC process with total catalyst blending
DE69604936T2 (de) 1995-03-20 2000-05-18 Shell Int Research Verfahren zur regeneration von katalysatoren
US5843382A (en) 1995-05-19 1998-12-01 Gas Research Institute Method and apparatus for removing sulfur from solution in liquid redox sulfur removal processes
US5591419A (en) 1996-01-16 1997-01-07 Wheelabrator Clean Air Systems Inc. Oxidation-reduction process
US5723039A (en) 1996-04-11 1998-03-03 Catalytic Sciences, Ltd. Process for removal of organo-sulfur compounds from liquid hydrocarbons
US5854161A (en) 1996-04-24 1998-12-29 Abb Lummus Global Inc. Process for the regeneration of a catalyst
US5928496A (en) * 1996-06-20 1999-07-27 Contract Materials Processing, Inc. Hydrotalcite sulfer oxide sorption
US6074984A (en) * 1996-11-18 2000-06-13 Bulldog Technologies U.S.A., Inc. SOx Additive systems based upon use of multiple particle species
US6048821A (en) * 1996-11-18 2000-04-11 Bulldog Technologies U.S.A., Inc. SOx additive systems based upon use of multiple particle species
US5965474A (en) * 1997-04-29 1999-10-12 Mobil Oil Corporation FCC metal traps based on ultra large pore crystalline material
US6852214B1 (en) 1998-08-31 2005-02-08 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
DE19962669B4 (de) * 1998-12-28 2004-07-01 Mobil Oil Corp. Verringerung des Schwefelgehaltes in Benzin beim katalytischen Wirbelschichtcracken

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028432A (zh) * 2013-01-11 2013-04-10 华东理工大学 一种抗磨损的可降低汽油硫含量的重油催化裂化催化剂及其制备方法
CN103028432B (zh) * 2013-01-11 2018-04-17 华东理工大学 一种抗磨损的可降低汽油硫含量的重油催化裂化催化剂及其制备方法
CN105814174A (zh) * 2013-12-20 2016-07-27 陶氏环球技术有限责任公司 丙烷脱氢硫管理

Also Published As

Publication number Publication date
US6482315B1 (en) 2002-11-19
US6635169B1 (en) 2003-10-21
WO2001021733A1 (en) 2001-03-29
EP2325283A1 (en) 2011-05-25
CA2384030A1 (en) 2001-03-29
CA2716452A1 (en) 2001-03-29
CN102061187B (zh) 2013-11-06
EP2308952A1 (en) 2011-04-13
HK1051052A1 (en) 2003-07-18
DE60021593T2 (de) 2006-06-01
CA2384030C (en) 2010-12-14
ES2246250T3 (es) 2006-02-16
CN1378583B (zh) 2012-08-08
CN1378583A (zh) 2002-11-06
JP4864261B2 (ja) 2012-02-01
JP2003510405A (ja) 2003-03-18
ATE300595T1 (de) 2005-08-15
EP1220881B1 (en) 2005-07-27
JP2003510406A (ja) 2003-03-18
ES2345972T3 (es) 2010-10-07
DE60044610D1 (de) 2010-08-12
ATE472589T1 (de) 2010-07-15
KR100735970B1 (ko) 2007-07-06
CA2716452C (en) 2012-10-02
DE60021593D1 (de) 2005-09-01
KR20020052181A (ko) 2002-07-02
WO2001021733A9 (en) 2002-10-03
EP1220881A1 (en) 2002-07-10
JP4964379B2 (ja) 2012-06-27
PT1228167E (pt) 2010-09-16
ZA200201945B (en) 2002-10-03

Similar Documents

Publication Publication Date Title
CN1378583B (zh) 减少流化催化裂化的汽油硫的改进方法
US8597500B2 (en) Process for converting inferior feedstock to high quality fuel oil
US6846403B2 (en) Gasoline sulfur reduction in fluid catalytic cracking
US9611432B2 (en) Catalytic cracking catalyst having a higher selectivity, processing method and use thereof
CA2293120C (en) Gasoline sulfur reduction in fluid catalytic cracking
CN107267211B (zh) 一种劣质原料油的加工方法和系统
TWI231231B (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process
SA05260089A (ar) طريقة لإنتاج الأوليفينات الخفيفة والأورماتية
CN101489669B (zh) 用于催化裂化汽油中硫的减少的催化剂添加剂
CN101434862B (zh) 一种降低轻质烃油中硫化物的方法
US8932457B2 (en) Catalytic conversion method for increasing cetane number barrel of diesel
CN205821248U (zh) 一种催化转化反应器
CN101134916B (zh) 一种烃油在流态化反应器内临氢催化吸附脱硫的方法
CN107267190B (zh) 一种高烯烃含量汽油改质的方法
CN1553946B (zh) 流化催化裂化中的汽油减硫
CN105505454B (zh) 一种页岩油流化催化裂化方法
CN111040807A (zh) 一种采用双提升管进行加工劣质油的方法和系统
CN103059995B (zh) 一种石油烃的有效催化转化方法
CN102233275A (zh) 一种改善选择性的催化裂化催化剂及其处理方法
CN103059992B (zh) 一种石油烃的有效催化转化方法
JP2022554216A (ja) プロピレンおよび低硫黄燃料油成分の製造法
CN103059994B (zh) 一种石油烃的高效催化转化方法
CN112745902A (zh) 一种生产低碳烯烃的催化转化方法和催化转化装置
CN112745900A (zh) 一种生产低碳烯烃的催化转化方法和催化转化装置
CN102051226B (zh) 多产柴油和丙烯的催化转化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131106

Termination date: 20150920

EXPY Termination of patent right or utility model