CN102056909B - 环氧化工艺的开车方法及环氧乙烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的制备方法 - Google Patents

环氧化工艺的开车方法及环氧乙烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的制备方法 Download PDF

Info

Publication number
CN102056909B
CN102056909B CN200980121408.1A CN200980121408A CN102056909B CN 102056909 B CN102056909 B CN 102056909B CN 200980121408 A CN200980121408 A CN 200980121408A CN 102056909 B CN102056909 B CN 102056909B
Authority
CN
China
Prior art keywords
catalyzer
amount
organic chloride
raw material
starting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980121408.1A
Other languages
English (en)
Other versions
CN102056909A (zh
Inventor
M·毛图斯
P·M·麦卡利斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40718645&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102056909(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN102056909A publication Critical patent/CN102056909A/zh
Application granted granted Critical
Publication of CN102056909B publication Critical patent/CN102056909B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

提供一种乙烯环氧化工艺的开车方法,包括:(a)使包含高选择性环氧化催化剂的催化剂床层与包含乙烯、氧和有机氯化物的原料接触一段时间,直到在反应器出口气体或循环气体回路中检测到至少1×10-5mol%氯乙烯增量,优选为2×10-5mol%氯乙烯增量,相对于总气体混合物以氯乙烯摩尔数计算;和(b)随后调节原料中有机氯化物的量,使其值足以以基本最优选择性产生环氧乙烷。

Description

环氧化工艺的开车方法及环氧乙烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的制备方法
技术领域
本发明涉及乙烯环氧化工艺的开车方法,所述方法采用银基高选择性环氧化催化剂。本发明还涉及环氧乙烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的制备方法,所述方法包括本发明的开车方法。
背景技术
烯烃经银基催化剂催化环氧化得到相应的环氧烷早就已知。传统的银基催化剂以公知的低选择性提供环氧烷。例如,当在乙烯环氧化中应用传统催化剂时,按所转化的乙烯分率表示的环氧乙烷选择性不会达到高于6/7或85.7mol%极限的值。因此,基于如下反应式的化学计量学,该极限很久就被认为是该反应的理论最大选择性:
7C2H4+6O2→6C2H4O+2CO2+2H2O
参见Kirk-Othmer的Encyclopedia of Chemical Technology,第三版第9卷,1980,445页。
该选择性在很大程度上决定了环氧化方法的经济吸引力。例如,改进环氧化方法的选择性可以通过应用较少的烯烃产生相同量的环氧烷而降低大规模环氧乙烷装置的操作成本,或者通过由相同量烯烃生产更多环氧烷而增加收益。
通过环氧化方法生产的环氧烷可以与水反应形成1,2-二醇,与二氧化碳反应形成1,2-碳酸酯,与醇反应形成1,2-二醇醚,或与胺反应形成链烷醇胺。因此,在初始包含烯烃环氧化和随后用水、二氧化碳、醇或胺转化所形成的环氧烷的多步方法中,可以生产1,2-二醇、1,2-碳酸酯、1,2二醇醚和链烷醇胺。环氧化方法中的任何改进还可导致制备1,2-二醇、1,2-二醇醚或链烷醇胺的改进方法。
现代的银基环氧化催化剂对环氧烷生产是高选择性的。当在乙烯环氧化中应用现代催化剂时,环氧乙烷的选择性可以达到高于所提到的6/7或85.7mol%极限的值。这种高选择性催化剂的例子为包含银和铼促进剂的催化剂,参见例如US-A-4761394和US-A-4766105。
为了增大高选择性催化剂的选择性,可以向环氧化方法的原料中加入反应调节剂,例如有机卤化物(参见例如EP-A-352850、US-A-4761394和US-A-4766105,它们在此作为参考引入)。相对于希望形成的环氧烷,反应调节剂通过目前还无法解释的机理抑制了烯烃或环氧烷到二氧化碳和水的不希望氧化。EP-A-352850教导了在恒定的氧转化率水平下和给定的一组反应条件下,作为原料中有机卤化物量的函数存在最优选择性。
US-B2-7102022涉及应用高选择性催化剂的环氧化方法的开车。在该文献中,公开了一种改进的开车程序,其中对高选择性催化剂进行热处理,其中催化剂与含氧原料的接触温度高于高选择性催化剂的正常操作温度(即高于260℃)。
US-A1-2004/0049061涉及提高具有低银密度的高选择性催化剂的选择性的方法。在该文献中,公开了一种方法,其中对高选择性催化剂进行热处理,包括使催化剂与含氧原料在高于高选择性催化剂正常操作温度的温度(即高于250℃)下接触。
US-A-4874879涉及采用高选择性催化剂的环氧化方法的开车。在该文献中,公开了一种改进的开车程序,其中高选择性催化剂首先在低于催化剂的正常操作温度的温度下与包含有机卤化物调节剂和乙烯及任选压载气的原料接触。
EP-B1-1532125涉及应用高选择性催化剂的环氧化方法的开车。在该文献中,公开了一种改进的开车程序,其中高选择性催化剂首先在包含有机卤化物的原料存在下经历预浸泡阶段,然后在不含有机卤化物或可含少量有机卤化物的原料存在下经历汽提阶段。据教导所述汽提阶段持续超过16小时至至多200小时。
不用说,存在缩短开车时间并使催化剂以最小延迟在高选择性下操作的经济激励。
发明内容
按照本发明,通过应用本发明的开车方法可以改进应用高选择性催化剂的环氧化工艺的开车。本发明的开车方法可以缩短开车过程的持续时间。另外,在开车过程后几小时内,催化剂能够以正常操作条件下催化剂已经“达到稳态”后所经历的选择性或接近该选择性生产环氧乙烷。因为催化剂的选择性迅速增大,因此存在环氧乙烷的附加产量。另外,在开车过程期间,不再需要催化剂的操作温度高于正常环氧乙烷生产过程中所应用的催化剂温度,这可改进催化剂寿命。
虽然现有的环氧化方法可以以多种方式实施,但优选在气相方法中实施,即在所述方法中原料以气相方式与通常在填充床中作为固体材料存在的催化剂接触。所述方法通常按连续过程实施。反应器通常配备有换热设施来加热或冷却催化剂。正如这里所应用的,原料被认为是与催化剂接触的组合物。正如这里所应用的,催化剂温度或催化剂床层温度被认为是催化剂颗粒的重均温度。
当在环氧化方法中应用新催化剂及老化催化剂(其中后者由于装置停车已经经历过延长的停止期)时,在一些情况下可能有用的是在实施开车过程前,通过在高温下使吹扫气通过催化剂而对这些催化剂进行预处理。吹扫气通常为惰性气体,例如氮气或氩气、或包含氮气和/或氩气的混合物。高温将大部分可能用于制备催化剂的有机氮化合物转化为含氮气体,所述含氮气体被吹扫入气体物流中和从催化剂中脱除。另外,可以从催化剂中脱除任何的水分。通常,当向反应器中装载催化剂时,通过应用冷却剂加热器,可使催化剂温度达到200-250℃,优选为210-230℃,和使气体物流流过催化剂。关于该预处理的更多细节可参见US-A-4874879,其在此作为参考引入。
使催化剂经历开车过程,所述开车过程包括使催化剂与包含乙烯、氧气和有机氯化物的原料接触的初始步骤。仅仅为了清楚起见,所述方法的这一步在下文中用“初始开车阶段”表示。在初始开车阶段期间,催化剂能够以在开车过程后在催化剂已经在正常初始操作条件下“达到稳态”后所经历的选择性或接近该选择生产环氧乙烷。具体地,在初始开车阶段期间,选择性可以位于正常初始操作条件下最优选择性能的3mol%以内,更特别为2mol%以内,最特别为1mol%以内。合适地,在初始开车阶段期间,选择性可以达到和维持在高于86.5mol%,特别为至少87mol%,更特别为至少87.5mol%。因为催化剂的选择性迅速增大,有利地存在环氧乙烷的附加产量。
在初始开车阶段期间,催化剂与有机氯化物接触一段时间,直到在反应器出口或循环气体回路中检测到至少1×10-5mol%氯乙烯增量,相对于总气体混合物以氯乙烯摩尔数计算。不希望被任何理论所限制,当应用不同于氯乙烯的有机氯化物时,据信在出口或循环回路中检测到的氯乙烯是由催化剂中存在的银表面吸附的氯化物与原料中存在的烃反应而产生的。优选地,催化剂与有机氯化物接触一段时间,直到在反应器出口或循环气体回路中检测到至少2×10-5mol%的氯乙烯增量,特别为至多1×10-4mol%,更特别为至多7.5×10-5mol%,最特别为至多5×10-5mol%,相对于总气体混合物以氯乙烯摩尔数计算。与催化剂接触的有机氯化物的量可以为每千克催化剂1-12毫摩尔(mmol)当量氯。所述毫摩尔当量氯通过将有机氯化物的毫摩尔数与有机氯化物分子中存在的氯原子数相乘来确定,例如1毫摩尔二氯乙烷提供2毫摩尔当量氯。可以向催化剂床层进料有机氯化物的时间段为1-15小时,优选为2-10小时,更优选为2.5-8小时。
合适地,与催化剂接触的有机氯化物的量可以为至多6mmol当量/kg催化剂,特别为至多5.5mmol当量/kg催化剂,更特别为至多5mmol当量/kg催化剂。在初始开车阶段期间,原料中有机氯化物的量可以为至少1.5×10-4mol%,特别为至少2×10-4mol%,相对于总进料以氯化物的摩尔数计算。在初始开车阶段期间,有机氯化物的量可以为至多0.1mol%,优选为至多0.01mol%,更优选为至多0.001mol%,相对于总进料以氯化物的摩尔数计算。优选地,初始开车原料的有机氯化物含量可以高于正常环氧乙烷生产的初始阶段期间所应用的最优量。
初始开车阶段期间的原料还可以含有不是有机卤化物的附加反应调节剂,例如硝酸根或亚硝酸根形成化合物,正如这里所描述的。
初始开车阶段期间的原料还含有乙烯。初始开车原料中乙烯的存在量可以为至少10mol%,优选为至少15mol%,更优选为至少20mol%,相对于总原料计。初始开车原料中乙烯的存在量可以为至多50mol%,优选为至多45mol%,更优选为至多40mol%,相对于总原料计。优选地,初始开车原料中乙烯的存在量可以与正常环氧乙烷生产过程中所应用的量相同或基本相同。这样提供的附加优点在于不必在初始开车阶段和开车后正常环氧乙烷生产之间调节乙烯浓度,从而使所述方法更有效率。
初始开车阶段期间的原料还含有氧。初始开车原料中氧的存在量可以为至少1mol%,优选为至少2mol%,更优选为至少2.5mol%,相对于总原料计。初始开车原料中氧的存在量可以为至多15mol%,优选为至多10mol%,更优选为至多5mol%,相对于总原料计。与正常环氧乙烷生产过程中在过程后续阶段的原料组成相比,在初始开车原料中应用较低的氧量可能是有利的,因为原料中较低的氧量将降低氧的转化率水平,从而有利的是更好地避免了催化剂中的热点和所述方法更容易控制。
初始开车阶段期间的原料还可以含有二氧化碳。初始开车原料中二氧化碳的存在量可以为至多5mol%,优选为至多4mol%,相对于总原料计。
在一个实施方案中,初始开车阶段期间的原料还含有少于2mol%、优选少于1.5mol%、更优选少于1.2mol%、最优选少于1mol%、特别为至多0.75mol%的二氧化碳,相对于总原料计。在本发明的正常实践中,反应器原料中二氧化碳的存在量为至少0.1mol%,或至少0.2mol%,或至少0.3mol%,相对于总原料计。合适地,初始开车原料中二氧化碳的存在量可以与正常环氧乙烷生产期间所应用的量相同或基本相同。
初始开车阶段期间原料的余量还可以含有惰性和/或饱和烃。所述惰性和饱和烃如下文所述。
在初始开车阶段期间,催化剂温度优选可以为与开车过程后环氧化方法已经在正常操作条件下“达到稳态”后的正常初始催化剂操作温度基本相同的温度。这里所应用的术语“基本相同的温度”包括开车过程后环氧化方法已经在正常操作条件下“达到稳态”后的正常初始催化剂操作温度+/-5℃范围内的催化剂温度。优选地,催化剂温度低于250℃,优选为至多245℃。催化剂温度可以为至少200℃,优选为至少220℃,更优选为至少230℃。反应器入口压力可以为至多4000kPa绝压,优选为至多3500kPa绝压,更优选为至多2500kPa绝压。反应器入口压力为至少500kPa绝压。按下文所定义的气时空速或“GHSV”可以为500-10000Nl/(l.h)。
在初始开车阶段期间,催化剂可以首先与包含乙烯和任选饱和烃(特别是乙烯和任选甲烷)的原料接触。然后向原料中加入有机氯化物。氧可以与有机氯化物同时加入原料中或者向原料中首先加入有机氯化物稍后再加入氧。在加入氧的几分钟内,可能引发环氧化反应。可以在任何时刻加入二氧化碳和附加原料组分,优选在向初始开车原料中加入氧的同时或者稍后加入。正如上文所讨论的,在初始开车阶段期间,催化剂能够以开车过程后催化剂已经在正常初始操作条件下“达到稳态”后所经历的选择性或接近该选择性而生产环氧乙烷。在初始开车阶段期间,催化剂的操作条件可以使得环氧乙烷的生产水平为正常环氧乙烷生产期间目标生产水平的45-75%,具体为50-70%,基于相同基准计。
任选地,初始开车阶段后,催化剂可以与相对于初始开车原料包含降低量的有机氯化物的原料接触。仅仅为了清楚起见,所述方法的这一步在下文中用术语“中间开车阶段”表示。优选地,中间开车原料可以包含的有机氯化物的量低于正常环氧乙烷生产的初始阶段所使用的最优量。有关有机氯化物的最优量的讨论,参见EP-A-352850、US-A-4761394和US-A-4766105,它们在此作为参考引入。
中间开车阶段期间中间开车原料中的有机氯化物量可以为初始开车原料中的有机氯化物量的至多80%,优选为至多75%,更优选为至多70%。中间开车阶段期间中间开车原料中的有机氯化物量可以为初始开车原料中的有机氯化物量的至少45%,优选为至少50%,更优选为至少55%。中间开车阶段期间中间开车原料中的有机氯化物量可以大于1×10-4mol%,特别为至少1.2×10-4mol%,更特别为至少1.4×10-4mol%,相对于总原料以氯化物摩尔数计算。
中间开车阶段期间的附加原料组分可以包括在此描述的在初始开车阶段期间的原料中应用的组分。优选地,只有有机氯化物的量可以降低,而原料中的其它组分保持与初始开车原料中基本相同。
在中间开车阶段期间,催化剂温度优选可以与开车过程后环氧化方法已经在正常操作条件下“达到稳态”后的正常初始催化剂操作温度基本相同。优选地,催化剂温度可以低于250℃,优选地为至多245℃。催化剂温度可以为至少200℃,优选为至少220℃,更优选为至少230℃。反应器入口压力可以为至多4000kPa绝压,优选为至多3500kPa绝压,更优选为至多2500kPa绝压。反应器入口压力为至少500kPa绝压。当应用包括填充催化剂床层的气相工艺时,按下文所定义的气时空速或“GHSV”可以为500-10000Nl/(l.h)。中间开车阶段的持续时间可以为至多72小时,特别为1-36小时,更特别为2-24小时,例如3-10小时。在中间开车阶段期间,催化剂的操作条件可以使得环氧乙烷的生产水平为正常环氧乙烷生产期间目标生产水平的90-100%,特别为95-100%,基于相同基准计。
初始开车阶段后或任选在中间开车阶段后,调节原料中有机氯化物的量,使得其值是在基本最优选择性下生产环氧乙烷的实际值,特别是调节至正常初始环氧乙烷生产条件下产生最优选择性的有机氯化物最优量的25%以内,更特别为最优量的10%以内,和最特别为调节至正常初始环氧乙烷生产条件下产生最优选择性的有机氯化物最优量。仅仅为了清楚起见,环氧化方法的这一阶段即调节有机氯化物以达到正常初始环氧乙烷生产的最优选择性水平的开车过程阶段,在此用术语“开车调节阶段”表示。
如果开车过程不包括中间开车阶段,则可以在调节阶段期间改变条件,从而使催化剂的操作条件使得环氧乙烷的生产水平为正常环氧生产乙烷生产阶段期间目标生产水平的90-100%,特别为95-100%,基于相同基准计。
如果开车过程包括中间开车阶段,则增加有机氯化物的量。原料中有机氯化物量的增量可以为至少2×10-5mol%,合适地为至少3×10-5mol%,特别为至少5×10-5mol%,相对于总原料以氯化物摩尔数计算。
现有的环氧化方法可以为空气基或氧气基的,参见“Kirk OthmerEncyclopedia of Chemical Technology”,第三版,第九卷,1980,445-447页。在空气基方法中,应用空气或富氧空气作为氧化剂源,而在氧气基方法中,应用高纯度(至少95mol%)或极高纯度(至少99.5mol%)氧作为氧化剂源。有关氧气基方法的进一步描述可以参见US-6040467,其作为参考引入。目前大多数环氧化装置都是氧气基的,和这是本发明的优选实施方案。
用于本方法的有机氯化物可以为氯代烃。优选地,所述有机氯化物选自氯甲烷、氯乙烷、二氯乙烷、氯乙烯或它们的混合物。最优选的反应调节剂为氯乙烷、氯乙烯和二氯乙烷。
除了乙烯、氧气和有机氯化物外,正常环氧化过程期间的生产原料可以包含一种或多种任选组分,例如含氮反应调节剂、二氧化碳、惰性气体和饱和烃。
氮氧化物、有机硝基化合物如硝基甲烷、硝基乙烷和硝基丙烷、肼、羟胺或氨可在环氧化方法中用作反应调节剂。通常认为在乙烯环氧化的操作条件下,含氮反应调节剂是硝酸根或亚硝酸根的前体,即它们是所谓的硝酸根或亚硝酸根形成化合物。有关含氮反应调节剂的进一步描述,参见EP-A-3642和US-A-4822900,它们在此作为参考引入。
合适的氮氧化物具有通式NOx,其中x为1-2.5,和包括例如NO、N2O3、N2O4和N2O5。合适的有机氮化合物为硝基化合物、亚硝基化合物、胺、硝酸盐和亚硝酸盐,例如硝基甲烷、1-硝基丙烷或2-硝基丙烷。
二氧化碳是环氧化方法中的副产品。但二氧化碳通常对催化剂活性有负面影响,因此通常应避免高浓度的二氧化碳。在正常环氧化过程期间,典型的环氧化反应器原料可以含有的二氧化碳量为至多10mol%,优选为至多5mol%,相对于总原料计。可以应用小于3mol%的二氧化碳量,优选为小于2mol%,更优选为小于1mol%,相对于总原料计。在工业操作中,在原料中可以存在的二氧化碳量为至少0.1mol%,特别为至少0.2mol%,相对于总原料计。
惰性气体可以为例如氮气或氩气或它们的混合物。合适的饱和烃为丙烷和环丙烷,和特别是甲烷和乙烷。为了提高氧的可燃性极限,可以向原料中加入饱和烃。
在正常环氧乙烷生产阶段中,可以应用本领域公知的环氧化方法来实施本发明。对于这些环氧化方法的进一步细节,可以参见如US-A-4761394、US-A-4766105、US-B1-6372925、US-A-4874879和US-A-5155242,它们在此作为参考引入。
在正常环氧乙烷生产阶段中,所述方法可以应用选自宽范围的反应温度进行实施。优选地,所述反应温度为150-325℃,更优选为180-300℃。
在正常环氧乙烷生产阶段中,原料中各组分的浓度可以在宽范围内选择,如下文所述。
在生产原料中乙烯的存在量可以在宽范围内选择。原料中乙烯的存在量为至多80mol%,相对于总原料计。优选地,所述存在量为0.5-70mol%,特别是1-60mol%,以相同基准计。优选地,生产原料中的乙烯量与开车过程中所用的基本相同。如果需要,在催化剂的寿命期间可以提高乙烯浓度,据此可以在催化剂已经老化的操作阶段中改进选择性,参见US-B1-6372925,所述方法在此作为参考引入。
在生产原料中氧的存在量可以在宽范围内选择。但在实践中,氧的用量通常避开可燃区域。所应用的氧量为总原料的4-15mol%,更通常为5-12mol%。
为了保持在可燃区域以外,原料中氧的存在量可以随乙烯量的增加而降低。实际的安全操作范围连同原料组成一起还取决于反应条件,如反应温度和压力。
当以较小量在生产原料中应用时,有机氯化物通常是有效的反应调节剂,例如所述用量为至多0.1mol%,和例如为0.01×10-4-0.01mol%,相对于总生产原料以氯化物摩尔数计算。特别地,优选的是在原料中有机氯化物的存在量可以为1×10-4-50×10-4mol%,特别为1.5×10-4-25×10-4mol%,更特别为1.75×10-4-20×10-4mol%,相对于总生产原料以氯化物摩尔数计算。当应用含氮反应调节剂时,它们可以以较低量存在于原料中,例如为至多0.1mol%,和例如0.01×10-4-0.01mol%,相对于总生产原料以氮的摩尔数计算。特别地,优选的是在原料中含氮反应调节剂的存在量可以为0.05×10-4-50×10-4mol%,特别为0.2×10-4-30×10-4mol%,更特别为0.5×10-4-10×10-4mol%,相对于总生产原料以氮的摩尔数计算。
正常环氧乙烷生产阶段期间任何时刻,可以调节生产原料中有机氯化物的量,从而达到形成环氧乙烷的最优选择性。
惰性气体如氮气或氩气在生产原料中的存在量可以为0.5-90mol%,相对于总原料计。在空气基方法中,惰性气体在生产原料中的存在量可以为30-90mol%,通常为40-80mol%。在氧气基方法中,惰性气体在生产原料中的存在量可以为0.5-30mol%,通常为1-15mol%。如果存在饱和烃,则它们的存在量相对于总生产原料计为至多80mol%,特别为至多75mol%,以相同基准计。通常,它们的存在量为至少30mol%,更通常为至少40mol%,以相同基准计。
在正常环氧乙烷生产阶段中,环氧化方法优选在反应器入口压力为1000-3500kPa下实施。“GHSV”或气时空速为常温和常压(0℃,1atm即101.3kPa)下每小时流过单位体积填充催化剂的气体单位体积。优选地,当环氧化方法为包含填充催化剂床层的气相过程时,GHSV为1500-10000Nl/(l.h)。优选地,所述方法以每m3催化剂每小时产生0.5-10kmol环氧乙烷的工作速率进行实施,特别为每m3催化剂每小时产生0.7-8kmol环氧乙烷,例如每m3催化剂每小时产生5kmol环氧乙烷。正如这里所应用的,工作速率指每单位体积催化剂每小时产生的环氧乙烷量,和选择性指相对于转化的乙烯摩尔量形成的环氧乙烷摩尔量。合适地,所述方法的实施条件中在产品混合物中环氧乙烷的分压为5-200kPa,例如11kPa、27kPa、56kPa、77kPa、136kPa和160kPa。在此应用的术语“产品混合物”被理解为指从环氧化反应器出口回收的产品。
环氧化催化剂通常为载带催化剂。载体可以选自宽范围的材料。这种载体材料可以为天然或合成的无机材料,和它们包括碳化硅、粘土、浮石、沸石、炭和碱土金属碳酸盐如碳酸钙。优选为耐高温载体材料,如氧化铝、氧化镁、氧化锆、二氧化硅和它们的混合物。最优选的载体材料为α-氧化铝。
载体的表面积可以合适地为至少0.1m2/g,优选为至少0.3m2/g,更优选为至少0.5m2/g,和特别为至少0.6m2/g,相对于载体重量计;和所述表面积可以合适地为至多20m2/g,优选为至多10m2/g,更优选为至多6m2/g,和特别为至多4m2/g,相对于载体重量计。在此应用的“表面积”被理解为指按Journal of the American ChemicalSociety 60(1938)第309-316页中描述的B.E.T.(Brunauer,Emmett和Teller)方法确定的表面积。高表面积载体可以提供改进的操作性能和稳定性,特别是当它们是任选包含除二氧化硅以外的碱金属和/或碱土金属组分的α-氧化铝载体时。
载体的吸水量可以合适地为至少0.2g/g,优选为至少0.25g/g,更优选为至少0.3g/g,最优选为至少0.35g/g;和所述吸水量可以合适地为至多0.85g/g,优选为至多0.7g/g,更优选为至多0.65g/g,最优选为至多0.6g/g。载体的吸水量可以为0.2-0.85g/g,优选为0.25-0.7g/g,更优选为0.3-0.65g/g,最优选为0.42-0.52g/g。考虑到更有效地通过浸渍在载体上沉积金属和促进剂,较高的吸水量可能是有利的。但在较高的吸水量下,载体或由其制备的催化剂可能具有较低的抗压强度。正如这里所应用的,据认为吸水量是按ASTM C20进行测量的,和吸水量表示为相对于载体重量可以吸收到载体孔中的水的重量。
在载体上沉积催化剂组分之前,可以对载体进行洗涤,以脱除可溶性残余物。另外,可以对用于形成载体的材料(包括烧尽材料)进行洗涤,以脱除可溶性残余物。这种载体在US-B-6368998和WO-A2-2007/095453中有述,它们在此作为参考引入。另一方面,也可以成功地应用未洗涤的载体。通常在从载体中有效脱除大部分可溶性和/或可离子化材料的条件下实施载体的洗涤。
洗涤液体可以为例如水、包含一种或多种盐的水溶液、或含水的有机稀释剂。用于包含在水溶液中的合适的盐可以包括例如铵盐。合适的铵盐可以包括例如硝酸铵、草酸铵、氟化铵和羧酸铵如乙酸铵、柠檬酸铵、柠檬酸氢铵、甲酸铵、乳酸铵和酒石酸铵。合适的盐也可以包括其它类型的硝酸盐如碱金属硝酸盐,例如硝酸锂、硝酸钠和硝酸铯。在水溶液中存在的总盐的合适量可以为至少0.001wt%,特别是至少0.005wt%,更特别为至少0.01wt%,和至多10wt%,特别为至多1wt%,例如0.03wt%。可以包括或不包括的合适有机稀释剂为例如甲醇、乙醇、丙醇、异丙醇、四氢呋喃、乙二醇、乙二醇二甲醚、二乙二醇二甲醚、二甲基甲酰胺、丙酮或甲乙酮中的一种或多种。
银催化剂的制备在本领域中是已知的,和可以使用已知方法制备可用于实施本发明的催化剂。在载体上沉积银的方法包括用含阳离子银和/或复合银的银化合物浸渍载体或载体主体,并进行还原以形成金属银颗粒。这些方法的进一步描述可以参见US-A-5380697、US-A-5739075、US-A-4766105和US-B-6368998,它们在此作为参考引入。合适地,可以应用银分散体如银溶胶来在载体上沉积银。
阳离子银还原成金属银可以在干燥催化剂的步骤中完成,从而该还原本身不再需要单独的工艺步骤。如果含银的浸渍溶液包含还原剂例如草酸盐、乳酸盐或甲醛,则可能是这种情况。
通过采用相对于催化剂重量为至少10g/kg的催化剂银含量,可以获得可观的催化活性。优选地,催化剂的银含量为10-500g/kg,更优选为50-450g/kg,例如105g/kg、或120g/kg或190g/kg、或250g/kg、或350g/kg。正如这里所应用的,如果不特别指出,催化剂重量被认为是包括载体和催化组分重量的总催化剂重量。
在一个实施方案中,所述催化剂采用相对于催化剂重量为至少150g/kg的催化剂银含量。优选地,催化剂的银含量为150-500g/kg,更优选为170-450g/kg,例如190g/kg、或250g/kg、或350g/kg。
用于本发明的催化剂另外包含铼促进剂组分。可以沉积到载体上的铼促进剂的形式对本发明来说并不关键。例如,铼促进剂可以合适地作为氧化物或含氧阴离子例如作为铼酸根或高铼酸根以盐或酸形式提供。
铼促进剂的存在量可以为至少0.01mmol/kg,优选为至少0.1mmol/kg,更优选为至少0.5mmol/kg,最优选为至少1mmol/kg,特别为至少1.25mmol/kg,更特别为至少1.5mmol/kg,相对于催化剂重量以元素的总量计算。铼促进剂的存在量可以为至多500mmol/kg,优选为至多50mmol/kg,更优选为至多10mmol/kg,相对于催化剂重量以元素的总量计算。
在一个实施方案中,铼促进剂的存在量为至少1.75mmol/kg,优选为至少2mmol/kg,相对于催化剂重量以元素的总量计算。铼促进剂的存在量可以为至多15mmol/kg,优选为至多10mmol/kg,更优选为至多8mmol/kg,相对于催化剂重量以元素的总量计算。
在一个实施方案中,催化剂可以进一步包括在载体上沉积的钾促进剂。钾促进剂的沉积量可以为至少0.5mmol/kg,优选为至少1mmol/kg,更优选为至少1.5mmol/kg,最优选为至少1.75mmol/kg,相对于催化剂重量以所沉积的钾元素总量计算。钾促进剂的沉积量可以为至多20mmol/kg,优选为至多15mmol/kg,更优选为至多10mmol/kg,最优选为至多5mmol/kg,以相同基准计。钾促进剂的沉积量可以为0.5-20mmol/kg,优选为1-15mmol/kg,更优选为1.5-7.5mmol/kg,最优选为1.75-5mmol/kg,以相同基准计。特别是当在反应原料具有较低的二氧化碳含量下操作时,按照本发明制备的催化剂可以在催化剂的选择性、活性和稳定性方面表现出改进。
用于本发明的催化剂可以另外包含铼共促进剂。所述铼共促进剂可以选自钨、钼、铬、硫、磷、硼和它们的混合物。
铼共促进剂的存在总量可以为至少0.1mmol/kg,更通常为至少0.25mmol/kg,和优选为至少0.5mmol/kg,相对于催化剂重量以元素(即钨、铬、钼、硫、磷和/或硼的总量)计算。铼共促进剂的存在总量可以为至多40mmol/kg,优选为至多10mmol/kg,更优选为至多5mmol/kg,按相同的基准计算。可以在载体上沉积的铼共促进剂的形式对本发明来说并不关键。例如,其可以合适地作为氧化物或含氧阴离子例如作为硫酸根、硼酸根或钼酸根以盐或酸形式提供。
在一个实施方案中,催化剂以铼促进剂与钨的摩尔比大于2、更优选为至少2.5、最优选为至少3含有铼促进剂和钨。铼促进剂与钨的摩尔比可以为至多20,优选为至多15,更优选为至多10。
在一个实施方案中,催化剂包含铼促进剂以及附加的第一共促进剂组分和第二共促进剂组分。第一共促进剂可以选自硫、磷、硼和它们的混合物。特别优选的是第一共促进剂包含元素形式的硫。第二共促进剂组分可以选自钨、钼、铬和它们的混合物。特别优选的是第二共促进剂组分包含元素形式的钨和/或钼,特别是钨。可以沉积到载体上的第一共促进剂组分和第二共促进剂组分的形式对本发明来说并不关键。例如第一共促进剂组分和第二共促进剂组分可以合适地作为氧化物或含氧阴离子例如作为钨酸根、钼酸根或硫酸根以盐或酸形式提供。
在该实施方案中,第一共促进剂的存在总量可以为至少0.2mmol/kg,优选为至少0.3mmol/kg,更优选为至少0.5mmol/kg,最优选为至少1mmol/kg,特别为至少1.5mmol/kg,更特别为至少2mmol/kg,相对于催化剂重量以元素总量(即硫、磷和/或硼的总量)计算。第一共促进剂的存在总量可以为至多50mmol/kg,优选为至多40mmol/kg,更优选为至多30mmol/kg,最优选为至多20mmol/kg,特别为至多10mmol/kg,更特别为至多6mmol/kg,相对于催化剂重量以元素的总量计算。
在该实施方案中,第二共促进剂组分的存在总量可以为至少0.1mmol/kg,优选为至少0.15mmol/kg,更优选为至少0.2mmol/kg,最优选为至少0.25mmol/kg,特别为至少0.3mmol/kg,更特别为至少0.4mmol/kg,相对于催化剂重量以元素总量(即钨、钼和/或铬的总量)计算。第二共促进剂组分的存在总量可以为至多40mmol/kg,优选为至多20mmol/kg,更优选为至多10mmol/kg,最优选为至多5mmol/kg,相对于催化剂重量以元素的总量计算。
在一个实施方案中,第一共促进剂与第二共促进剂的摩尔比可以大于1。在该实施方案中,第一共促进剂与第二共促进剂的摩尔比可以优选为至少1.25,更优选为至少1.5,最优选为至少2,特别是至少2.5。第一共促进剂与第二共促进剂的摩尔比可以为至多20,优选为至多15,更优选为至多10。
在一个实施方案中,铼促进剂与第二共促进剂的摩尔比可以大于1。在该实施方案中,铼促进剂与第二共促进剂的摩尔比可以优选为至少1.25,更优选为至少1.5。铼促进剂与第二共促进剂的摩尔比可以为至多20,优选为至多15,更优选为至多10。
在一个实施方案中,催化剂的铼促进剂含量相对于催化剂重量计大于1mmol/kg,和在载体上沉积的第一共促进剂和第二共促进剂的总量可以为至多3.8mmol/kg,相对于催化剂重量以元素总量(即硫、磷、硼、钨、钼和/或铬的总量)计算。在该实施方案中,第一共促进剂和第二共促进剂的总量可以优选为至多3.5mmol/kg,更优选为至多3mmol/kg催化剂。在该实施方案中,第一共促进剂和第二共促进剂的总量可以优选为至少0.1mmol/kg,更优选为至少0.5mmol/kg,最优选为至少1mmol/kg催化剂。
催化剂可以优选进一步包含在载体上沉积的另外元素。适当的另外元素可以为氮、氟、碱金属、碱土金属、钛、铪、锆、钒、铊、钍、钽、铌、镓、锗以及它们的混合物中的一种或多种。碱金属优选选自锂、钠和/或铯。碱土金属优选选自钙、镁和钡。优选地,所述另外元素在催化剂中的存在总量可以为0.01-500mmol/kg,更优选为0.5-100mmol/kg,相对于催化剂重量以元素的总量计算。所述另外元素可以以任何形式提供。例如,碱金属或碱土金属的盐或氢氧化物是合适的。例如,锂化合物可以为氢氧化锂或硝酸锂。
在一个实施方案中,催化剂中作为另外元素的铯含量可以大于3.5mmol/kg,特别为至少3.6mmol/kg,更特别为至少3.8mmol/kg,相对于催化剂重量以元素的总量计算。在该实施方案中,催化剂的铯含量可以为至多15mmol/kg,特别为至多10mmol/kg,相对于催化剂重量以元素的总量计算。
正如这里所应用的,如果不特别指出,催化剂中碱金属的存在量和载体中可水滤去组分的存在量被认为是可以在100℃下用去离子水从催化剂或载体中提取的范围内的量。提取方法包括通过在100℃在20ml份的去离子水中加热5分钟而提取10克催化剂或载体样品三次,和应用已知方法如原子吸收光谱确定组合提取液中的相关金属。
正如这里所应用的,如果不特别指出,催化剂中碱土金属的存在量和载体中可酸滤去组分的存在量被认为是可以在100℃下用去离子水中的10wt%硝酸从催化剂或载体中提取的范围内的量。提取方法包括通过用100ml份的10wt%硝酸煮沸30分钟(1atm即101.3kPa)而提取10克催化剂或载体样品三次,和应用已知方法如原子吸收光谱确定组合提取液中的相关金属。参见US-A-5801259,其在此作为参考引入。
通过应用本领域公知的方法例如通过在水中从反应器出口物流吸收环氧乙烷和任选通过精馏由含水溶液中回收环氧乙烷,可以从产品混合物中回收所产生的环氧乙烷。至少一部分含环氧乙烷的水溶液可以用于随后的将环氧乙烷转化为1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的过程中,特别是转化为乙二醇、乙二醇醚、碳酸亚乙酯或链烷醇胺的过程中。
在环氧化方法中产生的环氧乙烷可以转化为1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺。由于本发明导致一种更有吸引力的生产环氧乙烷的方法,因此,同时也导致一种更具吸引力的包括按本发明生产环氧乙烷和随后使用所获得的环氧乙烷制备1,2-二醇、1,2-二醇醚、1,2-碳酸酯和/或链烷醇胺的方法。
转化为1,2-二醇(即乙二醇)或1,2-二醇醚(即乙二醇醚)可以包括例如合适地应用酸性或碱性催化剂使环氧乙烷与水反应。例如,为了主要制备1,2-二醇和较少的1,2-二醇醚,在液相反应中在50-70℃在1bar绝压下在酸催化剂例如以总反应混合物为基准0.5-1.0wt%的硫酸存在下,或者在气相反应中在130-240℃和20-40bar绝压下,优选在催化剂存在下,环氧乙烷可以与十倍摩尔过量的水反应。存在如此大量的水可能有利于选择性形成1,2-二醇,和可以用作反应放热的热阱,有助于控制反应温度。如果降低水的比例,反应混合物中1,2-二醇醚的比例将会增大。替代地,通过用醇替代至少一部分水,用醇(特别是伯醇如甲醇或乙醇)转化环氧乙烷,可以制备1,2-二醇醚。
通过使环氧乙烷与二氧化碳反应可以将环氧乙烷转化为相应的1,2-碳酸酯。如果希望,通过随后使1,2-碳酸酯与水或醇反应以形成二醇可以制备乙二醇。对于可应用的方法,参见US-6080897,其在此作为参考引入。
转化为链烷醇胺可以包括例如使环氧乙烷与氨反应。通常使用无水氨以有利于生产单链烷醇胺。对于可用于将环氧乙烷转化为链烷醇胺的方法,可以参见例如US-A-4845296,其在此作为参考引入。
1,2-二醇和1,2-二醇醚可以用于很多种工业应用中,例如食品、饮料、烟草、化妆品、热塑性聚合物、可固化树脂系统、清洁剂、热传递系统等。1,2-碳酸酯可以用作稀释剂,特别是用作溶剂。链烷醇胺可以用于例如天然气处理(“脱硫”)中。

Claims (26)

1.一种乙烯环氧化工艺的开车方法,包括:
(a)使包含高选择性环氧化催化剂的催化剂床层与包含乙烯、氧、二氧化碳和有机氯化物的原料在催化剂温度为200℃至低于250℃和反应器入口压力为500-4000kPa绝压下接触一段时间,直到在反应器出口气体或循环气体回路中检测到至少1×10-5mol%氯乙烯增量,相对于总气体混合物以氯乙烯摩尔数计算,其中相对于总原料计,所述原料中乙烯的存在量为20-40mol%,氧的存在量为2.5-15mol%,二氧化碳的存在量为至多4mol%,和与催化剂接触的有机氯化物的量为每千克催化剂1-12毫摩尔当量氯;和
(b)随后调节原料中有机氯化物的量,使其值足以以基本最优选择性产生环氧乙烷。
2.权利要求1的乙烯环氧化工艺的开车方法,其中在步骤(a)中,在反应器出口气体或循环气体回路中检测到至少2×10-5mol%氯乙烯增量,相对于总气体混合物以氯乙烯摩尔数计算。
3.权利要求1或2的乙烯环氧化工艺的开车方法,其中在反应器出口气体或循环气体回路中氯乙烯增量为至多1×10-4mol%,相对于总气体混合物以氯乙烯摩尔数计算。
4.权利要求3的乙烯环氧化工艺的开车方法,其中在反应器出口气体或循环气体回路中氯乙烯增量为至多7.5×10-5mol%,相对于总气体混合物以氯乙烯摩尔数计算。
5.权利要求3的乙烯环氧化工艺的开车方法,其中在反应器出口气体或循环气体回路中氯乙烯增量为至多5×10-5mol%,相对于总气体混合物以氯乙烯摩尔数计算。
6.权利要求1或2的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多6mmol当量/kg催化剂。
7.权利要求3的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多6mmol当量/kg催化剂。
8.权利要求4的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多6mmol当量/kg催化剂。
9.权利要求5的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多6mmol当量/kg催化剂。
10.权利要求1或2的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多5.5mmol当量/kg催化剂。
11.权利要求3的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多5.5mmol当量/kg催化剂。
12.权利要求4的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多5.5mmol当量/kg催化剂。
13.权利要求5的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多5.5mmol当量/kg催化剂。
14.权利要求1或2的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多5mmol当量/kg催化剂。
15.权利要求3的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多5mmol当量/kg催化剂。
16.权利要求4的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多5mmol当量/kg催化剂。
17.权利要求5的乙烯环氧化工艺的开车方法,其中与催化剂接触的有机氯化物的量为至多5mmol当量/kg催化剂。
18.权利要求1或2的乙烯环氧化工艺的开车方法,其中初始开车阶段期间原料中有机氯化物的量为至少1.5×10-4mol%,相对于总原料以氯化物摩尔数计算。
19.权利要求1或2的乙烯环氧化工艺的开车方法,其中初始开车阶段期间原料中有机氯化物的量为至少2×10-4mol%,相对于总原料以氯化物摩尔数计算。
20.权利要求1或2的乙烯环氧化工艺的开车方法,其中初始开车阶段期间原料中有机氯化物的量为至多0.1mol%,相对于总原料以氯化物摩尔数计算。
21.权利要求20的乙烯环氧化工艺的开车方法,其中初始开车阶段期间原料中有机氯化物的量为至多0.01mol%,相对于总原料以氯化物摩尔数计算。
22.权利要求20的乙烯环氧化工艺的开车方法,其中初始开车阶段期间原料中有机氯化物的量为至多0.001mol%,相对于总原料以氯化物摩尔数计算。
23.权利要求1或2的乙烯环氧化工艺的开车方法,进一步包括在步骤(a)之后使催化剂与包含乙烯、氧和有机氯化物的原料接触的中间步骤,其中在原料中有机氯化物的量为步骤(a)中原料中有机氯化物的量的至多80%。
24.权利要求1或2的乙烯环氧化工艺的开车方法,其中在步骤(a)中将有机氯化物进料至催化剂床层的时间为2-10小时。
25.权利要求1或2的乙烯环氧化工艺的开车方法,其中在步骤(a)中将有机氯化物进料至催化剂床层的时间为2.5-8小时。
26.一种制备1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的方法,包括按权利要求1-25任一项的方法得到环氧乙烷和将所述环氧乙烷转化为1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺。
CN200980121408.1A 2008-05-07 2009-05-05 环氧化工艺的开车方法及环氧乙烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的制备方法 Expired - Fee Related CN102056909B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5134808P 2008-05-07 2008-05-07
US61/051,348 2008-05-07
PCT/US2009/042765 WO2009137427A2 (en) 2008-05-07 2009-05-05 A process for the start-up of an epoxidation process, a process for the production of ethylene oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine

Publications (2)

Publication Number Publication Date
CN102056909A CN102056909A (zh) 2011-05-11
CN102056909B true CN102056909B (zh) 2014-03-05

Family

ID=40718645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980121408.1A Expired - Fee Related CN102056909B (zh) 2008-05-07 2009-05-05 环氧化工艺的开车方法及环氧乙烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的制备方法

Country Status (11)

Country Link
US (1) US9346774B2 (zh)
EP (1) EP2297124B1 (zh)
JP (1) JP6099307B2 (zh)
KR (1) KR101629037B1 (zh)
CN (1) CN102056909B (zh)
BR (1) BRPI0912381A2 (zh)
CA (1) CA2723517C (zh)
SA (1) SA109300273B1 (zh)
TW (1) TWI471317B (zh)
WO (1) WO2009137427A2 (zh)
ZA (1) ZA201007903B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101790254B1 (ko) * 2009-12-17 2017-10-26 사이언티픽 디자인 컴파니 인코포레이티드 에폭시화 스타트업 방법
IN2012DN05077A (zh) * 2009-12-23 2015-10-09 Scient Design Co
BR112013007087B1 (pt) 2010-09-29 2018-12-04 Shell Internationale Research Maartschappij B.V. processo para produzir um óxido de olefina e método
US8742147B2 (en) * 2010-12-08 2014-06-03 Shell Oil Company Process for improving the selectivity of an EO catalyst
US8742146B2 (en) * 2010-12-08 2014-06-03 Shell Oil Company Process for improving the selectivity of an EO catalyst
CA2834299C (en) * 2011-04-29 2019-09-03 Shell Internationale Research Maatschappij B.V. Process for improving the selectivity of an eo catalyst
US20130253209A1 (en) * 2011-09-22 2013-09-26 Shell Oil Company Process for the start-up of an epoxidation process
WO2014105770A1 (en) * 2012-12-31 2014-07-03 Scientific Design Company, Inc. Start-up process for high selectivity ethylene oxide catalysts
CN105008339B (zh) * 2013-01-11 2017-09-12 科学设计公司 具有后调节步骤的环氧化工艺
WO2019055773A1 (en) * 2017-09-15 2019-03-21 MultiPhase Solutions, Inc. GAS PHASE CHROMATOGRAPHY OF SELECTIVE HALOGEN DETECTION FOR ONLINE ANALYSIS AND CONTROL OF SELECTIVE OXIDATION CHEMICAL PRODUCTION PROCESSES
EP4055004A4 (en) * 2019-11-07 2024-02-21 Eastman Chemical Company ALKANOLAMINES WITH RECYCLED CONTENT
CN113121474A (zh) * 2019-12-30 2021-07-16 中国石油化工股份有限公司 乙烯环氧化银催化剂的开车方法
CN114436998A (zh) * 2020-11-05 2022-05-06 中国石油化工股份有限公司 一种乙烯环氧化开车方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1665796A (zh) * 2002-06-28 2005-09-07 国际壳牌研究有限公司 环氧化方法的开车方法、烯烃环氧化的催化剂和方法

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB117663A (en) 1917-07-23 1918-07-23 Henry Charles Dickson Improvements in or relating to Tubes, Struts, Stays and like Elements, said Improvements being also applicable to the Wings or Planes, Tail, Body and other Parts of Aerial Craft.
GB119183A (en) 1918-02-11 1918-09-26 Alphonse Soetens Improvements in or relating to Pistons.
US1976677A (en) 1929-08-20 1934-10-09 Ig Farbenindustrie Ag Production of alkylene derivatives from alkylene oxides
US1976877A (en) * 1930-11-19 1934-10-16 Henri Jean Joseph Marie De De Synchronization system
US2219575A (en) * 1939-06-16 1940-10-29 Carbide & Carbon Chem Corp Catalyst and process for making olefin oxides
US3962136A (en) * 1972-01-07 1976-06-08 Shell Oil Company Catalyst for production of ethylene oxide
GB1491447A (en) * 1973-12-05 1977-11-09 Ici Ltd Alkylene oxide production and catalysts therefor
GB1489335A (en) 1973-10-26 1977-10-19 Shell Int Research Catalyst for the production of ethylene oxide
US3950507A (en) 1974-03-19 1976-04-13 Boreskov Georgy Konstantinovic Method for producing granulated porous corundum
US4102820A (en) * 1975-12-29 1978-07-25 Texaco Development Corp. Silver catalyst for ethylene epoxidation
US4206128A (en) * 1976-06-16 1980-06-03 Texaco Development Corporation Ethylene oxide production
US4097414A (en) * 1976-08-30 1978-06-27 Texaco Development Corp. Modified ethylene oxide catalyst and a process for its preparation
FR2412538A1 (fr) * 1977-12-22 1979-07-20 Ugine Kuhlmann Catalyseurs a base d'argent pour la production d'oxyde d'ethylene
DE2967112D1 (en) 1978-02-10 1984-08-23 Ici Plc Production of olefine oxides
US4321206A (en) * 1978-08-04 1982-03-23 Texaco Development Corporation Ethylene oxide production
US4224194A (en) * 1979-02-26 1980-09-23 Texaco Development Corp. Process for preparing an ethylene oxide catalyst
US4916243A (en) * 1979-03-20 1990-04-10 Union Carbide Chemicals And Plastics Company Inc. New catalyst composition and process for oxidation of ethylene to ethylene oxide
GB2060731B (en) 1979-09-28 1983-05-25 Pa Management Consult Building panels
US4410453A (en) * 1980-08-25 1983-10-18 Norton Co. Ethylene oxide catalyst
JPS57107240A (en) 1980-12-26 1982-07-03 Nippon Shokubai Kagaku Kogyo Co Ltd Production of silver catalyst for producing ethylene oxide
US4379134A (en) 1981-02-13 1983-04-05 Union Carbide Corporation Process of preparing high purity alumina bodies
CS222335B1 (en) 1981-04-15 1983-06-24 Anton Zajacik Method of catalyst reactivation or regeneration
NL8104843A (nl) * 1981-10-27 1983-05-16 Oce Nederland Bv Tonerpoeder en werkwijze voor het vormen van gefixeerde beelden met behulp van dat tonerpoeder.
US4400559A (en) * 1982-06-14 1983-08-23 The Halcon Sd Group, Inc. Process for preparing ethylene glycol
US4430312A (en) 1982-06-23 1984-02-07 Eickmeyer Allen Garland Removal of CO2 from gas mixtures
US4428863A (en) * 1982-07-06 1984-01-31 The Dow Chemical Company Alumina compositions of improved strength useful as catalyst supports
US4508927A (en) * 1983-08-02 1985-04-02 The Halcon Sd Group, Inc. Preparation of glycols from ethylene oxide
US4845296A (en) 1983-12-13 1989-07-04 Union Carbide Corporation Process for preparing alkanolamines
US4555501A (en) * 1984-05-14 1985-11-26 The Halcon Sd Group, Inc. Process for preparing silver catalysts
JPS6110570A (ja) 1984-06-25 1986-01-18 Mitsui Toatsu Chem Inc エチレンオキシドの製造方法
GB8423044D0 (en) 1984-09-12 1984-10-17 Ici Plc Production of ethylene oxide
DE3669668D1 (de) 1985-07-31 1990-04-26 Ici Plc Verfahren zur aktivierung der katalysatoren zur herstellung von alkylenoxiden.
US4994588A (en) * 1985-08-13 1991-02-19 Union Carbide Chemicals And Plastics Company Inc. Fluorine-containing catalytic system for expoxidation of alkenes
NL8502991A (nl) 1985-11-01 1987-06-01 Dow Chemical Nederland Werkwijze voor de bereiding van een zilver-op-dragerkatalysator.
US4766105A (en) * 1986-10-31 1988-08-23 Shell Oil Company Ethylene oxide catalyst and process for preparing the catalyst
IN169589B (zh) * 1986-10-31 1991-11-16 Shell Int Research
US4808738A (en) * 1986-10-31 1989-02-28 Shell Oil Company Ethylene oxide process
US4820675A (en) * 1986-10-31 1989-04-11 Shell Oil Company Ethylene oxide catalyst & process for preparing the catalyst
US4761394A (en) * 1986-10-31 1988-08-02 Shell Oil Company Ethylene oxide catalyst and process for preparing the catalyst
US4908343A (en) * 1987-02-20 1990-03-13 Union Carbide Chemicals And Plastics Company Inc. Catalyst composition for oxidation of ethylene to ethylene oxide
JP2561678B2 (ja) * 1987-11-06 1996-12-11 三菱化学株式会社 エチレンオキシド製造用銀触媒
US4950773A (en) 1988-01-28 1990-08-21 Eastman Kodak Company Selective epoxidation of olefins
CN1009437B (zh) 1988-02-03 1990-09-05 中国石油化工总公司 乙烯氧化制环氧乙烷高效银催化剂
CA1339317C (en) 1988-07-25 1997-08-19 Ann Marie Lauritzen Process for producing ethylene oxide
US4874879A (en) 1988-07-25 1989-10-17 Shell Oil Company Process for starting-up an ethylene oxide reactor
CN1068320C (zh) 1989-04-18 2001-07-11 联合碳化化学品及塑料有限公司 烯化氧的生产方法
CA1337722C (en) * 1989-04-18 1995-12-12 Madan Mohan Bhasin Alkylene oxide catalysts having enhanced activity and/or stability
US5051395A (en) * 1989-09-25 1991-09-24 Union Carbide Chemicals And Plastics Technology Corporation Alkylene oxide catalysts having enhanced activity and/or efficiency
US5187140A (en) 1989-10-18 1993-02-16 Union Carbide Chemicals & Plastics Technology Corporation Alkylene oxide catalysts containing high silver content
GB9005814D0 (en) 1990-03-15 1990-05-09 Shell Int Research A two-step monoethylene glycol preparation process
US5102848A (en) 1990-09-28 1992-04-07 Union Carbide Chemicals & Plastics Technology Corporation Catalyst composition for oxidation of ethylene to ethylene oxide
US5112795A (en) 1990-10-12 1992-05-12 Union Carbide Chemicals & Plastics Technology Corporation Supported silver catalyst, and processes for making and using same
DK0480538T3 (da) * 1990-10-12 1998-11-02 Union Carbide Chem Plastic Alkylenoxidkatalysatorer med forøget aktivitet og/eller stabilitet
US5145658A (en) * 1990-11-28 1992-09-08 Eickmeyer & Associates, Inc. Reclaiming of heat of reaction energy from an alkaline scrubbing solution used in acid gas removal processes and apparatus therefor
US5145824A (en) 1991-01-22 1992-09-08 Shell Oil Company Ethylene oxide catalyst
US5100859A (en) 1991-01-22 1992-03-31 Norton Company Catalyst carrier
US5155242A (en) 1991-12-05 1992-10-13 Shell Oil Company Process for starting-up an ethylene oxide reactor
DE59303461D1 (de) 1992-02-20 1996-09-26 Basf Ag Verfahren zur Herstellung von Ethylenoxid
CA2089510C (en) * 1992-02-27 1998-09-01 Shinichi Nagase Silver catalyst for production of ethylene oxide and method for production of the catalyst
CA2078480A1 (en) 1992-04-20 1993-10-21 Bennie Albert Horrell Jr. Improved process for ethylene epoxidation
US5407888A (en) * 1992-05-12 1995-04-18 Basf Aktiengesellschaft Silver catalyst
US5300753A (en) * 1992-06-25 1994-04-05 Axis Usa, Incorporated Methods and apparatus for fusing electrical conductors
US6184175B1 (en) 1993-03-01 2001-02-06 Scientic Design Company, Inc. Process for preparing silver catalyst
US5447897A (en) * 1993-05-17 1995-09-05 Shell Oil Company Ethylene oxide catalyst and process
WO1995005896A1 (en) * 1993-08-23 1995-03-02 Shell Internationale Research Maatschappij B.V. Ethylene oxide catalyst
US5380697A (en) 1993-09-08 1995-01-10 Shell Oil Company Ethylene oxide catalyst and process
US5364826A (en) * 1993-09-13 1994-11-15 Shell Oil Company Process for preparing ethylene oxide catalysts
US5374738A (en) * 1993-11-22 1994-12-20 Lever Brothers Company, Division Of Conopco, Inc. Synthesis of 1,2-benzisothiazole-1,1-dioxides
US5418202A (en) * 1993-12-30 1995-05-23 Shell Oil Company Ethylene oxide catalyst and process
WO1996004989A1 (en) 1994-08-09 1996-02-22 Scientific Design Company, Inc. Process for preparing silver catalyst
US5504052A (en) * 1994-12-02 1996-04-02 Scientific Design Company, Inc. Silver catalyst preparation
ES2155111T3 (es) 1994-12-15 2001-05-01 Shell Int Research Procedimiento para preparar catalizadores para la obtencion de oxido de etileno.
CA2211312C (en) 1995-02-01 2007-07-03 Shell Internationale Research Maatschappij B.V. Alkylene oxide catalyst and process
ZA96131B (en) 1995-02-01 1996-07-30 Norton Chem Process Prod Catalyst carrier
US5705661A (en) * 1995-09-25 1998-01-06 Mitsubishi Chemical Corporation Catalyst for production of ethylene oxide
US5739075A (en) * 1995-10-06 1998-04-14 Shell Oil Company Process for preparing ethylene oxide catalysts
US5801259A (en) 1996-04-30 1998-09-01 Shell Oil Company Ethylene oxide catalyst and process
US5840932A (en) * 1996-05-21 1998-11-24 Shell Oil Company Process for ethylene oxide production
WO1997046317A1 (en) 1996-06-05 1997-12-11 Shell Internationale Research Maatschappij B.V. Epoxidation catalyst and process
US5736483A (en) * 1996-10-25 1998-04-07 Scientific Design Co., Inc. Niobium or tantalum promoted silver catalyst
US5864047A (en) 1997-04-10 1999-01-26 Arco Chemical Technology, L.P. Propylene oxide process using alkaline earth metal compound-supported silver catalysts containing rhenium and potassium promoters
US5780656A (en) * 1997-04-14 1998-07-14 Scientific Design Company, Inc. Ethylene oxide catalyst and process
US5770746A (en) * 1997-06-23 1998-06-23 Arco Chemical Technology, L.P. Epoxidation process using supported silver catalysts pretreated with organic chloride
US6040467A (en) 1997-07-24 2000-03-21 Praxair Technology, Inc. High purity oxygen for ethylene oxide production
US5854167A (en) * 1997-09-02 1998-12-29 Scientific Design Company, Inc. Ethylene oxide catalyst
US5856534A (en) * 1997-12-18 1999-01-05 Arco Chemical Technology, L.P. Epoxidation process using supported silver catalysts treated with carbon dioxide
DE19803890A1 (de) 1998-01-31 1999-08-05 Erdoelchemie Gmbh Silberhaltige Trägerkatalysatoren und Katalysator-Zwischenprodukte, Verfahren zu ihrer Herstellung und ihre Verwendung
US6080897A (en) 1998-03-19 2000-06-27 Mitsubishi Chemical Corporation Method for producing monoethylene glycol
CN100334079C (zh) 1998-04-15 2007-08-29 陶氏环球技术公司 将烯烃直接氧化成烯烃氧化物的方法
JP4518673B2 (ja) 1998-09-14 2010-08-04 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 触媒特性の向上した触媒の調製方法
WO2000015335A1 (en) * 1998-09-14 2000-03-23 Shell Internationale Research Maatschappij B.V. Epoxidation catalyst carrier, preparation and use thereof
CA2343783C (en) 1998-09-14 2008-02-12 Shell Internationale Research Maatschappij B.V. Process for removing ionizable species from catalyst surface to improve catalytic properties
US6455713B1 (en) 1998-09-14 2002-09-24 Eastman Chemical Company Reactivation of Cs-promoted, Ag catalysts for the selective epoxidation of butadiene to 3,4-epoxy-1-butene
AU754631B2 (en) 1998-11-17 2002-11-21 Nippon Shokubai Co., Ltd. Carrier for catalyst for use in production of ethylene oxide, catalyst for use in production of ethylene oxide, and method for production of ethylene oxide
US6908879B1 (en) * 1999-09-06 2005-06-21 Nippon Shokubai Co., Ltd. Ceramic article, carrier for catalyst, methods for production thereof, catalyst for producing ethylene oxide using the carrier, and method for producing ethylene oxide
DE60030056T2 (de) * 1999-09-21 2007-02-15 Nippon Shokubai Co., Ltd. Katalysator für die Herstellung von Epoxiden und Verfahren für die Bereitung derselben und die Herstellung von Epoxiden
EP1289653A4 (en) * 2000-05-01 2004-07-14 Scient Design Co ethylene oxide catalyst
US6372925B1 (en) 2000-06-09 2002-04-16 Shell Oil Company Process for operating the epoxidation of ethylene
EP1201301B1 (en) * 2000-10-25 2005-03-30 Mitsubishi Chemical Corporation Process of olefins oxidation using a catalyst comprising silver and alkali metal(s)
JP4346835B2 (ja) 2001-05-11 2009-10-21 Hoya株式会社 走査光学系
US6533843B2 (en) * 2001-06-05 2003-03-18 Scientific Design Company, Inc. Two stage flash for hydrocarbon removal
US6452027B1 (en) * 2001-09-10 2002-09-17 Scientific Design Company, Inc. Heat recovery procedure
AU2003217756B2 (en) * 2002-02-25 2008-11-20 Shell Internationale Research Maatschappij B.V. Supported silver catalyst and an epoxidation process using the catalyst
US6750173B2 (en) * 2002-04-08 2004-06-15 Scientific Design Company, Inc. Ethylene oxide catalyst
BR0312010A (pt) * 2002-06-28 2005-03-22 Shell Int Research Método para dar partida de um processo de epoxidação e um processo para a epoxidação de uma olefina
CA2491523C (en) 2002-06-28 2013-01-08 Shell Internationale Research Maatschappij B.V. A method for improving the selectivity of a catalyst and a process for the epoxidation of an olefin
KR100484725B1 (ko) 2002-06-28 2005-04-20 주식회사 엘지화학 고성능 감수효과를 가진 시멘트 혼화제 및 그의 제조방법과 이를 포함하는 시멘트 조성물
US20040096914A1 (en) * 2002-11-20 2004-05-20 Ye Fang Substrates with stable surface chemistry for biological membrane arrays and methods for fabricating thereof
MY153179A (en) 2003-02-28 2015-01-29 Shell Int Research A method of manufacturing ethylene oxide
MY146505A (en) 2003-02-28 2012-08-15 Shell Int Research A method of manufacturing ethylene oxide
TWI346574B (en) 2003-03-31 2011-08-11 Shell Int Research A catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition
US7348444B2 (en) 2003-04-07 2008-03-25 Shell Oil Company Process for the production of an olefin oxide
JP2007531612A (ja) 2003-05-07 2007-11-08 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー エチレンオキシドを製造するための反応器系及び方法
RU2360908C2 (ru) * 2003-09-29 2009-07-10 Дау Текнолоджи Инвестментс Ллс. Способ получения алкиленоксида с использованием газофазной промоторной системы
TW200600190A (en) * 2004-04-01 2006-01-01 Shell Int Research Process for preparing a silver catalyst, the catalyst, and use thereof in olefin oxidation
TW200602123A (en) 2004-04-01 2006-01-16 Shell Int Research Process for preparing a catalyst, the catalyst, and a use of the catalyst
BRPI0514207A (pt) 2004-08-12 2008-06-03 Shell Int Research método para a preparação de um catalisador moldado, o catalisador, e uso do catalisador
RU2007111952A (ru) 2004-09-01 2008-10-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) Способ эпоксидирования олефинов, катализатор для применения в данном способе, носитель для использования при получении катализатора и способ получения носителя
BRPI0608862A2 (pt) 2005-03-22 2010-02-02 Shell Int Research sistema de reator e processo para fabricação de óxido de etileno
KR20080102155A (ko) * 2006-02-03 2008-11-24 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 촉매의 처리 방법, 처리된 촉매, 및 이 촉매의 용도
WO2007095453A2 (en) 2006-02-10 2007-08-23 Shell Oil Company A process for preparing a catalyst, the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, or an alkanolamine
US7553795B2 (en) * 2006-03-21 2009-06-30 Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg Activation of high selectivity ethylene oxide catalyst
US20090270640A1 (en) 2006-04-21 2009-10-29 Basf Aktiengesellschaft Method for production of ethylene oxide in a microchannel reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1665796A (zh) * 2002-06-28 2005-09-07 国际壳牌研究有限公司 环氧化方法的开车方法、烯烃环氧化的催化剂和方法

Also Published As

Publication number Publication date
EP2297124A2 (en) 2011-03-23
TWI471317B (zh) 2015-02-01
JP6099307B2 (ja) 2017-03-22
ZA201007903B (en) 2011-07-27
SA109300273B1 (ar) 2013-06-08
JP2011523403A (ja) 2011-08-11
TW201000455A (en) 2010-01-01
CN102056909A (zh) 2011-05-11
US20090281339A1 (en) 2009-11-12
EP2297124B1 (en) 2013-08-21
WO2009137427A3 (en) 2010-01-14
KR20110010625A (ko) 2011-02-01
CA2723517C (en) 2017-03-07
BRPI0912381A2 (pt) 2017-07-04
CA2723517A1 (en) 2009-11-12
KR101629037B1 (ko) 2016-06-09
US9346774B2 (en) 2016-05-24
WO2009137427A2 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
CN102056909B (zh) 环氧化工艺的开车方法及环氧乙烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的制备方法
CN102066348B (zh) 环氧烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或链烷醇胺的制备方法
CN103599798B (zh) 环氧化催化剂及其制备方法和生产环氧烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或烷醇胺的方法
JP5431262B2 (ja) エポキシ化法の始動方法、触媒及びオレフィンのエポキシ化法
CN100512966C (zh) 提高催化剂选择性的方法和烯烃环氧化方法
CN101715444B (zh) 环氧化催化剂及其制备方法和生产环氧烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或烷醇胺的方法
CN101679333B (zh) 生产环氧烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或烷醇胺的方法
CN103261177B (zh) 改善环氧乙烷催化剂选择性的方法
CN103502229B (zh) 用于改善环氧乙烷催化剂选择性的方法
KR20070036132A (ko) 산화올레핀, 1,2-디올, 1,2-디올 에테르, 또는알칸올아민의 생산 방법
KR20070036133A (ko) 산화올레핀, 1,2-디올, 1,2-디올 에테르, 또는알칸올아민의 생산 방법
EP2661429B1 (en) Process for improving the selectivity of an eo catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140305

Termination date: 20180505

CF01 Termination of patent right due to non-payment of annual fee