CN101979514B - 猪蓝耳病病毒与疫苗及二者的生产方法 - Google Patents

猪蓝耳病病毒与疫苗及二者的生产方法 Download PDF

Info

Publication number
CN101979514B
CN101979514B CN2010102949535A CN201010294953A CN101979514B CN 101979514 B CN101979514 B CN 101979514B CN 2010102949535 A CN2010102949535 A CN 2010102949535A CN 201010294953 A CN201010294953 A CN 201010294953A CN 101979514 B CN101979514 B CN 101979514B
Authority
CN
China
Prior art keywords
cell
virus
microcarrier
prrs virus
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102949535A
Other languages
English (en)
Other versions
CN101979514A (zh
Inventor
张许科
孙进忠
乔荣岑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulaike Biological Engineering Co Ltd
Original Assignee
Pulaike Biological Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulaike Biological Engineering Co Ltd filed Critical Pulaike Biological Engineering Co Ltd
Priority to CN2010102949535A priority Critical patent/CN101979514B/zh
Publication of CN101979514A publication Critical patent/CN101979514A/zh
Application granted granted Critical
Publication of CN101979514B publication Critical patent/CN101979514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种大规模生产猪蓝耳病病毒的方法,利用生物反应器,以细胞微载体悬浮培养系统生产猪蓝耳病病毒,将制备病毒用宿主细胞接种到含有培养液与微载体的载体罐,并将上述细胞与微载体混合均匀,使细胞贴附在微载体上;在适当培养环境下,提供上述细胞足够的养分和适宜的气体环境,使细胞在上述微载体上生长至接种浓度的10~20倍;换用细胞维持培养液,将蓝耳病病毒制成病毒悬液,使其吸附到上述细胞上;在适当培养环境下培养病毒;连续培养2~3日后,收获病毒液;经检验合格后,将收获的病毒液于-20℃冻融两次,灭活纯化制备蓝耳病灭活疫苗或加入冻干保护剂进行冻干制备蓝耳病活疫苗。该方法生产规模大、单批次产量高、生产成本相对较低。

Description

猪蓝耳病病毒与疫苗及二者的生产方法
技术领域
本发明属于兽用生物制品技术领域,涉及猪蓝耳病病毒与疫苗及二者的生产方法。
背景技术
猪蓝耳病又称猪繁殖与呼吸综合征,是一种危害养猪业的病毒性传染病。2006年夏秋季,我国南方部分省份发生猪“高热病”疫情,农业部积极组织科研人员联合攻关,确定猪蓝耳病变异病毒为主要病原,定名为“高致病性猪蓝耳病”。直至今日,疫病形势依然严峻,同其他病毒性疾病一样,目前尚无有效的治疗性药物用于蓝耳病的治疗,免疫接种是防制该病的最有效方法,目前商品化的蓝耳病疫苗主要是由经典株制备的弱毒苗和由变异株制备的灭活苗。而这两种疫苗生产的关键点就是作为抗原的病毒的生产。病毒株生长的培养条件对于获得该株系的所希望的高产量来说具有重大意义。
为了最大化所想要的病毒的产量,系统和培养条件都必须特定地适合于提供对于产生所想要的病毒来说有利的环境。
中国专利CN101307304A公开了利用Marc-145细胞生产蓝耳病病毒JXA1-R株的方法,其采用的方法是传统的转瓶工艺。现有的蓝耳病病毒大规模生产采用转瓶培养生产的传统培养模式,有如下缺点:(1)作坊式生产,劳动强度大,占地空间大,单位体积提供细胞生长的表面积小;(2)细胞生长密度低,产量低;(3)收获病毒液后,后续混合,存在批间差,均一性不好;(4)培养时各项监测和控制环境条件受到限制等。上述缺点造成了蓝耳病病毒滴度不高,限制了产品的产量、质量的提高和生产成本的降低。因此,本领域中仍迫切需要能够进一步改善生产蓝耳病病毒疫苗的方法。
发明内容
本发明主要目的是提供一种蓝耳病病毒及疫苗的生产方法,包括如下步骤:
1)微载体生物反应器中,加入1.5×107~4.5×107cells/g微载体的传代细胞及细胞生长液,启动细胞吸附程序,使微载体与传代细胞充分结合后,启动细胞培养程序,培养传代细胞;
2)上述传代细胞培养至6.0×109cells/L~2.6×1010cells/L时换用细胞维持液,按照感染复数为M.O.I.=0.0001~1.5接种猪蓝耳病病毒,启动病毒吸附程序,使病毒与微载体上的细胞吸附完全后,换用病毒培养程序,扩增猪蓝耳病病毒;
3)生物反应器中收获猪蓝耳病病毒液;
4)收获的病毒液加入灭活剂,灭活后加入佐剂、乳化剂,制得猪蓝耳病灭活疫苗;收获的病毒液加入冻干保护剂进行冻干,制得猪蓝耳病活疫苗。、
优选地,本发明所述的生物反应器为微载体悬浮培养生物反应器。
更优选地,本发明所述的生物反应器为潮汐式微载体悬浮培养生物反应器。
优选地,所述微载体为片状、球形或网状。
优选地,所述的微载体的成分为聚酯、明胶或多糖。
更优选地,所述的微载体为网状的聚酯纤维,
优选地,所述的微载体的添加量为40~75g/L。
优选地,本发明所述的生物反应器为潮汐式生物反应器的程序:载体上下运行频率为0~10mm/s,培养液面在载体瓶中上下端点停留时间为0~2min。
优选地,本发明所述的步骤3)中所述的猪蓝耳病病毒液的体积为2.5L~1000L。
优选地,本发明所述制苗用细胞为CL2621细胞、MA104细胞、Marc-145细胞或其他传代细胞株。
优选地,本发明步骤2)中所述细胞生长液,配方为MEM培养基加3%~5%的牛血清,培养条件为温度36.5℃~37.5℃,pH值调节7.0~8.0,溶氧调节10%~80%,二氧化碳浓度为0%~10%。。
优选地,步骤3)中所述细胞维持液使用MEM培养基加0.5%~1.5%的牛血清配制而成,其培养条件为控制在36.5℃~37.5℃,pH调节7.2~7.5,溶氧调节25%~80%,二氧化碳浓度为1%~5%。
优选地,本发明步骤3)中所述的收获病毒液为分批培养收获。
本发明的另一方面为由上述方法制备的猪蓝耳病病毒。
本发明的又一方面为由上述方法制备猪蓝耳病病毒在疫苗生产中的应用。
本发明采用把Marc-145细胞接种到生物反应器中,待其长到一定密度后,接种猪蓝耳病病毒液,在生产过程中调节各种控制参数,如pH值、DO值、灌流速度、优化接种病毒的感染复数(M.O.I.),同时,还要掌握好接种病毒时细胞的密度和接毒时间等,使病毒在高密度的生物反应器中高效繁殖,分批培养收获病毒,并能进一步提高病毒的滴度。
技术效果
与现有技术相比,本发明的猪蓝耳病病毒及疫苗的生产方法,具有以下有益效果:
(1)毒价高:运用潮汐式微载体悬浮培养技术高密度培养生产的病毒效价比传统的转瓶工艺生产的猪蓝耳病病毒效价要高出传统方法10倍以上。
(2)生产规模大、单批次产量高:目前国内采用搅拌式悬浮培养工艺培养动物细胞,单台生物反应器最大规模不超过100L;而本发明采用新的技术参数,运用潮汐式微载体悬浮培养技术培养动物细胞,单台生物反应器规模达500L,最大可达1000L,单台规模提高5~10倍。
(3)分批封闭式培养、收获病毒:本发明的方法可以全封闭生产,自动换液,连续收获方式收集病毒液,减少了污染的机率,产品质量均一稳定,批间差异小。本发明方法制备的细胞接种量低,控制容易,且病毒感染效率高,得到的高滴度的抗原可以大大提高疫苗的免疫能力。本发明方法解决了传统工艺仅能控制温度和转速,不同批次质量差异大、批间差异大的问题。本发明方法,可直接线性放大用于生产。
(4)生产成本相对较低、产品质量高且稳定:传统转瓶生产工艺生产的猪蓝耳病病毒效价仅为108.5TCID50/ml,每ml的生产成本为3元,而本发明工艺生产的猪蓝耳病病毒效价可达109.5TCID50/ml,每ml的生产成本为0.5元,产品成本下降6倍,质量提高提高10倍(以毒价计)。
(5)操作方便、操作空间小:本发明方法中采用的载体为网状的聚酯纤维,具有亲水性和生物无害性,1g载体可提供2400cm2的贴壁面积,在同样的空间内极大的增大了细胞的贴壁面积,增加了细胞生长的密度,细胞数可达到1.0×109cells/g微载体以上,其效能为传统转瓶培养系统的数十倍,可以节省许多成本及人力。本发明500L工作体积仅需20m2的操作区域,仅需2人就可完成全部操作,而传统工艺需要2000个大方瓶或转瓶,最少需要600m2的操作区域,最少需要100人才能完成。采用本发明方法,解决了传统转瓶生产时单批产量不高、批间差异大、产品质量不稳定、劳动强度大、生产成本高等问题。
(6)工艺参数控制精确:本发明运用潮汐式微载体悬浮培养技术生产时可控参数有温度、pH值、溶氧量、二氧化碳浓度、载体浓度,可实现在线监测的参数有葡萄糖、乳酸和铵离子浓度,批次质量稳定,而传统转瓶培养工艺仅能控制温度和转速,不同批次质量差异大。
(7)本发明利用生物反应器,解决抗原浓度低、生产成本高、劳动强度大的问题,而且能连续培养、占地小、生产规模大、无搅拌式悬浮培养时对细胞形成的剪切力、无气泡产生、对细胞伤害小。
综上所述,本发明通过优化的方法使用微载体悬浮生物反应器系统培养的蓝耳病病毒数量和滴度显著高于转瓶培养10~100倍,因此在制备疫苗的后工艺中,不但提高了疫苗产量,也可大量减少残余细胞宿主蛋白、残余细胞DNA、残余牛血清等异源物质的含量,进一步提高了疫苗接种的安全性。
附图说明
图1为细胞接种1天时微载体上的显微照片;
图2为细胞培养5天时微载体上的显微照片;
图3为病毒接种3天时微载体上的显微照片;
图4为潮汐式微载体悬浮培养生物反应器结构示意图。
具体实施方式
本发明实施例中使用了潮汐式微载体悬浮培养生物反应器,其他类型的微载体悬浮培养生物反应器,如:搅拌式、旋转式或灌注式微载体悬浮培养生物反应器,均可以使用本发明之方法大规模生产猪蓝耳病病毒或疫苗。优选地,本发明使用潮汐式微载体悬浮培养生物反应器,可以提高培养时的培养基和溶解氧的供应,无气泡并且剪切力小,对细胞伤害小。
本发明实施例中采用的生物反应器为潮汐式生物反应器。结构示意图如图4所示。其中,各个标记分别为:恒温搅拌系统1,培养基恒温备料槽体2,自动馈料系统3,恒温培养箱4,载体瓶5,微载体6,DO检测器及pH控制器7,收集器8。培养系统分为两部份;一个是载体瓶5,另一个是培养基搅拌袋(槽)。细胞固定在载体瓶,培养基流动于载体瓶与搅拌槽之间,造成间歇性的暴露与淹没载体。本发明试验了载体瓶5体积为0.5L、2.5L、5L、10L、20L、50L、100L,均能对温度、pH值、溶解氧、二氧化碳浓度自动控制。本发明的实施例中载体瓶体积为20L。
本发明试验了如下猪蓝耳病病毒株及疫苗的制备方法:猪蓝耳病病毒强毒株NVDC-JXA1株(保藏号No.1964保藏于中国普通微生物菌种保藏管理中心)、猪蓝耳病病病毒弱毒株NVDC-JXA1-R株(保藏号No.2467保藏于中国普通微生物菌种保藏管理中心)、ATCCVR-2332株、CH-1R株(保藏号No.1883保藏于中国普通微生物菌种保藏管理中心)及HBR株(保藏号No.2657保藏于中国普通微生物菌种保藏管理中心)。优选地,本发明实施例中使用了猪蓝耳病病毒弱毒株NVDC-JXA1-R株及猪蓝耳病病毒强毒株NVDC-JXA1株。
本发明实施例中,传代细胞使用了非洲绿猴肾细胞(Marc-145),其他本领域常用的传代细胞如:CL2621细胞、MA104细胞,也可用于本发明之方法大规模生产猪蓝耳病病毒或疫苗。
本发明所述方法中,在细胞吸附微载体阶段与细胞培养阶段,启动了细胞吸附程序与细胞培养程序,本发明实施例中优化了反应器的控制参数,但本发明方法不仅限于实施例中的参数,本领域技术人员可以根据本发明提供的技术启示,根据不同的生物反应器,调整相应的参数,达到微载体与细胞充分结合后,大量扩增细胞的目的。
本发明所述方法中,在病毒吸附微载体上的细胞阶段与病毒培养阶段,启动了病毒吸附程序与病毒培养程序,本发明实施例中优化了反应器的控制参数,但本发明方法不仅限于实施例中的参数,本领域技术人员可以根据本发明提供的技术启示,根据不同的生物反应器,调整相应的参数,达到病毒与细胞及微载体充分结合后,大量扩增病毒的目的。
本发明试验了微载体密度为40~75g/L,加入1.5×107~3.5×107cells/g微载体的传代细胞,更优地,本发明实施例中使用的微载体密度为65g/L,细胞密度为2.0×107cells/g微载体。
本发明试验了当传代细胞的密度达到6.0×109cells/L~2.6×1010cells/L时,即密度达到初始密度的10~20倍时,换用细胞维持液,起始病毒吸附与培养程序。优选地,本发明实施例中当细胞密度达到2.0×1010cells/L时,换用细胞维持液,启动病毒吸附与培养程序。
本发明试验了按照感染复数为M.O.I.=0.0001~1.5接种猪蓝耳病病毒,收获的猪蓝耳病病毒毒价最高,优选地,本发明实施例中使用了M.O.I.=0.001接种病毒,启动病毒吸附程序与病毒培养程序,扩增猪蓝耳病病毒。
本发明收获培养液,制备猪蓝耳病病毒液,采用分批培养收获病毒液,即将培养物和培养液一次性装入反应器内,进行培养,经过一段时间反应后,将整个反应系取出。
本发明实施例中疫苗的制备方法为加入甲醛灭活剂,灭活后加入油性佐剂、乳化剂,制得猪蓝耳病病毒灭活苗疫苗。其他常用的灭活方法或灭活剂,如β-丙内脂,也可用于制备本发明所述疫苗。本领域其他常用的疫苗制备的佐剂和乳化剂,如异丙肌苷,也可用于制备本发明所述疫苗。本发明实施例中疫苗的制备方法为加入蔗糖、牛奶等保护剂,冻干后,制得猪蓝耳病病毒活疫苗。
为使本发明更加容易理解,下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围,下列实施例中未提及的具体实验方法,通常按照常规实验方法进行。
实施例1潮汐式微载体悬浮生物反应器大规模生产猪蓝耳病病毒及活疫苗
本实施例中所用的微载体为聚酯纤维,用于制备蓝耳病病毒抗原的病毒株为NVDC-JXA1-R毒株(保藏号No.2467保藏于中国普通微生物菌种保藏管理中心),以对蓝耳病病毒具有良好敏感性的细胞系非洲绿猴肾细胞(Marc-145细胞),作为制苗用细胞系,选用20L载体瓶潮汐式生物反应器。
1).细胞的接种与培养
先使用细胞生长液为(含5%牛血清MEM培养基,pH值为7.25)利用转瓶扩增培养Marc-145细胞。20L生物反应器中,加入无菌载体浓度1300g,把转瓶细胞消化分散后以细胞密度为2.0×107cells/g微载体接入20L生物反应器中,使之与载体结合,微载体和细胞结合的电子显微镜图如图1、2、3所示。图1为细胞接种1天时微载体上的显微照片;此时Marc-145细胞培养于载体之上基本贴附完全,细胞形态正常,但细胞密度较小。图2为细胞培养5天时微载体上的显微照片;培养至第6天Marc-145细胞密度较高,紧密贴附于载体之上,且载体缝隙中也附着有大量细胞。图3为病毒接种3天时微载体上的显微照片;接毒后随着病毒的增殖细胞病变逐渐加重,先后出现变圆、破碎并从载体上脱落的现象,接种后第3天细胞大量脱落,破碎附着在微载体上。
生物反应器与装有生长液的37℃恒温搅拌系统1(容量500L)连接,培养条件为吸附程序:培养液的液面上升速度5mm/s,下降速度3mm/s,液面在反应器上下端点停滞时间为60s/10s。培养温度37.0℃,pH值调节7.3,溶氧调节65%,二氧化碳浓度调节10%。
自运行吸附程序计时,3h后启动培养程序:培养液的液面升降速度均为4mm/s,液面在反应器上下端点停滞时间为50s/50s。灌注培养5天,培养湿度37.0℃;采用7.5%(W/V)NaHCO3自动调节pH值,使值控制在7.2左右,溶氧为50%,二氧化碳浓度为5%。细胞接种后按每24h的时间点取载体样和培养基样,控制培养液中葡萄糖浓度1000~4500mg/L。
2)病毒的接种与培养
在20L潮汐式悬浮培养生物反应器中,细胞培养至第5天,Marc-145细胞在生物反应器内的密度达2.0×1010cells/L,把培养基恒温备料槽体2中的培养液换成维持液含有1%牛血清的标准MEM培养基),按M.O.I.为0.001接种蓝耳病病毒。运行接毒程序:培养液的液面上升速度4mm/s,下降速度2mm/s,液面在反应器顶部停留55s,底部停留10s,病毒吸附3h。之后,运行病毒培养程序:维持液的液面上升与下降速度均为4mm/s,液面在反应器顶部停留50s,底部停留50s。培养温度37.5℃;采用7.5%(W/V)NaHCO3自动调节pH,使pH值维持在7.2;溶氧为30%,二氧化碳浓度为3%。病毒吸附程序结束后,继续运行细胞培养程序,此时参数根据二氧化碳浓度利用7.5%(W/V)NaHCO3自动调节pH值7.3,溶氧为45%,二氧化碳浓度为3%。
3)病毒的收获  培养至接毒后第3天即收获病毒液,先对载体瓶运行病毒液排除程序,使之全部流入恒温搅拌系统1中,对恒温搅拌系统中的病毒液,采用50L的自动收集桶按照5L/min的流速进行收集,-20℃保存。收获病毒液500L,病毒滴度保持在109.5TCID50/ml以上。
Marc-145细胞在利用其他体积的潮汐式生物反应器时,细胞培养和病毒增殖情况基本相同,收获病毒也的滴度也无明显差异。
4)制苗毒液的检验:按照高致病性猪繁殖与呼吸综合征活疫苗(JXA1-R株)检验规程进行。
5)配苗、分装及冻干:将检验合格的病毒液加入保护剂,充分混匀,定量分装;分装后迅速进行冷冻真空干燥后即得成品。
6)成品检验:按照高致病性猪繁殖与呼吸综合征活疫苗(JXA1-R株)检验规程进行。
实施例2潮汐式微载体悬浮生物反应器大规模生产猪蓝耳病病毒及灭活疫苗
蓝耳病病毒液的制备方法同实施例1,毒株选用猪蓝耳病病毒强毒株NVDC-JXA1株。将制备的病毒液按照高致病性猪繁殖与呼吸综合征灭活疫苗(JXA1株)检验规程进行。经检验合格的病毒液按0.1%V/V比例加入甲醛,混匀,置于4℃灭活48h后,取灭活病毒液94份(体积份),加入6份(体积份)的吐温-80混合制成水相;取注射用白油94份(体积份),加入6份(体积份)司本-80混合,随加随搅拌至透明为止,加热到121℃、压力103kPa灭菌后备用,即为油相;将水相与油相混合,混合之比为1∶2一起以1000rpm乳化8min,制备灭活油佐剂疫苗。按照实施例2高致病性猪繁殖与呼吸综合征灭活疫苗(JXA1株)检验规程进行检验,符合要求。
实施例3悬浮培养工艺与传统转瓶培养技术比较
1)在10L转瓶中生产猪蓝耳病  接入细胞密度1×105cells/ml细胞悬液2L,37℃培养至第2天以M.O.I.为0.001接毒,病毒吸附1h后,补加维持液至3L,37℃培养96h收获液,-20℃冻存。
2)在10L生物反应器中生产猪蓝耳病病毒,方法步骤同实施例1。
3)实验结果:Marc-145细胞在10L转瓶中培养2d后细胞数能增加3倍,达到6×108(3×105cells/ml);在10L反应器中以65g/L微载体的密度培养时,培养6d后密度能达到3.0×1010(3.0×106cells/ml),大规模潮汐式细胞微载体悬浮培养系统与常用转瓶培养系统相关生产性能指标进行对比结果如表1所示。
表1不同培养系统增殖蓝耳病病毒的相关比较
Figure BSA00000292365300101
备注:聚酯纤维微载体贴壁面积1g=2,400cm2,1个潮汐式微载体悬浮培养系统需要加入微载体650g。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

1.一种猪蓝耳病病毒的大规模生产方法,其特征在于,包括如下步骤:
1)微载体生物反应器中,加入1.5×107~4.5×107个细胞/克微载体的传代细胞及细胞生长液,启动细胞吸附程序,使微载体与传代细胞充分结合后,启动细胞培养程序,培养传代细胞;
2)上述传代细胞培养至6.0×109个细胞/克~2.6×1010个细胞/克时换用细胞维持液,按照感染复数为M.O.I.=0.0001~1.5接种猪蓝耳病病毒,启动病毒吸附程序,使病毒与微载体上的细胞吸附完全后,换用病毒培养程序,扩增猪蓝耳病病毒;
3)在生物反应器中收获猪蓝耳病病毒液。
2.根据权利要求1所述的方法,其特征在于,所述生物反应器为微载体悬浮培养生物反应器。
3.根据权利要求2所述的方法,其特征在于,所述生物反应器为潮汐式微载体悬浮培养生物反应器。
4.根据权利要求3所述的猪蓝耳病病毒的大规模生产方法,其特征在于,所述潮汐式微载体悬浮培养生物反应器的程序为载体上下运行频率为0~10mm/s,培养液面在载体瓶中上下端点停留时间为0~2min。
5.根据权利要求1所述的方法,其特征在于,所述微载体为片状、球形或网状。
6.根据权利要求1所述的方法,其特征在于,所述微载体的成分为聚酯、明胶或多糖。
7.根据权利要求1所述的方法,其特征在于,所述微载体添加量为40~75g/L。
8.根据权利要求1所述的方法,其特征在于,所述猪蓝耳病病毒是猪蓝耳病病毒强毒株、猪蓝耳病病毒弱毒株或其他猪蓝耳病病毒分离株。
9.根据权利要求1所述的方法,其特征在于,所述制苗用 细胞为CL2621细胞、MA104细胞、Marc-145细胞。
10.按照权利要求1所述的方法,其特征在于,步骤1)中所述细胞生长液,配方为MEM培养基加3%~5%的牛血清,培养条件为温度36.5℃~37.5℃,pH值调节7.0~8.0,溶氧调节10%~80%,二氧化碳浓度为0%~10%。
11.按照权利要求1所述的方法,其特征在于步骤2)中所述细胞维持液使用MEM培养基加0.5%~1.5%的牛血清配制而成,其培养条件为控制在36.5℃~37.5℃,pH调节7.2~7.5,溶氧调节25%~80%,二氧化碳浓度为1%~5%。
12.根据权利要求1所述的方法,其特征在于,所述的步骤3)猪蓝耳病病毒液的体积为2.5L~1000L。
13.根据权利要求1所述的方法,其特征在于,所述步骤3)中生物反应器收获方式为分批培养收获。
14.由权利要求1~13任意一项制备的猪蓝耳病病毒液。
15.一种猪蓝耳病灭活疫苗的大规模生产方法,其特征在于,包括如下步骤:由权利要求1~13任意一项方法制备猪蓝耳病病毒液,收获的病毒液加入灭活剂,灭活后加入佐剂、乳化剂,制得猪蓝耳病灭活疫苗。
16.由权利要求15所述的方法制备的猪蓝耳病病毒灭活疫苗。
17.一种猪蓝耳病活疫苗的大规模生产方法,其特征在于,包括如下步骤:由权利要求1~13任意一项方法制备猪蓝耳病病毒液,收获的病毒液加入冻干保护剂进行冻干,制得猪蓝耳病活疫苗。
18.由权利要求17所述的方法制备的猪蓝耳病活疫苗。 
CN2010102949535A 2010-03-30 2010-09-26 猪蓝耳病病毒与疫苗及二者的生产方法 Active CN101979514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102949535A CN101979514B (zh) 2010-03-30 2010-09-26 猪蓝耳病病毒与疫苗及二者的生产方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010135139A CN101831412A (zh) 2010-03-30 2010-03-30 一种大规模生产猪蓝耳病病毒的方法
CN201010135139.9 2010-03-30
CN2010102949535A CN101979514B (zh) 2010-03-30 2010-09-26 猪蓝耳病病毒与疫苗及二者的生产方法

Publications (2)

Publication Number Publication Date
CN101979514A CN101979514A (zh) 2011-02-23
CN101979514B true CN101979514B (zh) 2012-02-29

Family

ID=42715632

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201010135139A Pending CN101831412A (zh) 2010-03-30 2010-03-30 一种大规模生产猪蓝耳病病毒的方法
CN2010102949535A Active CN101979514B (zh) 2010-03-30 2010-09-26 猪蓝耳病病毒与疫苗及二者的生产方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201010135139A Pending CN101831412A (zh) 2010-03-30 2010-03-30 一种大规模生产猪蓝耳病病毒的方法

Country Status (1)

Country Link
CN (2) CN101831412A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861096A (zh) * 2014-03-21 2014-06-18 吉林正业生物制品股份有限公司 高致病性猪繁殖与呼吸综合征活疫苗的制备方法及其产品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102038942B (zh) * 2010-09-15 2012-08-22 武汉中博生物股份有限公司 应用生物反应器工业化生产猪蓝耳病疫苗的方法
CN102115731B (zh) * 2010-12-01 2012-10-17 北京济福霖生物技术有限公司 制备抗蓝耳病转基因猪的方法
CN103087993B (zh) * 2011-11-01 2015-06-03 普莱柯生物工程股份有限公司 一种猪传染性胃肠炎病毒的大规模生产方法
CN103966157B (zh) * 2013-02-05 2016-05-25 普莱柯生物工程股份有限公司 用于猪繁殖与呼吸系统综合征病毒培养的细胞株及其应用
CN105368792A (zh) * 2015-11-25 2016-03-02 邵华 一种汉坦病毒扩增方法
CN106237323B (zh) * 2016-09-22 2019-12-06 齐鲁动物保健品有限公司 猪蓝耳病纯化疫苗及其制备方法
CN110628616B (zh) * 2019-09-20 2023-03-17 江南大学 一种反应器系统及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭书豪 等.猪繁殖与呼吸综合征研究进展.《山西农业(畜牧兽医)》.2008,(第4期),第1栏第25行-第2栏第20行,第7栏第24-32行. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861096A (zh) * 2014-03-21 2014-06-18 吉林正业生物制品股份有限公司 高致病性猪繁殖与呼吸综合征活疫苗的制备方法及其产品

Also Published As

Publication number Publication date
CN101831412A (zh) 2010-09-15
CN101979514A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
CN101979514B (zh) 猪蓝耳病病毒与疫苗及二者的生产方法
CN101979518B (zh) 一种制备伪狂犬病病毒的方法
CN101875917B (zh) 生物反应器微载体培养动物细胞生产猪瘟疫苗的方法
CN101979515B (zh) 兽用狂犬病病毒与疫苗及二者的生产方法
CN102091329B (zh) 猪细小病毒灭活疫苗的制备方法及其产品
CN102690791A (zh) 应用生物反应器微载体培养st细胞生产猪伪狂犬病病毒的方法
CN102100910B (zh) 一种生产病毒疫苗的方法
CN102552896B (zh) 一种利用生物反应器制备猪繁殖与呼吸综合征疫苗的方法
CN102120768A (zh) 利用生物反应器生产治疗性犬细小病毒单克隆抗体的方法
CN101695572B (zh) 一种利用生物反应器生产伪狂犬病活疫苗的方法及其制品
CN102038942B (zh) 应用生物反应器工业化生产猪蓝耳病疫苗的方法
CN104004720B (zh) 一种大规模高密度生产猪圆环病毒2型抗原的方法
CN105969737A (zh) 一种规模化生产轮状病毒疫苗的方法
CN102038946A (zh) 应用生物反应器工业化生产伪狂犬病疫苗的方法
CN1238495C (zh) 动物细胞多孔微载体固定化高效培养方法及其培养基
CN102038945B (zh) 应用生物反应器工业化生产猪细小病毒疫苗的方法
CN103285385B (zh) 一种制备猪圆环病毒2型灭活疫苗的方法
CN102038947A (zh) 应用生物反应器工业化生产动物狂犬病疫苗的方法
CN102038944B (zh) 应用生物反应器工业化生产猪瘟活疫苗的方法
CN103285390B (zh) 一种制备狂犬病疫苗的方法
CN102727877A (zh) 一种生物反应器制备高致病性猪繁殖与呼吸综合征活疫苗(jxa1-r株)的方法及其应用
CN102886043B (zh) 猪乙型脑炎病毒与猪细小病毒二联灭活疫苗及其制备方法
CN101695571B (zh) 一种利用生物反应器生产猪瘟细胞活疫苗的方法及其制品
CN103157102A (zh) 一种制备鸭出血性卵巢炎灭活疫苗的方法
CN102327609B (zh) 一种乙型脑炎疫苗的生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant