CN101536153B - 制造fet栅极的方法 - Google Patents

制造fet栅极的方法 Download PDF

Info

Publication number
CN101536153B
CN101536153B CN2007800411257A CN200780041125A CN101536153B CN 101536153 B CN101536153 B CN 101536153B CN 2007800411257 A CN2007800411257 A CN 2007800411257A CN 200780041125 A CN200780041125 A CN 200780041125A CN 101536153 B CN101536153 B CN 101536153B
Authority
CN
China
Prior art keywords
metal level
gate
dummy structures
dummy
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800411257A
Other languages
English (en)
Other versions
CN101536153A (zh
Inventor
赫尔本·多恩博斯
拉杜·苏尔代亚努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101536153A publication Critical patent/CN101536153A/zh
Application granted granted Critical
Publication of CN101536153B publication Critical patent/CN101536153B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • H01L21/28132Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects conducting part of electrode is difined by a sidewall spacer or a similar technique, e.g. oxidation under mask, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28105Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor next to the insulator having a lateral composition or doping variation, or being formed laterally by more than one deposition step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • H01L29/4958Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo with a multiple layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种制造具有多个材料的FET栅极的方法,包括沉积虚设区域(8),其后通过保形沉积每个金属层构成的一个层且其后进行各向异性的回蚀以留下虚设区域的侧面(10)上的金属层从而在栅极电介质(6)上形成多个金属层(16,18,20)。其后,去除虚设区域以留下金属层(16,18,20)作为栅极电介质(6)上的栅极。

Description

制造FET栅极的方法
技术领域
本发明涉及一种制造FET栅极的方法,尤其涉及一种制造具有多个不同的金属层的FET栅极的方法。
背景技术
几十年来,在电流驱动、开关功率、跨导、和频率方面,MOSFET的固有性能有了很大提高。多方面的研发导致了这些提高,包括例如新材料、先进的工艺步骤、和新的器件架构。众多重要的用于改善性能的研发之一已经导致MOSFET栅极长度缩短。
然而,当MOSFET栅极长度缩短到深亚微米长度尺度,即远小于1μm时,固有的器件性能由于多种原因而下降,这些原因被统称为短沟道效应。一个效应是漏致势垒降低效应(DIBL),其在沟道长度变得可与沟道深度相比时出现。在此情况下,栅极逐渐失去对沟道的控制,而由漏极控制,从而当漏极电压改变时,将导致阈值电压的改变。第二个效应是由高电场所加速的热载流子导致碰撞电离。第三个效应是在高漏偏压下夹断位置朝着源极移动。这意味着沟道长度随着漏偏压而改变,从而导致了有限的输出跨导。
另一短沟道效应是栅极传输效率。电荷载体克服了靠近源极的势垒并且以低速率被注入沟道。其后,它们加速流向漏极。然而,电流主要是通过靠近源极的势垒处的低速所确定的。
在国际半导体技术蓝图(ITRS)所公布的65nm蓝图节点之后,提出了使用一些使用薄硅衬底的新架构。这些架构包括全耗尽绝缘体上硅(FDSOI)或双栅FinFETS。然而,这些手段没有涉及栅极传输效率。
M Shur在APP1.Phys.Lett的第54卷(1989)第162页的“Splitgate field effect transistor”中提出了解决该问题的一种理论上的途径,其在理论上描述了具有在纵向上(沿着栅极长度)变化的阈值电压的MOSFET具有改善了的栅极传输特性。在NMOS情况下,所提出的实际实现方式是具有分裂栅极的FET,沟道的漏极端上的栅极具有正向偏置偏移。因此,有效的栅极过驱动(或摆动),即,施加的电压减去阈值电压,在源极端很小。这继而导致在源极端出现较高阻抗,该较高阻抗又导致源极端出现较高的纵向电场。这些较高的电场提高了源极端处的电荷加速度,这提高了平均速度并因此提高了电流。
然而,分裂栅极结构在制造时并不可行。
另一结构由Long等人在IEEE transactions on electronic devices第46卷(1999)第865页的“Dual material gate(DMG)field effecttransistor”中提出。这种结构使用了由两个不同金属层制成的栅极,所述两个不同的金属层具有沿着沟道长度的不同的功函数。尤其,对于NMOS来说,沟道的源极端上的金属层栅极具有比沟道的漏极端上的金属层栅极高的功函数,这导致了较高的阈值电压,因此,导致了较低的栅极过驱动。对于PMOS来说,源极端上的金属层栅极将具有较低的功函数。
Long等人甚至使用倾斜蒸发方法制造了具有1μm长度的器件。
然而,就本申请人所知道的,还没有人提出过可达到的制造方法能够产生这样的纵向变化栅极电压,即使在短于100nm的非常短的栅极长度上也不能产生该电压。
因此,还是需要适当的制造工艺和根据该工艺制造的按比例缩放的器件。
发明内容
根据本发明,提供一种制造FET的方法。
通过在虚设结构(dummy structure)的侧面上限定金属层,可用具有不同功函数的多个栅极金属层制造具有非常短的栅极长度的晶体管。
注意,在本申请中使用的术语“金属层”包括由金属、诸如掺杂多晶硅之类的导电半导体、以及诸如硅化物和氮化物之类的材料组成的层,这些材料都导电。
附图说明
现在将参照附图通过示例来描述本发明的实施例,其中:
图1至图5是根据本发明的制造FET的方法的第一实施例的侧视图;
图6和图7是图1至图5的方法的步骤的俯视图;
图8是根据本发明的制造FET的方法的第二实施例的侧视图;以及
图9是图8的方法的一个步骤的俯视图。
该图是示意性的且不是按比例的。实际上,为了清楚起见,侧视图的垂直尺寸被放大了。
具体实施方式
下面参照图1至图7来描述根据本发明的第一实施例的方法。
尤其参照FET的形成来描述该方法;本领域技术人员应该理解还可形成诸如互连部件之类的其它部件。
参照图1,例如由硅制成的半导体衬底2具有一些形成在其中的绝缘结构4,例如,浅沟道绝缘结构。其后,栅极电介质6形成在衬底2的上表面上。
随后,通过沉积材料层来在栅极电介质上形成虚设结构8,进行平板印刷以限定虚设结构区域9并蚀刻。在该示例中,由100nm厚的多晶硅层来形成虚设结构。这导致了图1的结构,其中,虚设结构8具有侧面10和顶面12。
如图2所示,具有第一功函数的第一金属层16被以保形的方式沉积,即,在虚设结构8的侧面10和虚设结构8的顶面12之上沉积。适当的保形沉积技术是原子层沉积(ALD)。
接下来的步骤是各向异性地回蚀第一金属层16以将其从虚设结构8的顶面12和栅极电介质6的顶面之上去除,同时留下虚设结构8的侧面10上的第一金属层16,如图3所示。
接下来,重复图2和图3的沉积和回蚀工艺以按需要沉积多个附加金属层。首先,沉积一个金属层,其后该层被各向异性地回蚀以仅留下该虚设结构的侧面10上的该金属层。
图4示出了具有第一功函数的金属层的第一金属层16、具有第二功函数的第二金属层18、和具有第三功函数的第三金属层20被沉积在虚设结构8的侧面10上的情况。这些第一、第二、和第三金属层将一起构成被形成的FET的栅极。因此,虚设结构8的高度确定了栅极厚度,并且金属层的总沉积厚度确定了栅极长度。
其后,通过有选择的蚀刻去除虚设结构8,并且通过注入来形成低掺杂源极区域22和漏极区域24来使工艺继续,如图5所示。其后,工艺可继续,例如,通过以通常的方式来形成间隔层和较高的掺杂的源极和漏极区域。
图6以俯视图示出了图5的步骤。可以看到,金属层16、18、和20环绕一个已经去除了虚设结构8的矩形,即虚设结构区域9。应该注意,金属层16、18、和20使在工艺的该阶段所形成的两个晶体管短接。
因此,如图7所示,使用掩模和蚀刻步骤来从区域28去除金属层16、18、和20以使得两个晶体管断开连接。随后,为各个晶体管形成了分开的触点26,并且工艺继续以完成晶体管对。
图7中由箭头30示出晶体管的纵向(长度)方向。应该看到,所得的晶体管具有三个不同的栅极金属层,可为它们选择不同的功函数。
因此,该方法提供了制作具有不同的功函数的晶体管的方法以减小短栅极长度效应,即使晶体管具有在低于100nm的范围内的非常短的栅极长度,也可以制造,这是由于栅极的长度由金属层的厚度确定,而金属层例如由可精确控制的原子层沉积方式来沉积。
通过适当地选择栅极金属层,短沟道效应将被抑制,并且传输效率特性被提高。
注意,在该实施例中,示出了沟道绝缘结构4延伸通过虚设结构区域9的中心,因此使得两个晶体管彼此绝缘。
在可选的实施例(未示出)中,省略了这样的绝缘,这意味着由于在虚设结构区域9中存在单注入,所以两个漏极区域24彼此连接。因此,在此情况下,晶体管具有公共漏极。通过在虚设结构区域中共同形成源极区域22来以类似方式提供公共源极。具有公共源极或漏极的晶体管对常常出现在标准元件设计中,并且实施例提供了方便的手段以实现它们。
图8和图9示出了处理金属层16、18、和20环绕虚设结构的情况的可选方式。在该第二实施例中,虚设结构8的一个边沿10形成在浅沟道绝缘结构4之上,如图8所示。
其后,如图9所示,当去除了虚设结构时,三个金属层16、18、和20仅用于单个晶体管。触点26被形成用来连接到这些层。
因此,第二实施例具有这样的优点,不需要像在第一实施例中那样蚀刻掉区域28中的金属层16、18、和20,而是保留对一个掩模和一个蚀刻步骤的需要。
本发明给出沿着栅极长度变化的阈值电压。在可选的结构中,与源极和漏极相邻的金属层可以是一样的金属层,并且可以是具有不同的功函数的不同的金属层,所述不同的金属层被提供在沟道的中心部分之上的栅极的中心部分之中。这提供了不同的特性。
本领域技术人员将会明白,可以对所述晶体管做出多种改变,并且晶体管当然可被包括在众多不同的工艺中。

Claims (10)

1.一种制造FET的方法,包括:
在半导体区域(2)上沉积栅极电介质(6);
在虚设结构区域(9)中的栅极电介质上沉积虚设结构(8),并且形成虚设结构的图案以具有限定的侧面(10);
在栅极电介质和虚设结构上保形地沉积具有第一功函数的第一金属层(16);
从虚设结构(8)的顶部(12)和栅极电介质(6)的顶部有选择地回蚀第一金属层(16),留下栅极电介质(6)上的虚设结构(8)的侧面(10)上的第一金属层(16);
在栅极电介质和虚设结构上以及在虚设结构的侧面上的第一金属层(16)上保形地沉积具有不同于第一功函数的第二功函数的第二金属层(18);
从虚设结构的顶部(12)和栅极电介质(6)的顶部有选择地回蚀第二金属层(18),留下栅极电介质(6)上的虚设结构(8)的侧面(10)上的第一金属层(16)上的第二金属层(18);
去除虚设结构(8),留下栅极电介质(6)上的第一金属层(16)和第二金属层(18)作为具有纵向变化的功函数的栅极金属层;以及
邻近第一金属层(16)和第二金属层(18)在纵向上注入源极(22)区域和漏极(24)区域,以形成一种场效应晶体管,其栅极的材料沿着其长度方向在纵向上变化。
2.如权利要求1所述的方法,还包括在栅极电介质(6)和虚设结构(8)上以及在虚设结构(8)的侧面(10)上的第一金属层(16)和第二金属层(18)上保形地沉积至少一个另外的金属层(20);以及
在去除虚设结构(8)之前,从虚设结构(8)的顶部(12)和栅极电介质(6)的顶部有选择地回蚀所述至少一个另外的金属层(20),留下栅极电介质(6)上的虚设结构(8)的侧面(10)上的第一金属层(16)上的第二金属层(18)上的所述至少一个另外的金属层(20)。
3.如权利要求1或2所述的方法,还包括形成与金属层(16,18,20)接触的触点(26)。
4.如权利要求1所述的方法,其中,金属层(16,18,20)环绕虚设结构区域(9),该方法包括在虚设结构区域(9)的相对侧面(10)上形成一对FET,该方法还包括一个步骤:断开对虚设结构区域(9)的相对侧面(10)上的FET进行连接的金属层(16,18,20)。
5.如权利要求4所述的方法,还包括在浅沟道绝缘结构(4)上形成虚设结构(8),并且在所述浅沟道绝缘结构的相对侧面上的虚设结构的相对侧面(10)上形成一对FET。
6.如权利要求4所述的方法,其中,所述一对FET共用形成在虚设结构区域(9)中的一个公共源极(22)或公共漏极(24)。
7.如权利要求1所述的方法,其中,金属层(16,18,20)环绕该虚设结构,该方法包括在浅沟道绝缘结构上形成虚设结构(8)的一个侧面(10),并且在虚设结构的相对侧面(10)上形成FET。
8.如权利要求1所述的方法,其中,FET是n沟道FET,并且金属层(16,18,20)被以具有最高功函数的金属层邻近源极(22)且具有最低功函数的金属层邻近漏极(24)的功函数次序布置。
9.如权利要求1所述的方法,其中,FET是p沟道FET,并且金属层(16,18,20)被以具有最低功函数的金属层邻近源极(22)且具有最高功函数的金属层邻近漏极(24)的功函数次序布置。
10.如权利要求1所述的方法,其中,存在至少三个金属层(16,18,20),第三金属层形成在第二金属层上,第三金属层的材料与第一金属层的材料相同并且与第二金属层的材料不同。
CN2007800411257A 2006-11-06 2007-10-25 制造fet栅极的方法 Expired - Fee Related CN101536153B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06123538.8 2006-11-06
EP06123538 2006-11-06
PCT/IB2007/054350 WO2008056289A1 (en) 2006-11-06 2007-10-25 Method of manufacturing a fet gate

Publications (2)

Publication Number Publication Date
CN101536153A CN101536153A (zh) 2009-09-16
CN101536153B true CN101536153B (zh) 2011-07-20

Family

ID=39072498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800411257A Expired - Fee Related CN101536153B (zh) 2006-11-06 2007-10-25 制造fet栅极的方法

Country Status (4)

Country Link
US (1) US7838371B2 (zh)
EP (1) EP2089898A1 (zh)
CN (1) CN101536153B (zh)
WO (1) WO2008056289A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201343A (zh) * 2011-04-26 2011-09-28 复旦大学 纳米mos器件制备方法及纳米mos器件
CN102184961B (zh) * 2011-04-26 2017-04-12 复旦大学 一种非对称栅mos器件及其制备方法
US8999791B2 (en) * 2013-05-03 2015-04-07 International Business Machines Corporation Formation of semiconductor structures with variable gate lengths

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225669B1 (en) * 1998-09-30 2001-05-01 Advanced Micro Devices, Inc. Non-uniform gate/dielectric field effect transistor
US6300177B1 (en) * 2001-01-25 2001-10-09 Chartered Semiconductor Manufacturing Inc. Method to form transistors with multiple threshold voltages (VT) using a combination of different work function gate materials

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312680A (en) * 1980-03-31 1982-01-26 Rca Corporation Method of manufacturing submicron channel transistors
US4358340A (en) * 1980-07-14 1982-11-09 Texas Instruments Incorporated Submicron patterning without using submicron lithographic technique
US4442589A (en) * 1981-03-05 1984-04-17 International Business Machines Corporation Method for manufacturing field effect transistors
US4419809A (en) * 1981-12-30 1983-12-13 International Business Machines Corporation Fabrication process of sub-micrometer channel length MOSFETs
JPS6046074A (ja) * 1983-08-24 1985-03-12 Toshiba Corp 電界効果トランジスタの製造方法
JPS6070768A (ja) * 1983-09-27 1985-04-22 Toshiba Corp 電界効果トランジスタの製造方法
JPS60137070A (ja) * 1983-12-26 1985-07-20 Toshiba Corp 半導体装置の製造方法
JPS60182171A (ja) * 1984-02-29 1985-09-17 Oki Electric Ind Co Ltd 半導体装置の製造方法
US4532698A (en) * 1984-06-22 1985-08-06 International Business Machines Corporation Method of making ultrashort FET using oblique angle metal deposition and ion implantation
JPS6273668A (ja) 1985-09-27 1987-04-04 Hitachi Ltd 半導体装置
EP0238690B1 (en) * 1986-03-27 1991-11-06 International Business Machines Corporation Process for forming sidewalls
GB2198393B (en) * 1986-12-13 1990-06-06 Spectrol Reliance Ltd Method of producing filaments
FR2618011B1 (fr) * 1987-07-10 1992-09-18 Commissariat Energie Atomique Procede de fabrication d'une cellule de memoire
US5202272A (en) * 1991-03-25 1993-04-13 International Business Machines Corporation Field effect transistor formed with deep-submicron gate
US5391510A (en) * 1992-02-28 1995-02-21 International Business Machines Corporation Formation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps
US5459091A (en) * 1993-10-12 1995-10-17 Goldstar Electron Co., Ltd. Method for fabricating a non-volatile memory device
EP0661733A2 (en) * 1993-12-21 1995-07-05 International Business Machines Corporation One dimensional silicon quantum wire devices and the method of manufacture thereof
DE19548056C1 (de) * 1995-12-21 1997-03-06 Siemens Ag Verfahren zur Herstellung einer Gateelektrode für eine MOS-Struktur
KR100223927B1 (ko) * 1996-07-31 1999-10-15 구본준 전계 효과 트랜지스터 및 그 제조방법
US5950091A (en) * 1996-12-06 1999-09-07 Advanced Micro Devices, Inc. Method of making a polysilicon gate conductor of an integrated circuit formed as a sidewall spacer on a sacrificial material
US5923981A (en) * 1996-12-31 1999-07-13 Intel Corporation Cascading transistor gate and method for fabricating the same
JPH10214964A (ja) * 1997-01-30 1998-08-11 Oki Electric Ind Co Ltd Mosfet及びその製造方法
US6124174A (en) * 1997-05-16 2000-09-26 Advanced Micro Devices, Inc. Spacer structure as transistor gate
US5866934A (en) * 1997-06-20 1999-02-02 Advanced Micro Devices, Inc. Parallel and series-coupled transistors having gate conductors formed on sidewall surfaces of a sacrificial structure
US6225201B1 (en) * 1998-03-09 2001-05-01 Advanced Micro Devices, Inc. Ultra short transistor channel length dictated by the width of a sidewall spacer
US7638464B2 (en) * 1999-04-26 2009-12-29 Biocept, Inc. Three dimensional format biochips
US6300221B1 (en) 1999-09-30 2001-10-09 Intel Corporation Method of fabricating nanoscale structures
US6184116B1 (en) * 2000-01-11 2001-02-06 Taiwan Semiconductor Manufacturing Company Method to fabricate the MOS gate
WO2001071807A1 (fr) * 2000-03-24 2001-09-27 Fujitsu Limited Dispositif a semi-conducteur et son procede de fabrication
US6630720B1 (en) 2001-12-26 2003-10-07 Advanced Micro Devices, Inc. Asymmetric semiconductor device having dual work function gate and method of fabrication
US6610604B1 (en) * 2002-02-05 2003-08-26 Chartered Semiconductor Manufacturing Ltd. Method of forming small transistor gates by using self-aligned reverse spacer as a hard mask
US6664153B2 (en) * 2002-02-08 2003-12-16 Chartered Semiconductor Manufacturing Ltd. Method to fabricate a single gate with dual work-functions
US6586808B1 (en) 2002-06-06 2003-07-01 Advanced Micro Devices, Inc. Semiconductor device having multi-work function gate electrode and multi-segment gate dielectric
US6864163B1 (en) * 2002-10-30 2005-03-08 Advanced Micro Devices, Inc. Fabrication of dual work-function metal gate structure for complementary field effect transistors
US6849509B2 (en) * 2002-12-09 2005-02-01 Intel Corporation Methods of forming a multilayer stack alloy for work function engineering
US6727560B1 (en) * 2003-02-10 2004-04-27 Advanced Micro Devices, Inc. Engineered metal gate electrode
US6943405B2 (en) * 2003-07-01 2005-09-13 International Business Machines Corporation Integrated circuit having pairs of parallel complementary FinFETs
US7056794B2 (en) * 2004-01-09 2006-06-06 International Business Machines Corporation FET gate structure with metal gate electrode and silicide contact
US7285829B2 (en) * 2004-03-31 2007-10-23 Intel Corporation Semiconductor device having a laterally modulated gate workfunction and method of fabrication
KR100724563B1 (ko) * 2005-04-29 2007-06-04 삼성전자주식회사 다중 일함수 금속 질화물 게이트 전극을 갖는 모스트랜지스터들, 이를 채택하는 씨모스 집적회로 소자들 및그 제조방법들
US20070262395A1 (en) * 2006-05-11 2007-11-15 Gibbons Jasper S Memory cell access devices and methods of making the same
US7675097B2 (en) * 2006-12-01 2010-03-09 International Business Machines Corporation Silicide strapping in imager transfer gate device
JP5380827B2 (ja) * 2006-12-11 2014-01-08 ソニー株式会社 半導体装置の製造方法
TWI345833B (en) * 2007-11-23 2011-07-21 Inotera Memories Inc Method of fabricating a semiconductor device
KR100981114B1 (ko) * 2008-08-04 2010-09-08 충북대학교 산학협력단 이중 일함수 게이트를 갖는 모스 트랜지스터의 제조방법
US7927943B2 (en) * 2008-09-12 2011-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method for tuning a work function of high-k metal gate devices
US8222132B2 (en) * 2008-11-14 2012-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Fabricating high-K/metal gate devices in a gate last process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225669B1 (en) * 1998-09-30 2001-05-01 Advanced Micro Devices, Inc. Non-uniform gate/dielectric field effect transistor
US6300177B1 (en) * 2001-01-25 2001-10-09 Chartered Semiconductor Manufacturing Inc. Method to form transistors with multiple threshold voltages (VT) using a combination of different work function gate materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP昭62-73668A 1987.04.04

Also Published As

Publication number Publication date
EP2089898A1 (en) 2009-08-19
CN101536153A (zh) 2009-09-16
WO2008056289A1 (en) 2008-05-15
US7838371B2 (en) 2010-11-23
US20100068859A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
CN1276487C (zh) 具有开凹槽的栅极的fet及其制造方法
CN100378901C (zh) 应变鳍型场效应晶体管互补金属氧化物半导体器件结构
US8865549B2 (en) Recessed channel insulated-gate field effect transistor with self-aligned gate and increased channel length
US7470951B2 (en) Hybrid-FET and its application as SRAM
JP5202941B2 (ja) 複数の狭区画レイアウトを用いたひずみデバイス及びその製造方法
CN102117828B (zh) 半导体器件及其制造方法
US8889500B1 (en) Methods of forming stressed fin channel structures for FinFET semiconductor devices
CN1282233C (zh) 双栅极场效应晶体管及其制造方法
US20060022253A1 (en) Multiple-gate device with floating back gate
JP5544367B2 (ja) トランジスタにおいて進歩したシリサイド形成と組み合わされる凹型のドレイン及びソース区域
CN102668093A (zh) 用于鳍式fet和三栅极器件的环绕式接触
CN102034865A (zh) 半导体器件及其制造方法
CN104081529A (zh) 抗变化的金属氧化物半导体场效应晶体管
CN103311281A (zh) 半导体器件及其制造方法
KR100583390B1 (ko) 에스오엔 모스 전계 효과 트랜지스터 및 그 제조 방법
TW201730935A (zh) 積體電路
CN100576547C (zh) 具有拉应力膜和压应力膜的cmos半导体器件
CN101385150A (zh) 栅极具有不同功函数的双栅极半导体器件及其制造方法
TW201724216A (zh) 積體電路
CN102315265B (zh) 半导体器件及其制造方法
CN101719517A (zh) 一种肖特基隧穿晶体管结构及其制备方法
CN102437032A (zh) 后栅工艺中金属栅的制作方法
CN100452437C (zh) 低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管
CN101536153B (zh) 制造fet栅极的方法
US9117930B2 (en) Methods of forming stressed fin channel structures for FinFET semiconductor devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110720

Termination date: 20151025

EXPY Termination of patent right or utility model