CN100452437C - 低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管 - Google Patents

低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管 Download PDF

Info

Publication number
CN100452437C
CN100452437C CNB2004800333292A CN200480033329A CN100452437C CN 100452437 C CN100452437 C CN 100452437C CN B2004800333292 A CNB2004800333292 A CN B2004800333292A CN 200480033329 A CN200480033329 A CN 200480033329A CN 100452437 C CN100452437 C CN 100452437C
Authority
CN
China
Prior art keywords
gate electrode
channel region
insulating barrier
sept
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004800333292A
Other languages
English (en)
Other versions
CN1879224A (zh
Inventor
J·N·帕恩
J·G·佩尔兰
J·D·奇克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries US Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of CN1879224A publication Critical patent/CN1879224A/zh
Application granted granted Critical
Publication of CN100452437C publication Critical patent/CN100452437C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78639Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a drain or source connected to a bulk conducting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种多沟道半导体装置具有已完全或部分耗尽的量子井,并且对于超大型积体装置内,像是互补式金氧半晶体管(CMOSFET),是特别有用的。例如,多沟道区域(15)设置在衬底(12)上,并具有形成于最上端沟道区域(15)上的栅极电极(16),其间是藉由栅极氧化层(14c)来分隔。此多沟道(15)的垂直堆叠和栅极电极(16)允许在半导体装置内增加驱动电流,而不需增加由该装置所占据的硅区域。

Description

低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管
技术领域
本发明系关于半导体装置和制造的领域,详言之,系关于多沟道装置。
背景技术
习知的金氧半导体场效晶体管(MOSFET)系透过驱动电流流经装置的源极和漏极间的沟道区域而操作。此沟道区域的导电性系藉由位于沟道表面上的导电栅极的电压的应用来调整,并与其绝缘。许多金氧半导体(MOS)集成电路制造公司,以及于许多大学和政府实验室内,持续努力改善MOSFET的驱动电流的速度和可用性,以减少它们对电力的消耗;并且改善他们的可靠度和辐射强度,来应用在较严格的远程环境中,包括外层空间。
在半导体的工艺上,其中一个目标就是要将可使用硅区域的使用率最大化。此势必要增强电子电路的微型化程度。详言之,对于给定的硅区域,希望将驱动电流达到最大值。如此包含设有多栅极的装置。例如,已创造出了双栅极装置,其中对于给定硅区域的驱动电流为双倍。而且,对于给定的硅区域,增进驱动电流的最大值,是所希望的。
发明内容
需要能提供一种增加晶体管驱动的MOSFET,并同时减少栅极漏电流和栅极电容。由于需要最小化,譬如推向次45nm超大规模集成电路(ultra large scale integration,ULSI)迈进。如此电流驱动的增加,需在不会增加装置体积,或改变布局(layout)设计下获得。
由本发明的实施例可满足上述和其它的需求,该等实施例提供多沟道半导体装置,该多沟道半导体装置包括于衬底上的第一绝缘层和于该第一绝缘层上的第一沟道区域。第二绝缘层设于该第一沟道区域上。该第二沟道区域位于该第二绝缘层上,和第三绝缘层位于该第二沟道区域上。栅极电极设于该第三绝缘层上。
本发明因此提供具有栅极电极和多沟道区域的装置,允许增加驱动电流而不会增加装置体积。
本发明的实施例亦满足上述的需求,该等实施例提供形成多沟道半导体装置的方法,该方法包括于衬底上形成堆叠,此堆叠包括至少二个通过绝缘层而垂直地彼此分隔并与该衬底分隔的轻掺杂沟道区域的步骤。堆叠的栅极电极藉由绝缘层而与该沟道区域分离。氧化层形成在栅极电极的侧壁,而源极和漏极区域接触该沟道区域的侧壁而形成。栅极电极间隔物形成于该栅极电极上的氧化物衬里上。
本发明方法允许制成的多沟道装置不会比先前装置占有更大面积,但是会较习知装置提供更多驱动电流。例如,本方法于次45nm应用上可发现特殊的效用。
由下列本发明的详细说明并结合所附图式,本发明的上述及其它特征、态样和优点将变得更为清楚。
附图说明
图1描绘依照本发明的实施例于已施行蚀刻的各层制造堆叠后,所形成的堆叠。
图2描绘依照本发明的实施例,图1的结构接着进行热氧化工艺和源极及漏极延伸注入。
图3描绘依照本发明的实施例,图2的结构接着进行轻掺杂硅沉积以及重掺杂硅沉积。
图4显示依照本发明的实施例,图3的结构于施行硅间隔物蚀刻后的结构。
图5描绘图4的结构接着进行栅极电极和硅间隔物上形成氧化物或氮化物间隔物。
图6显示依照本发明的实施例,图5的结构于源极和漏极注入以及于栅极电极中形成硅化物区域后的结构。
图7显示本发明的替代实施例系在图2的工艺流后,以及其中依照本发明的实施例形成升起式源极和漏极结构。
图8描绘依照本发明的实施例,图7的结构于形成氧化物或氮化物间隔物以及形成硅化物区域于栅极电极中后的结构。
图9描绘于蚀刻各层之前,本发明的替代实施例中的各层。
图10显示依照本发明的实施例,图9的结构于蚀刻栅极电极和硬掩模后的结构。
图11显示图10的结构于栅极电极上形成热氧化物衬里并在栅极电极和硬掩模之上沉积栅极电极间隔物材料的结构。
图12描绘依照本发明的实施例,图11的结构接着进行于间隔物蚀刻以形成栅极电极间隔物。
图13显示依照本发明的实施例,图12的结构于施行干蚀刻制造堆叠后的结构。
图14显示依照本发明的实施例,图13的结构接着使用延伸注入工艺,其系使用湿蚀刻凹入堆叠而沉积硅于堆叠之上。
图15显示依照本发明的实施例,图14的结构接着匹配硅层以形成硅间隔物以及于栅极电极上形成硅化物区域。
图16描绘依照本发明的实施例,图15的结构接着沉积氮化物或氧化物、蚀刻该沉积的氮化物或氧化物以形成间隔物、和源极及漏极注入。
具体实施方式
本发明提出并解决在形成MOSFET及其它半导体装置中关于于给定硅区域的驱动电流最大化问题。某程度上藉由制造具有形成于衬底的多沟道区域的多沟道装置,使用绝缘层于垂直方向分隔该沟道区域和该衬底,而部分达成此问题。栅极电极设于最上端沟道区域上,用绝缘层插置于栅极电极和最上端沟道区域之间。于垂直方向形成源极和漏极区域,接触该多沟道区域。如此形成的垂直的半导体装置提供增加驱动电流流经多沟道而不会增加半导体装置需要的硅面积。
图1至图6说明依照本发明的实施例制造多沟道装置的方法。此说明将以范例方式讨论某些材料和工艺步骤,但是将了解此等材料和步骤只是举例用,而可使用其它的材料和工艺步骤而不会偏离本发明的范围。
图1描绘藉由干蚀刻先前已经形成的各层而制造堆叠10于衬底12上。图1的堆叠10包括第一氧化物层14a、轻掺杂多晶硅(下文中称为硅)层15、另一氧化物层14b、第二轻掺杂硅层15,和第三氧化物层14c。第三氧化物层14c形成图1中的栅极氧化物层。堆叠10包括重掺杂多晶硅沟道16和硬掩模18,系位于例如于该氮化硅上或其它的硬掩模材料上。
于本发明的较佳实施例中,在形成下一层之前,先掺杂于各层15中的硅。用如p型导电型的第一导电型掺杂硅层15,而用如n型导电型的第二导电型掺杂栅极电极16。或者,用p型掺杂剂掺杂栅极电极16,而用n型掺杂剂掺杂于沟道区域15中的硅。再者,硅区域15和16可包括其它的半导体材料,譬如锗化硅(SiGe)。
于形成堆叠10之后,施行热氧化工艺,其结果如图2中所描绘。例如,如已知的堆叠可曝露于温度大约900度至大约1000度之间,于适当的氧化作用环境中经过接近少于10分钟。必须严格的控制热氧化工艺,尤其是于如次45nm ULSI装置应用中,以防止栅极电极16变成过度氧化。此情况很容易发生,因为于如栅极电极16中的重掺杂硅,允许氧化物生长较于如沟道区域15中的轻掺杂硅快速。
图2亦显示藉由源极和漏极延伸注入21所形成的源极和漏极延伸区。此可以用习知的方法施行。
图3显示图2的结构接着接续沉积轻掺杂硅层22和重掺杂硅层24后的结构。该层22和24系用于与栅极电极16中相同导电型掺杂剂来掺杂。因此,于所述的实施范例中,掺杂剂为n型掺杂剂。可藉由例如化学气相沉积(CVD)来施行硅层22和24的沉积。较佳为沉积掺杂的硅层而不要在完成沉积后用离子注入硅层来掺杂,因为在此种配置情况下控制注入工艺以形成轻掺杂区域和重掺杂区域是很难控制的。然而,亦可能施行注入以达成所希望的注入,而本发明的某些实施例可施行此种注入。
然后执行硅蚀刻以形成硅间隔物26,该硅间隔物26包括轻掺杂区域22和重掺杂区域24。硅间隔物26接触该第一和第二沟道区域15,但是藉由热氧化物20而与栅极电极16电性隔离。
图5显示图4的结构接着沉积绝缘间隔物材料和干蚀刻工艺以在硅间隔物26上形成间隔物28。此绝缘材料例如可以是氧化物或氮化物或其它适当的材料。
图6描绘图5的结构藉由例如蚀刻已去除硬掩模18后的结构。藉由习知的硅化物技术,包括沉积耐热金属层和退火以硅化物化栅极电极16的部分,使硅化栅极电极16的部分形成硅化物区域30。
用习知的方法施行源极和漏极注入工艺,而于衬底12中制造源极和漏极区域32。于源极和漏极注入工艺期间,间隔物26、28用作为掩模。
图6中的箭号表示流经本发明装置中所制造多沟道的电子流例示。因此,虽然未增加半导体装置的宽度,但是多沟道(于图6中实施例的3个此种沟道)提供增加电子流和驱动电流。而且,亦减少栅极漏电流和栅极电容。
于本发明的某些实施例中,可用金属形成栅极电极16,或将其完全硅化物化。金属栅极可以是取代形成的金属栅极,或可以是开始即予制成。再者,一个或多个的绝缘层14a至14c可用高k值栅极介电材料组成,而非用相对低k值氧化物或其它材料组成。
图7和图8显示依照本发明的另一实施例所构成的结构。于图2的热氧化和源极及漏极的延伸注入步骤后,图7提供升起式源极和漏极形成工艺。此系例如藉由已知方式于衬底12上生长硅而施行,然后蚀刻硅以形成升起式源极和漏极40。
于图8中,绝缘间隔物42形成于升起式源极和漏极40之上。间隔物42由例如氧化物或氮化物形成。硅化物区域48用先前说明的方式形成于栅极电极16上。
图9至图16描绘本发明的又另一个实施例,该实施例较佳者,因为其可避免尤其在非常小装置上的热氧化作用风险。
图9显示于衬底50上的许多层。该等层包括例如由氧化物制成的绝缘层52。可使用其它材料,例如像是高k值的栅极电介物。轻掺杂半导体沟道区域54设于绝缘层52之间。栅极电极层56设于最上层绝缘层52上。硬掩模层58设于栅极电极层56上。如较早的实施例说明,栅极电极层56可用重掺杂硅或锗化硅层制成,而沟道层54可用轻掺杂硅或锗化硅材料制成。于栅极电极层56和沟道层54中的掺杂剂的导电型为相反型。于所说明的实施范例中,为了说明和显示的目的,栅极电极层56考虑为已使用n型掺杂剂重掺杂,而沟道层54将考虑为已使用p型掺杂剂轻掺杂。
于形成图9中的各层之后,施行干蚀刻以成形栅极的形状,结果如图10中所描绘。如此制造的栅极电极56a,干蚀刻终止于栅极绝缘层52上,该栅极绝缘层52形成为堆叠中最上端绝缘层。于此时亦蚀刻硬掩模58a。可使用习知的干蚀刻技术。
图11显示图10的结构于热氧化物衬里60已经形成于栅极电极56a上后的结构,以用作为栅极电极56a的保护。接续着热氧化物衬里60形成之后,藉由例如CVD沉积如氮化物的第二绝缘层。
然后施行间隔物干蚀刻步骤,其结果描绘于图12中。间隔物干蚀刻终止于上端绝缘层52。干蚀刻形成栅极电极间隔物64于热氧化物衬里60上。习知的干蚀刻工艺可使用于此步骤。
然后使用干蚀刻施行第二蚀刻过程,以制造堆叠66。蚀刻使用栅极电极间隔物64作为掩模,而蚀刻绝缘层52和沟道层54。为了控制目的,干蚀刻终止于底部绝缘层52,以防止损害硅衬底。
图14显示图13的结构接着施行如提供于栅极电极56a中相同型掺杂剂的延伸注入。注入制造延伸区68于衬底50中。于延伸注入后,施行湿蚀刻工艺,该湿蚀刻让栅极电极间隔物64下方的堆叠凹入。然而,若需要时施行第二次湿蚀刻以去除更多底部绝缘层52的部分,以使的形成如图14中所绘示的结构。包括沟道区域54a和绝缘区域52a的堆叠66凹入,允许延伸注入扩散到达栅极电极56a下方的沟道。
于凹入堆叠66后,施行多步骤多晶硅沉积工艺,以接续沉积轻掺杂多晶硅层70于堆叠66之上,接着重掺杂多晶硅层72于该轻掺杂多晶硅层之上。掺杂剂的导电型相同于栅极电极56a中与延伸注入区68中的导电型。于此实施例中,掺杂剂导电型为n型掺杂剂。多晶硅层70、72的沉积可以藉用化学气相沉积(CVD)或其它适当的方法。
图15显示图14的结构接着于干蚀刻硅层70、72以形成具有轻掺杂区域与重掺杂区域的硅间隔物(源极和漏极区域)76后的结构。于此时,一旦藉用适当的蚀刻技术而已去除硬掩模后,硅化物可以接着形成于硅间隔物76上,以及于栅极电极56a中。
图16描绘图15的结构接着由例如氮化物或氧化物或其它适当的材料所制成而形成的绝缘间隔物80。然后施行源极和漏极注入而于衬底50中制造源极和漏极区域82。
图16的结构绘示3个分隔的沟道区域54b,提供总共4个沟道(包括形成于衬底50中的沟道)。因此,对于熟悉此项技术者将很清楚,在不同的实施例中沟道区域的数目可以改变。
本发明因此提供了半导体装置和制造此半导体装置的方法,该半导体装置较习知装置提供更多驱动电流,但不会较先前装置占据更大硅面积。
虽然本发明已作了详细的说明和例示,但应清楚了解这些说明和例示仅作显示和举例的用,并非作为限制。本发明的范围仅受所附权利要求书各项术语内容的限制。

Claims (10)

1.一种多沟道半导体装置,包括:
于衬底(12,50)上的第一绝缘层(14a,52);
于该第一绝缘层上以及具有侧壁的第一沟道区域(15,54,54a,54b);
于该第一沟道区域上的第二绝缘层(14b,52);
于该第二绝缘层上以及具有侧壁的第二沟道区域(15a,54,54a,54b);
于该第二沟道区域上的第三绝缘层(14c,52,52a,52b);
于该第三绝缘层上以及具有侧壁的栅极电极(16,56,56a);
于该栅极电极的侧壁上的氧化物衬里(60);
于该氧化物衬里(60)上的栅极电极间隔物(64);以及
于该第一和第二沟道区域的侧壁上以及该氧化物衬里(60)与该栅极电极间隔物(64)的至少一个上的源极和漏极区域(76)。
2.如权利要求1所述的装置,其中该第一和第二沟道区域用第一导电型掺杂剂来轻掺杂,而该栅极电极用不同于该第一导电型的第二导电型掺杂剂来重掺杂。
3.如权利要求2所述的装置,进一步包括在该衬底(12)上的升起式源极和漏极区域(40),并接触该第一和第二沟道区域。
4.一种形成多沟道半导体装置的方法,包括以下步骤:
于衬底(50)上形成堆叠,该堆叠包括至少二个通过绝缘层(52,52a,52b)而垂直地彼此分隔并与该衬底(50)分隔的轻掺杂沟道区域(54,54a,54b),以及通过绝缘层(52,52a,52b)而与该沟道区域分隔的栅极电极(56a);
于该栅极电极的侧壁上形成氧化物衬里(60);
形成与该沟道区域(54)的侧壁接触的源极与漏极区域(76);以及
于该栅极电极(56a)的该氧化物衬里(60)上形成栅极电极间隔物(64)。
5.如权利要求4所述的方法,其中形成氧化物衬里(60)的该步骤包括于该栅极电极的侧壁上形成热氧化物衬里(60)。
6.如权利要求5所述的方法,其中于氧化物衬里(60)上形成栅极电极间隔物(64)的该步骤包括于该氧化物衬里(60)和该栅极电极(56a)上沉积氮化物(62),并在分隔该栅极电极(56a)与该沟道区域(54)的绝缘层(52)上进行间隔物蚀刻终止。
7.如权利要求6所述的方法,其中形成堆叠的该步骤包括于形成该栅极电极间隔物(64)后干蚀刻该绝缘层(52)和沟道区域(54),于分隔该沟道区域(54)和该衬底(50)的绝缘层(52)上终止该干蚀刻。
8.如权利要求7所述的方法,进一步包括于该干蚀刻后注入源极和漏极延伸区(68)于该衬底(50)中。
9.如权利要求8所述的方法,其中形成源极和漏极区域(76)的该步骤包括于注入该源极和漏极延伸区(68)之后,沉积轻掺杂半导体层(70)在该堆叠和该栅极电极间隔物(64)上,并沉积重掺杂半导体层(72)于该轻掺杂半导体层(70)上。
10.如权利要求9所述的方法,其中形成源极和漏极区域(76)的该步骤进一步包括干蚀刻该轻掺杂和重掺杂半导体层(70、72),以在该沟道区域(54b)的侧壁上形成半导体间隔物(76),以及进一步包括于该半导体间隔物(76)上形成装置间隔物(80)并使用该装置间隔物(80)掩蔽该源极和漏极延伸区(68)而进行源极和漏极注入于该衬底(50)中。
CNB2004800333292A 2003-11-14 2004-10-08 低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管 Active CN100452437C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/706,948 US7074657B2 (en) 2003-11-14 2003-11-14 Low-power multiple-channel fully depleted quantum well CMOSFETs
US10/706,948 2003-11-14

Publications (2)

Publication Number Publication Date
CN1879224A CN1879224A (zh) 2006-12-13
CN100452437C true CN100452437C (zh) 2009-01-14

Family

ID=34573412

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800333292A Active CN100452437C (zh) 2003-11-14 2004-10-08 低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管

Country Status (8)

Country Link
US (2) US7074657B2 (zh)
EP (1) EP1695389B1 (zh)
JP (1) JP2007511907A (zh)
KR (1) KR20060108672A (zh)
CN (1) CN100452437C (zh)
DE (1) DE602004027158D1 (zh)
TW (1) TWI360225B (zh)
WO (1) WO2005053035A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7224007B1 (en) * 2004-01-12 2007-05-29 Advanced Micro Devices, Inc. Multi-channel transistor with tunable hot carrier effect
KR100549014B1 (ko) * 2004-07-21 2006-02-02 삼성전자주식회사 스페이서 패턴을 갖는 반도체 장치들 및 그 형성방법들
US7544572B2 (en) * 2005-11-30 2009-06-09 Advanced Micro Devices, Inc. Multi-operational mode transistor with multiple-channel device structure
CN102074585B (zh) * 2010-10-22 2012-07-04 友达光电股份有限公司 薄膜晶体管与显示面板
JP6401977B2 (ja) * 2013-09-06 2018-10-10 株式会社半導体エネルギー研究所 半導体装置
CN103872139B (zh) * 2014-02-24 2016-09-07 北京京东方光电科技有限公司 薄膜晶体管及其制作方法、阵列基板和显示装置
US9653287B2 (en) * 2014-10-30 2017-05-16 Samsung Electronics Co., Ltd. S/D connection to individual channel layers in a nanosheet FET
US9590038B1 (en) 2015-10-23 2017-03-07 Samsung Electronics Co., Ltd. Semiconductor device having nanowire channel
US9899387B2 (en) * 2015-11-16 2018-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-gate device and method of fabrication thereof
KR102343470B1 (ko) 2016-01-28 2021-12-24 삼성전자주식회사 반도체 장치 및 이의 제조 방법
EP3608970A4 (en) * 2017-10-18 2020-11-25 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) LAYER, MULTI-STAGE ELEMENT, METHOD FOR MANUFACTURING A MULTI-STAGE ELEMENT AND METHOD FOR CONTROLLING IT
KR20200142153A (ko) * 2019-06-11 2020-12-22 삼성전자주식회사 반도체 소자
CN112151616B (zh) * 2020-08-20 2022-12-16 中国科学院微电子研究所 一种堆叠mos器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153688A (en) * 1990-04-21 1992-10-06 Canon Kabushiki Kaisha Method and device for controlling interference of electron waves by light in which a transverse magnetic wave is applied
CN1070052A (zh) * 1991-08-23 1993-03-17 株式会社半导体能源研究所 半导体器件及其制造方法
US5500545A (en) * 1995-02-27 1996-03-19 United Microelectronics Corporation Double switching field effect transistor and method of manufacturing it
US20020115240A1 (en) * 2001-02-20 2002-08-22 International Business Machines Corporation Double soi device with recess etch and epitaxy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179271A (ja) * 1990-11-14 1992-06-25 Fujitsu Ltd 半導体装置及びその製造方法
JPH0575125A (ja) * 1991-09-12 1993-03-26 Toshiba Corp 薄膜トランジスタ
FR2703855B1 (fr) * 1993-04-05 1995-05-24 Valeo Electronique Montage à réponse linéarisée et symétrisée, oscillateur utilisant un tel montage et émetteur de télécommande utilisant un tel oscillateur.
JPH06310719A (ja) * 1993-04-19 1994-11-04 Sharp Corp Ge−SiのSOI型MOSトランジスタ及びその製造方法
KR100279264B1 (ko) * 1998-12-26 2001-02-01 김영환 더블 게이트 구조를 갖는 에스·오·아이 트랜지스터 및 그의제조방법
US6373112B1 (en) * 1999-12-02 2002-04-16 Intel Corporation Polysilicon-germanium MOSFET gate electrodes
DE60031173T2 (de) * 2000-05-31 2007-01-18 Matsushita Electric Industrial Co., Ltd., Kadoma Misfet
JP2003092400A (ja) * 2001-07-13 2003-03-28 Seiko Epson Corp 半導体装置及びその製造方法
KR100481209B1 (ko) * 2002-10-01 2005-04-08 삼성전자주식회사 다중 채널을 갖는 모스 트랜지스터 및 그 제조방법
FR2853454B1 (fr) * 2003-04-03 2005-07-15 St Microelectronics Sa Transistor mos haute densite
US6919250B2 (en) * 2003-05-21 2005-07-19 Advanced Micro Devices, Inc. Multiple-gate MOS device and method for making the same
US6921700B2 (en) * 2003-07-31 2005-07-26 Freescale Semiconductor, Inc. Method of forming a transistor having multiple channels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153688A (en) * 1990-04-21 1992-10-06 Canon Kabushiki Kaisha Method and device for controlling interference of electron waves by light in which a transverse magnetic wave is applied
CN1070052A (zh) * 1991-08-23 1993-03-17 株式会社半导体能源研究所 半导体器件及其制造方法
US5500545A (en) * 1995-02-27 1996-03-19 United Microelectronics Corporation Double switching field effect transistor and method of manufacturing it
US20020115240A1 (en) * 2001-02-20 2002-08-22 International Business Machines Corporation Double soi device with recess etch and epitaxy

Also Published As

Publication number Publication date
CN1879224A (zh) 2006-12-13
KR20060108672A (ko) 2006-10-18
JP2007511907A (ja) 2007-05-10
US20050104140A1 (en) 2005-05-19
EP1695389B1 (en) 2010-05-12
TWI360225B (en) 2012-03-11
DE602004027158D1 (de) 2010-06-24
EP1695389A1 (en) 2006-08-30
US7074657B2 (en) 2006-07-11
US7253484B2 (en) 2007-08-07
TW200522356A (en) 2005-07-01
US20060278938A1 (en) 2006-12-14
WO2005053035A1 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US10134892B2 (en) High voltage device with low Rdson
CN101740622B (zh) 用于半导体器件的屏蔽电极结构和方法
KR101293927B1 (ko) 스크리닝 전극을 가진 반도체 장치 및 방법
CN103545370B (zh) 用于功率mos晶体管的装置和方法
KR101474100B1 (ko) 수직형 파워 mos 트랜지스터를 갖는 집적 회로
EP2180504A2 (en) Strained Semiconductor Device and Method of Making the Same
US20140084362A1 (en) Semiconductor Device and Method for Manufacturing a Semiconductor Device
CN101740623A (zh) 具有槽屏蔽电极结构的半导体器件
US7670914B2 (en) Methods for fabricating multiple finger transistors
CN101740612A (zh) 用于具有槽屏蔽电极的半导体器件的接触结构和方法
CN102668093A (zh) 用于鳍式fet和三栅极器件的环绕式接触
US8889518B2 (en) LDMOS transistor with asymmetric spacer as gate
US10014406B2 (en) Semiconductor device and method of forming the same
CN100452437C (zh) 低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管
KR100750432B1 (ko) 전계 효과 트랜지스터 구조체, 트랜지스터 장치 및트랜지스터 제조 방법
US10930776B2 (en) High voltage LDMOS transistor and methods for manufacturing the same
US7880236B2 (en) Semiconductor circuit including a long channel device and a short channel device
US10658505B1 (en) High voltage device and a method for forming the high voltage device
CN111403472A (zh) 沟槽栅极沟槽场板垂直mosfet
KR102598117B1 (ko) 에어갭이 형성된 알에프 스위치 소자 및 제조방법
JP2017162920A (ja) 半導体装置及びその製造方法
WO2011098866A1 (en) DMOS Transistor Having an Increased Breakdown Voltage and Method for Production
US8587055B2 (en) Integrated circuit using a superjunction semiconductor device
CN113437149B (zh) 半导体结构及其形成方法
KR20050063315A (ko) 고전압 트랜지스터 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: GLOBALFOUNDRIES INC.

Free format text: FORMER OWNER: ADVANCED MICRO DEVICES INC.

Effective date: 20100730

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: CALIFORNIA STATE, USA TO: CAYMAN ISLANDS GRAND CAYMAN ISLAND

TR01 Transfer of patent right

Effective date of registration: 20100730

Address after: Grand Cayman, Cayman Islands

Patentee after: Globalfoundries Semiconductor Inc.

Address before: American California

Patentee before: Advanced Micro Devices Inc.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210224

Address after: California, USA

Patentee after: Lattice chip (USA) integrated circuit technology Co.,Ltd.

Address before: Greater Cayman Islands, British Cayman Islands

Patentee before: GLOBALFOUNDRIES Inc.