CN101437933B - 作为药物靶标的天然反义和非编码的rna转录物 - Google Patents

作为药物靶标的天然反义和非编码的rna转录物 Download PDF

Info

Publication number
CN101437933B
CN101437933B CN2006800535397A CN200680053539A CN101437933B CN 101437933 B CN101437933 B CN 101437933B CN 2006800535397 A CN2006800535397 A CN 2006800535397A CN 200680053539 A CN200680053539 A CN 200680053539A CN 101437933 B CN101437933 B CN 101437933B
Authority
CN
China
Prior art keywords
target
cell
gene
transcript
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800535397A
Other languages
English (en)
Other versions
CN101437933A (zh
Inventor
C·瓦勒斯泰特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scripps Research Institute
Original Assignee
Scripps Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38309732&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101437933(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Scripps Research Institute filed Critical Scripps Research Institute
Publication of CN101437933A publication Critical patent/CN101437933A/zh
Application granted granted Critical
Publication of CN101437933B publication Critical patent/CN101437933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/10Production naturally occurring

Abstract

小干扰RNA(siRNA)敲低反转录,并调节它们反义链的表达。这种调节或为不一致的(反义敲低导致正义转录物的增多)或为一致的(反义敲低导致一致的正义转录物的减少)。

Description

作为药物靶标的天然反义和非编码的RNA转录物
技术领域
本发明提供了对异源核苷酸序列具有高度选择性靶向的组合物和方法。寡核苷酸是以序列依赖的方式结合在它们的靶基因上并能够调节靶细胞中非必需核苷酸序列的表达的siRNA’s。而且,如果在细菌或人类细胞的基因组中存在靶标,则siRNA’s可以特异性地且选择性地将细菌或人类细胞杀死。 
背景技术
在过去几年中,我们对于哺乳动物转录复杂性的认识有了显著的提高,并且已经检测到多种新型的核糖核酸(RNA)转录物。这在相当程度上是一个惊喜,因为人类基因组中常规(编码蛋白)基因的总数(约20,000-25,000)远低于前些年所预计的,并且与更简单生物体如果蝇(Drosophila melanogaster)或线虫(Caenorhabditis elegans)的基因数具有相同数量级(Finishing theeuchromatic sequence of the human genome.Nature431(7011):931-945(2004))。 
两个主要的转录组学成就以互补的方式,引导建立了哺乳动物转录的新兴修正的观点。第一,世界范围的FANTOM(哺乳动物转录组的功能注释)已经产生多年,并分析了主要来自于小鼠以及人类细胞和组织的大量互补DNA(cDNA)序列数据(Carninci,P.等.(2005)Science309(5740),1559-1563;Katayama,S.等.(2005)Science309(5740),1564-1566)。第二,高密度("叠瓦")微阵列实验独立地提供了在人类基因组中广泛发生的转录以及存在许多未知功能的未注释转录的补充证据(Cheng,J.等.(2005).Science308(5725),1149-1154;Kapranov,P.等.(2005)Genome Res15(7),987-997)。 
RNAs可被分为:(1)信使RNAs(mRNAs),其被翻译成蛋白;和(2)非蛋 白编码RNAs(ncRNAs)。直到最近,仅认识了少量的ncRNAs(如:tRNAs,rRNAs和拼接RNAs),它们都与蛋白的合成或功能相关。并且,直到几年前,仍未有系统的努力来鉴别新型的ncRNA转录物并阐述它们的功能。 
发明内容
序列特异性siRNA结合到靶核酸分子上,并调节基因表达产物的表达。提供了一种方法,其中,靶核酸的上调或抑制对于异常细胞生长、神经系统疾病、异常细胞调节、疾病等的治疗是有效的。本发明还包括药物开发策略。 
在一个优选实施方式中,上调基因表达的方法包括:以核酸分子靶向正义链的反义转录物,其中,靶向反义转录物的核酸分子与反义链是互补的,并且核酸与反义转录物结合,从而提高正义链的表达,并上调基因的表达。优选地,核酸分子与反义链的结合在高度、中度或低度严格条件下是有效的。任何疾病、异常(先天的或其它)肿瘤、由病原体(如朊病毒、病毒如肿瘤形成病毒)引起的疾病等;分子靶,如细胞内和细胞外分子(如受体、酶、细胞因子转录物),都可通过被设计成靶向所需的正义和/或反义位点的分子来处理。还可设计序列特异性RNA分子,以使它们靶向重叠序列并靶向互补链。 
在另一个优选实施方式中,核酸分子是一种RNA分子并且包括SEQ IDNOs:1-67中的至少一种。 
在另一优选实施方式中,一种抑制基因表达的方法包括:以核酸分子靶向反义转录物和正义链转录物,其中,靶向反义转录物的核酸分子与反义链是互补的,靶向正义转录物的核酸分子与正义链是互补的;且核酸分子与反义和正义转录物结合,从而抑制基因的表达。优选地,核酸分子是一种RNA分子,并且靶向所述反义转录物和正义转录物的核酸分子与所述转录物结合,所述反义转录物与正义转录物彼此会聚、偏离,或者它们是重叠的。在 另一个优选实施方式中,核酸分子为SEQ ID NOs:4-8中的至少一种,靶向的核酸为编码的或非编码的转录物。 
在优选的实施方式中,靶向的基因包括CD97、TS-α、C/EBPδ、CDC23、PINK1、HIF1α、Gnbp3g、肾上腺髓质素AM1受体、6330439J10(3-含氧酸CoA转移酶)、CtpW85(组织蛋白酶W)、Ddx-39、rTS-α、I530027A02、Kif20a、PINK-AS、aHIF1α、Gnbp3g-AS、AdmR-AS、A230019L24、或CtpW-AS。优选地,靶向的核酸包括:核酸序列PINK-AS、aHIF1α、Gnbp3g-AS、AdmR-AS、A230019L24、或CtpW-AS。编码或非编码序列、转录物都可以为靶向的、和/或在5′-3′和互补的3′-5′序列上重叠的序列。 
在优选实施方式中,靶向的非编码核酸包括:核酸序列CD97、TS-α、C/EBPδ、CDC23、PINK1、HIF1α、Gnbp3g、肾上腺髓质素AM1受体、6330439J10(3-含氧酸CoA转移酶)、CtpW85(组织蛋白酶W)、Ddx-39、rTS-α、I530027A02、或Kif20a。 
在另一个优选实施方式中,药物组合物含有SEQ ID NOs:1-67及其变体中的至少一种。 
在另一个优选实施方式中,分离的核酸含有SED ID NOs:1-67及其变体中的任意一种。 
在另一个优选实施方式中,组合物含有核酸序列,该核酸序列靶向包括CD97、TS-α、C/EBPδ、CDC23、PINK1、HIF1α、Gnbp3g、肾上腺髓质素AM1受体、6330439J10(3-含氧酸CoA转移酶)、CtpW85(组织蛋白酶W)、Ddx-39、rTS-α、I530027A02、Kif20a、PINK-AS、aHIF1α、Gnbp3g-AS、AdmR-AS、A230019L24、或CtpW-AS的至少一个基因和/或转录物。所述靶向的位点可以为重复序列和/或靶向正义链和反义链。在其他方面,编码和非编码序列均被靶向。 
在一个优选实施方式中,一种用于治疗帕金森症的方法包括:使用SEQ ID NO:1-3中的至少一种对需要的患者进行给药。 
在另一个优选实施方式中,药物组合物含有位于药学可接受载体中的SEQ ID NOs:1-67中的至少一种核酸分子及其变体。 
在另一个优选实施方式中,核酸分子含有靶向了正义/反义位点的重叠区的siRNA分子。例如,一种用于治疗阿尔茨海默病的药物组合物靶向了BACE转录物。核酸分子可被设计成靶向BACE转录物的重叠序列或位点。在阿尔茨海默病的治疗中,这些重叠靶向特异的分子包括SEQ ID NOS:41-43和SEQ ID NOS:44-45和它们的变体。 
在另一个优选实施方式中,表达载体包括SEQ ID NOS:1-67及其变体中的任意一种或多种。 
在另一个优选实施方式中,分离的多肽由SEQ ID NOS:1-67和它们的变体中的任意一种或多种编码。 
在另一个优选实施方式中,分离的抗体对BACE-1mRNA、BACE-1-ASRNA、SEQ ID NOS:1-67和它们的多肽具有特异性。 
在另一个优选实施方式中,一种用于治疗神经系统疾病的方法包括:使用SEQ ID NOs:4-8、40-61和64-67及它们的变体中的至少一种对有需要的患者进行给药。该方法还包括:将SEQ ID NOs:4-8、40-61和64-67组合给药,以靶向正义/反义基因座的重叠区域。 
在另一个优选实施方式中,在一个疗程内使用SEQ ID NOs:4-8、40-61和64-67和它们的变体中的至少两种的可变组合对患者进行给药。所述神经系统疾病的实例包括但不限于:阿尔茨海默病(Alzheimer′s Disease)、失语症(Aphasia)、贝尔氏麻痹(Bell′s Palsy)、克雅氏病(Creutzfeldt-Jakob Disease)、癫痫(Epilepsy)、脑炎(Encephalitis)、亨廷顿舞蹈症(Huntington′s Disease)、神经肌肉障碍神经肿瘤学疾病(Neuromuscular Disorders Neuro-oncology)、神经免疫学疾病(Neuro-immunology)、神经耳科学疾病(Neuro-otology)、疼痛症、 恐惧症、睡眠障碍、图雷特综合症(Tourette′s Syndrome)、帕金森症、和其它运动障碍。 
在另一个优选实施方式中,一种上调基因表达的方法包括:以核酸分子靶向正义链的反义转录物,其中,靶向反义转录物的核酸分子与反义链是互补的,并且核酸与反义转录物相结合;其中,反义链的表达被提高,并且上调了基因的表达。优选地,所述核酸分子为干扰RNA分子。 
在一个优选实施方式中,所述核酸分子为SEQ ID NOs:1-3、4-32、40-61、64-67和它们的变体中的至少一种。在一个方面,SEQ ID NOs:1-3、4-32、40-61、64-67的核酸分子和它们的变体含有至少一个修饰的核碱基。 
在另一个优选实施方式中,一种抑制基因表达的方法包括:以核酸分子靶向反义转录物和正义链转录物,其中,靶向反义转录物的核酸分子与反义链是互补的,靶向正义转录物的核酸分子与正义链是互补的;以及,将核酸与反义和正义转录物结合,从而抑制基因的表达。 
在一个优选实施方式中,靶向反义和正义转录物的核酸分子与所述转录物结合,所述反义转录物与正义转录物彼此会聚、偏离,或者它们是重叠的。优选地,靶向的核酸是编码和/或非编码的转录物。靶向的基因的实例包括:CD97、TS-α、C/EBPδ、CDC23、PINK1、HIF1α、Gnbp3g、肾上腺髓质素AM1受体、6330439J10(3-含氧酸CoA转移酶)、CtpW85(组织蛋白酶W)、Ddx-39、rTS-α、I530027A02、Kif20a、PINK-AS、aHIF1α、Gnbp3g-AS、AdmR-AS、A230019L24、BACE或CtpW-AS。靶向的编码核酸的实例包括:核酸序列PINK-AS、aHIF1α、Gnbp3g-AS、AdmR-AS、A230019L24、或CtpW-AS。靶向的非编码的核酸的实例包括:核酸序列CD97、TS-α、C/EBPδ、CDC23、PINK1、HIF1α、Gnbp3g、肾上腺髓质素AM1受体、6330439J10(3-含氧酸CoA转移酶)、CtpW85(组织蛋白酶W)、Ddx-39、rTS-α、I530027A02、或Kif20a。
在另一个优选实施方式中,一种用于治疗与年龄相关的黄斑变性的方法包括:对患者给药SEQ ID NOs:1-67及其变体中的至少一种。 
在另一个优选实施方式中,组合物含有核酸序列,该核酸序列靶向CD97、TS-α、C/EBPδ、CDC23、PINK1、HIF1α、Gnbp3g、肾上腺髓质素AM1受体、6330439J10(3-含氧酸CoA转移酶)、CtpW85(组织蛋白酶W)、Ddx-39、rTS-α、I530027A02、Kif20a、PINK-AS、aHIF1α、Gnbp3g-AS、AdmR-AS、A230019L24、BACE、或CtpW-AS中的编码和非编码的任意一种,并靶向重叠序列。 
下文将描述本发明的其它方面。 
附图说明
在所附的权利要求中指出了发明的特性。本发明的上述和更多优点可通过结合附图并参照以下说明更好地被理解,其中: 
图1A和1B为表现反义转录原理的示意图,图1A显示了在哺乳动物转录组内如何生成反义转录物,图1B显示了对于反义转录物和正义转录物的重叠存在的三种可能; 
图2A-2B是表现通过调用反义敲低(如:通过利用siRNA)来改变正义转录水平的两种可能的示意图,图2A显示了调节为不一致的情况,图2B显示了正义和相应的反义转录物的共同敲低; 
图3A是胸苷酸合成酶(TS-正义)和rTSα反义mRNA的示意性说明,外显子边界由横断线标注,还标识了用于TaqMan的探针和原位杂交的探针以及S-AS mRNA的3′重叠区的位置;图3B显示了用于转染的载体的构建和S-AS RNA的产生;正义载体构成具有3′正义序列的RNA,反义载体构成具有3′反义序列的RNA,S-AS载体构成具有连续的正义-反义序列RNA,所述连续的正义-反义序列的正义和反义RNA序列之间为发夹序列;
图4是显示TS转录物的单细胞RNA表达的荧光图像,(a)反义探针;(b)正义探针;(c)结合于海拉细胞(Hela cell)中固定的逆转录的TS RNA的正义和反义探针,探针被设计成以链特异的方式,且包括外显子边界和部分重叠区;(d)来自肌动蛋白(actin)探针的信号显示了方法正最佳地运行;所有的探针均跨越内含子,以避免来自污染DNA的背景信号; 
图5为显示了TS正义和反义分子的内源单细胞mRNA表达的图;实时PCR引物被设计为跨越重叠区和非重叠区;低丰度结合蛋白TATA盒的表达也可定量测定试验的灵敏度;所有样品被标准化成β2-微球蛋白,且绘制的为115个独立细胞的平均结果; 
图6为显示了在三个细胞株(Hela、SK-N-MC、和HEPG2)中TS-正义(TS)及其反义分子(rTSα)、HIF正义(HIF)及其反义分子(aHIF)的细胞定位图;细胞质RNA和核RNA被定义为总RNA; 
图7为显示了细胞质RNA的酶保护试验(RPA)印迹图;第1道为HeLa细胞的细胞质溶解物,第2道为过度表达S-AS的HeLa细胞的细胞质溶解物,第3道是以转录的S-AS RNA双螺旋体外转染的HeLa细胞溶解物,第4道是过度表达S-AS的HeLa细胞的总RNA,所有的RNA均以RNA酶A+T进行处理,并且经变性PAGE进行分离,且可以作为胸苷酸合成酶mRNA重叠区的探针; 
图8显示了Dicer酶解产物的RNA印迹图;道(a)HeLa细胞中的总RNA,道(b)过度表达S-AS mRNA的HeLa细胞中的总RNA,道(c)以IVT重叠的dsRNA转染的HeLa细胞中的总RNA,道(d)过度表达连续的S-AS RNA(m)标记的HeLa细胞中的总RNA; 
图9为显示了IFNβ和OAS2mRNA表达的图;通过qRT-PCR定量测定在以IVT-dsRNATS转染的HeLa细胞中或过度表达S-AS的HeLa细胞中,以及参照HeLa细胞中的干扰素反应;mRNA水平被标准化为GAPDH(甘油 醛-3-磷酸脱氢酶); 
图10A-10B为显示了小鼠脑和肝的多个区域中BACE-1和BACE-1-AS的表达谱图;在脑的多个区域中两种转录物丰度比肝中的丰度多2-5倍;在采样的脑区域中,脑皮层和扁桃体表现出这两种转录物的最高表达(图10A);RNA印迹分析证实了在小鼠脑组织中BACE-1和BACE-1-AS的表达(图10B);BACE-1和BACE-1-AS转录物也在未分化和分化的人成神经细胞瘤SH-S Y5 Y细胞中表达;人成神经细胞瘤SH-S Y5 Y细胞的诱导分化与BACE-1-AS转录物的表达减少约50%和BACE-1转录物的表达减少约20%是相关的(图-10B),表明了正义和NAT转录物的表达是一致的; 
图11A和11B是以siRNA处理SH-SY5Y细胞后BACE-1蛋白的蛋白印迹扫描图;将对照细胞中BACE-1蛋白(道1)与以20nM的siRNA转染的细胞中BACE-1(道2)、BACE-1-AS(道3)、或两种转录物(道4)进行对比; 
图12A-12D为显示了在人11号染色体q23.3位点中人BACE-1位点的基因组结构示意图,(图12A)显示了BACE-1mRNA和BACE-1-AS的基因组位置和在包括小鼠在内的几种其它物种中两种转录物的强的保护模式;由11号染色体的负链转录得到BACE-1,并由11号染色体的正链转录得到BACE-1-AS且其包括了BACE-1的外显子6;图12B以更大的视图显示了转录方向和位于BACE-1和BACE-1-AS之间的重叠区;标号为1、2和4的位点是BACE-1siRNA的靶位点,并且位点3是RNA印迹探针位点,该探针位点为重叠区且能够检测两种转录物;位点2和5还可以分别代表正义和反义分子的FISH探针位点;位点6、7和8是BACE-1-AS siRNA的靶位点,该靶位点都位于AS转录物的非重叠区;位点5和9分别表示3′和5′RACE(cDNA末端快速扩增)的引物位点;图12C和12D描述了分别来自人和小鼠脑部的BACE-1-AS的RACE测序数据(每个16个克隆);测序数据揭示了在人和小鼠中的反义转录物含有帽子结构和poly-A尾巴,并经过不同的 剪切;黄色高亮部分是与BACE-1正义转录物的重叠区,绿色高亮部分是来自于我们的测序数据的新区域,它们在之前的基因组数据库中并不存在;通过以星号(*)表示A向G的转换,以十字(+)表示C向T的转换,来标明与基因组序列的点错配; 
图13A和13B为显示了以合成的siRNA使BACE-1和BACE-1-AS转录物沉默的图;图13A显示了通过BACE-1(S-a)siRNA的转染减少了BACE-1mRNA,并使BACE-1-AS水平无明显变化;以三种不同siRNA,(AS-a、AS-b和AS-c)靶向BACE-1-AS转录物,引起BACE-1和BACE-1-AS转录物的明显下调(P<0.0001);以20nM的靶向转录物非重叠区的siRNAs,来转染成神经细胞瘤细胞(SH-SY5Y);所有样品被标准化为18s rRNA,并以每个mRNA占对照阴性siRNA样品的百分比作图;图13B显示了淀粉质Aβ1-42蛋白的ELISA(酶联免疫吸附试验)检测结果;在以20nM的针对BACE-1(S-a)、BACE-1-AS(AS-a)、或两者的siRNA转染后,对HEK-SW细胞悬浮物中的淀粉质Aβ1-42蛋白进行分析;结果与以对照siRNA转染的细胞作图;以靶向了BACE-1或BACE-1-AS的siRNA转染的Aβ1-42蛋白明显下调(P<0.0001);两种siRNA(每种10nM)的组合引起更为明显的下调(P<0.001)。 
图14A-14E为显示了在体内将合成的未修饰siRNA注入小鼠脑部的图;合成的未修饰siRNA被设计成靶向BACE-1(正义)、BACE-1-AS的非重叠区以降解;对照siRNA具有相似的特性并在之前表现出对人和小鼠基因是无效的;三组小鼠在2周的时间内被连续注入siRNA;通过实时PCR对来自于每组小鼠的五个组织的RNA进行定量测定;图14A:背内侧前额叶皮层(PFC),图14B:腹侧海马,图14C:背侧海马,图14D:背侧纹状体和图14E:小脑;直接针对BACE-1或BACE-1-AS转录物的siRNAs,使BACE-1和BACE-1-AS水平相对于对照处理组一致下降(***=P<0.0001);在小脑(e) 中的两种转录物未发生变化(P=0.1518),被认为是不直接与第三脑室接触的组织; 
图15A-15F显示了应激诱导的反义转录物的转移;图15A为显示了BACE-1和BACE-1-AS RNA在细胞核中与细胞质中分布比较的扫描图;在SH-SY5Y的RNA-FISH图像中,上板(upper panels)的成神经细胞瘤细胞从左至右显示了DAPI核染色、覆盖整个细胞的BACE-1mRNA信号(Alexa Flour594)、和两者的重叠;下板(lower panels)从左至右显示了DAPI核染色、BACE-1-AS信号(Alexa Flour488),该信号在核内和两者的重叠内基本是可检测的;RT-PCR数据揭示了在SH-SY5Y细胞的核内,BACE-1-AS转录物丰度是其在细胞质中的约30倍,而在这两个区室中β肌动蛋白和BACE-1mRNA(正义)基本相等;图15B显示了SH-SY5Y细胞暴露于高渗震动的30nM的KCl中5分钟后,观察到的BACE-1-AS的核保留模式完全消失的扫描图;当以PBS(磷酸盐缓冲溶液)洗涤细胞,并将细胞返回常规培养液中孵育1小时,则核保留恢复;图像显示了SH-SY5Y细胞暴露于KCl中5分钟后,来自于核的BACE-1-AS信号向细胞质的转移,从左至右是DAPI核染色、整个细胞可检测的BACE-1-AS信号(Alexa Flour594)、和两者的重叠;图15C为显示了以合成的Aβ1-42多肽作为不同的应激源以监测BACE-1-AS核保留的变化的扫描图;将SH-SY5Y细胞在1μM的Aβ1-42中暴露2小时,则表现出BACE-1-AS远离核;经过洗涤多肽,并将细胞在常规培养液保持1小时,则转移恢复;在组板(set panel)中描述了经过相同的暴露后BACE-1-AS信号的转移,从左至右为DAPI核染色、BACE-1-AS、和两者的重叠;在图15D中,7PA2-CHO细胞先前表现出Aβ1-42的二聚体和低聚体的过渡生成;收集这些细胞和对照的亲代CHO细胞的条件培养液,并以SH-SY5Y细胞的常规培养液取代培养2小时;重要地,只有7PA2-CHO细胞的条件培养液可以使BACE-1-AS转录物从核向细胞质转移;在组板中显 示了经过7PA2的条件培养液孵育后,相同的BACE-1-AS转移;从左至右是DAPI核染色、BACE-1-AS、和两种信号的重叠;图15E为显示了在HTRF试验中APP-tg小鼠脑部的人Aβ1-42多肽相较于野生型具有明显提高的图;图15F为显示了Aβ1-42的提高水平类似于体外实验中促使BACE-1-AS提高50%(P<0.0001)后BACE-1也相应地提高的图;BACE-1-AS提高的水平大于BACE-1(P<0.001)。 
图16A-16E为显示了亲环素-60参与的BACE-1-AS的定位/调节和BACE-1与BACE-1-AS转录物的稳定性的图;在HEK-293T细胞中有效地敲低Cyp-60,导致(图16A)BACE-1和BACE-1-AS明显的下调(P<0.001);图16B:以Cyp-60 siRNA处理HEK293T细胞之后,发生在较早时间点,始于转染后6小时的BACE-1-AS下调;图16C:Cyp-60 siRNA的处理也明显地降低了BACE-1-AS的核保留(P<0.0001);图16D:通过实时PCR测定以α-蝇蕈素使RNA的合成停止后,在HEK-293T细胞中BACE-1与BACE-1-AS转录物的稳定性;BACE-1-AS具有比BACE-1和β-肌动蛋白更短的半衰期;RNA聚合酶III的产物18s rRNA是不变的且可被作为内源对照;图16E:以7PA2细胞的条件培养液孵育SH-SY5Y细胞,可引起BACE-1-AS向细胞质的转移,可使BACE-1的稳定性有明显的增强(P<0.001); 
图17为显示了BACE-1-AS介导调节BACE-1及其参与阿尔茨海默病病理生理学机理的示意图;通过与亲环素60(Cyp-60)和/或某些其它未知蛋白的相互作用,BACE-1-AS RNA在无应激条件下主要位于核内;不同类型的细胞应激源可有效地启动可导致BACE-1-AS转移的一系列事件,然后引起BACE-1mRNA稳定性的增强;BACE-1水平的提高增强了Aβ1-42的生成,导致Aβ聚集和Aβ斑块的形成;这些后续事件表现为有效的细胞应激源,并由于前馈机制导致从核内释放出更多的BACE-1-AS。
具体实施方式
小干扰RNA(siRNA)敲低反义转录物,并调节它们的正义链的表达。这种调节或者是不一致的(反义敲低导致正义转录物的增多)或者一致的(反义敲低导致一致的正义转录物的减少)。提供了基于以siRNA(或其它RNA靶向原理)敲低反义RNA转录物的新药理学策略。在不一致调节的情况下,反义转录物的敲低提高了常规(正义)基因的表达,因此令人信服地模拟激动剂/活化剂的作用。在一致调节的情况下,反义和正义转录物的一致敲低导致了常规(正义)基因表达的协同作用降低。 
定义 
除非另有解释,本文所有技术和科学术语具有与本发明所属领域普通技术人员通常所理解相同的含义。类似于或等效于本文所述的任何方法和材料均可被用于实践或实施本发明,本文描述了优选的方法和材料。 
除非文中另有明确指示,本文所用的单数形式“一种”“一个”和“该”包括复数指示物。 
本文所用的术语“特异性的寡多核苷酸”是指具有(i)可以与靶基因的一部分形成稳定复合物的序列的寡核苷酸,或具有(ii)可以与靶基因mRNA转录物的一部分形成稳定双螺旋体的序列的寡核苷酸。 
本文所用的,术语“寡核苷酸”“siRNA”“siRNA寡核苷酸”和“siRNA的”在整个说明书中可交替使用,并包括天然和/或修饰的单体或连接的线性或环状低聚物,包括:脱氧核糖核苷、核糖核苷、及其取代和α异头形式、肽核酸(PNA)、锁核酸(LNA)、硫代磷酸、甲基磷酸,等等。寡核苷酸能够以单体与单体相互作用的常规模式方式,特异地结合到靶多核苷酸上,例如,碱基配对的沃森-克里克(Watson-Crick)模式,碱基配对的虎格斯梯恩
Figure G2006800535397D00121
或反
Figure G2006800535397D00122
模式,或等等。 
寡核苷酸可以是“嵌合的”,即包括不同的区域。在本发明中“嵌合” 化合物是寡核苷酸,含有两个或多个化学区域,例如DNA区、RNA区、PNA区等。每个化学区域由至少一个单体单位组成,即在寡核苷酸化合物的情况下为一个核苷酸。这类寡核苷酸通常含有至少一个区域,其中,对所述寡核苷酸进行修饰以使其表现出一种或多种所需的特性。例如,寡核苷酸所需的特性包括但不限于:增加对核酸酶降解的抗性、增加细胞吸收、和/或增加与靶核酸的结合亲和力。因此,寡核苷酸的不同区域可具有不同的特性。本发明的嵌合寡核苷酸可以形成两个或多个上述的寡核苷酸、修饰的寡核苷酸、寡核苷和/或寡核苷酸类似物的混合结构。 
寡核苷酸可以含有能够连接至“重合体”中的区域,即单体是连续连接的,如天然DNA、或经“间隔臂”连接的。间隔臂能够构成区域之间的共价“桥”,并在优选情况下具有不超过约100个碳原子的长度。间隔臂可以执行不同的功能,例如,具有阳性或阴性电荷,执行特定的核酸结合特性(嵌入剂、小沟粘合分子、毒素、荧光体等),具有亲脂性,诱导形成特定的二级结构类似物(例如诱导形成α螺旋的含有丙氨酸的肽)。 
本文所用的,术语“单体”通常指示由磷酸二酯键连接的单体或其类似物以形成大小从几个单体单元如从大约3-4至大约几百个单体单元的寡核苷酸。磷酸二酯连接的类似物包括:硫代磷酸酯、二硫代磷酸酯、甲基磷酸酯、磷酸硒酯(phosphoroselenoate)、氨基磷酸酯等等,更多如下文所述。 
在本文中,术语“核碱基(nucleobase)”包括天然存在的核碱基以及非天然存在的核碱基。本领域技术人员应该明确的是,先前被认为是“非天然存在”的多个核碱基,随后也在自然中被发现。因而,“核碱基”不仅包括已知的嘌呤和嘧啶杂环,还包括杂环类似物及其异构体。核碱基的示例性实例为:腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶、尿嘧啶、嘌呤、黄嘌呤、氨基嘌呤、8-氧代-N6-甲基腺嘌呤、7-去氮黄嘌呤、7-去氮鸟嘌呤、N4,N4-乙醇胞嘧啶、N6,N6-乙醇-2,6-二氨基嘌呤、5-甲基胞嘧啶、5-(C3-C)-炔基胞嘧啶、5- 氟尿嘧啶、5-溴尿嘧啶、拟异构胞嘧啶、2-羟基-5-甲基-4-三唑吡啶、异构胞嘧啶(isocytosine)、异构鸟嘧啶(isoguanin)、次黄嘌呤、和Benner等在美国专利No.5,432,272中所述的“非天然存在”核碱基。术语“核碱基”包括每个和所有这些实例以及它们的类似物和异构体。特别感兴趣的核碱基是腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶、和尿嘧啶,它们被认为是与人类治疗和诊断应用相关的天然存在的核碱基。 
本文所用,“核苷”包括天然核苷,包括2′-脱氧和2′-羟基形式,如Kornberg和Baker在第二版的DNA的复制(Freeman,San Francisco,1992)中所描述的。 
关于核苷“类似物”包括具有修饰碱基基团和/或修饰糖基的合成核苷,例如,由Scheit,Nucleotide Analogs,John Wiley,New York,1980;Freier &Altmann,Nucl.Acid.Res.,1997,25(22),4429-4443,Toulme,JJ.,NatureBiotechnology19:17-18(2001);Manoharan M.,Biochemica et Biophysica Acta1489:117-139(1999);Freier S.,M.,Nucleic Acid Research,25:4429-4443(1997),Uhlman,E.,Drug Discovery & Development,3:203-213(2000),Herdewin P.,Antisense & Nucleic Aci d Drug Dev.,10:297-310(2000),)通常所述的;2′-O,3′-C-连接[3.2.0]双环阿拉伯糖核苷(参见例如N.K Christiensen.,等J.Am.Chem.Soc,120:5458-5463(1998)。这些类似物包括:被设计成能够增强结合特性(如双螺旋或三螺旋的稳定性、特异性、或类似)的合成核苷。 
涉及双螺旋或三螺旋结构的术语“稳定性”,通常是指反义寡核苷酸与它的指定靶序列结合的紧密程度,更具体而言,“稳定性”是指在生理条件下双螺旋或三螺旋结构的自由能。如下文所述的在标准条件组下的熔解温度是双螺旋和/或三螺旋稳定性的简便度量。优选地,本发明所选的寡核苷酸其在pH7.0的100mM NaCl,0.1mM EDTA和10mM磷酸缓冲水溶液中,在寡核苷酸和靶核酸都是1.5μM的标准浓度下,所具有的熔解温度至少为45 ℃。因而,当在生理条件下使用时,双螺旋或三螺旋结构将基本保持与抗原和它的靶序列解离的状态。应理解的是,在某些实施方式中稳定的双螺旋或三螺旋包括碱基对和/或三螺旋中碱基三重体的错配。优选地,本发明的修饰寡核苷酸,例如含有LNA单位,能够与它们的靶核酸形成完美配对的双螺旋和/或三螺旋。 
本文所用的,涉及核苷酸序列方向的术语“下游”表示从5′-3′末端的方向。类似地,术语“上游”表示从3′-5′末端的方向。 
本文所用的,术语“基因”表示基因和它们的目前已知的变体和可以解释的任何更多变体。 
本文所用的,多肽的“变体”是指一个或多个氨基酸残基发生变化的氨基酸序列。变异可以是“保守的”改变,即取代氨基酸具有类似的结构或化学特性(如异亮氨酸代替亮氨酸)。更罕见地,变异可以是“非保守”改变(如色氨酸代替甘氨酸)。类似的次要变异还包括:氨基酸缺失或插入,或两者都有。可利用本领域公知的计算机程序,例如LASERGENE软件(DNASTAR)来探查确定哪个氨基酸残基被取代、插入、或缺失后不会丧失生物活性。 
用于多核苷酸序列的术语“变体”可包括与野生型基因相关的多核苷酸序列。该定义还包括,例如“等位基因”“剪切”“物种”或“多态性”变体。剪切变体可具有参照分子的重要特性,但由于在mRNA过程中交替的外显子的接合,剪切变体通常具有更大或更小的多核苷酸数目。相应的多肽可拥有附加的功能结构域或缺失结构域。物种变体是在不同物种间变化的多核苷酸序列。在本发明中特别有效的是野生型靶基因产物的变体。变体可由在核酸序列上的至少一个突变造成,并可形成被该改变的mRNAs或结构或功能可能会改变或不会改变的多肽。任何给定的天然或重组基因可能不具有、或具有一个或多个等位基因形式。常见的可产生变体的突变通常归因于 核苷的天然缺失、增加、或取代。在一个给定序列中,每种类型的变化可能单独地或与其它类型组合地发生一次或多次。 
最终的多肽通常具有相互之间相关的重要氨基酸特性。多态性变体是给定物种的不同个体之间特定基因的多核苷酸序列的变异。多态性变体还可包括“单核苷酸多态性”(SNPs,)或由一个碱基改变多核苷酸序列的单碱基突变。SNPs的存在可指示例如具有疾病状态倾向性的特定群体,具有易感性对抗性。 
本文所用的,术语“mRNA”是指目前已知的靶基因的mRNA转录物,和可解释的任何更多转录物。 
由“所需的RNA”分子表示对于治疗、诊断或其它观点有益的任何外源RNA分子。这类分子包括:反义RNA分子、诱骗RNA分子、酶RNA、治疗编辑RNA、和激动剂或抗拮剂RNA。 
由“反义RNA”表示以RNA-DNA相互作用的方式与其它RNA(靶RNA)结合并改变靶RNA活性的非酶RNA分子(Eguchi等,1991Annu.Rev.Biochem.60,631-652)。 
RNA干扰"RNAi"是由具有它们的靶核酸序列的序列特异性同源体的双链RNA(dsRNA)分子所介导的(Caplen,N.J.,等,Proc.Natl.Acad.ScL USA98:9742-9747(2001))。对果蝇无细胞溶解物的生物化学研究表明,在本发明特定实施方式中,RNA依赖的基因沉默的中介物是21-25个核苷酸的“小干扰”RNA双螺旋(siRNAs)。因此,siRNA分子适宜用于本发明的方法中。siRNA源自于以被称为Dicer的RNA酶处理的dsRNA(Bernstein,E.,等,Nature409:363-366(2001))。siRNA双螺旋产物形成被称为RISC(RNA诱导沉默复合物)的多蛋白siRNA复合物。不受任何特定理论的限制,认为RISC之后会被引领至靶核酸(适宜的mRNA),其中siRNA双螺旋以序列特异的方式相互作用,以便通过催化方式来介导裂解(Bernstein,E.,等,Nature 409:363-366(2001);Boutla,A.,等,Curr.Biol.11:1776-1780(2001))。本发明还可使用的小干扰RNAs,可通过本领域所公知的并为普通技术人员所熟知的程序来合成和使用。适宜用于本发明方法的小干扰RNAs含有约0-50个核苷酸。在非限制性的实施方式中,siRNAs可含有约5-40个核苷酸、约5-30个核苷酸、约10-30个核苷酸、约15-25个核苷酸、约20-25个核苷酸。 
通过可自动排列核酸序列并指明相同或同源区域的计算机程序,可便捷地选择适宜的RNAi。这类程序可用于比对获得的核酸序列,例如通过搜索数据库如GenBank,或通过对PCR产物进行测序。在一定范围的物种内,进行核酸序列比对可以选择出在物种间显示出具有适宜程度的同一性的核酸序列。对于还未测序的基因,通过DNA印迹法可测定靶物种与其它物种的基因之间的同一性程度。如本领域所公知的,通过在不同严格程度下进行DNA印迹法可以获得同一性的近似测量。这些程序可选择表现出与将被控制个体中的靶核酸序列具有高度互补性以及与其它物种中相应的核酸序列具有较低程度的互补性的RNAi。本领域技术人员会认识到,可以在相当范围来选择用于本发明的适宜的基因区域。 
由“酶RNA”表示具有酶活性的RNA分子(Cech,1988/.American.Med.Assoc.260,3030-3035)。酶核酸(核酸酶)通过先与靶RNA结合来起作用。通过靶向结合酶核酸的靶向结合位点来进行所述结合,所述酶核酸紧临能够裂解靶RNA的分子的酶部分。因而,酶核酸首先进行识别,然后通过碱基配对与靶RNA结合,并且一旦结合到正确位点上,就以酶的作用方式对靶RNA进行酶切。 
由“诱骗RNA”表示模拟配基的天然结合结构域的RNA分子。因此诱骗RNA与天然结合靶竞争性地与特定配基相结合。例如,已显示出过度表达的HIV反式激活反应(TAR)RNA,可作为“诱骗”有效地与HIV tat蛋白结合,从而防止它与HIV RNA编码的TAR序列的结合(Sullenger et ah,1990, Cell,63,601-608)。这是一个特例。本领域技术人员会认识到,除了一个实例外,利用本领域公知技术可较容易地产生其它实施方式。 
术语“互补”是指若一个序列能以反向平行的方式与另一序列结合,则这两个序列是互补的,其中每个序列的3′末端与另一序列的5′末端结合且一个序列中的每个A、T(U)、G、和C分别与另一序列的T(U)、A、C、和G配对。正常地,寡核苷酸的互补序列与指定序列具有至少80%或90%,优选95%,最优选100%的互补性。优选地,可识别它的等位基因或变体。BLAST程序还可用于评价这种序列的同一性。 
涉及多核苷酸序列的术语“互补序列”是指符合碱基配对规则的另一核酸分子的碱基序列。更具体而言,术语或类似术语是指在核苷酸或核酸之间的杂交或碱基配对,例如,在双链DNA分子的两条链之间或在寡核苷酸引物和待测序的或扩增的单链核酸的引物结合位点之间。互补核苷酸通常是A和T(或A和U),或C和G。当最佳地排列和比对与具有适宜的核苷酸插入或缺失的一条链的核苷酸与另一条链的核苷酸具有至少约95%的配对,通常为至少约98%的配对,更优选为约99%-100%配对,则两条单链RNA或DNA分子被称为是完全互补的。通过各种方法包括使用公知的计算机算法和软件,例如BLAST程序,可识别互补的多核苷酸序列。 
涉及双螺旋或三螺旋结构的术语“稳定性”通常是指反义寡核苷酸与它的指定靶序列结合的紧密程度,更具体而言,“稳定性”是指在生理条件下双螺旋或三螺旋结构的自由能。如下文所述的在标准条件组下的熔解温度是双螺旋和/或三螺旋稳定性的简便度量。优选地,本发明所选的寡核苷酸其在pH7.0的100mM NaCl,0.1mM EDTA和10mM磷酸缓冲水溶液中,在寡核苷酸和靶核酸都是1.5μM的标准浓度下,具有的熔解温度至少为45℃。因而,当在生理条件下使用时,双螺旋或三螺旋结构将基本保持抗原和它的靶序列解离的状态。应理解的是,在某些实施方式中稳定的双螺旋或三螺旋 包括:碱基对和/或三螺旋中碱基三重体的错配。优选地,本发明的修饰的寡核苷酸(例如含有LNA单位),能与它们的靶核酸形成完美配对的双螺旋和/或三螺旋。 
本文所用的,术语“热力学熔点(Tm)”代表在指定的离子强度、pH、和核酸浓度下,可使与靶序列互补的50%的寡核苷酸与靶序列处于杂交平衡的温度。由于靶序列通常是过量的,因而在Tm下,50%的寡核苷酸处于平衡。通常的,对于短的寡核苷酸(例如10-50个核苷酸),严格条件是指盐浓度至少为0.01-1.0M的Na离子浓度(或其它盐)pH7.0-8.3且温度为至少30℃。还可通过添加去稳剂如甲酰胺以达到严格条件。 
术语“严格条件”是指可使寡核苷酸与它的靶子序列进行杂交,但仅与其它序列不牢固地杂交或不与其它序列杂交,以能够识别出差异的条件。严格条件是序列依赖的,并在不同的环境下是有差异的。在较高温度下,更长的序列可特异性杂交。通常地,所述严格条件选择比在指定离子强度和pH下的特定序列的热力学熔点低约5℃。 
术语“靶核酸”是指可与被设计的寡核苷酸进行特异性杂交的核酸(通常来自于生物样品)。需要检测靶核酸的存在或缺乏,或定量靶核酸的量。靶核酸具有与相应的靶向寡核苷酸的核酸序列互补的序列。术语靶核酸可以是寡核苷酸直接针对的更大核酸的特定子序列,或需要检测其表达水平的整个序列(如基因或mRNA)。将在本文中阐明其使用上的区别。 
本文所用的,“药学可接受的”成分/载体等是适宜用于人和/或动物且无不适当的不良副作用的(如毒性,刺激性和过敏反应)并具有相称的合理效益/风险比的成分。 
本文所用的,术语“安全和有效量”是指当以本发明的方式使用时,足以产生所需治疗反应且无不适当的不良副作用(如毒性、刺激性和过敏反应)且具有相称的合理效益/风险比的成分的量。由“有效治疗量”表示可有效产 生所需治疗效果的本发明化合物的量。例如,可有效地延缓肿瘤、或肉瘤或淋巴瘤的生长或形成,或缩小肿瘤或预防其转移的量。特定的安全和有效量或有效治疗量会随这些因素而变化,如被治疗的具体病状、患者的身体状况、被治疗的哺乳动物或动物类型、治疗的持续时间、同步治疗的特性(如果有)、和所采用的特定制剂及化合物或其衍生物的结构。 
本文所用的,“制药用盐”包括但不限于:碱性残基如胺的矿物或有机酸盐;酸性残基如羧酸的碱性或有机盐。优选的盐是利用有机或无机酸制备而得。这些优选的酸性盐是氯化物、溴化物、硫酸盐、硝酸盐、磷酸盐、磺酸盐、甲酸盐、酒石酸盐、马来酸盐、苹果酸盐、柠檬酸盐、安息香酸盐、水杨酸盐、抗坏血酸盐等等。最优选的盐是盐酸盐。 
本文所用的,“癌”是指在哺乳动物中发现的所有类型的癌或肿瘤或恶性肿瘤,包括但不限于:白血病、淋巴瘤、黑素瘤、癌、和肉瘤。癌的实例为脑癌、乳腺癌、胰腺癌、子宫颈癌、结肠癌、头颈癌、肾癌、肺癌、非小细胞肺癌、黑素瘤、间皮瘤、卵巢癌、肉瘤、胃癌、子宫癌、和成神经管细胞瘤。 
可通过本发明的siRNA′s治疗的其它癌包括:例如霍奇金病、非霍奇金淋巴瘤、多发性骨髓瘤、成神经细胞瘤、乳腺癌、卵巢癌、肺癌、横纹肌肉瘤、原发性血小板增多症、原发性巨球蛋白血症、小细胞肺癌、原发性脑癌、胃癌、结肠癌、恶性胰腺胰岛素瘤、恶性类癌、膀胱癌、癌前皮肤病变、睾丸癌、淋巴癌、甲状腺癌、成神经细胞瘤、食道癌、泌尿系癌、肿瘤高钙血症、子宫颈癌、子宫内膜癌、肾上腺皮层癌、和前列腺癌。癌也可由病原体如子宫颈癌和人乳突淋瘤病毒所引发。因此,在一个实施方式中,疾病的治疗包括对由病原体诱导的异常进行治疗。 
“异源”成分是指被导入的、或在不同于天然存在的实体内产生的成分。例如,源自于生物体的并通过基因工程技术被导入不同的生物体内的多 核苷酸就是一种异源多核苷酸,如果被表达其可编码一种异源多肽。类似地,从其天然编码序列中移除并可操作地将其与不同的编码序列连接的启动子或增强子是一种异源启动子或增强子。 
本文所用的“启动子”是指能控制可操作连接的基因或编码序列的转录的多核苷酸序列。来自多种不同来源的大量启动子包括:组成型、诱导型、和可抑制型启动子,这些启动子是本领域所公知的且可用的,或位于克隆的多核苷酸序列内(来自于保藏中心如ATCC以及其它商业或私人来源)。 
本文所用的“增强子”是指能增强可操作连接的基因或编码序列的转录的多核苷酸序列。来自多种不同来源的大量增强子是本领域所公知的且是可用的,或位于克隆的多核苷酸序列内(来自于保藏中心如ATCC以及其它商业或私人来源)。许多含有启动子序列的多核苷酸(如常用的CMV启动子)也含有增强子序列。 
“可操作连接”是指一种毗邻(juxtaposition),其中,所述的成分相互关联以它们预期的方式来维持它们的功能。若启动子可以控制编码序列的转录,则可以将启动子与编码序列可操作地连接。虽然可操作连接启动子通常位于编码序列的上游,但没有必要与其接近。若增强子可以增强编码序列的转录,则可以将增强子与编码序列可操作地连接。可操作增强子可以位于编码序列的上游、内部或下游。如果它位于编码序列末端的下游,则可以将聚腺嘌呤化的序列与编码序列可操作地连接,以使转录经过编码序列向聚腺嘌呤化序列进行。 
“复制子”是指含有一个复制起点的多核苷酸,所述复制起点能够使其可在适宜的宿主细胞中进行多核苷酸复制。实例包括:可整合异源核酸的靶细胞复制子(如核和线粒体染色体)、以及染色体外复制子(如正在复制的质粒和游离基因)。 
本文所用的“基因运送”“基因转移”等是表示外源多核苷酸(有时被 称为“转基因产物”)向宿主细胞的导入,但不涉及导入所用的方法的术语。这类方法包括多种公知的技术,如载体介导基因转移(通过例如病毒感染/转染、或多种其它基于蛋白或基于脂质的基因运送复合物)以及有利于“裸”多核苷酸运送的技术(如电转化、“基因枪”运送、和多种其它用于导入多核苷酸的技术)。被导入的多核苷酸可稳定地或暂时地维持在宿主细胞中。稳定维持通常要求被导入的多核苷酸含有与宿主细胞相兼容的复制起点,或整合到宿主细胞复制子如染色体外复制子(如质粒)或核和线粒体染色体的复制起点。已知许多载体可以介导基因产物向哺乳动物细胞的转移,正如本领域所公知的和本文所描述的一样。 
本文所用的“体内”基因运送、基因转移、基因治疗等是表示含有外源多核苷酸的载体直接导入生物体体内如人或非人哺乳动物,而在体内将外源多核苷酸导入这类生物体的细胞的术语。 
当核酸从细胞外环境被转移到细胞内时,细胞被核酸“转导”。可使用任何能将核酸转入细胞的方法;除非另外指出,术语不表示将核酸运送至细胞的任何特定的方法。当核酸被转导入细胞并稳定复制时,细胞被核酸“转化”。载体包括可通过细胞表达的核酸(普通的RNA或DNA)。载体任选地包括可以有助于实现核酸进入细胞的物质,如病毒颗粒、脂质体、蛋白包衣等等。“细胞转导载体”是用于编码一旦被转导入细胞即可在细胞内稳定复制和表达的核酸的载体。 
本文所用的“靶细胞”或“受体细胞”是指想要成为或已经成为外源核酸分子、多核苷酸、和/或蛋白的受体的单个细胞或细胞。术语还包括单细胞的子代。 
“载体”(有时称为基因运送或基因转移的“媒介”)是指在体外或体内含有待运送至宿主细胞的多核苷酸的大分子或分子复合物。待运送的多核苷酸可含有基因治疗感兴趣的编码序列。例如,所述载体包括:病毒载体, 例如腺病毒("Ad")、腺相关病毒(AAV)、和逆转录病毒;脂质体和其它含脂质的复合物;和可以介导多核苷酸向宿主细胞运送的其它大分子复合物。所述载体还可以包括能够进一步调控基因的运送和/或基因的表达,或相反地为靶细胞提供有益特性的其它成分或功能性。以下将进行更详细的描述和解释,这类其它成分包括例如影响结合或靶向细胞的成分(包括介导细胞型或组织特异性结合的成分);影响细胞对载体核酸的吸收的成分;影响吸收后多核苷酸在细胞内定位的成分(如介导核定位的试剂);和影响多核苷酸表达的成分。这类成分还可包括标记,如可用于检测或选择已经吸收并正在表达由载体运送核酸的细胞的可检测和/或可选择的标记。这类成分可提供载体的天然特征(如利用具有介导结合和吸收的成分或功能的特定载体),或可修饰载体以提供这类功能。其它载体包括Chen et al;BioTechniques,34:167-171(2003)所述的那些。大量这类载体是本领域公知的并通常是可用的。 
“重组病毒载体”是指含有一个或多个异源基因产物或序列的病毒载体。因为许多病毒载体表现出与包装相关的大小限制,所以一般通过替代病毒基因组的一部分或多个部分来导入异源基因产物或序列。这类病毒可以为复制缺陷型,在病毒复制和包装中需要待提供的反式缺失的功能(通过利用例如携带复制和/或包装所需基因产物的辅助病毒或包装细胞株)。已经公开了将待运送的多核苷酸运输至病毒颗粒外面的被修饰的病毒载体(参见例如Curiel,D T,等.PNAS88:8850-8854,1991)。 
本文所用的病毒“包装”是指导致病毒载体合成和组装的一系列细胞内事件。包装通常包括“前病毒基因组”,或重组前载体通常被称为“载体质粒”(它是以类似于病毒基因组的方式包装的重组多核苷酸,一般是两侧被适宜的病毒“包装序列”包围的结果)的复制,之后是核酸的包装或其它包被。因而,当在适合的条件下将适宜的载体质粒导入包装细胞株内时,其可被复制并组装成病毒颗粒。在许多病毒基因组中发现的病毒“rep”和“cap” 基因产物分别是编码复制和组装蛋白的基因产物。“复制缺陷型”或“复制无能型”病毒载体是指缺失或改变了一个或多个复制和/或包装所需的功能的病毒载体,致使病毒载体被宿主吸收后不能开始病毒复制。为制备这类复制缺陷型病毒载体的原种,可以将病毒或前病毒核酸导入已修饰成含有能编码缺失功能基因产物的“包装细胞株”内(可被反式提供)。例如,这类包装基因产物可被稳定地整合到包装细胞系的复制子中,或通过携带编码缺失功能基因产物的“包装质粒”或辅助病毒的转染来将其导入。 
“可检测的标记基因”是使携带基因的细胞可被特异地检测到的基因(例如:区别于不携带标记基因的细胞)。许多种这类标记基因的产物是本领域已知的。而优选的实例包括:编码体现在细胞表面的蛋白的检测标记基因产物,因此有利于简化和快速的检测和/或细胞的分选。通过例举的方法,编码β-半乳糖苷酶的lacZ基因可用作检测标记,以使携带lacZ基因的载体转导的细胞可通过染色而被检测到。 
“可选择的标记基因”是当存在相应的选择试剂时,可特异地选择或不选择携带基因的细胞。通过例举方式,抗生素抗性基因可用作阳性可选择的标记基因,即当存在相应的抗生素时可阳性地对宿主细胞进行选择。可选择的标记可以是阳性的、阴性的、或双功能的。阳性可选择的标记可以选择携带标记的细胞,而阴性可选择的标记可以选择性地排除携带标记的细胞。已经公开了多种这类标记基因产物,包括双功能的(即阳性/阴性)标记(参见例如1992年5月29日公开的WO92/0879和1994年12月8日公开的WO94/28143)。这类标记基因的产物可提供一种另外的调控措施,这在基因治疗中是有优势的。 
“诊断的”或“诊断”表示对病理状况的存在或特性进行检测。诊断方法在敏感度和特异性上是有区别的。诊断方法的“灵敏度”是指被检测为阳性的患病个体的百分比(“真阳性”的百分比)。方法未检测到的患病个体 是“假阴性”。在所述方法中,未患病的且被检测为阴性的受试者被称为“真阴性”。诊断方法中的“特异性”为1减去假阳性率的差值,其中“假阳性”率被定义为:无病却并检测为阳性的个体比例。虽然某一特定诊断方法不能够为一种病状提供权威性的诊断,但它足以提供作为辅助诊断的阳性指示方法。 
本文中交替使用的术语“患者”或“个体”是指待治疗的哺乳动物受试者,优选为人类患者。在某些情况下,本发明方法可以用于在兽医申请中提供的实验动物,用于开发疾病的动物模型包括但不限于包括小鼠、大鼠、和仓鼠在内的啮齿动物,和灵长类动物。 
“治疗”是以预防疾病的发展或改变病状或症状为目的而实施的干扰。因此,“治疗”是包括治疗性处理和预防性或防御性的措施。“治疗”还可特定为姑息治疗。需要治疗的个体包括已经患病的个体,以及需要预防疾病的个体。在肿瘤(如癌)的治疗中,治疗方法可直接减少肿瘤细胞的病状,或使肿瘤细胞变得对其它治疗剂的治疗更具敏感性,如放射和/或化疗。 
“肿瘤性疾病、肿瘤细胞、癌的治疗”是指在之后的整个说明书和实施例中所述的寡核苷酸、载体和/或肽的量,能够发挥一种或多种下列作用:(1)在一定程度上抑制肿瘤生长,包括(i)减缓、和(ii)完全的生长阻滞;(2)肿瘤细胞数量的减少;(3)维持肿瘤的大小;(4)肿瘤大小的减小;(5)抑制,包括(i)减少、(ii)减缓(iii)完全防止肿瘤细胞向周边器官的扩散;(6)抑制,包括(i)减少、(ii)减缓、或(iii)完全防止癌的转移;(7)增强抗肿瘤免疫反应,其可导致(i)维持肿瘤大小、(ii)减小肿瘤的大小、(iii)减缓肿瘤的生长、(iv)减少、减缓或防止感染、或(v)减少、减缓或防止癌转移;和/或(8)在一定程度上缓解一种或多种与所述疾病相关的症状。 
对感染致病生物的个体的治疗是指减少和清除个体中的致病生物。例如,通过空斑形成单位(plaque fonning unit)或其它自动化诊断方法如ELISA 等来测定病毒颗粒的减少。 
本文所用的“神经(神经细胞,神经学)缺陷、障碍、或疾病”是指神经学障碍或疾病,包括但不限于:中枢神经系统的神经退行性疾病(如帕金森症、阿尔茨海默病)或自免疫性疾病(如多发性硬化症);失忆;长期和短期记忆障碍;学习障碍;孤独症,抑郁,良性健忘,儿童学习障碍,闭合性头部损伤,和注意缺陷障碍;脑部的自免疫疾病,对病毒感染的神经细胞反应;脑部损伤;抑郁;精神障碍如喜怒无常症,精神分裂症等等;嗜睡/睡眠障碍(包括昼夜节奏紊乱,失眠症和嗜睡);神经离断或神经损坏;脑脊髓神经索(CNS)的离断和脑或神经细胞的任何损坏;与AIDS相关的神经学缺陷;抽搐(如贾尔斯德拉图雷特综合症(Giles de Ia Tourette syndrome));亨廷顿舞蹈症,神经分裂症,创伤性脑损伤,耳鸣,神经痛,尤其是三叉神经痛,神经性疼痛,不适当神经元活动导致的神经烦燥症如糖尿病,MS(多发性硬化症)和运动神经元疾病,运动失调,肌强直(强直状态)和颞上颌关节功能障碍;个体表现的奖励缺乏综合症;由酒精或药物滥用(如摇头丸、甲基苯丙胺)引起的神经毒性。其它疾病包括但不限于:失语症、贝尔氏麻痹、克雅氏病、癫痫、脑炎、亨廷顿舞蹈症、神经肌肉病、神经肿瘤病、神经免疫病、神经耳科病、疼痛、恐怖症、睡眠障碍、和其它运动障碍。其它退行性障碍包括但不限于,例如老年性黄斑变性。 
靶核酸 
非编码RNA(ncRNA)的概念:分子生物学的中心法则已提出半个多世纪,该法则规定由DNA编码的遗传信息转录形成中间体分子RNA,然后再翻译成组成蛋白的氨基酸。主流的假设是基因与蛋白是直接相关的(“一个基因-一个蛋白”)。在过去几年间,我们逐渐认识到RNA水平的复杂性比先前所认为的要复杂的多。由于,所述复杂性在很大程度上取决于非编码转录(以及可替换的剪切现象),并且在真核细胞中体现得尤为明显(Mattick, J.S.(2004)RNA regulation:a new genetics?Nat Rev Genet5(4),316-323)。 
ncRNAs包括微RNAs、反义转录物、和其它包括高密度的终止密码子的并缺少任何广度的“开放式读码框”的转录蛋白单位(TU)。许多ncRNAs从蛋白编码位点的3′端非翻译区的起始位点开始出现。ncRNAs通常很少见,并且至少一半的经过FANTOM测序的ncRNAs似乎未被多聚腺苷酰化。由于显而易见的原因,大部分研究者专注于经过加工的并输出至细胞质的且被多聚腺苷酰化的mRNAs。最近表明,非多聚腺苷酰化的核RNAs集可能非常巨大,并且许多这类转录物均源自于所谓的基因间区域(Cheng,J.等.(2005)Transcriptional maps of 10 human chromosomes at 5-nucleotideresolution.Science308(5725),1149-1154;Kapranov,P.等.(2005)。Examplesof the complex architecture of the human transcriptome revealed by RACE andhigh-density tiling arrays.Genome Res15(7),987-997);还可参见图1A。 
ncRNA的概念仍稍存在争议,主要是因为它们具备了常规编码RNA的一部分而不是全部的特征。甚至在不同的物种中,某些ncRNA仍是高度保守的。由Carninci等分析的绝大多数ncRNA(Caminci,P.等.(2005)Thetranscriptional landscape of the mammalian genome.Science309(5740),1559-1563)均体现了物种之间的位置保守性。鉴于功能,可以想象特定区域转录的作用或者是重要的,或是基因组结构或序列的结果。非编码转录物可通过与其所来源的DNA序列或其它靶点的几种类型的序列特异性相互作用来发挥作用。令人感兴趣的是,ncRNA转录物似乎正在快速地进化,并且它们通常不很保守的事实并不必然表示它们缺乏功能。至少有4个关于ncRNA的可登录网络数据库(参见表1)。
表1包含非编码RNA序列的数据库 
Figure G2006800535397D00281
ncRNAs调控基因表达的最常见的机制是通过与靶转录物的碱基配对。通过碱基配对来发挥功能的RNAs可被分为:(1)顺式编码RNA,其在相同的基因位置编码,但作用于在其所作用的RNAs的相反链上因此表现出与它们靶点的完美互补;和(2)反式编码RNAs,其在远离其所作用的RNAs的染色体位置上被编码,并且通常不能与它们的靶点形成完美的碱基配对。 
反义转录物:反义转录物可来源于编码和非编码RNA(图1A)。引人侧目的是,哺乳动物的反义转录物远比几年前所预期的更普遍。最近,Katayama等展示了在小鼠中,大于72%的所有基因组映射的转录单位(43,553)与某些cDNA、5′或3′端的表达序列标签(EST)序列、或标签或映射到相反链上的标签配对区域相重叠(Katayama,S.等.(2005)Antisense transcription inthe mammalian transcriptome.Science309(5740),1564-1566)。目前没有理由证明在人类中该情况有所不同。 
但是,对于转录活动是“无意识的”且代表了RNA转录机制的“泄漏”的观点是有争议的。直到最近结束,已经表明了与非反义对相比,反义转录物对在相当程度上更可能通过进化而保留它们的基因组结构。而且,利用链特异的表达分析和常规微阵列的表达分析已经显示出,在各种小鼠组织 间正义-反义对表达水平的明显波动。表明了各种大小的转录物中的大多数是由正义-反义位点表达的,并且它们倾向于不具有多聚腺苷酸尾并且表现为核定位。 
存在三种基本类型的正义-反义对:(1)头接头的或偏离的;(2)尾接尾的或会聚的;和(3)完全重叠的。偏离的(头接头)类型是最为普遍的(图1B)。 
一个关键的功能性问题是天然反义对能否形成内源RNA干扰(RNAi)的基础。基于RNAi机制在不同生物体系中非常广泛的存在,最近的表明至少在一些物种中,一部分RNAi途径可以发生在核区的证据,表明了这种途径在反义介导基因抑制中可能的作用。基于这个观点,通过切割酶或其它RNaseIII族成员,可将双链RNAs(dsRNAs)裂解成siRNAs。但是,最近表明了利用天然反义转录物的RNA调控,可以通过不依赖RNAi相关的Dicer的途径,而在人类细胞中发生(Faghihi,M.and Wahlestedt,C.(2005)RNAinterference is not involved in natural antisense mediated regulation of geneexpression in mammals.Genome Biol)。反义-正义相互作用现象影响了不同类型的基因,并且不均衡地分布在基因组中。 
RNA靶向:药物开发的研究历来集中于搜寻能够用于调节基因的蛋白产物的化合物。通常情况下,这些化合物是受体的激动剂或抗拮剂,或者是抑制或刺激酶或蛋白间相互作用的化合物。但是,由于靶向确认和/或治疗目的对靶RNA的兴趣越来越高,因而,并不亚于几年前对RNAi的介绍。此外,正在进行的多项关于以小分子的、反义寡核苷酸的、核酸酶的或适体的靶向mRNA的研究。 
目前药物治疗仅涉及了几百种内源靶点,主要是受体和酶。基因组学和转录组学的研究已经鉴别了许多需要验证的新型候选药物靶点。通过靶评估研究,例如,通过RNA水平的操作,以帮助在药物开发过程中建立优先级别,它们不直接产生候选药物。因而,有充分理由继续关注完备靶点的建立。 如果它们最终受到天然反义调控,就可以尝试将这些“老”靶点用于新方法中,尤其在对于这些靶点没有药物可用时。 
对于编码蛋白的基因,就能量而言,转录前调控是一种耗能的控制基因表达的机制。在从基因到活性蛋白的过程中,mRNA只是一种中间分子。如果细胞只在开始时在转录水平来调控这个过程,将节省供给、降解、和再生不用于合成蛋白mRNA分子所需的能量。为了调节ncRNA的活动,RNA水平明显是最好的靶向选择。 
在一个优选实施方式中,以寡核苷酸来靶向靶核酸的反义和正义转录物。寡核苷酸可以是:(1)头接头的或偏离的、(2)尾接尾的或会聚的、和(3)完全重叠的。图1B提供了不同方向类型的示意图。 
在另一个优选实施方式中,以寡核苷酸来靶向一个反义转录物(“非一致调控”),据此仅敲低反义转录物从而提高常规(正义)基因的表达。因而,根据发明的一个方面,可以上调所需基因的表达。例如,靶向用于编码已知或公认药物靶点的基因或核酸,然后敲低它的反义配对物,可以模拟受体激动剂或酶刺激物的作用。表2给出了能够证明反义(编码以及非编码)转录物的敲低非一致地调控正义表达的实例。例如,在帕金森症中需要增强活性的线粒体定位了激酶、PINK1(例如,PINK1的增强): 
PINK-AS siRNA-a:GGAAGCTGTAGCTAGAACATCTGTT(SEQ ID NO:1) 
PINK-AS_siRNA-b:CAGGTAAGT AGTCTCCTCTATCATT(SEQ ID NO:2) 
PINK-AS_siRNA-c:TCTCAACCCAAAGCCTGCTTTGTTA(SEQ IDNO:3) 
在一个优选实施方式中,siRNA分子靶向预期的正义/反义位点的重叠区,进而调节正义和反义转录物。 
在一个优选实施方式中,一种组合物含有一个或者多个siRNA分子, 和/或siRNAs的组合;所述siRNAs与预期的靶位点重叠,和/或靶向正义和反义(重叠的或其它的)。这些分子可定向地用于能够对任何疾病或异常进行潜在治疗所需的任何靶点。例如,靶向癌基因、靶向受体、靶向编码启动子的基因、靶向增强子的基因、靶向细胞因子的基因等。理论上对于待靶向的分子没有限制。本发明引导了对于无论是先天或其它的每一种疾病、异常而设计治疗方案的新纪元。而且,本文教导的技术可以为每个个体定制治疗方案。 
利用本发明的组合物和方法来上调基因表达的另一实施例是,例如在伤口愈合中上调血管的生成。为刺激血管的生成,可以通过靶向它的(编码)反义配对物Ddx-39,来实现通过G蛋白偶联受体(GPCR)、CD97的增强信号。 
在另一个优选实施方式中,寡核苷酸靶向反义和正义转录物(“一致调控”),据此敲低反义和正义转录物,并因此实现常规(正义)基因表达的协同减少。在图1A-1B和2A-2B中图示了这些概念。如果siRNA被用于实现敲低,然后通过运用一个siRNA靶向正义转录物,而另一个siRNA靶向相应的反义转录物,或者单个能量对称的siRNA同时靶向重叠的正义和反义转录物来进一步检验该策略。如表2所得出的,例如,这种双重伴随靶向与对缺氧诱导因子1α的追求是相关的,并且靶点的抑制在多种医疗状况中是有益的。表2的另一实例是肾上腺髓质素AM1受体,被降低信号的GPCR也可被证明是治疗有益的。 
可用于阿尔茨海默病中的反义和正义转录物的一致敲低的有效组合物的实例包括但不限于: 
BACE1-AS: 
siRNA-a:CCCTCTGACACTGTACCATCTCTTT(SEQ ID NO:4) 
siRNA-b:AGAAGGGTCTAAGTGCAGACATCTG(SEQ ID NO:5)
siRNA-c:CCAGAAGAGAAAGGGCACT(SEQ ID NO:6) 
BACE1: 
siRNA-a:GAGCCTTTCTTTGACTCTCTGGTAA(SEQ ID NO:7) 
siRNA-b:CCACGGAGAAGTTCCCTGATGGTTT(SEQ ID NO:8) 
以例举的实例的方式提供了这些组合物,但并不限于此。在优选实施方式中,可以为个体的治疗而定制寡核苷酸,例如,这类寡核苷酸可以是个体中等位基因变体的特异序列,可对靶点进行不同程度的上调或抑制,例如,与对照相比,为10%、20%、40%、100%的表达。对于一些患者来说,靶基因的表达提高或降低10%就是有效的,而对于其它患者则为80%。 
通过对内源靶RNA或者由靶RNA翻译的蛋白进行测定,可以对基因表达的上调或抑制进行定量。RNA和蛋白的定量技术是本领域普通技术人员所熟知的。在某一个优选实施方式中,基因表达被抑制至少10%,优选至少33%,更优选至少50%,还更优选至少80%。在特定的优选实施方式中,本发明的基因表达在生物体的细胞内被抑制至少90%,更优选至少95%,或至少99%-100%。在某一优选实施方式中,基因表达被上调至少10%,优选至少33%,更优选至少50%,还更优选至少80%。在特定的优选实施方式中,本发明的基因表达在生物体的细胞内被上调至少90%,更优选至少95%,或至少99%-100%。 
通过可自动排列核酸序列的并可以指明相同或同源区域的计算机程序,可以便捷地选择适宜的RNAi。这类程序可用于对获得的核酸序列进行比对,例如,通过搜索数据库如GenBank或通过对PCR产物进行测序。在一定范围的物种内进行核酸序列比对,可以选择出在物种间显示出具有适宜程度的同一性的核酸序列。对于还未测序的基因,通过DNA印迹法可以测定靶向物种与其它物种的基因之间的同一性程度。如本领域所公知的通过在不同严格程度下,进行DNA印迹法可以获得同一性的近似测量。这些程序可以对 表现出与将被控制个体中的靶核酸序列有高度互补性以及与其它物种中相应的核酸序列有较低程度的互补性的RNAi进行选择。本领域技术人员应该认识到,可以在相当范围内来选择用于本发明的适宜的基因区域。 
在一个优选实施方式中,小干扰RNA(siRNA)(RNA本身或者DNA)通过表达质粒或病毒被运送至细胞,并编码将被加工成siRNAs的小发夹RNAs的序列。 
在另一个优选实施方式中,使用RNA聚合酶I、II、或III,用于小发夹序列的克隆的DNA试剂盒实现了小发夹序列的表达和加工。这个体系可将前体siRNAs高效地运输至细胞质,在此它们是有活性的;并且允许可用于调控基因表达的组织特异性启动子的使用。 
根据本发明,靶细胞(原核细胞和真核细胞)通过以它们的基因结构为基础的siRNA,被选择性地靶定。感染性疾病几乎总是导致可以通过该技术而被靶定的外源核酸的采集。特异性的靶点可以是病毒,例如HIV(病毒或前病毒)或细菌,例如,多重抗药性细菌例如TB,真菌或原生生物。在治疗没有有效的抗微生物或抗病毒剂(例如埃博拉病毒等)或已知的或新型的生物恐怖原的传染上,该技术尤其有效。 
本发明优选的siRNA′s可以与靶序列,尤其是疾病如帕金森症、阿尔茨海默病等,癌,神经性疾病,传染原如病毒、细菌、真菌或原生生物原的靶寡核苷酸,在体外所确定的严格条件下进行杂交(结合)。 
本发明还可以用于编码蛋白的基因产物以及非编码蛋白的基因产物上。编码非蛋白的基因产物的实例包括:编码核糖体RNA、转移RNAs、小核RNAs、小细胞质RNAs、端粒酶RNA、参与DNA复制、线粒体重排的RNA分子等的基因产物。 
在另一优选实施方式中,利用siRNAs靶向异常的或癌细胞。例如许多恶性肿瘤与外源DNA的存在是相关的,例如Bcr-Ab1、Bc1-2、HPV,而这 为选择性地靶向恶性肿瘤细胞提供了独特的分子靶点。该方法可用来靶向单个碱基的置换(例如K-ras,p53)或甲基化改变。但是,之前未表达的基因产物还会引起癌细胞的增殖。可以通过靶向这些基因序列,从而抑制进一步的表达,并导致癌细胞的死亡。在其它情况下,若转位子是这种异常情况的起因,则可以靶向转位子序列,如Tn5。 
在本发明中,siRNA寡核苷酸被设计成对引起、参与、或恶化患者的疾病状态的分子具有特异性。例如,在病毒感染中,siRNA可以靶向负责病毒复制;病毒感染周期,如吸附到细胞配体;编码宿主免疫调节功能因子的病毒基因产物的分子。本发明中尤其优选的能够引起人类疾病的病毒性生物体包括(但不限于):丝状病毒、疱疹病毒、肝炎病毒、逆转录病毒、正粘病毒、副粘病毒、披膜病毒、小RNA病毒、乳头多瘤病毒、和肠胃炎病毒。 
在另一优选实施方式中,siRNA′s靶向由疾病源如炭疽热所产生的毒素。例如炭疽热是可用于生物恐怖袭击的病原体中的一种。炭疽热感染可由炭疽杆菌的芽孢来介导,其可以通过皮肤的破损,通过吸入,或通过摄入而进入体内。致命的炭疽热表现为发展成伴随着强烈血毒症的全身性菌血症。炭疽热似乎是一种菌血症和/或血毒症的双重病症,其可导致休克、血流灌注不足、和多器官系统衰竭的致命症状。发展成全身性疾病的可能性,随着生物进入的入口而改变,而对于吸入途径则是最显著的(参见Dixon等,1999,NewEngland J.Med.341:815-826)。siRNA寡核苷酸可以靶向能够抑制被感染患者细菌增殖的mRNAs,以及可以靶向能够产生毒素的基因产物,从而消除感染炭疽热的毒性作用。可替换地,siRNA′s可以靶向生物体中具有的而宿主中不具有的任何序列靶点。 
通常本发明提供了一种治疗疾病如癌症和由传染性病原体如病毒、细胞内和细胞外寄生生物、插入元件、真菌感染等所引起的疾病的方法,疾病还可能导致正常情况下不表达基因的基因产物发生表达,正常表达基因的异常 表达或异常基因的表达,所述方法包括:对需要这种治疗的患者给药有效量的siRNA寡核苷酸;或不同修饰siRNA′s的混合物(cocktail);或致病实体特异的不同修饰的和未修饰的siRNA寡核苷酸的混合物。 
在本发明中,siRNA寡核苷酸的治疗包括:给药可与基因的靶mRNA接触(相互作用)的siRNA寡核苷酸,据此来调节基因的表达并抑制表达。适宜的这种表达调节可相对于对照有至少约10%或20%的差异,更优选相对于对照有至少约30%、40%、50%、60%、70%、80%、或90%的差异。尤其优选的是与siRNA寡核苷酸的接触和相互作用可导致相对于对照表达被完全或基本完全地调节,例如,相对于对照表达被抑制或增加至少约95%、97%、98%、99%、或100%。用于对这种调节进行检测的对照样品可以是不与siRNA寡核苷酸接触的类似细胞(体外或体内)。 
本发明的方法优选用于治疗或预防由异常细胞生长和由传染性病原体引起的疾病,尤其是用于治疗发生在受试者的组织中,例如肺、心脏、肝、前列腺、脑、睾丸、胃、肠道、肠、脊髓、窦、泌尿道、或卵巢的感染。本发明方法还可用于治疗全身症状,例如,病毒血症或败血病。优选地,本发明方法还可用于治疗与病毒感染或细菌感染相关的疾病和病状,以及任何由传染性病原体引起的其它病状。 
优选地,从患者身上分离病原体并通过诊断工具,如ELISA′s RIAs(酶联免疫吸附放射免疫分析法)、细胞分选、PCR等等,进行鉴定。但是,致病体可能是一种新型的可被siRNA寡核苷酸靶向的病原体。来自于病原体的测序数据可用于构建siRNA。可通过本领域已知的任何手段来完成病原体的部分测序。以下提供了一种例举性的实例,但其决不是限制或直译本发明。siRNA被设计成与所选序列互补。 
根据本发明的一个优选实施方式,可修饰siRNA的核碱基以提供针对靶mRNA的更高特异性和亲和力。例如,可在相邻延长位或不同位置上, 以LNA单体取代核碱基。优选地,经修饰的siRNA相对于互补序列具有与靶序列更高的缔合常数(K3)。可利用杂交方法在各种严格条件下,在体外对修饰或未修饰siRNA′s与靶序列的结合进行检测,如以下实施例所述。 
作为寡核苷酸许多有效治疗应用基础的基本特性为:它们通过Watson-Crick氢键结合(A-T和G-C)或其它氢键结合方案如Hoogsteen/反Hoogsteen模式来特异性地识别互补单链核酸并与其杂交的能力。亲和力和特异性是常用于表现特定寡核苷酸的杂交特征的特性。亲和力是寡核苷酸与它的互补靶点的结合强度的度量(以双螺旋的热稳定性(Tm)表示)。双螺旋的每个核碱基对增加了热稳定性,因而随着寡核苷酸大小(核碱基数量)的增加其亲和力也增加。特异性是寡核苷酸辨别完全互补和错配靶序列的能力的度量。换言之,特异性是与靶中错配核碱基对相关的亲和力损失的度量。 
通过样品试验,可以容易地测定siRNA寡核苷酸在调节(包括抑制)mRNA上的效用。因而,将包括靶mRNA、其突变体或片段的体外或体内表达系统与特定的siRNA寡核苷酸(修饰或未修饰)接触,并对其与利用相同表达系统而不与siRNA寡核苷酸接触的对照的表达水平进行比较。 
可组合使用siRNA寡核苷酸。例如,可以同时或分开地给药定向于同一基因不同区域的几种不同的siRNA修饰的和/或未修饰的寡核苷酸的联合。 
在本发明的实践中,靶基因产物可以是单链或双链DNA或RNA。如果它们有与特定基因转录的起始位点为相同的序列,则短的dsRNA可用于阻断转录。参见例如Janowski等.Nature Chemical Biology,2005,10:1038。应该理解的是,本发明的siRNA寡核苷酸定向的靶点包括:靶基因的等位基因形式和包括剪切变体在内的相应的mRNAs。关于为已给定了靶多核苷酸序列信息的siRNA寡核苷酸选择特定的序列,文献中已给出了实质性的教导。优选的mRNA靶点包括:5′帽子位点、tRNA引物结合位点、起始密码子位 点、mRNA供体剪切位点、和mRNA受体剪切位点。 
若靶多核苷酸含有mRNA转录物,则序列互补的寡核苷酸可与转录物的任何预期部分进行杂交。原理上,这类寡核苷酸可有效地抑制翻译,并可以诱发本文所述的效果。假设通过mRNA在或邻近起始密码子的位点上,可以最有效地抑制翻译。因而,优选与mRNA转录物的5′区互补的寡核苷酸。优选与包括起始密码子(转录物被翻译部分的5′端的第一个密码子)、或邻近起始密码子的密码子的mRNA互补的寡核苷酸。 
嵌合/修饰siRNA 
在本发明中,本领域普通技术人员可以理解mRNA不仅包括含有翻译起始和终止密码子的携带信息以利用三个字母遗传因子来编码蛋白的编码区,还包括形成被称为5′非翻译区、3′非翻译区、5′帽子区、内含子区的区域的相关核苷酸,以及内含子/外显子或剪切结合核苷酸。因而,根据本发明,可以整体或部分地靶向与核苷酸以及编码核苷酸相关的部分来配备寡核苷酸。在优选实施方式中,寡核苷酸靶向翻译起始位点(AUG密码子)或编码区的序列,mRNA的5′非翻译区或3′非翻译区。被干扰的信使RNA的功能包括:所用必要功能例如RNA转位至蛋白翻译位点、从RNA到蛋白的准确翻译、RNA的剪切或成熟和还可能RNA参与的独立催化活性。对RNA功能的这种干扰的总体效果是为了干扰蛋白的表达。 
本发明中确定优选的寡核苷酸为嵌合寡核苷酸。本发明中“嵌合寡核苷酸”或“嵌合体”是含有两个或多个化学上不同区域,且每种由至少一个核苷酸构成的寡核苷酸。这些寡核苷酸通常含有至少一个修饰的核苷酸区,其可带来一种或多种有益特性(例如增强的核酸酶抗性、增强细胞的吸收、增强的与RNA靶点的结合亲和力)和作为能够解离RNA:DNA或RNA:RNA杂合物的酶的底物的区域。举例说明,RNA酶H是一种细胞核酸内切酶,其可从RNA:DNA双螺旋上解离RNA链。因此,RNA酶H的活化可导致 RNA靶点的解离,从而极大地增强了反义抑制基因表达的效率。因此,使用嵌合寡核苷酸以较短的寡核苷酸可获得相对于与相同靶区域杂交的硫代磷酸脱氧寡核苷酸相当的效果。通过凝胶电泳,如果必要结合本领域已知的相关核酸杂交技术,可常规地检测RNA靶的解离。在一个优选实施方式中,嵌合寡核苷酸含有至少一个增强靶结合亲和力的修饰区域,以及通常一个作为RNA酶H底物的区域。通过测量寡核苷酸/靶配对的Tm,可常规地测定寡核苷酸与它的靶点的亲和力(这种情况下,编码ras的核酸),Tm是寡核苷酸与靶点解离的温度;可以通过分光光度来测定解离。Tm越高寡核苷酸与靶点的亲和力越大。在一个更优选的实施方式中,被修饰的寡核苷酸区域含有至少一个糖环2′位上被修饰的核苷酸,更优选以2′-O-烷基、2′-O-烷基-O-烷基、或2′-氟-修饰的核苷酸。在另一优选实施方式中,RNA修饰包括对RNA3′末端上的嘧啶核糖,基本残基或反转碱基的2′-氟、2′-氨基、和2′O-甲基修饰。可常规地将这类修饰合并入寡核苷酸,而这类寡核苷酸表现出具有比2′脱氧寡核苷酸与给定靶点更高的Tm(即更高的靶结合亲和力)。这种增强亲和力的作用是为了极大地增强RNAi寡核苷酸对基因表达的抑制。RNA酶H是一种细胞核酸内切酶,其可从RNA:DNA双螺旋上解离RNA链;因此酶的活化可导致RNA靶点的解离,从而极大地增强了RNAi抑制的效率。 
通过凝胶电泳可常规地检测RNA靶的解离。在另一优选实施方式中,嵌合寡核苷酸还可被修饰,以增强核酸酶抗性。细胞含有多种可降解核酸的核酸外切和内切酶。许多核苷酸和核苷酸修饰体已表现出使被合并入的寡核苷酸具有比天然寡脱氧核苷酸更强的核酸酶消化抗性。通过将寡核苷酸与细胞提取物或分离的核酸酶进行溶液孵育,可常规地测定核酸酶的抗性,并且通常利用凝胶电泳测定随时间推移完整寡核苷酸保留程度。被修饰成增强核酸酶抗性的寡核苷酸,可以比未修饰寡核苷酸完整存活更长的时间。多种寡 核苷酸修饰体已被证明能够增强或具有核酸酶抗性。目前更优选的是含有至少一个硫代磷酸酯修饰体的寡核苷酸。在某些情况下,增强靶结合亲和力的寡核苷酸修饰体还可以独立地增强核酸酶的抗性。在De Mesmaeker等.Ace.Chem.Res.1995,28:366-374中发现了一些所需的修饰体。 
本发明所设想的一些优选的寡核苷酸的具体实例包括:含有修饰的骨架的例子,例如,硫代磷酸酯、磷酸三酯、甲基磷酸酯、短链烷基或环烷基中间糖连接、或短链杂原子或杂环中间糖连接。最优选的是具有硫代磷酸酯骨架的寡核苷酸和具有杂原子骨架的寡核苷酸,尤其是CH2-NH-O-CH2、CH,-N(CH3)-O-CH2[被称为亚甲基(甲亚胺基)或MMI骨架]、CH2-O-N(CH3)-CH2、CH2-N(CH3)-N(CH3)-CH2、和O-N(CH3)-CH2-CH2骨架,其中,天然磷酸二酯骨架表示为O-P-O-CH。优选Mesmaeker等.在Ace.Chem.Res.1995,28:366-374中公开的氨基骨架。还优选具有吗啉骨架结构的寡核苷酸(Summerton and Weller,U.S.Pat.No.5,034,506)。在其它优选实施方式中,例如,肽核酸(PNA)骨架、寡核苷酸的磷酸二酯骨架被聚酰胺骨架所取代,核酸酶直接或间接地结合在聚酰胺骨架的氮杂原子上(Nielsen等.Science1991,254,1497)。寡核苷酸还可以含有一个或多个取代糖基团。优选的寡核苷酸在2′位上为下列基团之一:OH,SH,SCH3,F,OCN,OCH3OCH3,OCH3O(CH2)nCH3,O(CH2)nNH2或O(CH2)nCH3其中,n为约1-10;C1-C10的低级烷基,烷氧基烷氧基,取代的低级烷基,烷芳基或芳烷基;Cl;Br;CN;CF3;OCF3;O-,S-,或N-烷基;O-,S-,或N-烯基;SOCH3;SO2CH3;ONO2;NO2;N3;NH2;杂环烷基;杂环烷芳基;氨基烷胺;聚烷胺;取代甲硅烷基;和RNA解离基团;受体基团;嵌入基团;改善寡核苷酸药代动力学特性的基团;或改善寡核苷酸药效学特性的基团和具有类似特性的其它取代基。一个优选的修饰体含有2′-甲氧基乙氧基[2′-O-CH2CH2OCH3,也被称为′-O-(2-甲氧基乙基)](Martin等,HeIv.Chim.Acta,1995,78,486)。其它 优选修饰体含有2′-甲氧基(2′-O-CH3)、2′-丙氧基(2′-OCH2CH2CH3)、和2′-氟(2′-F)。类似修饰还可发生在寡核苷酸的其它位置上,尤其是3′末端核苷酸的糖环的3′位上和5′末端核苷酸的5′位。寡核苷酸还可具有糖基例如以环丁基替代呋喃戊糖基。 
寡核苷酸还可含有另外的或可替换的核碱基(通常简称为碱基)修饰体或取代体。如本文所用,“未修饰”或“天然”核酸酶包括:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C)、和尿嘧啶(U)。修饰核碱基包括在天然核酸中很少见的或暂时出现的核碱基,例如,次黄嘌呤、6-甲基腺嘌呤、5-甲基嘧啶,尤其是5-甲基胞嘧啶(也称为5-甲基-2′脱氧胞嘧啶,在本领域中常称为5-Me-C)、5-羟甲基胞嘧啶(HMC)、糖基HMC和龙胆二糖基HMC,以及合成核碱基,例如2-氨基腺嘌呤、2-(甲氨)腺嘌呤、2-(咪唑烷基)腺嘌呤、2-(氨基烷胺)腺嘌呤或其它杂取代烷基腺嘌呤、2-硫脲嘧啶、5-硫代胸腺嘧啶、5-溴尿嘧啶、5-羟甲基尿嘧啶、8-氮鸟嘌呤、7-脱氮鸟嘌呤、N6(6-氨己基)腺嘌呤、和2,6-二氨基嘌呤。Komberg,A.,DNA Replication,W.H.Freeman & Co.,San Francisco,1980,pp75-77;Gebeyehu,G.,等Nucl.AcidsRes.1987,15:4513)。还可包括本领域已知的“普通”碱基,例如次黄嘌呤核苷。5-Me-C取代体表现出核酸双螺旋的稳定性增强0.6-1.2℃(Sanghvi,Y.S.,in Crooke,S.T.and Lebleu,B.,eds.,Antisense Research and Applications,CRCPress,Boca Raton,1993,pp.276-278),是目前优选的碱基取代体。 
本发明寡核苷酸的另一种修饰包括将寡核苷酸化学连接一个或多个可增强寡核苷酸活性的或细胞吸收的基团或偶联物。这类基团包括但不限于脂质基团如胆固醇基团,胆甾醇基团(Letsinger et al.,Proc.Natl.Acad.ScL USA1989,86,6553),胆酸(Manoharan et al.Bioorg.Med.Chem.Let.1994,4,1053),硫醚如己基-S-三苯甲基硫醇(Manoharan et al.Ann.N.Y.Acad.Sci.1992,660,306;Manoharan et al.Bioorg.Med.Chem.Let.1993,3,2765),硫代 胆固醇(Oberhauser et al.,Nucl.Acids Res.1992,20,533),脂肪族链如癸二酸或十一烷基残基(Saison-Behmoaras et al.EMBO J.1991,10,11l;Kabanov etal.FEBS Lett.1990,259,327;Svinarchuk et al.Biochimie1993,75,49),磷脂如外消旋甘油双十六烷酸酯或1,2-二-氧代-甘油双十六烷酸酯基-S-氢-磷酸酯三乙胺盐(Manoharan et al.Tetrahedron Lett.1995,36,3651;Shea et al.Nucl.Acids Res.1990,18,3777),聚胺或聚乙烯乙二醇链(Manoharan et al.Nucleosides & Nucleotides1995,14,969),或金刚烷乙酸(Manoharan et al.Tetrahedron Lett.1995,36,3651)。含有亲脂基团的寡核苷酸和这种寡核苷酸的制备方法是本领域已知的,例如美国专利Nos.5138045、5218105、和5459255。 
没有必要在给定寡核苷酸的所有位点进行同一修饰,而事实上多于一种的前述修饰可被合并入单个寡核苷酸中或甚至一个寡核苷酸的单个核苷酸中。本发明还包括上文所定义的嵌合寡核苷酸。 
在另一实施方式中,本发明的核酸分子可与其它基团偶联,包括但不限于:基本核苷酸、聚醚、聚胺、聚酰胺、肽、碳水化合物、脂质、或聚烃化合物。本领域技术人员可认识到这些分子可与一个或多个含有任意核苷酸的核酸分子在糖、碱基、或磷酸基团的几个位置上连接。 
通过本领域熟知的固相合成技术,可以方便地常规地制备用于本发明的寡核苷酸。包括Applied Biosystems在内的几家供应商销售用于这种合成的设备。还可采用任何其它合成手段;寡核苷酸的准确合成对于本领域普通技术人员是轻车熟路的。利用类似技术制备其它寡核苷酸如硫代磷酸酯和烷基化衍生物也是众所周知的。利用类似技术和商业可供的修饰试剂和孔径可控玻璃珠(CPG)产品如生物素、荧光素、吖啶、或补骨脂素-修饰试剂和/或CPG(Glen Research,Sterling VA可提供的)来合成荧光素标记的、生物素化的、或其它修饰的寡核苷酸,例如,胆固醇修饰的寡核苷酸。
在本发明中,修饰的应用,例如利用LNA单体以增强作用的强度、特异性、和持续时间,以及拓宽寡核苷酸的给药途径包括目前的化学法,如MOE,ANA,FANA,PS等(参考Recent advances in the medical chemistry ofantisense oligonucleotide by Uhlman,Current Opinions in Drug Discovery &Development2000 VoI 3 No T)。这可通过以LNA单体取代当前寡核苷酸上的一些单体来实现。LNA修饰的寡核苷酸可具有与亲代化合物相似的大小,或更大或优选更小。优选地,这种LNA修饰的寡核苷酸含有小于约70%,更优选小于约60%,最优选小于约50%的LNA单体,并且它们的大小在约10-25个核苷酸之间,优选在约12-20个核苷酸之间。 
癌症治疗 
在另一优选实施方式中,siRNA寡核苷酸被用于治疗易感或患有癌症的患者。可识别在癌细胞中过度表达的基因产物,以使siRNA寡核苷酸选择性地靶向癌细胞,而不靶向正常细胞。例如,表达序列标签(ESTs)可用于识别在癌细胞中过度表达的核酸分子[expressed sequence tag(EST)sequencing(Celis,et al,FEBS Lett.,2000,480,2-16;Larsson,et al.,/.Biotechnology.,2000,80,143-57)]。可识别来自于多个数据库的ESTs。例如,优选的数据库包括:例如,人类孟德尔遗传在线(OMIM)、癌肿基因组解剖计划(CGAP)、GenBank、EMBL、PIR、SWISS-PROT等等。OMIM是由国家生物技术信息中心(NCBI)开发的与疾病相关的基因突变数据库。OMIM可通过因特网的万维网登录,例如ncbi.nlm.nih.gov/Omim/。CGAP是为了建立破译癌细胞的分子解剖学所需的信息和技术工具的学科交叉计划。CGAP可通过因特网的万维网登录,例如ncbi.nlm.nih.gov/ncicgap/。某些这类数据库可能包含完整或部分核苷酸序列。此外,还可从私人遗传数据库选择可替换的转录物形式。可替换地,可从可用的公开信息中选择核酸分子或联合本发明确定特异可用的核酸分子。
可替换的转录物形式可通过能够产生邻近序列的计算机软件,由每个数据库中的单个ESTs生成。在本发明的另一实施方式中,通过装配大量重叠ESTs,来确定靶核酸分子的核苷酸序列。本领域技术人员公知可用的EST数据库(dbEST)包含大约一百万个不同的含有约500-1000个核苷酸的人类mRNA序列,以及来自于多种不同生物体的大量ESTs。dbEST可通过因特网的万维网登录,例如ncbi.nlm.nih.gov/dbEST/index.html。这些序列来源于用于基因组测序的cDNA表达克隆的克隆策略。ESTs可应用于发现新的基因产物、映射基因组、和识别基因组序列中的编码区域。正迅速变得有用的EST序列信息的另一重要特征是组织特异性基因表达数据。这对于从为治疗干涉所选的基因中靶定mRNA是极其有效。因为EST序列是相对较短的,必须将它们装配以便提供一个完整序列。因为对每个可用的克隆进行了测序,这导致数据库中报导了大量的重叠区域。最终的结果是从例如正常细胞和癌细胞中找出可替换的转录物形式。 
沿5′和3′方向延伸的重叠ESTs的装配,可形成全长的“病毒转录物”。合成的病毒转录物是一个已经表现出特性的核酸或是一个新型的具有未知生物学功能的核酸。基因组研究所(TIGR)人类基因组索引(HGI)数据库是本领域技术人员公知可用的,该数据库包含一系列的人类转录物。TIGR可通过因特网的万维网登录,例如tigr.org。可利用TIGR-装配器以这种方式生成转录物,TIGR-装配器是一种建立病毒转录物的装置,是本领域技术人员公知可用的。TIGR-装配器是一种装配大组重叠序列数据的工具,例如ESTs、BACs、或小基因组,可用于装配真核或原核序列。在例如Sutton,等,在Genome Science & Tech.,1995,1,9-19中描述了TIGR-装配器,在此将其引入本文作为参考,可通过因特网的文件传输程序登录,例如在tigr.org/pub/software/TIGR.assembler。此外,本领域技术人员公知可用的GLAXO-MRC是另一个构建病毒转录物的方案。在美国系列申请No. 09/076,440中详细描述了ESTs的识别和生成邻近ESTs以形成全长RNA分子,其被引入本文作为参考。 
可识别相对于正常细胞在癌细胞中被过度表达的基因产物,例如,相对于正常组织在胰腺癌中被表达至少5倍的基因产物。通过基因表达系列分析(SAGE)可分析基因表达,其是基于识别和描述部分,被定义的与基因片段相应的转录物序列[SAGE(基因表达系列分析)(Madden,et al.,Drug Discov.Today,2000,5,415-425)]。这类被定义的转录物序列“标签”是例如在细胞、组织、或提取物中表达的基因产物的标记。 
靶核酸序列的识别 
在一个优选实施方式中,本发明的组合物靶向期望的核酸序列。通过多种方法如SAGE可识别靶核酸序列。SAGE以几种原理为基础。首先,短序列标签(9-10bp)包含充足的信息含量,可独特地识别由转录物的特定位置分离而得的转录物。例如,短至9bp的序列可辨别在标签位点上随机分布核苷酸的262,144个转录物,而据估计人类基因组编码约80,000-200,000转录物(Fields,et al,Nature Genetics,7:3451994)。标签的大小可短于例如基因组编码的转录物数目更小的较小真核细胞或原核细胞。例如,短至6-7bp的标签足以辨别酵母的转录物。 
第二,随机的标签二聚化作用是一个减少偏差(由扩增和/或克隆造成的)的过程。第三,这些短序列标签的串联可实现通过对单个载体或克隆内的多个标签进行测序,而以系列方式有效地分析转录物。如计算机的连续通讯,其中信息以连续的数据串传输,序列标签的系列分析需要一种建立每个标签的寄存和边界的手段。本发明的由序列得到定义标签的概念,在样品标签与序列数据库的匹配中是有益的。在优选实施方式中,采用计算机方法将样品序列与已知序列进行匹配。 
本文所用的标签独特地识别基因产物。这是由于它们的长度和它们在其 所依照的基因上的特异性定位(3′)。通过标签与基因数据库成员的匹配,或利用标签序列作为探针以从cDNA文库中物理分离出先前未经确认的基因产品,可识别全长的基因产物。利用DNA探针从文库分离基因产物的方法是本领域技术所公知的。参见例如Veculescu等,Science270:484(1995),和Sambrook et al.(1989),MOLECULAR CLONING:A LABORATORYMANUAL,2nd ed.(Cold Spring Harbor Press,Cold Spring Harbor,N.Y.)。一旦通过与数据库条目的配对或通过与cDNA分子的物理杂交鉴别出一个基因或转录物,则可确定转录物的杂交或匹配区位置。如果标签序列不在3′末端,非常邻近用限制性内切酶产生SAGE标签,则可能造成错配。通过对比特定细胞型中标签的转录水平与经确认的基因的水平,即可实施对SAGE标签同一性的确认。 
基因表达的分析不限于以上方法还可包括本领域公知的任何方法。可独立地、组合地、或与其它已知的序列识别方法组合地,应用所有这类原理。 
本领域已知的基因表达分析方法的实例包括:DNA阵列或微阵列(Brazma and ViIo,FEBS Lett.,2000,480,17-24;Celis,et al.,FEBS Lett.,2000,480,2-16)、READS(经消化的cDNAs限制性内切酶扩增)(Prashar andWeissman,Methods Enzymol.,1999,303,258-72)、TOGA(总体基因表达分析)(Sutcliffe,et al.,Proc.Natl.Acad.Sci.U.S.A.,2000,97,1976-81)、蛋白阵列、和蛋白组学(Celis,et al.,FEBS Lett.,2000,480,2-16;Jungblut,et al.,Electrophoresis,1999,20,2100-10)、消减RNA指纹(SuRF)(Fuchs,et al.,Anal.Biochem.,2000,286,91-98;Larson,et al.,Cytometry,2000,41,203-208)、消减克隆、差异显示(DD)(Jurecic and Belmont,Curt.Opin.Microbiol,2000,3,316-21)、比较基因组杂交(Carulli,et al.,J.Cell Biochem.Suppl.,1998,31,286-96)、FISH(荧光原位杂交)技术(Going and Gusterson,Eur.J.Cancer,1999,35,1895-904)、和质谱方法(参见(Comb.Chem.High Throughput Screen,2000, 3,235-41))。 
在另一方面,可选择性地结合到各种靶基因表达产物上的siRNA寡核苷酸,对于癌症治疗是有用的。例如,在各种肿瘤中,p53突变体是为大家所熟知的。“变体”是基因的一种可替换形式。变体是由在核酸序列上的至少一个突变引起的,并且可能形成被改变的mRNAs以及结构或功能发生或不发生变化的多肽。任何给定的天然或重组基因可能不具有或具有一个或多个等位基因形式。常见的可产生变体的突变通常归因于核苷酸的天然缺失、增加、或取代。在一个给定序列中,每种类型的变化可能单独发生或与其它组合发生一次或多次。 
可手动实施或通过本领域技术人员公知的几种可用计算机程序实施序列相似性的检索。优选地,可使用本领域技术人员公知可用的Blast和Smith-Waterman算法等等。Blast是被设计成支持核苷酸和蛋白序列数据库分析的NCBI序列相似性检索工具。Blast可通过因特网的万维网登录,例如ncbi.nlm.nih.gov/BLAST/。GCG包提供了一种可用于公共结构域数据库或用于任何本地可用检索数据库的Blast的本地版本。GCG包V9.0是一个含有超过100个能通过编辑、映射、比对和排列,进行序列分析的相关软件程序的商业可供软件包。GCG包中含有的其它程序包括例如易于RNA二级结构预测、核酸片段装配、和进化分析的程序。此外,大多数著名的基因数据库(GenBank、EMBL、PIR、和SWISS-PROT),随GCG包而分布并且全部可通过数据库检索和操作程序登录。GCG可通过因特网登录,例如http://www.gcg.com/。Fetch是一种可通过登录号获取注释的GenBank记录的GCG可用工具,其类似于Entrez。通过Pangea的GeneWorld和GeneThesaurus,可实施另一种序列相似性检索。Gene World2.5是一种用于分析多核苷酸和蛋白序列的自动化的、灵活的、高通量的应用软件。GeneWorld可实现序列的自动化分析和注释。像GCG、Gene World合并了用于同族检索、基因查询、 多序列排列、二级结构预测、和基序识别的几种工具。GeneThesaurus1.0TM是一种序列和注释数据订阅服务软件,其可提供来自多种来源的信息,提供公共和当地数据的相关数据模式。 
另一种可替换的序列相似性检索可通过例如BlastParse来实施。BlastParse是一种在UNIX平台上运行的PERL脚本,其可自动操作上述策略。BlastParse接收感兴趣的靶登录号列表,并将所有GenBank域解析成“以制表符分隔”的文本然后以“数据库相关”格式保存,以便于检索和分析,其提供了灵活性。最终的结果是一系列完整的解析GenBank记录,其易于被分选、筛选、和查询也是一个注释相关数据库。 
根据本发明,设计适宜siRNA寡核苷酸,可识别种内同源基因。种内同源基因是在一个物种内的由于基因复制而产生的,但已进化出新功能的基因,其还被称为同种型。 
可利用在实验部分描述的所述技术分离或利用PCR技术,对本发明的多核苷酸进行复制。PCR技术是美国专利Nos.4683195、4800159、4754065、和4683202的技术主题,并在PCR:聚合酶联式反应(The Polymerase ChainReaction)(Mullis et al.eds,Birkhauser Press,Boston(1994))和本文引用的参考文献中有所描述。可选择地,本领域技术人员可采用经确认的序列和商业合成的DNA,来复制DNA。因此,本发明还提供一种获取本发明多核苷酸的方法,该方法通过提供多核苷酸的线性序列,核苷酸,适宜的引物分子,用于它们的复制以及在适当的方向上进行化学复制或对核苷酸进行连接的化学制品(如酶)和说明,以获取多核苷酸。在一个独立的实施方式中,这些多核苷酸被进一步分离。更进一步,本领域技术人员可将多核苷酸插入适宜的复制载体,并将载体插入到适宜的宿主细胞(原核或真核)中以进行复制和扩增。通过本领域技术人员公知的方法,可从细胞中分离扩增的DNA。本文还进一步提供了通过这种方法获得多核苷酸的过程,以及获得的多核苷 酸。 
疾病治疗 
在另一优选实施方式中,siRNA可用于治疗免疫细胞参与的疾病,例如,自免疫疾病、对过敏原的超敏性、器官的排斥反应、炎症、等等。炎症相关症状的实例,例如,由败血病或创伤次生的成人呼吸窘迫综合症(ARDS)或多器官损伤综合症;心肌或其它组织的再灌注损伤;急性血管球性肾炎;反应性关节炎;带急性炎症成分的皮肤病;急性化脓脑膜炎或其它中枢神经系统炎症病变;热损伤;血液透析;白细胞去除术;溃疡性结肠炎;克罗恩病;坏死性小肠结肠炎;粒细胞输血相关综合症;和细胞因子诱导毒性。自免疫疾病实例包括但不限于:银屑病、I型糖尿病、雷诺综合症、自免疫甲状腺炎、EAE(实验性变应性脑炎)、多发性硬化症、风湿性关节炎、和红斑狼疮。 
本发明方法可用于筛选能够抑制用于调节一个或多个调节免疫相关分子表达的基因的功能表达的siRNA多核苷酸。例如,CD-18族分子对于细胞的粘附很重要。通过粘附过程,淋巴细胞可以持续地监测动物体中外来抗原的存在。尽管这些过程是正常所需的,但它们还是器官移植排斥反应、组织移植排斥反应、和许多自免疫疾病的起因。因此,能够削弱或抑制细胞粘附的siRNA′s,对器官移植(例如肾脏移植)、组织移植的接受者、或自免疫疾病患者是非常理想的。 
在另一优选实施方式中,siRNA寡核苷酸抑制参与器官移植或组织移植的MHC分子的表达。例如,捐赠者的I类和II类分子。siRNA抑制这些分子的表达因子,改善了同种异体移植反应。在器官或组织移植前,处理免疫细胞;在移植时和/或之后的任何时间给药,时间由主治医生来确定。siRNA的给药可以与免疫抑制药物治疗同时进行或不同时进行。 
在另一优选实施方式中,siRNA被用于治疗对抗原超常反应的个体,例如,过敏个体。siRNA′s被设计成能够靶向已知能够产生抗原特异性的IgE 分子的V区基因。通过常规免疫诊断技术,例如ELISA′s(酶联免疫吸附试验)、RIA′s(放射免疫测定法)、PCR(聚合酶链式反应)、蛋白印迹等,可检测IgE抗体的特异性。利用以下所述的任意的数据库技术,可从IgE分子的氨基酸序列中,推算出它的核酸序列。siRNA′s被设计成结合到V区基因或编码所需抗体的基因的任何其它部分,包括重排和非重排的免疫球蛋白核酸序列。 
在另一优选实施方式中,siRNA′s被设计成靶向可抑制在正常个体中不被抑制的基因表达的抑制剂分子。例如,抑制细胞周期依赖基因的抑制剂分子、p53mRNA的抑制、编码细胞表面分子的基因转录的mRNA的抑制、参与凋亡的半胱氨酸蛋白酶(caspases)的抑制等等。 
由于各种原因,凋亡在临床上是重要的。在肿瘤学领域中,许多临床有效药物通过诱导凋亡而杀死肿瘤细胞。例如,癌症化疗剂,例如顺铂、依托泊苷、和紫杉醇,都可在靶细胞中诱导凋亡。此外,多种疾病的病理状态是由细胞未经历适当调节的凋亡所造成。例如,未经历凋亡可导致自反应淋巴细胞的病态积累,就如许多自免疫疾病所发生的一样,还可导致病毒感染细胞的积累和高度增殖细胞的积累,例如,肿瘤性细胞或肿瘤细胞。靶向翻译蛋白并能够特异性地诱导凋亡的mRNA′s的siRNA′s,将因此在这类疾病病理状态的治疗中具有治疗价值。 
相反地,凋亡的抑制在临床上也是重要的。例如,在中风或心肌梗塞后分别通过脑和心脏的凋亡来认定细胞死亡。而且,凋亡的不当活化也可引起多种其它疾病病理状态包括:例如,获得性免疫缺陷综合症(AIDS)、神经退行性疾病和缺血性损伤。正如之前所述的凋亡诱导剂有益于疾病状态一样,特异性的凋亡抑制剂也类似地在后续疾病病理状态的治疗中具有治疗价值。 
在一种优选实施方式中,siRNA′s靶向以上所述的治疗关注基因,以防止基因的正常表达,或如果需要则过度表达。如本文所用的,术语“过度表 达”在用于表示基因表达水平时,意味着相对于在相应正常细胞中的表达水平在过度表达细胞中,基因产物的积累增加。通过自然生物学现象以及对于遗传工程细胞通过特定修饰,来实现过度表达。过度表达还包括实现通过内在的或外在的机制的细胞存活多肽的增加。自然现象的过度表达可以是由例如增强表达、加工、运输、翻译、或RNA稳定性的突变以及导致多肽稳定性增强或降解减弱的突变所造成的。增强表达水平的这类实例也是过度表达内在机制的实例。由外在机制引起的过度表达的自然生物学现象的特定实例是逆转录病毒或转座子的邻近整合。特定修饰的过度表达可通过例如利用本文所述的siRNA寡核苷酸实现。 
可通过多种不同方式来构建siRNA多核苷酸,使其可以干扰靶蛋白的表达。siRNA多核苷酸通常与靶分子序列是基本相同的(尽管是在互补方向上)。最低的同一性通常大于约80%、大于约90%、大于约95%、或约100%相同。 
受体调节和候选治疗剂 
在一个优选实施方式中,细胞表面受体被调节(调控)。细胞受体的调控可用于例如筛选用于疾病治疗的候选药物。利用siRNA,我们提供了siRNA对反义RNA的干扰可改变相应的正义信使RNAs的表达的实验性证据。然而,这种调节或者是不一致的(反义敲低导致正义转录物的增多)或者一致的(反义敲低导致一致的正义转录物的减少)。不希望受理论的限制,调控基因的概念如图1A-1B和图2A-2B所示。在表2中显示了一系列已经用siRNA靶向的人类和小鼠的反义转录物。在这些例子中,以两个或多个siRNA靶向反义链的非重叠部分,并通过RT-PCR证实了敲低。表2举例说明了编码以及非编码反义分子可通过相同的方式被靶定且任一种都能够以一致或不一致的方式调控相应的正义转录物的观察结果。在此我们构想了两种以siRNA来敲低反义RNA转录物为基础(或其它RNA靶定原理)的新 的有效药理学策略: 
策略1:在不一致调节的情况下,可以通过仅敲低反义转录物来提高常规(正义)基因的表达。如果后面的基因编码已知的或公认的药物靶,则其反义副本的敲低可以令人信服地模拟受体拮抗剂或酶刺激剂的作用。表2给出了其中反义(编码和非编码)转录物的敲低被证实不一致地调节了正义表达的例子。例如,在帕金森病中,线粒体局部性激酶(PINK1)的活性需要提高是有争议的,其非编码的反义拍档(antisense partner)的敲低可能是实现该目的的一种方式。此外,在某些情况下,为了刺激血管的形成,可以通过靶向其(编码)反义拍档Ddx-339,来增强穿过G-蛋白偶联受体(GPCR)CD97的信号发送。 
策略1的例子(PINK1的提高,例如帕金森病): 
PINK-AS siRNA-a:GGAAGCTGTAGCTAGAACATCTGTT(SEQ ID NO:1) 
PINK-AS_siRNA-b:CAGGTAAGT AGTCTCCTCTATCATT(SEQ ID NO:2 
PINK-AS_siRNA-c:TCTCAACCCAAAGCCTGCTTTGTTA(SEQ ID NO:3) 
策略2:在一致调节的情况下,可以相伴地敲低反义转录物和正义转录物,从而实现常规(正义)基因表达的协同降低。这些理念如图2A和2B所示。如果使用siRNA来实现敲低,则还可以通过将靶向于正义转录物和另外的siRNA的一种siRNA,施用于相应的反义转录物来对该策略进行检验,或者通过同时靶向重叠的正义和反义转录物的单独的高能对称siRNA,来对该策略进行检验。从表2可以看出,例如,在可诱导缺氧的因子1α的情况下,这样的双重相伴的靶向与追赶者有关,所述因子1α为一种在各种病症中均可能需要受到抑制的靶。表2中的另一个例子为肾上腺髓质素AM1受体,该AM1受体是一种已经被证实其信号发送的降低有益于治疗的GPCR。
随着新兴的功能RNA世界,有新的潜在的药物靶点将会被考虑。在这些药物靶点中,有大量天然存在的能够调节正义转录物的表达的反义转录物,所述正义转录物包括编码常规药物靶的正义转录物。由于这些反义转录物中的许多都表示非编码的RNA,因此不能对它们进行蛋白水平上的调控。通过使用siRNA,我们已经发现反义转录物的敲低能够使正义转录物的表达升高(不一致的调节)或降低(一致的调节)。这些发现和理念可以形成新的药理学策略的基础。 
在优选的实施方式中,鉴定用于治疗包括帕金森病、阿尔茨海默病(Alzheimer)、神经性失调/疾病、肿瘤等在内的疾病的候选治疗剂的方法包括:对其中已经使用本发明的方法例如调节(即上调或抑制受体的表达)对细胞受体进行调节的分离的细胞进行培养;和,将候选治疗剂给药至培养的细胞;与正常细胞和在候选治疗剂的存在下培养的受体受到调节的细胞相比,建立表达水平与受体磷酸化的相互关系,其中基于想要的治疗结果鉴定出药物。例如,药物提高受体的表达、降低受体的表达、或者使受体磷酸化或去磷酸化等,从而鉴定出调节受体的候选治疗剂。 
适用于诊断和发现候选药物的另一方法包括:将检测样品与表达受体、或其基因、等位基因、或它们的片段进行接触;和对检测样品与所述基因、等位基因、或它们的片段的相互作用进行检测,或者对所述基因、等位基因、或它们的片段的表达产物进行检测。可以对所需的基因、等位基因、或它们的片段,或者所述基因、等位基因、或它们的片段的表达产物进行适当的可检测的标记,如用荧光成分或放射性成分。 
在另一优选实施方式中,将来自患者的细胞进行分离,并与候选的治疗分子进行接触。对基因或其表达产物进行监控,以鉴定出哪些基因或表达产物受到药物的调节。然后,可以合成出干扰RNA,以调节那些鉴定出的受到药物的调节的基因或表达产物,从而提供治疗的寡核苷酸。可以对个体患 者定制这些寡核苷酸,当不同的患者对相同药物的反应不是同样有效时,这样是有利的。因此。相对于常规的药物治疗,寡核苷酸能够提供更便宜的个性化的治疗。 
一方面,可以与能够检测包括基因组序列在内的多核苷酸序列、编码所需的基因和密切相关的分子的寡核苷酸探针进行杂交,以鉴定出靶核酸序列。探针的特异性(不管该探针由高度特异性的区域如5’调控区域制得,或者由特异性较低的区域如保守基序制得)以及杂交或扩增的严格性(最大的、高度的、中度的、或低度的)将决定探针是否仅能够鉴定出天然存在的编码基因的序列、等位基因变体、或相关的序列。 
探针还可以应用于检测相关的序列,并且优选与任何鉴定的基因编码序列具有至少50%的序列同一性或同源性,更优选与任何鉴定的基因编码序列具有至少约60、70、75、80、85、90或95%的序列同一性(序列同一性测定如上所述,包括使用BLAST程序)。本发明的杂交探针可以为DNA或RNA,并且可以源自本发明的序列,或者源自包括基因的启动子、增强子和内含子在内的基因组序列。 
在此所用的“同源的”是指两个聚合分子之间(例如,两个核酸分子如两个DNA分子之间,或者两个多肽分子之间)的亚单元序列相似性。当两个分子中的亚单元位置都被相同的单体亚单元所占据(例如,如果两个DNA分子的一个位置都被腺嘌呤所占据),则它们在那个位置上是同源的。两个序列之间的同源性是相配的或同源的位置的数量的直接函数。例如,两个化合物序列的10个位置中的5个是相配的或同源的,则两个序列是50%同源的,如果10个位置中的9个是相配的或同源的,则两个序列是90%同源的。例如,DNA序列3’ATTGCC5’和3’TTTCCG5’的同源性是50%。 
对编码靶基因的DNA具有特异性的杂交探针的制备方法包括:将编码靶基因或其衍生物的寡核苷酸序列克隆到用于制备mRNA探针的载体中。 这样的载体为本领域技术人员所公知,可以商购得到,可以通过添加合适的RNA聚合酶和合适的标记核苷酸,而用于在体外合成RNA探针。杂交探针可以被各种报告基团(例如,放射性核素如32p或32S)或酶标记(如通过抗生物素蛋白-生物素偶联系统与探针偶联的碱性磷酸酶、荧光标记等)所标记。编码靶基因的多核苷酸序列可以用于:Southern分析(DNA印记)或Northem分析(RNA印记)、斑点印迹、或其它基于膜的技术;PCR技术;量尺、别针、和多样ELISA类似的分析;利用来自患者的液体和组织的微阵列,以检测改变的靶基因表达。可以使用凝胶基能动性转变分析(Gel-basedmobility-shift analyses)。其它合适的定性或定量方法是本领域公知的。 
可以使用本领域公知的技术来验证基因或其变体的同一性。例子包括但不限于:扩增的基因的核酸测序;杂交技术,如单独核酸多态性分析(SNP);微阵列,其中感兴趣的分子被固定在生物芯片上。重叠的cDNA克隆可以通过利用荧光染料终止者进行的二脱氧链式反应和ABI测序仪(AppliedBiosystems,Foster City,Calif.)而进行测序。可以使用本发明的底物平台进行其中一种成分被固定的任何类型的分析。利用固定的成分的生物分析是本领域公知的。例如,利用固定的成分的分析的例子包括:免疫分析、对蛋白-蛋白相互作用的分析、对蛋白-核酸相互作用的分析、对核酸-核酸相互作用的分析、受体结合分析、酶分析、磷酸化分析、用于确定疾病状态的诊断分析、用于药物相容性分析的基因图谱、SNP(单核苷酸多态性)分析等。 
能够与感兴趣的生物分子相结合的核酸序列的鉴定,可以通过以下过程来实现:将核酸库固定在基底表面,从而使各个不同的核酸位于确定的位置上,以形成阵列。然后在有利于使所述生物分子与核酸相结合的条件下,将所述阵列暴露于生物分子。根据所需的结合的特异性水平,可以使用从轻度到严格的缓冲条件将非特异性结合的生物分子洗脱掉。然后对核酸阵列进行分析,以确定哪些核酸序列与生物分子结合。优选地,所述生物分子具有荧 光标签,用于检测结合的核酸的位置。 
利用核酸序列的固定阵列的分析可以用于:确定未知核酸的序列;单核苷酸多态性(SNP)分析;对来自特定物种、组织、细胞类型等的基因表达模式进行分析;基因鉴定等。 
对寡核苷酸的其它诊断用途可以包括使用PCR,所述寡核苷酸设计源自编码所需的基因表达产物的序列。这些低聚物可以被化学合成、酶法生成、或体外生成。低聚物将优选包括编码表达产物的多核苷酸的片段或者与该多核苷酸互补的多核苷酸的片段,并且将在用于鉴定特定基因的优化条件下被使用。低聚物还可以在用于检测或定量分析密切相关的DNA或RNA序列的不太严格的条件下被使用。 
在其它的实施方式中,源自任何多核苷酸序列的寡核苷酸或较长的片段,可以用作微阵列中的靶点。所述微阵列可以用于同时监测许多基因和基因转录物的同一性和/或表达水平,以鉴定与靶基因或其产物相互作用的基因、和/或评估候选治疗剂对介导神经失调的基因的表达产物的调节效力。这种信息可以用于确定基因功能,以及开发和监控治疗剂的活性。 
可以使用本领域公知的方法制备、使用并分析所述微阵列(请见,例如,Brennan et al.,1995,U.S5,474,796;Schena et al.,1996,Proc.Natl.Acad.ScLU.S.A.93:10614-10619;Baldeschweiler et al.,1995,PCT申请WO95/251116;Shalon,et al.,1995,PCT申请WO95/35505;Heller et al.,1997,Proc.Natl.Acad.ScL U.S.A.94:2150-2155;以及,Heller et al.,1997,U.S.5,605,662)。 
尽管候选试剂一般为包括小的有机化合物、核酸(包括寡核苷酸)和肽在内的有机化合物,但是它们包括许多种类的化学品。适宜地,小的有机化合物的分子量可以为例如大于约40或50且小于约2500。候选试剂可以含有与蛋白和/或DNA相互作用的化学官能团。 
候选试剂可以得自包括合成化合物库或天然化合物库在内的广泛的来 源。例如,可以利用许多方法来随机地合成和定向地合成广泛的有机化合物和生物分子,包括随机化的寡核苷酸的表达。替代性地,可以利用或容易地制得天然化合物库,该天然化合物的形式例如为细菌提取物、真菌提取物和动物提取物。 
适宜地,本发明的治疗剂分析包括动物模型、基于细胞的系统和不基于细胞的系统。 
优选地,鉴定出的基因、变体、片段、和它们的寡肽用于鉴定治疗感兴趣的试剂,例如,通过筛选化合物库,或者通过多种药物筛选或分析技术中的任何技术以另外的方式鉴定感兴趣的化合物。所述基因、等位基因、片段、或它们的寡肽可以是溶液中的自由形式、粘附于固体支持物、装载在细胞表面上、或位于细胞内。 
用于药物筛选的另一技术提供了较高的化合物筛选量,所述化合物对感兴趣的蛋白具有合适的结合亲和力(请见,例如,Geysen et al.,1984,PCT申请WO84/03564)。在该方法中,在固体基底上合成大量的不同的小的测试化合物。所述测试化合物与鉴定出的基因或其片段反应,并被洗涤。然后通过本领域公知的方法测定结合的分子。替代性地,可以使用不使肽无效的抗体捕获所述肽,并将其固定在固体支持物上。 
本发明的筛选方法包括使用筛选分析,以从多种分子的库中鉴定出具有所需的活性的一种或多种化合物。“筛选分析”是一种选择性的分析,该选择性的分析被设计为在具有预选活性的集合范围内鉴定、分离和/或确定化合物的结构。“鉴定”的意思是分离具有所需活性的化合物,确定其化学结构(包括但不限于分别确定核酸和多肽的核苷酸序列和氨基酸序列,另外或者替代性地对具有筛选的活性的化合物进行纯化)。生化分析和生物分析被设计为在从蛋白-蛋白相互作用、酶催化作用、小分子-蛋白结合到细胞功能的较广范围的系统中检测活性。所述分析包括自动分析、半自动分析和高通量筛 选(high throughput screening,HTS)分析。 
在HTS方法中,优选用遥控、自动或半自动方法平行地检测许多不同的化合物,从而针对所需的活性,同时或几乎同时筛选大量的检测化合物。使用本发明的集成系统,一天分析和筛选的不同化合物高达约6000-20000,甚至高达100000-1000000。 
一般地,在HTS中,给予靶分子,或者将靶分子与具有受调控的受体的分离的细胞一起培养,包括合适的对照。 
在一种实施方式中,筛选包括:在使靶和配体之间可以形成络合物的条件下,将各细胞培养物与成员化合物的不同库接触,所述成员化合物中的一些为靶的配体;以及,鉴定库中的哪些成员出现在所述络合物中。在另外的非限定性的形式中,筛选包括:在由酶催化的反应的产物或反应物产生可检测的信号的条件下,将靶酶与成员化合物的不同库接触,所述成员化合物中的一些为靶的抑制剂(或促进剂)。在后一种形式中,靶酶的抑制剂降低来自可检测的产物的信号,或提高来自可检测的反应物的信号(对于促进剂则情况相反)。 
化学库:随着组合化学的发展,可以快速经济地合成数百至数千种不同的化合物。这些化合物一般排列在小分子的库中,该库的设计规模适于高效地筛选。可以利用组合方法来得到适于鉴定新型化合物的无偏见的库。此外,可以从具有初始确定的生物活性的单独母体化合物得到较小的不太多样的库。在任何一种情况下,缺少特异性地靶向由组合化学制得的治疗相关的生物分子(如重要酶的抑制剂)的有效筛选系统会妨碍这些资源的最佳使用。 
组合化学库是通过将许多化学“构建模块(building block)”如试剂进行组合而形成的不同的化合物的组合,所述不同的化合物由化学合成或生物合成而形成。例如,对于给定的化合物长度(即,多肽化合物中的氨基酸数量),线性组合化学库如多肽库是通过以大量的组合和各种可能的方式将一 组化学构建模块(氨基酸)进行组合而形成的。通过将化学构建模块进行组合,可以合成数百万的化合物。 
“库”可以包括2-50000000种不同的成员化合物。优选地,库包括至少48种不同的化合物,优选96或多于96种不同的化合物,更优选384或多于384种不同的化合物,更优选10000或多于10000种不同的化合物,更优选100000或多于100000种不同的化合物,最优选1000000或多于1000000种不同的化合物。“不同的(diverse)”的意思是指库中50%以上的化合物的化学结构与库中的其它成员的化学结构不同。优选地,库中75%以上的化合物的化学结构与集合的其它成员的化学结构不同,更优选为90%,最优选为99%。 
组合化学库的制备已为本领域技术人员所公知。作为参考,请见Thompson et al.,Synthesis and application of small molecule libraries,ChemRev96:555-600,1996;Kenan et al,Exploring molecular diversity withcombinatorial shape libraries,Trends Biochem Sci19:57-64,1994;Janda,Taggedversus untagged libraries:methods for the generation and screening ofcombinatorial chemical libraries,Proc Natl Acad Sci USA.91:10779-85,1994;Lebl et al,One-bead-one-structure combinatorial libraries,B iopolymers37:177-98,1995;Eichler et al.,Peptide,peptidomimetic,and organic syntheticcombinatorial libraries,Med Res Rev.15:481-96,1995;Chabala,Solid-phasecombinatorial chemistry and novel tagging methods for identifying leads,CurrOpin Biotechnol.6:632-9,1995;Dolle,Discovery of enzyme inhibitors throughcombinatorial chemistry,MoI Divers.2:223-36,1997;Fauchere et al,Peptide andnonpeptide lead discovery using robotically synthesized soluble libraries,Can J.Physiol Pharmacol.75:683-9,1997;Eichler et al,Generation and utilization ofsynthetic combinatorial libraries,MoI Med Today1:174-80,1995;and Kay et al,Identification of enzyme inhibitors from phage-displayed combinatorial peptidelibraries,Comb Chem High Throughput Screen4:535-43,2001。
还可以使用用于生成化学多样库的其它化学物质。这些化学物质包括但不限于:肽(PCT公布WO91/19735);编码的肽(PCT公布WO93/20242);无规则的生物低聚物(PCT公布WO92/00091);苯并二氮杂草(U.S5,288,514);潜入物(diversomers),如乙内酰脲、苯并二氮杂草和二肽(Hobbs,et ah,Proc.Nat.Acad.Sci.USA,90:6909-6913(1993));联乙烯物(vinylogous)多肽(Hagihara,et al,J.Amer.Chem.Soc114:6568(1992));具有β-D-葡萄糖骨架的非肽类缩氨酸模拟物(nonpeptidal peptidomimetics)(Hirschmann,et al,J.Amer.Chem.Soc,114:9217-9218(1992));小化合物库的相似有机综合体(Chen,et ah,J.Amer.Chem.Soc,116:2661(1994));寡氨基甲酸酯(Cho,et al.,Science,261:1303(1993));和/或,膦酸肽酯(Campbell,et ah,J.Org.Chem.59:658(1994));核酸库(见,Ausubel,Berger and Sambrook,all supra);肽核酸库(见,例如U.S.5,539,083);抗体库(见,例如Vaughn,et ah,NatureBiotechnology,14(3):309-314(1996)和PCT/US96/10287);碳水化合物库(见,例如Liang,et al,Science,274:1520-1522(1996)和U.S.5,593,853);小的有机分子库(见,例如,苯并二氮杂草,Baum C&E News,January18,page33(1993);类异戊二烯(U.S.5,569,588);噻唑烷酮衍生物(thiazolidinones)和间噻嗪酮衍生物(metathiazanones)(U.S.5,549,974);吡咯烷(U.S.5,525,735和5,519,134);吗啉代化合物(U.S.5,506,337);苯并二氮杂草(U.S.5,288,514)等。 
用于制备组合库的设备可以商购得到(请见,例如357MPS,390MPS,Advanced Chem.Tech,Louisville Ky.,Symphony,Rainin,Woburn,Mass.,433AApplied Biosystems,Foster City,Calif.,9050Plus,Millipore,Bedford,Mass.)。此外,许多组合库自身是可以商购得到的(请见,例如,ComGenex,Princeton,NJ.,Asinex,Moscow,Ru,Tripos,Inc.,St.Louis,Mo.,ChemStar,Ltd.,Moscow,RU,3D Pharmaceuticals,Exton,Pa.,Martek Bio sciences,Columbia,Md.,etc.)。 
高通量筛选可以用于测定药物对复杂细胞活动如信号转导途径以及细 胞功能,所述细胞功能包括但不限于细胞功能、凋亡、细胞分裂、细胞黏附、运动、胞外分泌和细胞间通信。多色荧光使得能够在单独的筛选中分析多个靶和细胞过程。细胞反应的交叉相关将收获靶确认和引导最优化所需的大量信息。 
另一方面,本发明提供了一种用于对细胞进行分析的方法,该方法包括:提供含有多个细胞的位置阵列,其中,所述细胞含有一种或多种荧光报告分子;在含有细胞的各个位置对所述多个细胞进行扫描,以由细胞中的荧光报告分子获得荧光信号;将所述荧光信号转化为数字数据;和利用所述数字数据来测定细胞中的荧光报告分子的分布、环境或活性。 
新药发现范例的主要成分是不断增长的荧光和发光试剂的家族,所述荧光和发光试剂用于测定细胞内离子、代谢物、大分子和细胞器官的时间和空间分布、含量和活性。这些试剂的种类包括:用于测定活体细胞和固定细胞中的分子的分布和含量的标记试剂;用于报告时间和空间上的信号转导活动的环境指示剂;用于测定活体细胞中的靶分子活性的荧光蛋白生物传感器。将几种试剂合并到单独的细胞中的多因素方法是用于药物发现的有效的新工具。 
该方法依赖于荧光或发光分子对特定细胞成分的高亲和力。对特定成分的亲和力取决于物理力如离子相互作用、共价结合(包括与蛋白基发色团、荧光团和发光团的嵌合体融合),以及疏水相互作用、电势能,并且在某些情况下取决于细胞成分内的简单包埋。发光探针可以为小分子、标记的大分子或通过基因工程得到的蛋白,包括但不限于绿色荧光蛋白嵌合体。 
本领域技术人员可以理解,可以用于本发明的多种荧光报告分子包括但不限于荧光标记的生物分子,如蛋白、磷脂、RNA和DNA杂交探针。类似地,特别合成的具有结合或缔合的特定化学性质的荧光试剂已经被用作荧光报告分子(Barak et al,(1997),/.Biol.Chem.272:27′497′-21′500;Southwick et al,(1990),Cytometry11:418-430;Tsien(1989)in Methods in Cell Biology,Vol.29Taylor and Wang(eds.),pp.127-156)。由于荧光标记的抗体跟与细胞或组织一样复杂的分子混合物中的单独分子靶进行结合的特异性程度很高,因此它们是非常有用的报告分子。 
发光探针可以在活体细胞中进行合成,或者可以通过几种非机械模式传输到细胞中,所述非机械模式包括扩散、易化运输或主动运输、信号-序列介导的运输、以及内吞摄取或胞饮摄取。本领域公知的机械块状装载方法(mechanical bulk loading method)也可以用于将发光探针装载到活体细胞中(Barber et al.(1996),Neuroscience Letters207:17-20;Bright et al.(1996),Cytometry24:226-233;McNeil(1989)in Methods in Cell Biology,Vol.29,Taylor and Wang(eds.),pp.153-173)。这些方法包括电穿孔以及其它的机械方法如摩擦装载、珠装载、冲击装载、注射器装载、高渗和低渗装载。另外,细胞还可以进行基因改造以表达与如上所述的感兴趣的蛋白相结合的报告分子如GFP(Chalfie和Prasher U.S.5,491,084;Cubitt et al.(1995),Trends inBiochemical Science20:448-455)。 
由于发光探针与靶域的高亲和力的相互作用或者分子靶向的其它模式(如信号-序列介导的输送),一旦在细胞中,发光探针则积聚在其靶域。荧光标记的报告分子可以用于测定报告分子的位置、含量和化学环境。例如,可以测定报告分子是在亲脂膜环境中还是在水性环境中(Giuliano et al.(1995),Ann.Rev.of Biophysics and Biomolecular Structure24:405-434;Giuliano和Taylor(1995),Methods in Neuroscience27.1-16)。可以测定报告分子的pH环境(Bright et al.(1989),J.Cell Biology104:1019-1033;Giuliano et al.(1987),Anal.Biochem.167:362-371;Thomas et al.(1979),Biochemistry18:2210-2218)。可以测定具有螯合基团的报告分子是否与离子(如Ca++)结合(Bright et al.(1989),In Methods in Cell Biology,Vol.30,Taylor and Wang(eds.),pp.157-192;Shimoura et al.(1988),J.of Biochemistry(Tokyo) 251:405-410;Tsien(1989)In Methods in Cell Biology,Vol.30,Taylor and Wang(eds.),pp.127-156)。 
此外,生物体内的某些细胞类型可能含有能够被特异性标记的成分,所述特异性标记可能没有出现在其它细胞类型中。例如,神经细胞通常含有极化的膜成分。即,这些细胞的大分子沿着细胞的等离子体膜不对称地分布。结缔组织或支持组织细胞通常含有捕获有细胞类型特异性的颗粒(例如肝磷脂、组胺、5-羟色胺等)。大多数的肌肉组织细胞含有肌质网状组织,所述肌质网状组织是一种具有调节细胞质中的钙离子浓度的作用的专门的细胞器官。许多神经组织细胞含有捕获有神经激素或神经传递素的分泌颗粒和载体。因此,荧光分子可以被设计为不仅标记特定细胞中的特定组分,而且标记混合细胞类型群体中的特定细胞。 
本领域技术人员将可以确定许多方法以测定荧光。例如,一些荧光报告分子表现出刺激谱或发射谱的变化;一些荧光报告分子表现出共振能力转移,其中,一种荧光报告分子损失荧光性,而第二种荧光报告分子获得荧光性;一些荧光报告分子表现出荧光性的损失(猝灭)或出现,而一些荧光报告分子表现出转动(Giuliano et al.(1995),Ann.Rev.of Biophysics and Biomol.Structure24:405-434;Giuliano et al.(1995),Methods in Neuroscience27:1-16)。 
整个过程可以完全自动进行。例如,样品物质的取样可以分多个步骤进行,所述多个步骤包括从样品容器中抽出样品,将抽出的样品的至少一部分传递到测试细胞培养物中(例如,其中基因表达受到调节的细胞培养物)。取样还可以包括附加步骤,特别优选样品制备步骤。在一种实施方式中,每次只将一种样品抽到自动样品探针中,并且同个一时间仅有一种样品存在于所述探针中。在其它实施方式中,可以分别用溶剂将多种样品抽到自动样品探针中。在进一步的其它实施方式中,多个探针可以用于平行地自动取样。
在一般情况下,取样可以人工进行、以半自动的方式进行或者以自动的方式进行。可以人工将样品从样品容器中抽出(例如,使用吸液管或注射器式的人工探针),然后人工将抽出的样品传递到鉴定系统的加料口或注入口。在半自动方案中,方案的一些方面可以自动进行(例如传递),而其它的一些方法需要人工介入(例如,将样品从过程控制线抽出)。然而,优选的是,以全自动的方式(例如用自动取样器),将样品从样品容器中抽出并传递到鉴定系统。 
在一种实施方式中,可以使用微处理器控制的自动系统(例如,机器人臂)完成自动取样。优选地,所述微处理器是用户可编程的,以提供具有多样化样品设置的样品库(例如,具有“n组”דn列”的正方形阵列,具有“n组”דm列”的矩形阵列,具有“r-”דr-”דr-”的等边三角形阵列,具有“r-底”דs-”דs-”的等腰三角形阵列等,其中n、m、r和s为整数)。 
选择性地,可以用具有热注射探针(末端)的自动取样器进行样品材料的自动取样。这种自动取样器的例子公开于U.S.6,175,409B1中(并入作为参考)。 
根据本发明,使用一种或多种系统和/或方法来鉴定多种样品材料。尽管可以使用人工或半自动系统和方法,但是优选使用自动系统或方法。多种遥控或自动系统可以用于自动或可编程地提供预定的动作,以根据预定的方案处理、接触、分散或操作固态、液态或气态材料。可以对这样的系统进行适配和扩增,以包括多种硬件和/或软件,以协助该系统测定材料的机械性能。用于扩增所述遥控系统的硬件和软件可以包括但不限于传感器、转换器、数据获取和处理硬件、数据获取和处理硬件等。示例性的遥控系统可以商购自CAVRO Scientific Instruments(例如,型号:RSP9652)或BioDot(MicrodropModel3000)。 
一般地,自动系统包括可以利用信息进行编辑的适当的方案设计和执行 软件,所述信息包括合成、组成、位置信息或与相对于基底定位的材料库相关的其它信息。方案设计和执行软件一般与用于控制机器人或其它自动设备或系统的机器人控制软件相连通。方案设计和执行软件还与用于从反应测定硬件收集数据的数据获取硬件/软件相连通。一旦将数据收集到数据库中,可以用分析软件对数据进行分析,更确切的是确定候选药物的性质,或者可以对数据进行人工分析。 
在另一优选实施方式中,用细胞培养物分析候选药物或样品与一种或多种方法相结合。在一种实施方式中,可以利用尺寸排除色谱法,根据样品中的蛋白的大小,对样品进行预分离。对于样品可利用量较小的生物样品,优选使用尺寸选择旋转柱。一般地,从柱上洗脱的第一馏分(“馏分1”)的高分子量蛋白的百分率最高;馏分2的高分子量蛋白的百分率较低;馏分3的高分子量蛋白的百分率更低;馏分4的大蛋白的量最低等。每种馏分可以通过免疫测定、气相离子光谱法等进行分析,以检测化合物。 
在另一实施方式中,可以通过阴离子交换色谱法对样品进行预分离。阴离子交换色谱法可以根据样品中的蛋白的电荷性质对它们进行粗略的预分离。例如,可以使用Q阴离子交换树脂(例如,Q HyperD F,Biosepra),可以顺次用pH值不同的洗脱剂对样品进行洗脱。阴离子交换色谱法能够将样品中的负电荷较多的化合物与其它种类的化合物分开。用pH较高的洗脱剂洗脱的蛋白的负电荷很可能较弱,用pH较低的洗脱剂洗脱的蛋白的负电荷很可能较强。因此,除了降低样品的复杂程度以外,阴离子交换色谱法还根据蛋白的结合特性对它们进行分离。 
在又一实施方式中,可以通过肝磷脂色谱法对样品进行预分离。肝磷脂色谱法也基于样品中的化合物与肝磷脂相互作用的亲和力以及电荷性质对它们进行预分离。肝磷脂(一种硫酸化的粘多糖)将与具有带正电荷的部分的化合物结合,可以顺次用pH或盐浓度不同的洗脱剂对样品进行洗脱。用 pH较低的洗脱剂洗脱的样品的正电荷很可能较弱。用pH较高的洗脱剂洗脱的样品的正电荷很可能较强。因此,肝磷脂色谱法还降低了样品的复杂程度并且根据它们的结合特性对样品进行分离。 
在又一实施方式中,可以通过分离具有特定性质的蛋白(如糖基化)而对样品进行预分离。例如,可以将CSF样品通过凝集素色谱柱(对糖具有高亲和力),从而将样品分馏。糖基化的蛋白将结合到凝集素色谱柱上,而没有糖基化的蛋白将流过。然后用含糖额洗脱剂如N-乙酰基-葡糖胺将糖基化的蛋白从凝集素色谱柱上洗脱掉,糖基化的蛋白可用于进一步的分析。 
因此,基于样品中的蛋白的结合性质,存在多种方法来降低样品的复杂程度或者样品中的蛋白的性质。 
siRNA的传递 
本发明的优选实践包括利用合适的核酸传递系统给予前述siRNA中的至少一种。在一种实施方式中,所述系统包括能够与多核苷酸可操作地连接的非病毒载体。所述非病毒载体的例子包括单独的多核苷酸、或者多核苷酸与合适的蛋白、多糖或脂质制剂的结合。 
其它的合适的核酸传递系统包括病毒载体,该病毒载体一般选自腺病毒、腺病毒相关的病毒(AAV)、依赖于辅助病毒的腺病毒、逆转录酶病毒、或日本脂质体(HVJ)联合体的红血细胞凝集病毒。优选地,所述病毒载体包括能够与多核苷酸可操作地连接的强效真核启动子,例如细胞巨化病毒(CMV)启动子。 
其它优选的载体包括病毒载体、融合蛋白和化学共轭物。逆转录酶病毒载体包括单独的鼠科白血病病毒和HIV基病毒。一种优选的HIV基病毒载体包括至少两种载体,其中gag和pol基因来自HIV基因组,env基因来自另外的病毒。优选DNA病毒载体。这些载体包括:梅毒载体,如正痘病毒(orthopox)或鸟痘病毒(avipox)载体;疱疹病毒载体,如单纯I型疱疹病毒(HSV) 载体[Geller,A.I.et al.,J.Neurochem,64:487(1995);Lim,F.,et al.,in DNACloning:Mammalian Systems,D.Glover,Ed.(Oxford Univ.Press,OxfordEngland)(1995);Geller,A.I.et al.,Proc Natl.Acad.ScL:U.S.A.:907603(1993);Geller,A.I.,et al.,Proc Natl.Acad.Sci USA:87:1149(1990)];腺病毒载体[LeGaI LaSaIIe et al.,Science,259:988(1993);Davidson,et al.,Nat.Genet.3:219(1993);Yang,et al.,J.Virol.69:2004(1995)];以及,腺病毒相关的病毒载体[Kaplitt,M.G.,et al.,Nat.Genet.8:148(1994)]。 
梅毒病毒载体将基因导入到细胞质中。Avipox病毒载体仅引起核酸的短期表达。腺病毒载体、腺病毒相关的病毒载体以及单纯疱疹病毒(HSV)载体可以为本发明的一些实施方式的指示。与腺病毒相关的病毒相比,腺病毒载体引起的表达时期较短(例如,少于约1个月),在一些实施方式中可以更长期地表达。所选择的特定载体将取决于靶细胞和处理的条件。可以容易地选择合适的启动子。优选地,可以使用高效表达的启动子。合适的启动子的例子为763-碱基对细胞巨化病毒(CMV)启动子。还可以使用鲁斯氏肉瘤病毒(RouS sarcoma virus,RSV)(Davis,et al.,HMm Gene Ther4:151(1993))和MMT启动子。可以使用特定蛋白的天然启动子来表达所述特定蛋白。还可以包括其它能够增强表达的因素,例如能够得到高水平表达的增强子或系统如tat(反式激活因子)基因和tar(反式激活应答)元件。然后可以将该盒插入到载体中,例如质粒载体如pUC19、pUCl18、pBR322、或者其它公知的质粒载体,例如包括复制的大肠杆菌(E.coli)源。请见Sambrook,et al.,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Laboratory press,(1989)。质粒载体还可以包括可选择的标记如氨苄青霉素耐性的β-内酰胺酶基因,前提条件是标记多肽不会对正在处理的生物体的代谢造成不利影响。在综合传递系统中(如WO95/22618中公开的系统),所述盒还可以与核酸的结合部分相结合。
如果需要,本发明的多核苷酸还可以与微传递载体如脂质体和腺病毒载体一起使用。为了回顾脂质体制备、内容物的靶向和传递的程序,请见Mannino and Gould-Fogerite,BioTechniques,6:682(1988)。还请见Feigner andHolm,Bethesda Res.Lab.Focus,11(2):21(1989)and Maurer,R.A.,BethesdaRes.Lab.Focus,11(2):25(1989)。 
复制缺陷的重组腺病毒载体可以根据公知的技术制备。请见Quantin,etal.,Proc.Natl.Acad.Sci.USA,89:2581-2584(1992);Stratford-Perricadet,et al.,J.Clin.Invest.,90:626-630(1992);以及Rosenfeld,et al.,Cell,68:143-155(1992)。 
另一种优选的siRNA传递方法是使用产生载体的单链DNA,所述载体在细胞内产生siRNA。请见Chen et al,BioTechniques,34:167-171(2003),该文献在此以其全文并入作为参考。 
核酸的有效剂量将是特定表达的蛋白,待靶向的特定心律失常,患者及其临床症状、体重、年龄、性别等的函数。 
一种优选的传递系统是其中并入有一种或多种多核苷酸(优选约一种多核苷酸)的重组病毒载体。优选地,用于本发明的方法的病毒载体的菌落形成单位(plague forming units,pfu)为约108pfu至约5×1010pfu。在其中将使用非病毒载体给予多核苷酸的实施方式中,约0.1纳克至4000微克通常是有效的,例如1纳克至100微克。 
基因表达的上调或抑制的评价 
通过直接检测核酸在细胞或生物体中的存在来评价载体将外源核酸转移到宿主细胞或生物体中。这样的检测可以通过本领域公知的几种方法来实现。例如,可以使用DNA印记或聚合酶链式反应(PCR)技术来检测外源核酸的存在,所述PCR技术使用能够特别地扩增与核酸相关的核苷酸序列的引物。还可以使用常规方法来测定外源核酸的表达。例如,可以利用RNA 印记和逆转录PCR(RT-PCR)来检测并定量测定由外源核酸产生的mRNA。 
还可以通过测定酶活性或报告蛋白活性来检测外源核酸的RNA表达。例如,由于靶核酸表达降低或升高作为外源核酸生成效应物RNA的指示,因此可以间接地测定siRNA活性。基于序列保守性,可以设计引物并将其用于扩增靶基因的编码区域。最初,尽管可以使用任何编码区域或非编码区域,但是可以使用各基因的高效表达的编码区域,以建立模型对照基因。各对照基因是通过将各编码区域插入到报告编码区域与其聚(A)信号之间而组装的。这些质粒将在基因的上游区域生成具有报告基因的mRNA并在3′非编码区域生成潜在的RNAi靶。单个的RNAi的效力将通过报告基因的调制进行分析。可用于本发明的方法的报告基因包括:乙酰羟基酸合酶(AHAS)、碱性磷酸酯酶(AP)、β半乳糖苷酶(LacZ)、β透明质酸酶(GUS)、氯霉素乙酰基转移酶(CAT)、绿色荧光蛋白(GFP)、红色荧光蛋白(RFP)、黄色荧光蛋白(YFP)、青色荧光蛋白(CFP)、辣根过氧化物酶(HRP)、荧光素酶(Luc)、胭脂碱合酶(NOS)、真蛸碱合酶(OCS)、以及它们的衍生物。多种可选择的标记可以赋予对氨苄青霉素、博来霉素、氯霉素、庆大霉素、潮霉素、卡那霉素、洁霉素、甲氨蝶呤、草胺膦(phosphinothricin)、嘌呤霉素和四环素的耐受性。报告基因的调制的测定方法是本领域公知的,包括但不限于荧光测定方法(例如荧光光谱法、荧光活化的细胞分类(FACS)、荧光显微法)、抗生素耐受性测定。 
尽管对于潜在的RNAi的高通量筛选来说,生物基因组信息和模型基因是没有价值的,但是最终必须在表达靶核酸的细胞中实验性地形成抗靶核酸的干扰活性。为了测定RNAi序列的干扰活性,将含有RNAi的载体转染到表达靶核酸的合适的细胞系中。测定所选的各RNAi构建体对靶核酸的稳态mRNA的调制能力。此外,在第一轮测试中“幸存”的任何靶mRNA通过逆转录酶-PCR进行扩增并测序(请见,例如Sambrook,J.et al."Molecular Cloning:A Laboratory Manual,"2nd addition,Cold Spring Harbor LaboratoryPress,Plainview,N.Y.(1989))。对这些序列进行分析,以确定使mRNA避开现有的RNAi库的个体多态性。该信息用于进一步修饰RNAi构建体,以同样靶向更稀少的多态性。 
用RNAi转染细胞的方法是本领域公知的,包括但不限于电穿孔、粒子轰击、微量注射、用病毒载体进行转染、用逆转录酶病毒基载体进行转染、以及脂质体介导的转染。介导RNA干扰的任何类型的核酸可以使用本领域公知的多种方法进行体外合成并直接插入到细胞中。此外,介导RNA干扰的dsRNA和其它分子可以从商家获得,例如Ribopharma AG(Kulmach,Germany)、Eurogentec(Seraing,Belgium)、Sequitur(Natick,Mass.)和Invitrogen(Carlsbad,Calif.)。Eurogentec提供也可以用于本发明的标记有荧光团的dsRNA(例如,HEX/TET;5′-荧光素,6-FAM;3′-荧光素,6-FAM;荧光素dT内部;5′TAMRA,若丹明;3′TAMRA,若丹明)。RNAi分子可以通过固相合成的公知技术而制成。用于该合成的设备由几个商家出售,例如AppliedBiosystems(Foster City,Calif.)。本领域已知的用于该合成的其它方法可以另外地或替代性地使用。公知的是使用制备寡核苷酸的相似技术,如磷硫酰(phosphorothioate)和烷基化的衍生物。 
直接插入到细胞中的RNA可以包括对磷酸酯-糖主链或核苷的修饰。例如,天然RNA的磷酸二酯键可以被修饰为包括氮或硫杂原子中的至少一种。干扰RNA可以通过酶法制得或者通过部分/全部有机合成方法制得。构建体可以通过细胞RNA聚合酶或噬菌体RNA聚合酶(例如,T3,17,SP6)合成。如果通过化学合成或体外酶法合成,则可以在引入到细胞或动物之前对RNA进行纯化。例如,可以通过如本领域已知的用溶剂或树脂进行提取、沉淀、电泳、色谱或者它们的组合,从混合物中提纯出RNA。替代性地,可以在不提纯或最小程度的提纯的条件下使用干扰RNA构建体,以避免由于样品 加工而引起的损失。RNAi构建体可以被干燥储存或溶解到水溶液中。所述溶液可以含有缓冲剂或盐,以促进双链的退火和/或稳定。可以用于本发明的缓冲剂或盐的例子包括但不限于:生理盐水、PBS、N-(2-羟乙基)哌嗪-e-N′-(2-乙烷璜酸)(HEPESTM)、3-(N-吗啉基)丙烷璜酸(MOPS)、2-二(2-羟乙烯基)氨基-2-(羟甲基)-1,3-丙二醇(bis-TRISTM)、磷酸钾(KP),磷酸钠(NaP)、磷酸氢二钠(Na2HPO4)、磷酸二氢钠(NaH2PO4)、磷酸氢钠钾(NaKHPO4)、磷酸镁(Mg3(PO4)2-4H2O)、醋酸钾(CH3COOH)、D(+)-α-甘油磷酸钠(HOCH2CH(OH)CH2OPO3Na2)、以及本领域技术人员公知的其它生理缓冲剂。用于本发明的其它缓冲剂包括溶于水溶液中的盐M-X、其结合或离解产物,其中,M为碱金属(例如Li+、Na+、K+、Rb+),优选为钠或钾;X为选自由磷酸盐、醋酸盐、碳酸氢盐、硫酸盐、丙酮酸盐、以及有机一磷酸盐酯、葡萄糖6-磷酸盐或DL-α-甘油磷酸盐所组成的组中的阴离子。 
由RNAi分子调节/靶向的基因 
在本发明的另一方面,提供了调节特定基因或基因家族的表达的RNAi分子,由此可以功能性地消除或上调基因的表达。在一种实施方式中,提供了靶向基因的相同区域的至少两种RNAi分子。在另一种实施方式中,提供了靶向相同基因的至少两个不同区域的至少两种RNAi分子。本发明的其它实施方式提供了上述基因靶向策略的组合。 
在一种实施方式中,RNAi分子可以为相同的序列。在替代性的实施方式中,RNAi分子可以为不同的序列。在其它实施方式中,提供了至少两种RNAi分子,其中一种或多种基因的家族可以被RNAi分子的表达所调节。在其它实施方式中,提供了至少三种、四种或五种RNAi分子,其中一种或多种基因的家族可以被RNAi分子的表达所调节。RNAi分子可以与一种或多种基因中的保守序列具有同源性。使用本发明的方法调节的基因家族可以与细胞、相关的病毒基因的家族、在病毒属内保守的基因的家族、相关的真 核寄生虫基因的家族、或者更特别的来自猪内源性逆转录酶病毒的基因的家族具有内源性。在一种特别的实施方式中,至少两种RNAi可以靶向至少两种不同的基因,所述两种不同的基因为相同基因家族的成员。RNAi分子可以靶向基因家族内的同源区域,因此一种RNAi分子可以靶向多种基因的相同区域。 
RNAi分子可以选自但不限于以下类型的RNAi:反义寡核苷酸核酶,小分子干扰RNA(sRNAis),双链RNA(dsRNAs),反向的复制,短的发夹RNA(shRNAs),小的临时调节的RNA,以及聚簇的抑制RNAs(cRNAis)。 
在另一实施方式中,提供了在哺乳动物细胞系或转基因动物中调节靶基因的RNAi分子的表达,由此靶基因的表达被功能性地消除或低于可检测的水平或上调,即靶基因的表达降低或升高了至少约70%,75%,80%,85%,90%,95%,97%或99%。 
在本发明的这一方面的另一实施方式中,提供了方法来生产其中干扰RNA分子得到表达以调节靶基因表达的细胞和动物。例如,本发明的这一方面的方法可以包括:鉴定细胞中的一种或多种靶核酸序列;获得能够与所述靶核酸序列结合的至少一种RNAi分子;将该RNAi分子(选择性地装载在表达载体)导入到细胞中;在一定条件下,在细胞中表达RNAi,由此RNAi与靶核酸序列相结合,从而调节一种或多种靶基因的表达。 
在本发明的一种实施方式中,能够被至少一种RNAi分子的表达所调节的内源基因包括但不限于:细胞存活或细胞复制所需的基因;病毒复制所需的基因;编码免疫球蛋白基因座(例如,K轻链)的基因;编码细胞表面蛋白(如血管细胞粘附分子(VCAM))的基因;以及,对细胞、组织、器官和动物的结构和/或功能很重要的其它基因。本发明的方法还可以用于调节一种或多种非编码的RNA序列的表达。这些非编码的RNA序列可以为RNA病毒基因组、内源基因、真核寄生虫基因、或本领域已知的并且本领域技术人 员熟悉的其它非编码的RNA序列的序列。根据本发明的一个方面,在分子或动物中表达的RNAi分子可以降低、提高或维持一种或几种靶基因的表达。为了鉴定其中一种或多种基因、基因家族、所需的基因子集或基因的等位基因待调节的特定靶核酸区域,可以得到各靶基因的序列的代表性样品。可以制备序列,以发现相似的和不同的区域。该分析可以确定所有家族成员之间以及家族成员的子集内(基因家族的组)的具有同一性的区域。此外,该分析可以确定各家族成员的等位基因之间的具有同一性的区域。通过考虑家族成员的等位基因之间的、家族成员的子集之间的、以及整个家族中的具有同一性的区域,可以鉴定出对整个家族、家族成员的子集、家族成员个体、家族成员个体的等位基因子集、或家族成员的等位基因个体具有特异性的靶区域。 
表达的调节可以降低一种或多种靶基因的表达。表达降低使得靶基因以及靶基因的最终产物蛋白转录后下调。由于下调,鉴定出靶核酸序列,由此RNAi与序列的结合将降低靶基因的表达。表达降低是指,与没有引入RNAi相比,不存在靶基因的蛋白和/或mRNA产物,或者靶基因的蛋白和/或mRNA产物的水平出现明显的或可检测到的降低。利用本发明的方法,可以完全压制/抑制靶基因或者使靶基因的表达受到部分抑制。“表达受到部分抑制”的意思是指靶基因受到约10-99%的抑制(即,靶基因的表达降低),其中100%是指靶基因完全被压制/抑制。例如,可以抑制一种或多种基因的约10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的基因表达。替代性地,将表达压制或抑制到可检测的阈值以下。 
在本发明的另一实施方式中,表达的调节可以提高一种或多种靶基因的表达。在下面的实例中将详细描述提高的表达。在本发明的该实施方式中,靶核酸和感兴趣的基因可以为单独的序列。基因表达提高是指,与没有引入RNAi相比,存在靶基因的蛋白和/或mRNA产物,或者靶基因的蛋白和/或 mRNA产物的水平出现明显的或可检测到的提高。基因表达提高是指,与没有引入RNAi相比,表达的靶基因的可测定的量提高。例如,与不存在干扰RNA相比,基因的表达水平可以提高约2倍、5倍、10倍、50倍、100倍、500倍、1000倍或2000倍。 
在本发明的另外其他方面,当一种或多种基因所处的环境条件一般使所述一种或多种基因的表达提高或降低时,表达的调节可以维持一种或几种基因的表达。在一般使一种或多种基因的表达提高或降低的环境条件下,可以维持一种或几种基因的表达,从而相对于使表达提高或降低的环境条件出现之前,基因表达处于稳态水平(即,表达没有随时间提高或降低)。可以使基因表达提高的环境条件的例子包括但不限于:存在生长因子,葡萄糖产量提高,高热和细胞周期变化。可以使基因表达降低的环境条件的例子包括但不限于:缺氧、低温、缺乏生长因子和葡萄糖损耗。 
通过对基因表达进行定量分析,可以确定含有一种或多种RNAi分子的细胞或动物中的基因表达的抑制(或增强)程度。材料的注射剂量较低或者RNAi给予或整合后的时间较长可以在较少部分的细胞或动物中形成抑制或增强(例如,至少10%、20%、50%、75%、90%或95%的靶向细胞或动物)。在靶mRNA积聚或靶蛋白的翻译的水平上,细胞或动物中的基因表达的定量分析可以表现相似量的抑制或增强。可以通过使用本领域已知的任何方法分析细胞或动物中的基因产物的量,从而确定抑制或增强的效率。例如,可以用具有用于干扰RNA以外的区域的核苷酸序列的杂交探针来检测mRNA,或者,可以用抗所述区域的多肽序列的抗体来检测翻译的多肽。mRNA和多肽的定量分析方法是本领域公知的,例如请见Sambrook,J.et al."Molecular Cloning:A Laboratory Manual,"2nd addition,Cold Spring HarborLaboratory Press,Plainview,N.Y.(1989)。 
本发明还涉及对基因家族的表达的调节。术语“基因家族”是指具有相似 的功能、序列或表现型的一种或多种基因。基因家族可以含有保守序列,即该基因家族的所有成员之间的相同的或高度同源的核苷酸序列。在特定的实施方式中,RNAi可以与基因家族的该保守区域杂交,因此,一种RNAi序列可以靶向基因家族的一种以上的成员。 
本发明的方法还可以用于调节进化相关的基因家族内的基因表达。进化相关的基因是由共同的起源基因序列分出的基因,所述起源基因序列自身可以具有或没有编码一种或多种mRNA的序列。在该进化相关的家族中可以存在基因的子集,并且在该子集中可以存在保守的核苷酸序列。本发明还提供了一种通过将RNAi靶向到该保守的核苷酸序列而调节该基因子集的表达的方法。能够被本发明的方法调节的进化相关的基因可以为细胞或动物的内源的或外源的基因,并且可以为病毒基因家族的成员。此外,能够被本发明的方法调节的进病毒基因家族可以为细胞或动物的内源的家族成员。 
在其它实施方式中,本发明的方法可以用于调节细胞或动物的内源的基因或基因家族的表达。内源基因是与动物物种的基因组的组成元素一样可遗传的任何基因。用本发明的方法调节内源基因可以提供一种抑制或增强细胞或动物的表现型或生物状态的方法。能够被本发明的方法调节的内源基因包括但不限于:细胞存活或细胞复制所需的基因;病毒复制所需的基因;编码免疫球蛋白基因座的基因;以及,编码细胞表面蛋白的基因。内源基因的其它例子包括:进化基因,例如粘连分子、细胞周期蛋白激酶抑制剂、韦里特(Writ)家族成员、帕克斯(Pax)家族成员、有翼的(Winged)螺旋家族成员、Hox家族成员、细胞因子/淋巴因子以及它们的受体、生长/分化因子以及它们的受体、神经传送体以及它们的受体;肿瘤抑制基因,例如APC、BRCA1、BRCA2、MADH4、MCC、NF1、NF2、RB1、TP53和WTI;以及,酶,例如ACC合酶和氧化酶、ACP去饱和酶和羟化酶、ADP-葡萄糖焦磷酸酶、腺苷三磷酸酶、醇脱氢酶、淀粉酶、戊基葡萄糖苷酶、过氧化氢酶、 纤维素酶、查耳酮激酶、几丁质酶、环氧酶、脱羧基酶、糊精酶、DNA和RNA聚合酶、半乳糖苷酶、葡聚糖酶、葡萄糖氧化酶、颗粒结合的淀粉合酶、GTP酶、解螺旋酶(helicases)、半纤维素酶、整合酶、菊糖酶(inulinases)、转化酶、异构酶、激酶、乳糖酶、脂肪酶、脂肪氧合酶、溶菌酶、胭脂碱(nopaline)合酶、肉碱合酶、果胶酯酶、过氧化物酶、磷酸酯酶、磷脂酶、磷酸化酶、植酸酶、植物生长调节剂合酶、多聚半乳糖醛酸酶、蛋白酶和肽酶、淀粉酶(pullanases)、重组酶、逆转录酶、核酮糖-1,5-二磷酸羧化酶(RUBISCOs)、拓扑异构酶和木聚糖酶。 
在其它实施方式中,可以优选调节(调控)细胞中的肿瘤抗原,因此,例如这些肿瘤细胞可以被宿主免疫系统所检测。许多肿瘤抗原是本领域公知的。例如,请见Van den Eynde BJ,van der Bruggen P.Curr Opin Immunol1997;9:684-93;Houghton AN,Gold JS,Blachere NE.Curr Opin Immunol2001;13:134-140;van der BruggenP,ZhangY.ChauxP,Stroobant V,Panichelli C,Schultz ES,Chapiro J,Van den Eynde BJ,Brasseur F,Boon T.Immunol Rev2002;188:51-64,这些文献在此并入作为参考。替代性地,指向肿瘤抗原的许多抗体可以商购得到。 
肿瘤抗原的非限定性的例子包括突变形成的肿瘤抗原,例如:α-辅肌动蛋白-4(肺癌);BCR-ABL融合蛋白(b3a2)(慢性骨髓白血病);CASP-8(头颈鳞状细胞癌);β-连环蛋白(黑素瘤);Cdc27(黑素瘤);CDK4(黑素瘤);dek-can融合蛋白(骨髓白血病);延长因子2(肺鳞状瘤);ETV6-AML1融合蛋白(急性淋巴细胞白血病);低密度脂蛋白受体-墨角藻糖基转移AS融合蛋白(黑素瘤);HLA-A2d的过度表达(肾细胞癌);hsp70-2(肾细胞癌);KIAAO205(膀胱癌);MART2(黑素瘤);MUM-If(黑素瘤);MUM-2(黑素瘤);MUM-3(黑素瘤);新-PAP(黑素瘤);I类肌动蛋白(黑素瘤);OS-9g(黑素瘤);pml-RARα融合蛋白(前髓细胞白血病);PTPRK(黑素瘤);K-ras(胰腺癌);N-ras(黑素瘤)。分化肿 瘤抗原的例子包括但不限于:CEA(内脏癌);gpl00/Pmell7(黑素瘤);激肽释放酶4(前列腺);乳球蛋白-A(乳房癌);草木犀浆-A/MART-I(黑素瘤);PSA(前列腺癌);TRP-I/gp75(黑素瘤);TRP-2(黑素瘤);酪氨酸酶(黑素瘤)。过度表达的或过低表达的肿瘤抗原包括但不限于:CPSF(普遍存在的);EphA3;G250/MN/CAIX(胃、肝、胰腺.);HER-2/神经鞘;肠内羧基酯酶(肝、肠、肾);α-胎蛋白(肝);M-CSF(肝、肾);MUCl(腺状上皮细胞);p53(普遍存在的);PRAME(睾丸、卵巢、子宫内膜、肾上腺);PSMA(前列腺、CNS、肝);RAGE-I(视网膜);RU2AS(睾丸、肾、膀胱);存活素(普遍存在的);调聚物酶(睾丸、胸腺、骨髓、淋巴结);WT1(睾丸、卵巢、骨髓、脾);CA125(卵巢)。 
本发明的方法还可以用于调节特定等位基因的表达。等位基因为占据相同染色体基因座的基因的多态性变体。本发明的方法可以调节基因或基因家族的一种或多种特定等位基因的表达。在该实施方式中,可以制备RNAi的序列,由此调节基因或基因家族的一种或多种特定等位基因,而相同的基因或基因家族的其它等位基因没有被调节。 
通过描述的方式而不是限制的方式给出了以下的实施例。虽然提供了特定的实施例,但是以上的描述是示例性的而不是限定性的。如上描述的实施方式的任意一种或多种特征可以与本发明的其它任意实施方式的一种或多种特征以任何方式进行组合。此外,对本领域技术人员而言,在阅读本发明的说明书的基础上,本发明的许多变化将变得明显。 
本申请中引用的所有公开文献和专利文献的相关部分都并入作为参考,如同各个公开文献或专利文献一个一个地描述了一样。通过在该文件中引用许多文献,本发明的申请人不承认任何特定的文献为它们的发明的“现有技术”。
实施例 
材料和方法 
原位杂交 
HeLa细胞在涂覆有硅烷的载波片上生长过夜,并用4%仲甲醛(pH7.4)固定4分钟。将载波片气干之后,用脱氧核糖核酸酶将粘附的细胞在恒温箱中37℃下简单处理16小时。DNase Master Mix含有10xTurboDNase Buffer(Ambion)、100单位DNasel、100单位TurboDNase和100单位Suprasin,最终体积为200μl。然后用1X PBS洗涤细胞并随后在95℃下孵育5分钟。利用最终体积为200μl的含有10xRT Buffer(Applied Biosystems)、2.5mMMgCl2、10mM dNTP混合物、10pM无规六聚物酶、100单位RNase抑制剂和500单位逆转录酶的RT-Master Mix,合成出cDNA的第一链。利用以下条件完成RT反应:室温下30分钟,42℃下3小时,95℃下5分钟。为了原位杂交,将细胞在封闭缓冲液中65℃下孵育1小时(10mM Tris-HCl,50mM KCl,1.5mM MgCl2,1%Triton-X,20μM Random DNA,最终体积为200μl)。封闭之后,将细胞在70℃下与10μM特异性的内含子跨越探针(序列如表1和3中所示)杂交1小时。然后,用预先加温的PBS将载波片洗涤两次。 
稀释的单细胞RT-PCR 
将HeLa培养物稀释至每个亮视野中有一些细胞。从在共焦显微镜的指引下挑取的15个细胞个体中提取RNA。使用购自Clontech的SMART和CDS III3寡核苷酸以及Powerscript逆转录酶,根据厂家说明书由RNA完成cDNA的第一链的合成。然后将该cDNA的第一链用于PCR扩增,该PCR扩增使用购自Clontech cDNA library kit的LD引物、DSIII PCR引物和Advantage2聚合酶混合物。 
细胞提取物的制备和分馏
由转染有不同载体的HeLa细胞制备细胞质提取物。24小时转染后收获细胞,在4℃下以1000g离心5分钟。将细胞球用冰冷的PBS(pH7.2)洗涤三次,然后在冰上用三倍细胞体积的溶解缓冲液(20mM Tris-HCl,pH7.4;200mM NaCl;14mM MgCl2,20单位的氯吡胺(suprasin);100单位蛋白酶抑制剂;100μg/ml环己酰胺;0.1%(v/v)Triton X-100)溶解10分钟。通过在4℃下以5000g离心10分钟而分离细胞核。上清含有细胞质提取物,利用Trizol(Invitrogen),将上清立即用于提取RNA。通过将珠在溶解缓冲液中洗涤一次、在1X PBS(pH7.2)中洗涤两次,制得细胞核提取物。然后用Trizol试剂收集细胞核RNA。用显微镜确定细胞核的纯度(>98%)和完整性。 
核糖核酸酶保护分析(RPA) 
利用购自Ambion的Direct Protect Lysate RPA试剂盒,用核糖核酸酶(RNase)混合物(cocktail)缓冲液对细胞质溶解产物进行处理,并用RNase A和T混合物在37℃下孵育30分钟。通过用十二烷基肌氨酸钠(sodium sacrosyl)和蛋白酶在37℃下孵育30分钟,将核酸酶去除掉。在10%变性PAGE/8M脲上分离之前,利用99%乙醇和肝糖蓝以及接下来的由TurboDNase(Ambion)处理的DNase,对RNA进行沉淀处理。 
用于切割产物(Dicer product)的RNA印迹 
使用Trizol(Invitrogen)收集总RNA,并用99%乙醇进行沉淀。每道上装填30μg总RNA,并在10%PAGE/脲凝胶上分离开。然后将RNA转移到尼龙膜上(Amersham)并用鲑鱼(Salmon)精液DNA封闭6小时。封闭的膜与放射性同位素标记的S-AS探针杂交过夜,所述探针跨越TS和rTSα基因的重叠区域。所述探针是通过用32p-标记的核苷酸和Amersham随机引发试剂盒对重叠的DNA进行随机引发而制得的。所有的膜用低严格性的缓冲液洗涤一次,用高严格性的缓冲液洗涤两次,每次1小时,用台风(Typhoon)磷成像设备检测信号。
细胞培养和转染 
HeLa细胞培养在补充有10%FBS的D-MEM中。用含有具有正义和/或反义重叠区域的荧光素酶基因的质粒转染对数生长的细胞。转染后的第24小时,将细胞用于进一步的应用。使用pGL3对照载体(Promega)来制备所有的S-AS构建体。我们设计了用于克隆的萤火虫荧光素酶的下游的Pstl和EcoR1限制位点。使用BamH1序列来在重叠区域之间形成发夹并构建具有连续的S-AS序列的载体(引物和探针序列列于表3中)。利用MEGAscript转录试剂盒(Ambion),将相同的载体用作S-AS重叠mRNA的IVT的模板。 
实时PCR 
利用GeneAmp7000设备(Applied Biosystems),进行实时PCR(RT-PCR)。PCR反应包括20ng cDNA、Sybrgreen或Universal Mastermix(AppliedBiosystems)、300nM正向和反向引物、以及200nM探针,最终的反应体积为50μl(引物和探针序列列于表1和3中)。使用引物表达软件(PrimerExpresssoftware)(AppliedBiosystem)来设计所述引物和探针。它们是对各个S-AS对特异的链,所述探针覆盖了外显子的边界,以消除基因组DNA扩增的可能性。所有基因的PCR条件如下:50℃下2分钟;95℃下10分钟,95℃下15秒钟,40个循环;60℃下1分钟。结果基于循环极限(Ct)值。实验基因的Ct值与参照基因(β2M或GAPDH)的Ct值之间的差值计算为△△Ct。 
实施例1:反义转录物的敲低 
在本发明的说明书中,影响反义转录物水平的唯一方法是使用旨在有效地敲低转录物的siRNA。稍后的术语-敲低-是我们在二十世纪90年代早期研究反义寡核苷酸时引入的(Wahlestedt,C.(1994)Antisense oligonucleotidestrategies in neuropharmacology.Trends Pharmacol Sci 15(2):42-46),但是也同样适用于siRNA。
表达分布图显示了正义/反义对的频繁的一致的调节。利用siRNA,我们提供了实验证据证明siRNA对反义RNA的扰乱可以改变相应的正义信使RNA的表达。然而,这种调节可以是不一致的(反义敲低引起正义转录物升高)或一致的(反义敲低引起相伴的正义转录物降低)。表2中示出了已经被siRNA靶向的一些人和鼠反义转录物。在各种情况下,两种或两种以上siRNA被靶向至反义链的非重叠部分,并且通过使用RT-PPCR证实了敲低。表2描述了观察到编码的反义和非编码的反义可以以相同的方式进行靶向,并且不管是以一致的方式还是不一致的方式,两种都能够调节相应的正义转录物。基于siRNA对反义RNA转录物的敲低(或者另外的RNA靶向原则),我们在此推荐两种新的有潜力的药理学策略: 
策略1:在不一致调节的情况下,可以通过仅敲低反义转录物来提高常规(正义)基因的表达。如果后面的基因编码已知的或公认的药物靶,则其反义副本的敲低可以令人信服地模拟受体拮抗剂或酶刺激剂的作用。表2给出了其中反义(编码和非编码)转录物的敲低被证实不一致地调节正义表达的例子。例如,在帕金森病中,线粒体局部性激酶(PINK1)的活性需要提高是有争议的,其非编码的反义拍档的敲低可能是实现该目的的一种方式。此外,在某些情况下,为了刺激血管形成,可以通过靶向其(编码)反义拍档Ddx-339而增强穿过G-蛋白偶联受体(GPCR)CD97的信号发送。 
策略1的例子(PINK1的提高,例如帕金森病): 
PINK-AS siRNA-a:GGAAGCTGTAGCTAGAACATCTGTT(SEQ ID NO:1) 
PINK-AS_siRNA-b:CAGGTAAGT AGTCTCCTCTATCATT(SEQ ID NO:2) 
PINK-AS_siRNA-c:TCTCAACCCAAAGCCTGCTTTGTTA(SEQ ID NO:3) 
策略2:在一致调节的情况下,可以相伴地敲低反义转录物和正义转录 物,从而实现常规(正义)基因表达的协同降低。这些理念如图2A和2B所示。如果使用siRNA来实现敲低,则还可以通过将靶向于正义转录物和另外的siRNA的一种siRNA施用于相应的反义转录物来对该策略进行检验,或者通过同时靶向重叠的正义和反义转录物的单独的高能对称siRNA来对该策略进行检验。从表2可以看出,例如,在可诱导缺氧的因子1α的情况下,这样的双重相伴的靶向与追赶者有关,所述因子1α为一种在各种病症中可能需要受到抑制的靶。表2为Adrenomedulin AM1受体,该AM1受体是一种已经被证实其信号发送降低有益于治疗的GPCR。 
随着新兴的功能RNA世界,有新的潜在的药物靶将会被考虑。在这些药物靶中,有大量天然存在的能够调节正义转录物的表达的反义转录物,所述正义转录物包括编码常规药物靶的正义转录物。由于这些反义转录物中的许多都表示非编码的RNA,因此不能对它们进行蛋白水平上的调控。通过使用siRNA,我们已经发现反义转录物敲低能够使正义转录物表达升高(不一致的调节)或降低(一致的调节)。这些发现和理念可以形成新的药理学策略的基础。
表2:siRNA诱导的反义转录物敲低对正义转录物表达的作用 
Figure G2006800535397D00821
策略2的例子(用于阿尔茨海默疾病的反义和正义转录物的一致的敲低):
  BACE1-AS:  siRNA-a:CCCTCTGACACTGTACCATCTCTTT(SEQ ID NO:4)  siRNA-b:AGAAGGGTCTAAGTGCAGACATCTG(SEQ ID NO:5)  siRNA-c:CCAGAAGAGAAAGGGCACT(SEQ  ID NO:6)  BACE1:  siRNA-a:GAGCCTTTCTTTGACTCTCTGGTAA(SEQ ID NO:7)  siRNA-b:CCACGGAGAAGTTCCCTGATGGTTT(SEQ ID NO:8)
实施例2:哺乳动物中的基因表达的天然反义介导的调节 
已经报道了20%的人基因组的天然存在的反义转录物(NAT)。最近的报告表明,至少72%的鼠转录物存在NAT。大多数的天然反义转录物为顺式编码的反义。顺式-NAT的定义是在相同的染色体基因座上具有重叠的转录单元的互补mRNA。反式-NAT由不同的染色体位置转录的互补mRNA。嵌合转录物为与基因组的一个以上的区域具有同一性的mRNA,并且可以为cDNA库产物的矫作物。70%以上的顺式-NAT具有3′重叠的尾对尾的模式,而15%具有5′重叠区域的头对头的模式。剩余的分子具有基因内区或编码序列的重叠。许多NAT没有表现出开放阅读框,并被归类为非编码的RNA。 
反义与相应的正义转录物搭档之间的相互作用没有遵从统一的可预测的模式。研究了人基因的两种NAT靶向(即HIF-1α和TS)之间的相互作用。HIF(aHIF)的反义转录物是一种能够改变HIF接合以及HIF的两种结合形式之间的比例的非编码的RNA。特别地,已经假定了反义分子可以破坏HIFmRNA的一种接合变体的稳定性,并使平衡移动有利于其它的变体。通过将腺苷转化为mRNA前体中的肌苷核苷酸,编辑是NAT的另一种被提出的功能。TS(rTSα)的反义序列诱导正义RNA分子的编辑,从而促进TS mRNA 下调。重要的是,TS的NAT是蛋白编码,而没有预测的用于aHIF的开放阅读框。选择来自NAT的编码和非编码的子群的这两种已知的候选物用作研究,可以通过两种不同的作用模式潜在地调控mRNA。 
近年来基因组生物学中的最令人振奋的发现之一是RNA干扰(RNAi)的发现,RNAi已经被提议作为一种可能的机制,NAT可以通过该机制来调节基因表达。RNAi为在双链RNA(dsRNA)进入细胞时被激活的内在细胞过程。RNAi最初在线虫(Caenorhabditis elegans)被发现,是一种进化保守的转录后的基因沉默机制。dsRNA被称作切割酶(Dicer)的III型RNase酶加工成大约21-22个核苷酸的小的双链RNA分子,称作干扰RNA小分子(siRNA)。siRNA然后与称作RNA诱导的沉默复合体(RISC)的多蛋白复合体相互作用,使得活化的RISC复合体与同源的RNA转录物的序列特异性地缔合。这种相互作用引起了靶转录物的序列特异性切割。已经表明源自内源S-AS双螺旋体的dsRNA通过作为切割酶的底物可以通过RNAi途径起作用,并随后生成siRNA。然后siRNA将调节S-AS转录物中的一种或两种。 
总之,人们已经提出用NAT调节基因转录、RNA接合、聚腺苷酸化、编辑、稳定性、运输和翻译。该研究旨在探究NAT作用的机制。NAT的外显子中的共享的互补区域表明形成细胞质双螺旋体的概率,基因内区的重叠序列表明细胞核dsRNA双螺旋体。理论上,所有提出的调节机制都需要在细胞质或细胞核中形成RNA双螺旋体,因此,使用HIF和TS作为模型基因,用于RNA双螺旋体的细胞证据是这项工作的主要焦点。 
结果:使用原位杂交方法来分析内源TS和rTSα的同时存在。HeLa在载波片的表面生长、固定并用DNase进行处理(请见材料和方法)。合成出cDNA的第一链并用链特异性内含子跨越探针进行原位杂交(用于TS正义-反义基因和探针的图表如图3A所示)。重要的是,使用内含子跨越探针消除了对污染DNA的检测,探针覆盖了两种转录物的至少一部分重叠区域,确 保了信号来自完全mRNA。结果表明两种转录物同时共存于单独的细胞中(图4)。 
为了表达S-AS对共存于单独的细胞中,与细胞群体相对地,设计了一种方法来检测单独的细胞内的NAT的共表达。在显微镜引导下提取出RNA,以利用TaqMan技术通过实时PCR定量测定TS和rTSα转录物(图5)。引物为对正义和反义都具有特异性的链。S-AS表达被规格化至非常丰富的mRNAβ2-微球蛋白(P2M),作为内在对照。通过将TS和rTSα的表达与相对较少的基因TATA结合蛋白(TBP)进行比较而校准该方法的灵敏度。如图5所示,如表达较低的基因所期待的,TS和rTSα为β2M表达的7%,TBP水平为β2M的5%。因此,两种S-AS转录物在单独的细胞中的存在水平大致相似。 
接着研究TS和HIF转录物的细胞位置。从HeLa细胞中制得细胞质和细胞核提取物,并且立即用于RNA提取。然后将RNA逆转录,并用于通过实时PCR对S-AS转录物进行定量测定。重要的是,两种基因的正义链在细胞质和细胞核中的表达水平相似,相反地,细胞核中的反义转录物水平比细胞质中的高1000倍。因此,这些数据表明了S-AS对中的空间上的分化变异(图6)。 
接着,通过核糖核酸酶保护分析(RPA)来探测在HeLa细胞中形成的S-AS双螺旋体。尽管HeLa内源性地表达S-AS mRNA,但是构建了三种在真核细胞中产生正义、反义或连续的S-AS重叠mRNA的载体(图3B)。对于构建体中的两种,TS和rTSα的3′重叠区域位于荧光素酶的下游,因此可以监控转染效率。将这两种载体共转染到HeLa细胞中,形成具有重叠区域的过度表达的RNA的条件。对于第三种构建体,正义和反义互补区域都设计在相同的载体中,该载体在S-AS重叠部分之间具有较短的发夹结构。根据推测,来自该载体的RNA将自身折叠,以在细胞中形成RNA双螺旋体。 对于另外的对照,进行载体的体外转录(IVT),制得人造RNA双螺旋体,然后转染到细胞中。为了研究RNA双螺旋体在转染的细胞和未处理的细胞中的存在,分离出细胞质溶解产物,接着用RNAse A和T进行处理,然后在聚丙烯酰胺凝胶上进行分离。利用用于S-AS重叠区域的放射性同位素标记的探针,对存在的RNA双螺旋体进行检测。在转染有IVT dsRNA的细胞中检测出S-AS双螺旋体。在过度表达S-AS的细胞或表达内源水平的NAT的细胞中未检测出RNA双螺旋体(图7)。这些数据表明内源NAT和合成性过度表达的S-AS RNA没有在HeLa细胞的细胞质中形成双螺旋体。活体细胞中的假定的RNA可能是短暂的、不稳定的,并且可能很快变成内源siRNA或其它中间体产物。为了研究这种可能性,利用跨越S-AS mRNA的重叠区域的放射性同位素标记的探针设计了Northem Blot分析。这些随机设计的探针可以潜在性地检测从全长RNA至小于20bp的切割产物的任意长度的S-AS序列,用于搜索加工的RNA的存在。假设如果存在RNA双螺旋体,则它们最终将被切割酶加工成具有21个碱基对的寡核苷酸。HeLa细胞用与前述实验中所用的相同载体进行转染,所述载体产生正义、反义或S-ASRNA。将来自由IVT产生的S-AS重叠区域的RNA双螺旋体作为阳性对照,并转染到细胞中。切割酶产物仅存在于由IVT dsRNA转染的细胞中或由产生内部发夹dsRNA的载体转染的细胞中(图8)。在过度表达的细胞中1100bp处(源自载体的全长RNA)检测出阳性带,在IVT RNA转染的细胞中200bp处检测出阳性带。然而,在未转染的细胞或过度表达的细胞中缺乏21bp RNA分子则表明S-AS双螺旋体没有被切割酶加工。 
干扰素信号发送串联是细胞的抗病毒防御机制的一部分,可以被dsRNA引发。测定过度表达S-AS转录物的细胞中的干扰素-β(IFN-β)和2′,5′-寡腺苷酸合酶-2(OAS2)mRNA的水平(图9)。在由体外转录的dsRNA转染的细胞中,IFN-βmRNA水平上调了10000倍,而在过度表达S-AS转录物的 细胞中没有变化。仅在由IVT双螺旋体RNA转染的细胞中,OAS2水平也上调了600倍。这些数据表明不可能形成具有S-AS mRNA的细胞质RNA双螺旋体,然而干扰素途径可能对细胞内RNA双螺旋体没有反应。 
总结起来,本研究表明NAT没有形成激发RNAi机制的细胞质RNA双螺旋体。反义取向中的重叠转录物具有形成dsRNA的潜能,所述重叠转录物为编码或非编码的蛋白,所述dsRNA为多种不同的RNA修饰途径的底物。用于dsRNA的一种明显的途径是用切割酶复合物将其分解为小的RNA。几种实验方法用于尝试确定RNA双螺旋体在细胞质中的存在并检测参与dsRNA加工的切割酶产物。使用人工合成的S-AS构建体和内源NAT得出的结果不能支持存在细胞质RNA双螺旋体或RNAi机制参与的结论。 
S-AS mRNA相伴地存在是NAT调节的一个必要条件,只根据该标准就可以排除许多电子杂交预测的NAT候选物。由于S-AS的表达水平可以预测调节的模式,因此它们也是很重要的。我们的实验模式表明,单独细胞中的S-AS水平高,则表明没有RNAi参与。然而,对该现象的另外的解释是翻译受阻或者其它种类的RNA介导的基因表达调节,而没有改变mRNA的水平。表达评估和mRNA水平评价被推荐为研究其它预测的S-AS候选物的第一步。 
反义转录物水平的改变可以影响正义mRNA的水平;但是S-AS并不必然是相互的。近来,我们表明反义转录物敲低提高的正义转录物水平,但是没有观察到相反的相互作用。观察到的这种现象表明反义mRNA参与正义转录物调节,但是正义mRNA似乎没有控制反义表达。如果内源RNAi参与哺乳动物S-AS现象,则可以预料转录物在敲低实验中表现出相似的表达分布图。 
总的来说,以上观察结果与以下结论相一致:S-AS基因调节没有利用RNAi机制。实际上,进一步的支持来自其它的两个观察结果:第一,即使 对于高水平表达的S-AS也没有检测到RNA小分子,表明RNA处理不依赖于切割酶;第二,干扰素层叠没有被NAT激活。事实上,可以预料得到,如果至少70%的哺乳动物基因具有NAT并且所述机制经由RNA双螺旋体形成,则将有累积的干扰素反应。我们的研究显示出显著的β-干扰素和具有dsRNA转染的OAS2mRNA感应,表明不存在NAT的双螺旋体。 
至今,在文献中还没有关于源自NAT的内源哺乳动物siRNA的报道(Makalowska I,Lin CF,Makalowski W:Overlapping genes in vertebrategenomes.Comput Biol Chem2005,29(1):1-12.)。但是,可以将内源siRNA编程到RISC中,该效果可能是长期的并下调靶RNA。理论上,500bp dsRNA将形成siRNA库。该siRNA集合可以通过分解许多“脱靶的”mRNAs或者阻滞翻译而在两种水平上削弱蛋白质产量。当考虑到已知许多基因具有反义序列时,该非特异性效果的程度将更强。 
与本研究的数据相一致的是,尽管已经报道了内源miRNA的存在,但是至今还没有描述内源哺乳动物siRNA。该观察结果还表明在不依赖于切割酶的途径中没有对内源RNA双螺旋体进行处理,并且进一步证实了我们的发现。 
我们的数据表明反义表达与转录物降解途径没有联系。但是,我们的方法没有完全排除在细胞核中形成RNA双螺旋体,或者用于基因表达类似的编辑、细胞核保持物接合或运输的任何功能。尽管对于NAT已经建议了许多不同的功能和机制,但是至今没有建议用于对机制进行分类和预测的系统方法。我们的研究能够作为对NAT研究的功能性方法的开始,所述NAT研究能够基于NAT的生物信息特征而对它们进行分类。我们的方法学还可以延伸至提供用于基因表达的天然反义介导的调节的系统方法。
表3:用于原位杂交、实时PCR和克隆的引物和探针 
  
引物名称 序列 基因
具有5’德克萨斯红的肌动蛋白探针 GAAGATCAAGATCATTGCTCCTC(SEQ ID NO:9) 人β-肌动蛋白
HIF1A-正义-F CTGCACAAACTTGGTTAGTTCAATTTT(SEQ ID NO:10) HIF1α_TaqMan引物
HIF1A-正义-R ACTGCAATGCAATGGTTTAAATACC(SEQ ID NO:11) HIF1α_Taq Man引物
HIF1A-正义-P TTTTTTAGTATGTTCTTTAATGCTGGATCACAGACAGCTC (SEQ ID NO:12) HIF1α_Taq Man探针
反义HIF1A-正义-F ATACTCTTTTCAATGGGATATTATGGTTGT(SEQ ID NO:13) aHIF1α_Taq Man引物
反义HIF1A-正义-R TGGTACTGGTTATTTCTACATTTATCTTAGTG(SEQ ID NO: 14) aHIF1α_Taq Man引物
反义HIF1A-正义-F TAACATGACATTTAGGGACTCAACATACATTAAGGTGATG (SEQ ID NO:15) aHIF1α_Taq Man探针
具有5’荧光的TS-正义探针 GCCACTGAAAATTCAGCTTCA(SEQ ID NO:16) 胸苷酸合成酶
TS-重叠-F ATCCGCATCCAACTATTAAAATGG(SEQ ID NO:17) TS-重叠TaqMan引物
TS-重叠-R CCAGCCCAACCCCTAAAGAC(SEQ ID NO:18) TS-重叠TaqMan引物
具有5德克萨斯红的rTS-反义探针 CCTCAGGAATCAGCTAAAGCAAA(SEQ ID NO:19) rTsα
PstTs反义-F aaactgcagAACTTTTACCTCGGCATCCA(SEQ ID NO:20) TS克隆引物
EcoTs反义-R cggaattcAGCGAGAACCCAGACCTTTC(SEQ ID NO:21) TS克隆引物
EcoTs正义-F cggaattcAACTTTACCTCGGCATCCA(SEQ ID NO:22) rTSα克隆
PstTS正义-R aaactgcagAGCGAGAACCCAGACCTTTC(SEQ ID NO:23) rTSα克隆
E-Ts正义-F cggaattcAACTTTTACCTCGGCATCCA(SEQ ID NO:24) 连续的TS S-AS克隆
P-Ts反义-F aaactgcagAACTTTTACCTCGGCATCCA(SEQ ID NO:25) 连续的TS S-AS克隆
BamH1 TS正义-R cgggatccAGCGAGAACCCAGACCTTTC(SEQ ID NO:26) 连续的TS S-AS克隆
TS-正义-F AAAACCAACCCTGACGACAGA(SEQ ID NO:27) TS Taq Man引物
TS-正义-R GCAGCGCCATCAGAGGAA(SEQ ID NO:28) TS Taq Man引物
TS-正义-P CATCATGTGCGCTTGGAATCCAAGAGA(SEQ ID NO:29) TS Taq Man探针
rTS-a)反义-F GCATTTCAAGTATCCCGTGATG(SEQ ID NO:30) TS Tag Man引物
rTS-a)反义-R TGTTGAGTAGCCGGGATCCT(SEQ ID NO:31) rTSα_Taq Man引物
rTS-a)反义-P AGCGGGCTTCCTACATGCCTCCC(SEQ ID NO:32) rTSa_Taq Man探针
实施例2:细胞核保持的非编码的RNA转录物通过前馈机制而调节β-分泌物酶的表达
cDNA末端的快速扩增(RACE):使用RLM-RACE ready cDNA(Ambion,Austin,TX),将来自人大脑和鼠大脑的cDNA用于巢状(nestet)PCR反应,该巢状PCR反应利用基因特异性的试剂盒引物。将人和鼠的3′和5′PCR产物从凝胶上切下来,纯化,并克隆到T-Easy载体中(Promega)。对来自各系列的20个阳性克隆进行测序。 
实时PCR:利用GeneAmp7000设备(Applied Biosystems),进行实时PCR(RT-PCR)。PCR反应包括20-40ng cDNA(Universal Mastermix(AppliedBiosystems))、300nM正向和反向引物、以及200nM探针,最终的反应体积为50μl(引物和探针序列列于表1和3中)。使用引物表达软件(PrimerExpress software)(AppliedBiosystem)来设计所述引物和探针。它们是对各个S-AS对特异的链,所述探针覆盖了外显子的边界,以消除基因组DNA扩增的可能性。所有基因的PCR条件如下:50℃下2分钟;95℃下10分钟,95℃下15秒钟,40个循环;60℃下1分钟。结果基于循环极限(Ct)值。实验基因的Ct值与参照基因(β2M或GAPDH)的Ct值之间的差值计算为△△Ct。 
细胞培养和转染:SH-SY5Y在添加有10%FBS(胎牛血清)、1%NEAA、1%L-谷氨酸盐和1%碳酸氢钠的MEM(改进的伊格尔培养基)和F12的混合物(培养基)中培养。根据制造商的使用说明(Invitrogen),利用0.2%Lipofectamine2000,用20nM siRNA转染对数生长的细胞。在进一步使用之前,细胞被孵育48小时。为了诱导神经元样分化,将细胞在20μM维甲酸(Sigma)中暴露2周。为了应力诱导,将细胞在含有30mM KCl的培养基中悬浮5分钟,或者在含有1μMAβ1-42肽的培养基中悬浮5分钟(Tocris Co.California,USA),然后如下所述进行分馏。为了援救实验,细胞用PBS洗涤,并在37℃下在培养基中重悬浮1小时。将对照样品进行相似处理,用于平行细胞分馏和RNA提取。亲代CHO细胞和CHO-7PA2细胞在含有10%FBS 的DMEM中生长。为了调节,CHO-7PA2细胞保持在没有血清的培养基中,并在24小时后收集上清。在分馏之前,SH-SY5Y细胞在有条件的培养基中暴露24小时。对照细胞来自亲代CHO细胞并用相同的有条件的培养基进行处理。 
Northern blot:使用Trizol试剂分离总RNA,以每道10μg将总RNA装载在1%琼脂糖凝胶上。然后将RNA转移到Hybond膜上(Ambion),并用Ultrahybrid(Ambion)封闭6小时。封闭的膜与放射性同位素标记的S-AS探针杂交过夜,所述探针跨越鼠BACE-1和BACE-1-AS的重叠区域。所述探针是通过用32p-标记的核苷酸和Amersham随机引发试剂盒对重叠的DNA进行随机引发而制得的。所有的膜用低严格性的缓冲液洗涤一次,用高严格性的缓冲液洗涤两次,每次10分钟,用磷成像设备检测信号。 
细胞提取物的制备和分馏 
由SH-SY5Y细胞制备细胞质提取物。收获细胞,并在4℃下以1000g离心5分钟。将细胞球用冰冷的PBS(pH7.2)洗涤三次,然后在冰上用三倍细胞体积的溶解缓冲液(20mM Tris-HCl,pH7.4;200mM NaCl;14mMMgCl2,20单位的氯吡胺;0.1%(v/v)Triton X-100)溶解10分钟。通过在4℃下以500g离心10分钟而分离细胞核。上清含有细胞质提取物,利用Trizol(Invitrogen),将上清立即用于提取RNA。通过将珠在溶解缓冲液中洗涤一次,制得细胞核提取物。然后用RNAeasy微型试剂盒细胞核RNA。 
RNA捕获(pull down)和质谱:通过均浆器,利用含有高浓度的MgCl2的低渗分馏缓冲液使细胞破裂。立即将SH-SY5Y细胞溶解产物与用于BACE-1和BACE-1-AS的链特异性的生物素标记的RNA探针进行杂交,然后用抗生物素蛋白链菌素珠孵育15分钟。纯化的蛋白用聚丙烯酰胺凝胶电泳(PAGE)进行分离。质谱用于检测由RNA转录物纯化的蛋白。靶向Prltk且不与人基因组相配的RNA探针用作对照。
稳定性和a-蝇蕈素处理:将HEK-293T细胞接种到24孔板中。24小时后,细胞用5μg/ml的a-蝇蕈素进行处理,并用来自7PA2或CHO-对照细胞的有条件的培养基孵育。收集细胞用于RNA纯化,并在处理6、12和24小时后进行RT-PCR。对于每个数据点,取3个互不相关的样品,并且所有样品具有未处理的、未转染的、用于RNA纯化和数据分析的相配的样品。 
统计分析:所有实验进行6-20次生物重复和3-6次技术重复。使用方差二元分析(ANOVA)中的主要作用对处理因素进行此后检验之后,将与对照处理组相比较的数据列于图表中。将各处理的显著性计算成p值并标于各图表中,其中p<0.05表示显著。 
RNA荧光原位杂交(RNA-FISH):SH-SY5Y细胞在涂覆有硅烷的载波片上生长过夜,并用4%仲甲醛(pH7.4)固定4分钟。在室温下用0.2%Triton-X将细胞渗透4分钟。将载波片气干之后,用预杂交缓冲液(50甲酰胺,5X SCC,50μg/ml鲑鱼精子DNA,和0.1%吐温-20)将粘附的细胞在65℃下简单处理1小时。使用T7启动子和BiotinUTP以及MEGAScript试剂盒(Ambion),通过体外转录克隆的S-AS RNA,制得用于BACE-1和BACE-1-AS的PrltkmRNA(作为阴性对照)和非重叠部分的生物素化的探针。然后将探针加入到杂交缓冲液(2.5μg/ml)中并在65℃下孵育6小时。然后用65℃的PBS将载波片洗涤3次,每次10分钟。 
Western Blot:HEK-SW细胞用20nM的BACE-1正义BACE-1-AS或者全部两种的转录物siRNA进行转染。转染48小时后,用来自含有350mMDTT的BioRad的200μl Laemmli样品缓冲液对细胞进行溶解。然后细胞溶解产物在10%SDS PAGE上进行分离,并被转移到硝化纤维膜上过夜。将膜与用于BACE-1的一级抗体(来自Abeam)和跟HRP共轭的二级抗体一起孵育。添加HRP底物之后,用X-光膜检测化学荧光信号。将相同的膜剥离并回收用于检测作为装载对照的β-肌动蛋白。
ELISA和HTRF分析:将人工过度表达APP瑞典变种的HEK-SW细胞种到6孔板上,24小时后,用抗BACE-1正义、BACE1-反义或全部两种转录物的20nM siRNA进行转染。转染24小时后,从培养的细胞中收集培养基,用于通过Aβl-42抗体进行夹层(sandwich)ELISA。在碳酸缓冲液的存在下,将捕获抗体(用于淀粉质Aβ的鼠单克隆;Abeam)在4℃下在Maxisorb96干净板上孵育过夜。将收集到的培养基添加至板中,并与一级抗体(来自Abeam的Aβ1-42)和山羊抗兔IgG二级抗体一起孵育。添加HRP底物之后,利用SpectraMax读板器检测发光。从背景中减去405纳米下三次重复的平均值,并将其标准化为阴性对照siRNA样品。利用时间分辨荧光(HTRF)分析(Cisbio)进行Aβ1-42检测。将抗Aβ1-42的两种特异性单克隆抗体加在荧光上,在同时结合至Aβ肽时,基于它们之间的距离,第一种的发射将激发第二种。利用来自APPtg和野生型小鼠的纯化蛋白,按照产品说明书进行HTRF反应,而不用任何洗涤步骤,从而可以直接测定肽。 
动物研究:在Scripps Research Institute获得动物研究的IACUC批准之后,将18只六月大的雄性小鼠用于体内实验。将小鼠分为3组,每组6只,用背部的第三室中的慢性留置套管如外科手术般地植入渗透性微型泵(Alzet)。逆着BACE-1(组1)、BACE-1-AS(组2)或对照siRNA(以前已知不能穿越人和鼠基因;组3),所述渗透性微型泵以0.4mg/天的剂量不断地传递siRNA注射液(0.25μl/h)。不断地传递siRNA注射液14天之后,对小鼠实施安乐死,并除去大脑。从每只小鼠上切得5个组织,用于RNA定量测定;背部海马状突起(dorsal hippocampus)、腹部海马状突起、背内侧前额皮层、背部线条和小脑。将组织切割掉并在冰冷的PBS中清洗,根据制造商的说明书在Trizol试剂(Invitrogen)中均质之后,提取RNA。提取的RNA样品通过Qiagen RNeasy柱,并进行柱上DNAse处理,以除去DNA污染。用分光光度法测定RNA样品的浓度,使用随机六聚酶和逆转录酶(Applied Biosystems)在最终体积为40μl的条件下,用800ng的各样品合成cDNA的第一链。如上进行实时PCR(RT-PCR)测定。各个组织相对于对照小鼠的RNA水平变化百分率绘制在各个图表中。 
在单独系列的试验中,牺牲掉四只APP-tg小鼠Tg19959)和四只同窝出生者,都为雄性6w/o。大脑组织通过HTRF而用于RNA测定和Aβ1-42检测。 
BACE-1非编码的天然反义转录物的鉴定:人BACE-1基因座的基因组组织如图12A所示。我们的引物、探针和siRNA序列的位置如图12B所示,还列于表5中。BACE-1-AS在物种之间高度保守(见图12B)。 
人BACE-1(NM_012104)、小鼠BACE-1(NM_011792)、人BACE-1-AS(CB960709)和小鼠BACE-1-AS(AK074428 and AK078885)的序列信息可以从UCSC基因组生物信息学(Genome Bioinformatics)网站获得(genome.ucsc.edu/cgi-bin/hgGateway)。为了完全描述BACE-1-AS的基因组组织,我们进行了cDNA末端的快速扩增(RACE)实验,以从5′到3′端定向地对NAT进行测序。如图12C所示,对于人BACE-1-AS,RACE表明,除了在其边界具有额外的核苷酸以外,序列几乎与来自UCSC数据库(CB960709)的表达的序列标签(EST)完全相同。用于人和小鼠BACE-1-AS的两种接合变体相同,即两种都与BACE-1正义转录物重叠。还发现用于小鼠BACE-1-AS的两种单独的EST对应于单个相邻的序列,覆盖小鼠BACE-1基因的外显子5和6(图12D)。对于人和小鼠的反义序列都发现了聚-A尾和帽结构,表明BACE-1-AS为RNA聚合酶II的产物并且为完全处理的RNA转录物。但是,没有开放阅读框,表明BACE-1-AS为ncRNA。而且,在人和鼠BACE-1-AS中都检测到了与基因组序列的一些不相配,表明由于与正义转录物形成细胞核双螺旋体,"A至I"是可能的(Kawahara and Nishikura,2006FEBS Lett580,2301-2305)。后一发现可能与如下所述的BACE-1-AS的细胞核保持模式相 关。增补的数据部分还描述了人和小鼠BACE-1-AS的所有新序列。 
表达分布图:利用RT-PCR,我们在小鼠大脑和肝脏的各种区域中测定了BACE-1(正义)和BACE-1-AS(反义)RNA转录物的相对表达。大脑的各个区域中的两种转录物都比肝脏中多2-5倍。在取样的大脑区域中,两种转录物在大脑皮层和扁桃体中的表达最高(图10A)。Northern blot分析证实了BACE-1和BACE-1-AS在小鼠大脑组织中的表达(图10A和10B)。BACE-1和BACE-1-AS转录物还在未分化的和分化的人成神经细胞瘤SH-SY5Y细胞中进行表达。人成神经细胞瘤SH-SY5Y细胞的分化的诱导与BACE-1-AS转录物表达降低约50%和BACE-1转录物表达降低约20%有关(图10B),表明正义和NAT转录物的表达都是一致的。 
BACE-1-AS敲低在体外一致地降低BACE-1正义转录物:我们接着研究了BACE-1-AS在通过siRNA敲低而调节其正义搭档(BACE-1mRNA)的表达中所起的作用。图13A描述了三种不同的siRNA序列,该三种siRNA序列将人SH-SY5Y细胞中的BACE-1-AS转录物敲低了约60%。这三种siRNA序列都靶向反义转录物(但不是BACE-1mRNA),都高效地、一致地、相伴地将正义转录物敲低到与反义转录物相似的程度。由于靶向反义转录物(BACE-1-AS)的三种不同的siRNA分子一致地敲低BACE-1,因此siRNA不可能通过非特异性(或“脱靶”)机制间接地敲低BACE-1转录物。因此,我们表明,在人SH-SY5Y成神经细胞瘤细胞中,非编码的反义转录物起到调节BACE-1mRNA表达的作用,并且可以通过敲低BACE-1-AS来影响BACE-1的表达,而不靶向BACE-1转录物自身。 
也评价了敲低BACE-1mRNA的效果。图13A表示了将SH-SY5Y细胞中的BACE-1mRNA敲低了70%的正义靶向siRNA(S-a)。靶向BACE-1mRNA的其他两种siRNA序列S-b和S-c(如图12B所示)相似地敲低BACE-1mRNA。S-a靶向BACE-1正义转录物的非BACE-1-AS-重叠部分,在施用 siRNA48小时后不会改变BACE-1-AS的表达。因此,在SH-SY5Y细胞中,BACE-1mRNA的敲低不会调控BACE-1-AS的表达。 
BACE-1-AS的敲低降低BACE-1蛋白和Aβ1-42的产量:由于如Westernblot所测(图11),当施用NAT特异性的siRNA时BACE-1蛋白水平也降低,因此敲低BACE-1-AS对BACE-1mRNA表达的一致效果不限于mRNA水平。此外,在用siRNA处理之后,我们使用ELISA方法来测定Aβ1-42的水平。Aβ1-42是BACE-1对APP的酶裂解产物,可以预测HEK-SW细胞系中含有具有所谓瑞典变种的APP。当用抗BACE-1-AS的siRNA对HEK-SW细胞系进行处理时,Aβ1-42水平显著降低(图13B)。 
BACE-1正义和反义转录物的结合靶向显示出协同效应:我们接着询问BACE1和BACE-1-AS转录物在HEK-SW细胞中的同时靶向是否能够达到协同效应。如图13B所示,与单独的正义或反义转录物的敲低相比,同时施用指向BACE-1正义和反义转录物的siRNA更大程度地减少Aβ肽(P<0.001)。这个观察结果提高了可以非有意地设计一些或许多siRNA分子由此它们同时靶向顺式-正义/反义对的概率。例如,最近表明用siRNA体内靶向BACE-1改善APP转基因小鼠中的AD样神经病理学和行动不足(Singer et al.,(2005).Nat Neurosci8,1343-1349)。在他们的研究中,最有效的siRNA分子靶向BACE-1正义/反义基因座的重叠区域,提高了敲低有助于总体功效的正义和反义BACE-1转录物的概率。 
体内给予靶向BACE-1正义或反义转录物的siRNA:以上观察结果表明,对BACE-1-AS的破坏引起对BACE-1mRNA的体外下调。接着,我们分析小鼠大脑中是否体内存在相同的关系。为了解答这个问题,用背部第三室中的慢性留置套管制备小鼠。小鼠也皮下植入有渗透性微型泵,该渗透性微型泵逆着BACE-1(组1)、BACE-1-AS(组2)或对照siRNA(以前已知不能穿越人和鼠基因;组3)以0.4mg/天的剂量传递siRNA注射液(0.25μl/h)两周 (Thakker et al.,(2004).Proc Natl Acad Sci USA101,17270-17275.;Thakker,D.R.,et al.(2005).MoI Psychiatry10,782-789,714)。管道与所述渗透性微型泵的出口相连并且皮下挖至所述留置套管,因此直接将siRNA传递到大脑中。不断地传递siRNA注射液14天之后,对小鼠实施安乐死,并除去大脑。在背部海马状突起、腹部海马状突起、背内侧前额皮层、背部线条和小脑中分析BACE-1和BACE-1-AS的表达水平。 
显著地,在给予选择性地抗BACE-1或BACE-1-AS的siRNA时,所有四个大脑区域中的BACE-1浓度都降低了(图14A至14D)。抗正义或反义转录物的siRNA使得BACE-1和BACE-1-AS的水平与对照处理组相比一致地降低了。另外,我们测定了作为对照组织的小脑中的S-AS转录物(图14E),发现BACE-1和BACE-1-AS的水平没有变化,对未直接浸在第三室的脑脊髓中的组织预料的结果。这些体内发现共同地复制了我们的体外观察结果,表明BACE-1-AS一致地调节BACE-1mRNA。 
BACE-1-AS转录物积聚在细胞核中:为了检查BACE-1和BACE-1-AS在细胞中的分布,我们将SH-SY5Y细胞的溶解产物分离成细胞质馏分和细胞核馏分,并提取RNA用于RT-PCR分析。与细胞质馏分相比,细胞质部分富含BACE-1-AS(图15A)。SH-SY5Y细胞的RNA荧光原位杂交(RNA-FISH)图像证实了BACE-1-AS保持在细胞核中(图15A至15D插入物)。BACE-1-AS在细胞核中比在细胞质中多大约30倍,而BACE-1正义转录物(以及β-生物素mRNA对照)在细胞核和细胞质之间的分布大致相等。 
我们还设计了利用多色荧光探针的RNA-FISH实验,以显现正义和反义转录物的亚细胞定位。将细胞暴露于应激物,从而使BACE-1-AS FISH信号迁移(图15A-15D插入物)。我们利用源自Prltk荧光素酶且不与人基因组相配的RNA探针作为阴性对照探针。从图15A的显微图像可以看出,在细胞核中可以检测到绝大多数的反义转录物BACE-1-AS。相反,正义BACE-1 转录物更广泛地分布在整个细胞中。 
用质谱法描绘RNA-蛋白的相互作用:为了鉴定出可能参与非编码反义转录物的细胞核保持和/或传输,我们取出RNA并描绘了与蛋白相互作用的RNA。在实验操作过程中,所述方法的MgCl2高并且不会导致变性,有助于维持RNA-蛋白的相互作用。表4列出了与BACE-1和BACE-1-AS转录物相关的蛋白。参与翻译过程的蛋白有选择地与BACE-1mRNA共同纯化。相反,细胞核高度丰富的蛋白与BACE-1-AS转录物相关。这些发现与反义转录物的非编码性质相一致,并且支持其细胞核保持的观点。 
亲环素(Cyclophilin)-60(Cyp60)和BACE-1-AS:目前对BACE-1表达和功能的调节机制了解很少。但是,最近的大规模siRNA筛选成果表明Cyp60敲低降低了BACE-1mRNA和蛋白水平(Espeseth et al.,(2006)MoI.CellNeurosci.33,227-235)。亲环素-60(Cyp60)是肽基脯氨酰基异构酶的亲环素家族的成员。亲环素组成高度保守的蛋白家族,该家族的成员在蛋白折叠、cyclosporin A引起的免疫抑制、HIV-I病毒体感染中发挥重要作用。Cyp60蛋白与蛋白酶抑制剂水蛭素c(eglin c)相互作用,并定位于细胞核。据报道,Cyp60还参与CD147(也已知作为细胞外基质金属蛋白酶诱导剂)的细胞表面表达,表明Cyp60在CD147向细胞表面的迁移中发挥作用。 
假定BACE-1-AS在调节BACE-1表达中的作用,之前公开的Cyp60调节BACE-1mRNA表达的观察结果,我们假设Cyp60还可以在调节BACE-1-AS中发挥作用。为了检验该假设,我们检查了敲低Cyp60对BACE-1和BACE-1-AS表达的作用。首先,我们通过证明siRNA介导的Cyp60敲低降低了人胚胎肾细胞(HEK293T)中的BACE-1mRNA水平而证实了Cyp60在调节BACE-1mRNA表达中的作用。但是,Cyp60siRNA暴露也减少BACE-1-AS转录物(图16A)。当与Cyp60敲低诱导的BACEl mRNA减少相比时,BACE-1-AS减少的程度更大,并且发生的时间点更早(图16B)。 由于Cyp60几乎专门地保留在细胞核中(Wang et al.,(1996)Biochem J.314(Pt1),313-319),BACE-1-AS也定位于细胞核中,表明Cyp60可能优选地对BACE-1-AS起作用,以调控BACE-1mRNA的表达。与该假设相一致,Cyp60敲低显著地改变了BACE-1-AS转录物的细胞核保留模式。 
在此所示的人BACE-1-AS序列基于5′,3′RACE克隆和测序结果并且与来自UCSC的EST序列(cDNA CB960709)相比较。 
人BACE-1-AS的主要变体(10倍克隆)SEQ ID NO:64:TCTAGCGAGG TGACAGCGTA GAACCAGGCG GGGTCCCTCC CATTACATAC TACTGCTCTGGCCTCTGCCC GTCATAGTTG CCATCTGGTC ATTTCCTTCC CATAAAGCCA GGGCTCACCGCAACCTCCAC CGTCCTGAGT TAAAGTGATT CTCCTGTCTC AGCCCCCTGA GTAGCTAGGATTACAGGCGT GCGCCACCAC ACCCAGCTAA TTTTTGTACT TTTAGTAGAG ATGGGATTTCACCCTGTTGG TCAGGCTGGTC TTGAACTCCT GACCTAGTG ATCTGCCCAC CTTGGCCTCCCAAAGTGCTG GGATTACAGG CGTGAGCCAC CACGCCTGGC TAGGGGAAGA GTGCTTTTAAGAGCTCTGAG TAGAAGGGTC TAAGTGCAGA CATCTTGGCT GTTGCTGAAG AATGTGACTCTCACCGCCTC CCTCTGACAC TGTACCATCT CTTTTACCCC CATCCTTAGT CCACTCACGGAGGAGGCTGC CTTGATGGAT TTGACTAGCA GCTTCAAACA CTTTCTTGGG CAAACGAAGGTTGGTGGTGC CACTGTCCAC AATGCTCTTG TCATAGTTGT ACTAAGAGGG AAAAGAGAGAGTTAAAAGAG TCAAAAGGTT TTTGATGCTG GGCTCTGGGC AGTAGGGGGT TACTGCTGGGGCCCCAGCTG GGTTGGCATC TTGGCTTTGG CACCTCCTAA GTGTACCTGC TTGGACAAGTTAACCTCTGT GCCTCAGTTC CTTCATCTCT AAAGTGAGGA TAAAAATAGC ACCTACCTCAAAGGGTTATT GTAAGGATTA AATAAATCAG CAATGTAAAG CACTTAGAAT CGTGCCCAGCAGAGAGAAGG CACTTGGTAA ATGTTTATTC TTGTTAATCT TGGGTGGGCA GGTAGTCTCCAAACTTGAAA AAAAAAAAAA AGCACCTTAT AAATCGTGCC CCGCCAGAAG AGAAAGGGCACTTTGGGAAA AATGGTTTTA ATTCCCTTGT TTAAATTCTT TGGGGGTGGG GGGCCAAGGTTAAGTTTCTT CCCCAAAAAC CTTTGGAAAA AAATT 
人BACE-1-AS的短变体(6倍克隆)SEQ ID NO:65:CTTTTAAGAG CTCTGAGTAG AAGGGTCTAA GTGCAGACAT CTTGGCTTTT GCTGAAGAATGTGACTCTCA CCGCCTCCCT CTGACACTGT ACCATCTCTT TTACCCCCAT CCTTAGTCCACTCCACGGAG GAGGCTGCCT TGATGGATTT GACTGCAGCT TCAAACACTT TCTTGGGCAAACGAAGGTTG GTGGTGCCAC TGTCCACAAT GCCTCTTGTC ATAGTTGTAC TAAGAGGGAAAAAAAAAAAA 
在此所示的鼠BACE1-AS序列基于5′,3′RACE克隆和测序结果并且与来自UCSC的EST序列(cDNAAK077428.1和cDNAAK078885.1)相比较。 
鼠BACE-1-AS的主要变体(10倍克隆)SEQ ID NO:66:GTCTACGGAT CAGGAGGAG AAAGTGAGATA CTGGCCTCAT AAAGCTGTGA GTGGGCATGGTGGCTCACAC TGCCTGTGGT CCCAGAACTT AGAAGGCTAA GGCATGAAGT TGTCAAGTTCAATGCTAACC TGGGCTACGT TCATGACCCC ATCTCAAAAA AAAAAAAAAA AAAAAAAAAGGCATCTCAAT GCCAAGTCAA CAGAGCAGTG GTTTGTAAGC GCCTGATGGG AAGGATCTAC GTATCTTTAG GGCTTGCTGA GGAGTGTGAC TGTCACTGAC CGAGGAGGCT GCCTTGATGGACTTGACGGC AGCTTCAAAT ACTTTCTTGG GCAAGCGAAG GTTGGTGGTC CCACTGTCCACAATGCTCTT GTCGTAGTTG TACTGAGGAG AGAGGGGGGG AGAGGTGGGA GGGGTGAATCTGACAGCTAA GCATCCTACT GGGGTTGGCA TCTTAGCTTT CCCATTTTGT ATATGTGCGTCCTTGGGCAC GTTGCTTAAC CTCTGTGTAC CTGTTCTCTT GTTCTAAATT GAAGATAATAACAGTGCCTA CCTCAAAGGT TACCATAAGG ATTACATAGG TCAAAAGGCT GAAAGCACTAAGTAGGTCCT GGCAGATCCC AGGCACTTGG TAAGTACTAA CTTCGTCACC TTGTGCGGGTAGGTGTTCTC TAAATCTAAA GCAGAAATGC CTTGTGTGGT ATTTGTAACT TCTAGTACTTTTATGTAGTT ATTCTCATTCACCATACATT  ATAATGGAGA GAAGGGTGGC TCAGCACGCACAAAGCCATG AGCTTGAGCT CTGATGCTGC ATGGTGGTAT ATGCCTGTAG AGAGACACTTGAGAGTCAGA GAAAGGAGGA CCAGGAGTTC AAGGTCATCT TTAGCTACCT AGCAAGTCTGAGGTCAGCGT GGGCTACATA AGATCCTCAA AAAAGCCAAA AAAGGGGGCT GTTGAGATAGGTAAGGGCAC CTGCTACCAA GTCTGATGAC CTCAGTTCAA CCCCAGAGAG ACCTACTAGTTACTGAAAAT TGTCCTCTAA CCTCCATACA CAAGCTGTGG CACATGCCCC ATCCTCATCCCAATAAATGT AAAACAAAAT CTAGGGAAAG AGACCCTAAG TGTTGGCATT TGGGTATGCCAAGCATAACG ACTAACACTT CATACATTGG CTTTGACCTT TACAGTCTGT GAGAACGCTTGTGTATTTCT ACCTCTGCCT TGTAGATGAG GAGTCTGGCA CTGTAGTGAG GAGCCTGAGGGCACTTAGTA ACAGCAGGAC TCTAGTCAGG TCCAACCTCT GCCTCACAAA AGCCTTGCCCAAGGCTGAAG AGGCAGTGAC TAGAGTCCAG AAAGGAACTC TTTCATGTTT TCATTACTATACTTAAGTCA TGTGGTCCAG GCTCTGTGAC TGCTCTGCCA GGCCCCGCCC TTCACCTTAGGGATTGCCTC GTGATCCTGT GCTTCCACCC TCATGGCTCT CACACACTGT GAGACTCCCCTTATGCTCAC GAGAATCCCC TCCATCCCAT TACCTCCTTG CAGTCCATCT TGAGATCTTGACCATTGATT TCCACACGTA CAATGATCAC TTCATAATAC CACTCCCGCC GGATGGGTGTGTACCAGAGA CTGCCCGTGT ATAGCGAGTG GTCGATACCA CCAATGATCT AAAAGAAAAAAAAAA 
鼠BACE-1-AS的长变体(2倍克隆)SEQ ID NO:67:GTCTACGGAT CAGGAGGAGA AAGTGAGATA CTGGCCTCAT AAAGCTGTGA CTGGGCATGGTGGCTCACAC TGCCTGTGGT CCCAGAACTT AGAAGGCTAA GGCATGAAGT TGTCAAGTTCAATGCTAACC TGGGCTACGT TCATGACCCC ATCTCAAAAA AAAAAAAAAA AAAAAAAAAGGCATCTCAAT GCCAAGTCAA CAGAGCAGTG GTTTGTAAGC GCCTGATGGG AAGGATCTACGTATCTTTAG GGCTTGCTGA GGAGTGTGAC TGTCACTGAC CGAGGAGGCT GCCTTGATGGACTTGACGGC AGCTTCAAAT ACTTTCTTGG GCAAGCGAAG GTTGGTGGTC CCACTGTCCACAATGCTCTT GTCGTAGTTG TACTGAGGAG AGAGGGGGGG AGAGGTGGGA GGGGTGAATCTGACAGCTAA GCATCCTACT GGGGTTGGCA TCTTAGCTTT CCCATTTTGT ATATGTGCGTCCTTGGGCAC GTTGCTTAAC CTCTGTGTAC CTGTTCTCTT GTTCTAAATT GAAGATAATAACAGTGCCTA CCTCAAAGGT TACCATAAGG ATTACATAGG TCAAAAGGCT GAAAGCACTAAGTAGGTCCT GGCAGATCCC AGGCACTTGG TAAGTACTAA CTTCGTCACC TTGTGCGGGTAGGTGTTCTC TAAATCTAAA GCAGAAATGC CTTGTGTGGT ATTTGTAACT TCTAGTACTTTTATGTAGTT ATTCTCATTC ACCATACATT ATAATGGAGA GAAGGGTGGC TCAGCACGCACAAAGCCATG AGCTTGAGCT CTGATGCTGC ATGGTGGTAT ATGCCTGTAG AGAGACACTTGAGAGTCAGA GAAAGGAGGA CCAGGAGTTC AAGGTCATCT TTAGCTACCT AGCAAGTCTGAGGTCAGCGT GGGCTACATA AGATCCTCAA AAAAGCCAAA AAAGGGGGCT GTTGAGATAGGTAAGGGCAC CTGCTACCAA GTCTGATGAC CTGAGTTCAA CCCCAGAGAG ACCTACTAGTTACTGAAAAT TGTCCTCTAA CCTCCATACA CAAGCTGTGG CACATGCCCC ATCCTCATCCCAATAAATGT AAAACAAAAT CTAGGGAAAG AGACCCTAAG TGTTGGCATT TGGGTATGCCAAGCATAACG ACTAACACTT CATACATTGG CTTTGACCTT TACAGTCTGT GAGAACGCTTGTGTATTTCT ACCTCTGCCT TGTAGATGAG GAGTCTGGCA CTGTAGTGAG GAGCCTGAGG GCACTCTAGT AACAGCAGGA CTCTAGTCAG GTCCAACCTC TGCCTCACAA AAGCCTTGCCCAAGGCTGAA GAGGCAGTGA CTAGAGTCCA GAAAGGAACT CTTTCATGTT TTCATTACTATACTTAAGTC ATGTGGTCCA GGCTCTGTGA CTGCTCTGCC AGGCCCCGCC CTTCACCTTAGGGATTGCCT CGTGATCCTG TGCTTCCACC CTCATGGCTC TCACACACTG TGAGACTCCCCTTATGCTCA CGAGAATCCC CTCCATCCCA TTACCTCCTT GCAGTCCATC TTGAGATCTTGACCATTGAT TTCCACACGT ACAATGATCA CTTCATAATA CCACTCCCGC CGGAGTGGGTGTGTACCAGA GACTGCCCGT GTATAGCGAG TGGTCGATAC CACCAATGAT CTAAAAGAAAAAGAGACAGA CACCTATGTC CTAGCACAGA AGGAGAGCAA GTTACCCAAG ACTAAATAATAAGATCAGCC ATTTCTTGGG GTGCCAAGAT TCTCTCTAAT CTCCCATCAT GCCCCATGCATGGTAATATT TAGTTTCCTA AATGTGTTCA GGAGAAGAAA CACATCGGGA TTATTTGTATCAAAATCTAT AGCCCTTGAC CGAAAGTTAT TTAAGCCCTA AGCTAGTACA ATAAACGTGGAATGAACTGA TTGTATGCTG CTTTCATACA TTTTCTTGTC TTTGCTTGTT GGAGAATACTTGTTACTGTC CTAATTAATA AATGGGCTTG AACTGAAAAA AAAAAAAA 
细胞应力诱导的BACE-1-AS细胞核保留模式的改变:长久以来,不同的细胞应力如缺氧、再氧化、氧化性应力和一些促凋亡因素已经涉入AD的发病机制。这些应激物提高了BACE-1活性和Aβ生成(Tong et al.,(2005)Neural Transm112,455-469)。如上所述的BACE-1-AS的细胞核保留是对最近由Prasanth及其同事报道的CTN-RNA的间隔分离(Prasanth et al.,(2005)Cell123,249-263)的回顾。这种非编码的RNA转录物如BACE-1-AS主要位于细胞核中并且含有用于腺苷至肌甙的编辑的成分,所述腺苷至肌甙的编辑是参与其细胞保留的一种关键的机制。表明CTN-RNA在细胞应力下被裂解,以生成蛋白编码转录物mCAT2mRNA。基于这些观察结果,我们推测细胞应力可能将BACE-1-AS从细胞核中释放出来,从而对BACE-1mRNA的表达进行调控。细胞应力被认为是一种有助于AD病因学的重要的引发剂(Xueet al.,(2006)Neurosci Lett405,231-235)。 
为了研究细胞应力是否改变BACE-1-AS的细胞核保留,我们将SH-SY5Y细胞暴露与一种公知的高渗细胞应力,即去极化浓度的KCl(30mM连续5min)。这种细胞应力显著地降低了保留在细胞核中的BACE-1-AS的比例,表明细胞应力将BACE-1-AS释放到细胞质中(图15B)。为了排除KCl处理后BACE-1-AS的细胞核保留的这种转变与非特异性的中毒现象和/或细胞膜破裂有关的可能性,我们用KCl对细胞进行处理,然后在常规的介 质中保持60分钟。反义转录物浓度的细胞核比细胞质模式的比例恢复至原始值。 
有充足的证据证明Aβ1-42具有有效的细胞应激物作用。Aβ1-42确实增强BACE-1mRNA和蛋白活性,从而通过各种细胞应力相关的机制对神经元细胞造成损害(Tamagno et al.,(2006)Free Radic Biol Med41,202-212)。将纯化的Aβ肽直接注入到大鼠大脑中也表现出引起蛋白氧化和神经元细胞损害(Boyd-Kimball et al.,2005Neuroscience132,313-324)。基于以上观察结果,我们假设在已知能够提高BACE-1蛋白表达并因此有助于Aβ1-42合成的浓度下(Tamagno et al.,2006),Aβ1-42还可以诱导BACE-1-AS的细胞核释放。 
与以上观察结果相一致,合成的Aβ1-42(1μM,2小时)以可逆的方式将BACE-1-AS从细胞核中释放出来并提高其在SH-SY5Y细胞中的细胞质浓度(图15C)。而且,将SH-SY5Y细胞在来自CHO-7PA2细胞的有条件的培养基中暴露2小时,还诱导BACE-1-AS转录物相似地从细胞核迁移到细胞质中,所述CHO-7PA2细胞过度表达APP并且所含的Aβ1-42二聚体和低聚体水平很高(Walsh et al.,2005Biochem Soc Trans33,1087-1090.)。作为对照,模仿源自CHO细胞的有条件的培养基没有诱导任何迁移(图15D)。基于这些观察结果,我们提出细胞应力和/或Aβ1-42将BACE-1-AS从细胞核中释放出来。假定BACE-1-AS和BACE-1mRNA的表达被一致地调节,则预料细胞质BACE-1-AS的增加将提高BACE-1mRNA的稳定性,有助于进一步生成Aβ1-42并形成前馈回路(图17)。该机制可以用来解释阿尔茨海默病的进展。 
BACE-1正义和BACE-1-AS反义转录物的稳定性:假定BACE-1-AS和BACE-1mRNA之间存在一致的关系,BACE-1-AS的细胞质浓度增加与细胞应力有关,或者暴露与Aβ1-42可能提高BACE-1的稳定性,从而增加Aβ1-42的产量。为了检验这种假设并分析BACE-1-AS的细胞质浓度增加可以通过 哪种可能的机制提高BACE-1的表达和功能,我们检查了BACE-1-AS是否提高BACE-1mRNA的稳定性和寿命。为了测定正义-反义转录物的稳定性,我们用α-蝇蕈素(5μg/ml)阻滞了新的RNA合成,并且在24小时内检测四种RNA(18srRNA、β-肌动蛋白、BACE-1和BACE-1-AS)的水平变化。BACE-1-AS的基础半衰期比BACE-1mRNA短,这个观察结果与其调节性能相一致(图16D)。此外,用α-蝇蕈素阻滞RNA合成证实了BACE-1-AS是RNA聚合酶II的产物并且进一步证实了我们的上述RACE数据。RNA聚合酶III的产物18s核糖体RNA确实没有受到α-蝇蕈素处理的影响。有趣的是,在α-蝇蕈素介导的RNA聚合酶II阻滞过程中的Aβ1-42介导的BACE-1-AS RNA迁移显著地提高了BACE-1的稳定性(图16E)。这些观察结果共同表明非编码NAT通过NAT的亚细胞划分/释放而对BACE-1mRNA的调节模式,以及对正义转录物稳定性和寿命形成的调控(图17)。 
APP转基因小鼠大脑中的BACE-1-AS水平提高:我们假定BACE-1-AS的水平提高可能使BACE-1mRNA稳定并因此增加BACE-1的表达和功能,有助于增加Aβ1-42的产量并因此有助于AD相关的病理生理学的进展。如果确实是这样,那么过度表达APP的小鼠的BACE-1-AS细胞质浓度应该增加,所述APP提高Aβ1-42的水平。我们接着研究过度表达APP的小鼠(Li etal.,(2004a)J.Neurochem89,1308-1312)中的Aβ1-42水平提高是否改变BACE-1正义或反义转录物表达。从四只雄性APP小鼠和四只六周大的相配的野生型对照小鼠中切得整个大脑、小脑和肝脏,用于蛋白和RNA提取。与预料的一样,如均相时间分辨荧光(HTRF)分析(图15F)所示,与野生型小鼠相比,APP小鼠的Aβ1-42水平显著提高(约300倍)。更重要的是,与对照相比,APP小鼠的大脑中的BACE-1-AS被上调了约45%,BACE-1mRNA增加了约25%(图15E)。这些观察结果与以下假设相一致:i)BACE-1-AS和BACE-1mRNA被一致地调节;ii)Aβ1-42水平提高与 BACE-1-AS的细胞质浓度提高有关;iii)BACE-1-AS水平提高与BACE-1水平提高以及Aβ1-42水平的一致性提高有关。最后,需要说明的是,Aβ1-42在AD大脑中的积聚是一个长期的过程,甚至很小的阳性反馈回路和BACE-1表达提高可能使淀粉质沉淀随时间显著地增多(Li et al.,(2006)FasebJ20,285-292)。 
结论:我们已经描绘了BACE-1的高度保守的细胞核保留的非编码顺式反义转录物,并且表明它在体内和体外一致地调节相应的正义BACE-1mRNA。展示了几条证据来证明,BACE-1mRNA被其天然反义转录物一致地调节。我们还提供了证据来证明Alzheimer′s疾病进展的前馈模式,其中包括Aβ1-42暴露在内的细胞应激物将该天然反义转录物从细胞核中释放出来,从而提高BACE-1的活性和Aβ1-42的产量。即,就我们所知,第一报告基因在β-淀粉质途径中直接表示非编码RNA。
表4:与BACE-1和BACE-1-AS转录物共纯化的蛋白的列表 
Figure G2006800535397D01051
参与迁移过程的蛋白(加粗的)有选择地与BACE-1mRNA一起共纯化。相反,细胞核丰富的蛋白(加粗的)专门地与BACE-1-AS转录物有关。
表5:siRNA、引物和探针以及它们的序列的列表(F:正向;R:反向;P:探针) 
Figure G2006800535397D01061
Figure G2006800535397D01071
其它实施方式 
需要理解的是,虽然结合具体描述对本发明进行了描述,但是之前的描述的目的是举例说明而不是为了限制本发明的范围。其它方面、优点和修改也在以下权利要求及其法律上的等价物的范围内。 
尽管以上的说明书中包括许多特别的例子,但是不应将它们理解为对本发明的范围的限制,而是本发明的优选实施方式的例子。可以有很多其它的改变。在此所引用的全部文献都并入作为参考。

Claims (3)

1.一种以不一致或一致的方式调节基因表达的方法,其中,该方法不是用于治疗人或动物体的方法,所述方法包括:
在不一致调节的情况下,
将核酸分子靶向正义链的反义转录物,其中,靶向所述反义转录物的核酸分子与反义链互补;并且将所述核酸分子与所述反义转录物结合;其中,所述反义转录物为非编码RNA转录物,并且,基于所述核酸分子与所述反义转录物的结合,所述正义链的表达提高,并且基因的表达被上调;
或者,在一致调节的情况下,
将至少一种核酸分子靶向正义转录物和反义转录物,其中,靶向正义转录物的核酸分子与正义链互补,并且其中,靶向反义转录物的核酸分子与反义链互补,其中,所述反义转录物为非编码RNA转录物,并且其中,基于所述至少一种核酸分子与所述反义转录物和所述正义转录物的结合,所述正义链的表达被抑制,并且基因的表达被下调,并且
其中,靶向的非编码核酸包括核酸PINK1、HIFlα、Gnbp3g、肾上腺髓质素AM1受体、6330439J10(3-含氧酸CoA转移酶)、CtpW85(组织蛋白酶W)或Kif20a。
2.根据权利要求1所述的方法,其中,所述核酸分子为SEQ ID NOs:1-3、4-32、40-61和64-67中的至少一种。
3.根据权利要求2所述的方法,其中,如SEQ ID NOs:1-3、4-32、40-61、64-67所示的核酸分子各自含有至少一个修饰的核碱基。
CN2006800535397A 2005-12-28 2006-12-28 作为药物靶标的天然反义和非编码的rna转录物 Active CN101437933B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US75446305P 2005-12-28 2005-12-28
US60/754,463 2005-12-28
PCT/US2006/062672 WO2007087113A2 (en) 2005-12-28 2006-12-28 Natural antisense and non-coding rna transcripts as drug targets

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310106246.2A Division CN103301475B (zh) 2005-12-28 2006-12-28 药物组合物和表达载体以及调节基因表达的方法和核酸分子的应用

Publications (2)

Publication Number Publication Date
CN101437933A CN101437933A (zh) 2009-05-20
CN101437933B true CN101437933B (zh) 2013-11-06

Family

ID=38309732

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2006800535397A Active CN101437933B (zh) 2005-12-28 2006-12-28 作为药物靶标的天然反义和非编码的rna转录物
CN201310106246.2A Active CN103301475B (zh) 2005-12-28 2006-12-28 药物组合物和表达载体以及调节基因表达的方法和核酸分子的应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201310106246.2A Active CN103301475B (zh) 2005-12-28 2006-12-28 药物组合物和表达载体以及调节基因表达的方法和核酸分子的应用

Country Status (5)

Country Link
US (3) US8288354B2 (zh)
EP (1) EP1976567B1 (zh)
JP (3) JP5713377B2 (zh)
CN (2) CN101437933B (zh)
WO (1) WO2007087113A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894129B (zh) * 2009-09-11 2020-07-10 Ionis制药公司 亨廷顿表达的调节

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118806A2 (en) 2004-05-28 2005-12-15 Ambion, Inc. METHODS AND COMPOSITIONS INVOLVING MicroRNA
CA2857881A1 (en) 2004-11-12 2006-12-28 Asuragen, Inc. Methods and compositions involving mirna and mirna inhibitor molecules
US8288354B2 (en) 2005-12-28 2012-10-16 The Scripps Research Institute Natural antisense and non-coding RNA transcripts as drug targets
AU2007255731B2 (en) * 2006-06-08 2013-07-18 Amino Up Chemical Co., Ltd. Method for controlling the amount of gene product, and agent for controlling the amount of gene product
EP2198050A1 (en) 2007-09-14 2010-06-23 Asuragen, INC. Micrornas differentially expressed in cervical cancer and uses thereof
AU2008308499A1 (en) * 2007-10-04 2009-04-09 Board Of Regents, The University Of Texas System Modulating gene expression with agRNA and gapmers targeting antisense transcripts
US8258111B2 (en) 2008-05-08 2012-09-04 The Johns Hopkins University Compositions and methods related to miRNA modulation of neovascularization or angiogenesis
EP2352830B1 (en) * 2008-10-03 2019-01-16 CuRNA, Inc. Treatment of apolipoprotein-a1 related diseases by inhibition of natural antisense transcript to apolipoprotein-a1
JP6099868B2 (ja) * 2008-12-04 2017-03-22 クルナ・インコーポレーテッド サーチュイン1(sirt1)に対する天然アンチセンス転写物の抑制によるサーチュイン1関連疾患の治療
ES2600781T3 (es) 2008-12-04 2017-02-10 Curna, Inc. Tratamiento para enfermedades relacionadas con el factor de crecimiento del endotelio vascular (vegf) mediante la inhibición de transcritos antisentido naturales de vegf
WO2010065792A2 (en) * 2008-12-04 2010-06-10 Curna, Inc. Treatment of erythropoietin (epo) related diseases by inhibition of natural antisense transcript to epo
EP2370582B1 (en) * 2008-12-04 2017-05-10 CuRNA, Inc. Treatment of tumor suppressor gene related diseases by inhibition of natural antisense transcript to the gene
ES2762610T3 (es) * 2009-02-12 2020-05-25 Curna Inc Tratamiento de enfermedades relacionadas con el factor neurotrófico derivado de cerebro (BDNF) por inhibición de transcrito antisentido natural para BDNF
CN102439149B (zh) * 2009-02-12 2018-01-02 库尔纳公司 通过抑制针对胶质细胞衍生神经营养因子(gdnf)的天然反义转录物来治疗gdnf相关的疾病
US9464287B2 (en) 2009-03-16 2016-10-11 Curna, Inc. Treatment of nuclear factor (erythroid-derived 2)-like 2 (NRF2) related diseases by inhibition of natural antisense transcript to NRF2
CN102549159B (zh) 2009-03-17 2016-08-10 库尔纳公司 通过抑制针对δ样1同源物(DLK1)的天然反义转录物来治疗DLK1相关的疾病
CN103223177B (zh) * 2009-05-06 2016-08-10 库尔纳公司 通过针对脂质转运和代谢基因的天然反义转录物的抑制治疗脂质转运和代谢基因相关疾病
CN102803492B (zh) * 2009-05-06 2016-06-29 库尔纳公司 通过抑制针对三重四脯氨酸(ttp)的天然反义转录物来治疗ttp相关疾病
CA3185821A1 (en) * 2009-05-08 2010-11-11 Curna, Inc. Treatment of dystrophin family related diseases by inhibition of natural antisense transcript to dmd family
EP2432881B1 (en) 2009-05-18 2017-11-15 CuRNA, Inc. Treatment of reprogramming factor related diseases by inhibition of natural antisense transcript to a reprogramming factor
CA2762987A1 (en) 2009-05-22 2010-11-25 Joseph Collard Treatment of transcription factor e3 (tfe3) and insulin receptor substrate 2 (irs2) related diseases by inhibition of natural antisense transcript to tfe3
JP5960049B2 (ja) * 2009-05-28 2016-08-02 クルナ・インコーポレーテッド 抗ウイルス遺伝子に対する天然アンチセンス転写物の抑制による抗ウイルス遺伝子関連疾患の治療
US20120171170A1 (en) 2009-06-16 2012-07-05 Opko Curna, Llc Treatment of collagen gene related diseases by inhibition of natural antisense transcript to a collagen gene
JP6128846B2 (ja) 2009-06-16 2017-05-17 クルナ・インコーポレーテッド パラオキソナーゼ(pon1)に対する天然アンチセンス転写物の抑制によるpon1遺伝子関連疾患の治療
EP2446036B1 (en) * 2009-06-24 2017-03-01 CuRNA, Inc. Treatment of tumor necrosis factor receptor 2 (tnfr2) related diseases by inhibition of natural antisense transcript to tnfr2
CN102482672B (zh) 2009-06-26 2016-11-09 库尔纳公司 通过抑制唐氏综合征基因的天然反义转录物治疗唐氏综合征基因相关疾病
JP2013500017A (ja) 2009-07-24 2013-01-07 カッパーアールエヌエー,インコーポレイテッド サ−チュイン(sirt)への天然アンチセンス転写物の阻止によるサ−チュイン(sirt)関連疾患の治療
CN102762731B (zh) * 2009-08-05 2018-06-22 库尔纳公司 通过抑制针对胰岛素基因(ins)的天然反义转录物来治疗胰岛素基因(ins)相关的疾病
US9044493B2 (en) 2009-08-11 2015-06-02 Curna, Inc. Treatment of Adiponectin related diseases by inhibition of natural antisense transcript to an Adiponectin
WO2011022606A2 (en) 2009-08-21 2011-02-24 Curna, Inc. Treatment of 'c terminus of hsp70-interacting protein' (chip) related diseases by inhibition of natural antisense transcript to chip
WO2011031482A2 (en) 2009-08-25 2011-03-17 Curna, Inc. Treatment of 'iq motif containing gtpase activating protein' (iqgap) related diseases by inhibition of natural antisense transcript to iqgap
EP2480669B1 (en) * 2009-09-25 2017-11-08 CuRNA, Inc. Treatment of filaggrin (flg) related diseases by modulation of flg expression and activity
RU2639550C2 (ru) * 2009-12-16 2017-12-21 Курна, Инк. Лечение заболеваний, связанных с сайт-1 мембраносвязанной пептидазой транскрипционных факторов (mbtps1), путем ингибирования природного антисмыслового транскрипта к mbtps1
KR101891352B1 (ko) 2009-12-23 2018-08-24 큐알엔에이, 인크. 간세포 성장 인자(hgf)에 대한 천연 안티센스 전사체의 억제에 의한 hgf 관련 질환의 치료
CN102781480B (zh) * 2009-12-23 2018-07-27 库尔纳公司 通过抑制解偶联蛋白2(ucp2)的天然反义转录物而治疗ucp2相关疾病
CA2785173A1 (en) 2009-12-29 2011-07-28 Curna, Inc. Treatment of nuclear respiratory factor 1 (nrf1) related diseases by inhibition of natural antisense transcript to nrf1
WO2011090741A2 (en) 2009-12-29 2011-07-28 Opko Curna, Llc TREATMENT OF TUMOR PROTEIN 63 (p63) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENSE TRANSCRIPT TO p63
US20120289583A1 (en) * 2009-12-31 2012-11-15 Curna, Inc. Treatment of insulin receptor substrate 2 (irs2) related diseases by inhibition of natural antisense transcript to irs2 and transcription factor e3 (tfe3)
US8946181B2 (en) 2010-01-04 2015-02-03 Curna, Inc. Treatment of interferon regulatory factor 8 (IRF8) related diseases by inhibition of natural antisense transcript to IRF8
EP2521785B1 (en) 2010-01-06 2022-03-09 CuRNA, Inc. Inhibition of natural antisense transcript to a pancreatic developmental gene for use in a treatment of pancreatic developmental gene related diseases
US9200277B2 (en) 2010-01-11 2015-12-01 Curna, Inc. Treatment of sex hormone binding globulin (SHBG) related diseases by inhibition of natural antisense transcript to SHBG
CA2786568A1 (en) 2010-01-25 2011-07-28 Curna, Inc. Treatment of rnase h1 related diseases by inhibition of natural antisense transcript to rnase h1
JP5976548B2 (ja) 2010-02-22 2016-08-23 カッパーアールエヌエー,インコーポレイテッド Pycr1に対する天然アンチセンス転写物の阻害によるピロリン−5−カルボン酸レダクターゼ1(pycr1)関連疾患の治療
CA2795145C (en) 2010-04-02 2019-01-22 Curna, Inc. Treatment of colony-stimulating factor 3 (csf3) related diseases by inhibition of natural antisense transcript to csf3
CA2795281A1 (en) 2010-04-09 2011-10-13 Curna, Inc. Treatment of fibroblast growth factor 21 (fgf21) related diseases by inhibition of natural antisense transcript to fgf21
US20130108645A1 (en) * 2010-04-13 2013-05-02 The Johns Hopkins University Methods for enhancing axonal regeneration
RU2693462C2 (ru) * 2010-05-03 2019-07-03 Курна, Инк. Лечение заболеваний, связанных с сиртуином (sirt), путем ингибирования природного антисмыслового транскрипта к сиртуину (sirt)
TWI531370B (zh) 2010-05-14 2016-05-01 可娜公司 藉由抑制par4天然反股轉錄本治療par4相關疾病
RU2585229C2 (ru) * 2010-05-26 2016-05-27 Курна, Инк. Лечение заболеваний, связанных с атональным гомологом 1 (атон1), путем ингибирования природного антисмыслового транскрипта гена атон1
JP5917497B2 (ja) * 2010-05-26 2016-05-18 カッパーアールエヌエー,インコーポレイテッド メチオニンスルホキシドレダクターゼa(msra)に対する天然アンチセンス転写物の阻害によるmsra関連疾患の治療
DK2585596T3 (da) 2010-06-23 2021-04-06 Curna Inc Behandling af spændingsreguleret natriumkanal-alpha-underenhed (scna)-relaterede sygdomme ved inhibering af naturligt antisense-transkript til scna
GB201010557D0 (en) * 2010-06-23 2010-08-11 Mina Therapeutics Ltd RNA molecules and uses thereof
JP5998131B2 (ja) 2010-07-14 2016-09-28 カッパーアールエヌエー,インコーポレイテッド Discslargehomolog(dlg)dlg1への天然アンチセンス転写物の阻害によるdlg関連疾患の治療
EP2625274B1 (en) * 2010-10-06 2017-07-19 CuRNA, Inc. Treatment of sialidase 4 (neu4) related diseases by inhibition of natural antisense transcript to neu4
US8835400B2 (en) 2010-10-08 2014-09-16 Mina Therapeutics Limited RNA molecules that upregulate insulin production
US9222088B2 (en) 2010-10-22 2015-12-29 Curna, Inc. Treatment of alpha-L-iduronidase (IDUA) related diseases by inhibition of natural antisense transcript to IDUA
DK2633052T3 (en) * 2010-10-27 2018-07-16 Curna Inc TREATMENT OF INTERFERON-RELATED DEVELOPMENT REGULATOR 1 (IFRD1) -RELATED DISEASES BY INHIBITION OF NATURAL ANTISENCE TRANSCRIPT TO IFRD1
US9920317B2 (en) 2010-11-12 2018-03-20 The General Hospital Corporation Polycomb-associated non-coding RNAs
DK2638163T3 (en) 2010-11-12 2017-07-24 Massachusetts Gen Hospital POLYCOMB-ASSOCIATED NON-CODING RNAs
US10000752B2 (en) 2010-11-18 2018-06-19 Curna, Inc. Antagonat compositions and methods of use
RU2608493C2 (ru) * 2010-11-23 2017-01-18 Курна, Инк. Лечение заболеваний, связанных с nanog, путем ингибирования природного антисмыслового транскрипта nanog
US20130309246A1 (en) * 2011-02-02 2013-11-21 The Trustees Of Princeton University Jagged1 as a marker and therapeutic target for breast cancer bone metastasis
TWI678375B (zh) * 2011-06-09 2019-12-01 可娜公司 藉由抑制共濟蛋白(frataxin,fxn)之天然反股轉錄本治療fxn相關疾病
TWI642438B (zh) * 2011-06-24 2018-12-01 可娜公司 藉由抑制電壓門控鈉離子通道α次單元(SCNA)之天然反義轉錄物治療SCNA相關疾病
CN103874486A (zh) 2011-09-06 2014-06-18 库尔纳公司 用小分子治疗与电压门控钠通道的α亚基(SCNxA)相关的疾病
WO2013040251A2 (en) 2011-09-13 2013-03-21 Asurgen, Inc. Methods and compositions involving mir-135b for distinguishing pancreatic cancer from benign pancreatic disease
HUE040179T2 (hu) 2012-03-15 2019-02-28 Curna Inc Agyi eredetû neutrotróf faktorral (Brain-derived neurotrophic factor, BDNF) összefüggõ betegségek kezelése a BDNF-fel kapcsolatos természetes antiszensz transzkriptumok gátlása révén
WO2013173608A1 (en) 2012-05-16 2013-11-21 Rana Therapeutics, Inc. Compositions and methods for modulating mecp2 expression
KR20160074368A (ko) 2012-05-16 2016-06-28 라나 테라퓨틱스, 인크. Utrn 발현을 조절하기 위한 조성물 및 방법
DK2850186T3 (en) 2012-05-16 2019-04-08 Translate Bio Ma Inc COMPOSITIONS AND PROCEDURES FOR MODULATING SMN GENFAMILY EXPRESSION
US10837014B2 (en) 2012-05-16 2020-11-17 Translate Bio Ma, Inc. Compositions and methods for modulating SMN gene family expression
CN104583398A (zh) 2012-05-16 2015-04-29 Rana医疗有限公司 用于调节基因表达的组合物和方法
WO2013173598A1 (en) 2012-05-16 2013-11-21 Rana Therapeutics, Inc. Compositions and methods for modulating atp2a2 expression
JP2015518710A (ja) 2012-05-16 2015-07-06 ラナ セラピューティクス インコーポレイテッド ヘモグロビン遺伝子ファミリー発現を調節するための組成物及び方法
JP6294876B2 (ja) 2012-06-25 2018-03-14 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. Ube3a−ats発現の調節
CN103088122A (zh) * 2012-12-07 2013-05-08 周宏灏 一种检测 TYMS mRNA 基因表达量的试剂盒及方法
WO2015035476A1 (en) * 2013-09-16 2015-03-19 University Of Western Sydney Modulation of gene expression
CA2930973A1 (en) 2013-11-22 2015-05-28 Pal SAERTROM C/ebp alpha short activating rna compositions and methods of use
CN104318131A (zh) * 2014-10-11 2015-01-28 中国农业科学院棉花研究所 电子fish的方法
WO2016070060A1 (en) 2014-10-30 2016-05-06 The General Hospital Corporation Methods for modulating atrx-dependent gene repression
EP3271460A4 (en) 2015-03-17 2019-03-13 The General Hospital Corporation INTERACTOME RNA OF COMPLEX REPRESSIVE POLYCOMB 1 (PRC1)
US20180305689A1 (en) 2015-04-22 2018-10-25 Mina Therapeutics Limited Sarna compositions and methods of use
US11094058B2 (en) 2015-08-14 2021-08-17 Elucid Bioimaging Inc. Systems and method for computer-aided phenotyping (CAP) using radiologic images
US11087459B2 (en) 2015-08-14 2021-08-10 Elucid Bioimaging Inc. Quantitative imaging for fractional flow reserve (FFR)
US10755810B2 (en) 2015-08-14 2020-08-25 Elucid Bioimaging Inc. Methods and systems for representing, storing, and accessing computable medical imaging-derived quantities
US11113812B2 (en) 2015-08-14 2021-09-07 Elucid Bioimaging Inc. Quantitative imaging for detecting vulnerable plaque
US11071501B2 (en) 2015-08-14 2021-07-27 Elucid Bioiwaging Inc. Quantitative imaging for determining time to adverse event (TTE)
US11676359B2 (en) 2015-08-14 2023-06-13 Elucid Bioimaging Inc. Non-invasive quantitative imaging biomarkers of atherosclerotic plaque biology
US10176408B2 (en) 2015-08-14 2019-01-08 Elucid Bioimaging Inc. Systems and methods for analyzing pathologies utilizing quantitative imaging
WO2017081254A1 (en) 2015-11-12 2017-05-18 F. Hoffmann-La Roche Ag Methods for determining the efficacy profile of a drug candidate
WO2018132155A2 (en) * 2016-11-03 2018-07-19 University Of Florida Research Foundation Incorporated Aav delivery of shrna for treatment of pancreatic cancer
US10740880B2 (en) 2017-01-18 2020-08-11 Elucid Bioimaging Inc. Systems and methods for analyzing pathologies utilizing quantitative imaging
EP3665702A4 (en) 2017-08-11 2021-05-26 Elucid Bioimaging Inc. QUANTITATIVE MEDICAL IMAGING REPORTING
US11162099B2 (en) 2017-09-08 2021-11-02 Mina Therapeutics Limited HNF4A saRNA compositions and methods of use
WO2019048645A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited STABILIZED COMPOSITIONS OF SMALL ACTIVATOR RNA (PARNA) FROM CEBPA AND METHODS OF USE
EP3775211B1 (en) 2018-04-12 2023-04-05 MiNA Therapeutics Limited Sirt1-sarna compositions and methods of use
JP7113916B2 (ja) * 2018-05-27 2022-08-05 エルシド バイオイメージング インコーポレイテッド 定量的イメージングを利用するための方法およびシステム
CN109055522A (zh) * 2018-07-03 2018-12-21 吉林大学 C4orf38在制备用于检测或治疗神经性疼痛的产品中的应用
CN111378761A (zh) * 2018-12-28 2020-07-07 上海市计划生育科学研究所 精子特异tsRNAs在辅助生殖体外受精诊断中的应用
SG11202110679YA (en) 2019-03-29 2021-10-28 Ionis Pharmaceuticals Inc Compounds and methods for modulating ube3a-ats
US20220211740A1 (en) 2019-04-12 2022-07-07 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
JP2022543330A (ja) 2019-08-05 2022-10-12 エルシド バイオイメージング インコーポレイテッド 形態学的および血管周囲疾患の複合評価
WO2021032777A1 (en) 2019-08-19 2021-02-25 Mina Therapeutics Limited Oligonucleotide conjugate compositions and methods of use
CN111621546A (zh) * 2020-06-18 2020-09-04 上海诚益生物科技有限公司 一种利用原代肝细胞筛选甲状腺素受体激动剂的方法
CN112908406A (zh) * 2021-02-03 2021-06-04 复旦大学附属金山医院(上海市金山区核化伤害应急救治中心、上海市金山区眼病防治所) Pink1作为诊断标志物在构建肺鳞癌预后预测模型中的应用
CN112927766B (zh) * 2021-03-29 2022-11-01 天士力国际基因网络药物创新中心有限公司 一种疾病组合药物筛选的方法
WO2022216876A1 (en) * 2021-04-08 2022-10-13 City Of Hope Cancer treatment by targeting proteins or interactions of ephrinb-rgs3-kif20a-sept7 axis

Family Cites Families (330)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US5023243A (en) 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US4476301A (en) 1982-04-29 1984-10-09 Centre National De La Recherche Scientifique Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
NZ207394A (en) 1983-03-08 1987-03-06 Commw Serum Lab Commission Detecting or determining sequence of amino acids
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5550111A (en) 1984-07-11 1996-08-27 Temple University-Of The Commonwealth System Of Higher Education Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
FR2567892B1 (fr) 1984-07-19 1989-02-17 Centre Nat Rech Scient Nouveaux oligonucleotides, leur procede de preparation et leurs applications comme mediateurs dans le developpement des effets des interferons
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
US4828979A (en) 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
US4754065A (en) 1984-12-18 1988-06-28 Cetus Corporation Precursor to nucleic acid probe
FR2575751B1 (fr) 1985-01-08 1987-04-03 Pasteur Institut Nouveaux nucleosides de derives de l'adenosine, leur preparation et leurs applications biologiques
US5405938A (en) 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5506337A (en) 1985-03-15 1996-04-09 Antivirals Inc. Morpholino-subunit combinatorial library and method
US5185444A (en) 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
EP0260032B1 (en) 1986-09-08 1994-01-26 Ajinomoto Co., Inc. Compounds for the cleavage at a specific position of RNA, oligomers employed for the formation of said compounds, and starting materials for the synthesis of said oligomers
US5276019A (en) 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
JP2828642B2 (ja) 1987-06-24 1998-11-25 ハワード フローレイ インスティテュト オブ イクスペリメンタル フィジオロジー アンド メディシン ヌクレオシド誘導体
US4924624A (en) 1987-10-22 1990-05-15 Temple University-Of The Commonwealth System Of Higher Education 2,',5'-phosphorothioate oligoadenylates and plant antiviral uses thereof
US5188897A (en) 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
US5525465A (en) 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
DE3855864T2 (de) 1987-11-30 1997-09-25 Univ Iowa Res Found Durch modifikationen an der 3'-terminalen phosphodiesterbindung stabilisierte dna moleküle, ihre verwendung als nukleinsäuresonden sowie als therapeutische mittel zur hemmung der expression spezifischer zielgene
US5403711A (en) 1987-11-30 1995-04-04 University Of Iowa Research Foundation Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved
US5288512A (en) 1987-12-15 1994-02-22 The Procter & Gamble Company Reduced calorie fats made from triglycerides containing medium and long chain fatty acids
JPH03503894A (ja) 1988-03-25 1991-08-29 ユニバーシィティ オブ バージニア アランミ パテンツ ファウンデイション オリゴヌクレオチド n‐アルキルホスホラミデート
NL8800756A (nl) 1988-03-25 1989-10-16 Vereniging Voor Christelijk Wetenschappelijk Onderwijs Genetisch gemanipuleerde plantecellen en planten, alsmede daarvoor bruikbaar recombinant dna.
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US6203976B1 (en) 1989-07-18 2001-03-20 Osi Pharmaceuticals, Inc. Methods of preparing compositions comprising chemicals capable of transcriptional modulation
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5399676A (en) 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
EP0497875B1 (en) 1989-10-24 2000-03-22 Isis Pharmaceuticals, Inc. 2' modified oligonucleotides
US5264562A (en) 1989-10-24 1993-11-23 Gilead Sciences, Inc. Oligonucleotide analogs with novel linkages
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5177198A (en) 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5457189A (en) 1989-12-04 1995-10-10 Isis Pharmaceuticals Antisense oligonucleotide inhibition of papillomavirus
US5130302A (en) 1989-12-20 1992-07-14 Boron Bilogicals, Inc. Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5623065A (en) 1990-08-13 1997-04-22 Isis Pharmaceuticals, Inc. Gapped 2' modified oligonucleotides
US5587470A (en) 1990-01-11 1996-12-24 Isis Pharmaceuticals, Inc. 3-deazapurines
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5852188A (en) 1990-01-11 1998-12-22 Isis Pharmaceuticals, Inc. Oligonucleotides having chiral phosphorus linkages
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5149797A (en) 1990-02-15 1992-09-22 The Worcester Foundation For Experimental Biology Method of site-specific alteration of rna and production of encoded polypeptides
US5220007A (en) 1990-02-15 1993-06-15 The Worcester Foundation For Experimental Biology Method of site-specific alteration of RNA and production of encoded polypeptides
US5321131A (en) 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US5470967A (en) 1990-04-10 1995-11-28 The Dupont Merck Pharmaceutical Company Oligonucleotide analogs with sulfamate linkages
GB9009980D0 (en) 1990-05-03 1990-06-27 Amersham Int Plc Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
US6034233A (en) 1990-05-04 2000-03-07 Isis Pharmaceuticals Inc. 2'-O-alkylated oligoribonucleotides and phosphorothioate analogs complementary to portions of the HIV genome
DK0455905T3 (da) 1990-05-11 1998-12-07 Microprobe Corp Dipsticks til nukleinsyrehybridiseringsassays og fremgangsmåde til kovalent immobilisering af oligonukleotider
IE66205B1 (en) 1990-06-14 1995-12-13 Paul A Bartlett Polypeptide analogs
US5650489A (en) 1990-07-02 1997-07-22 The Arizona Board Of Regents Random bio-oligomer library, a method of synthesis thereof, and a method of use thereof
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5218105A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5618704A (en) 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5610289A (en) 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5614617A (en) 1990-07-27 1997-03-25 Isis Pharmaceuticals, Inc. Nuclease resistant, pyrimidine modified oligonucleotides that detect and modulate gene expression
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5623070A (en) 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
MY107332A (en) 1990-08-03 1995-11-30 Sterling Drug Inc Compounds and methods for inhibiting gene expression.
US5177196A (en) 1990-08-16 1993-01-05 Microprobe Corporation Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof
US5214134A (en) 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5561225A (en) 1990-09-19 1996-10-01 Southern Research Institute Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
US5596086A (en) 1990-09-20 1997-01-21 Gilead Sciences, Inc. Modified internucleoside linkages having one nitrogen and two carbon atoms
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
DE69128037T2 (de) 1990-11-13 1998-05-07 Immunex Corp Bifunktionelle wählbare fusionsgene
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5571799A (en) 1991-08-12 1996-11-05 Basco, Ltd. (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response
US6307040B1 (en) 1992-03-05 2001-10-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5474796A (en) 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5661134A (en) 1991-10-15 1997-08-26 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating Ha-ras or Ki-ras having phosphorothioate linkages of high chiral purity
US5576302A (en) 1991-10-15 1996-11-19 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating hepatitis C virus having phosphorothioate linkages of high chiral purity
EP0538194B1 (de) 1991-10-17 1997-06-04 Novartis AG Bicyclische Nukleoside, Oligonukleotide, Verfahren zu deren Herstellung und Zwischenprodukte
US6335434B1 (en) 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US5605662A (en) 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
US5700922A (en) 1991-12-24 1997-12-23 Isis Pharmaceuticals, Inc. PNA-DNA-PNA chimeric macromolecules
FR2687679B1 (fr) 1992-02-05 1994-10-28 Centre Nat Rech Scient Oligothionucleotides.
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US5633360A (en) 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
IL101600A (en) 1992-04-15 2000-02-29 Yissum Res Dev Co Synthetic partially phosphorothioated antisense oligodeoxynucleotides and pharmaceutical compositions containing them
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
EP0577558A2 (de) 1992-07-01 1994-01-05 Ciba-Geigy Ag Carbocyclische Nukleoside mit bicyclischen Ringen, Oligonukleotide daraus, Verfahren zu deren Herstellung, deren Verwendung und Zwischenproduckte
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US6710174B2 (en) 2001-09-13 2004-03-23 Isis Pharmaceuticals, Inc. Antisense inhibition of vascular endothelial growth factor receptor-1 expression
AU674891B2 (en) 1992-10-15 1997-01-16 Toray Industries, Inc. Process for producing major histocompatibility antigen class II protein and material having the same immobilized thereon
US5476925A (en) 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
GB9304618D0 (en) 1993-03-06 1993-04-21 Ciba Geigy Ag Chemical compounds
AU6449394A (en) 1993-03-30 1994-10-24 Sterling Winthrop Inc. Acyclic nucleoside analogs and oligonucleotide sequences containing them
JPH08508491A (ja) 1993-03-31 1996-09-10 スターリング ウインスロップ インコーポレイティド ホスホジエステル結合をアミド結合に置き換えたオリゴヌクレオチド
DE4311944A1 (de) 1993-04-10 1994-10-13 Degussa Umhüllte Natriumpercarbonatpartikel, Verfahren zu deren Herstellung und sie enthaltende Wasch-, Reinigungs- und Bleichmittelzusammensetzungen
AU6786594A (en) 1993-05-11 1994-12-12 University Of North Carolina At Chapel Hill, The Antisense oligonucleotides which combat aberrant splicing and methods of using the same
EP0804590A1 (en) 1993-05-21 1997-11-05 Targeted Genetics Corporation Bifunctional selectable fusion genes based on the cytosine deaminase (cd) gene
DE69433036T2 (de) 1993-09-03 2004-05-27 Isis Pharmaceuticals, Inc., Carlsbad Aminoderivatisierte nukleoside und oligonukleoside
US5491084A (en) 1993-09-10 1996-02-13 The Trustees Of Columbia University In The City Of New York Uses of green-fluorescent protein
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
CA2177031A1 (en) 1993-11-30 1995-06-08 Moshe Szyf Inhibition of dna methyltransferase
US5908779A (en) 1993-12-01 1999-06-01 University Of Connecticut Targeted RNA degradation using nuclear antisense RNA
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
EP0733059B1 (en) 1993-12-09 2000-09-13 Thomas Jefferson University Compounds and methods for site-directed mutations in eukaryotic cells
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5593853A (en) 1994-02-09 1997-01-14 Martek Corporation Generation and screening of synthetic drug libraries
AU1925195A (en) 1994-02-22 1995-09-04 Dana-Farber Cancer Institute Nucleic acid delivery system, method of synthesis and uses thereof
US5902880A (en) 1994-08-19 1999-05-11 Ribozyme Pharmaceuticals, Inc. RNA polymerase III-based expression of therapeutic RNAs
US5539083A (en) 1994-02-23 1996-07-23 Isis Pharmaceuticals, Inc. Peptide nucleic acid combinatorial libraries and improved methods of synthesis
US6551618B2 (en) 1994-03-15 2003-04-22 University Of Birmingham Compositions and methods for delivery of agents for neuronal regeneration and survival
US6015880A (en) 1994-03-16 2000-01-18 California Institute Of Technology Method and substrate for performing multiple sequential reactions on a matrix
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5625050A (en) 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5525735A (en) 1994-06-22 1996-06-11 Affymax Technologies Nv Methods for synthesizing diverse collections of pyrrolidine compounds
US5549974A (en) 1994-06-23 1996-08-27 Affymax Technologies Nv Methods for the solid phase synthesis of thiazolidinones, metathiazanones, and derivatives thereof
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US6645943B1 (en) 1994-10-25 2003-11-11 Hybridon, Inc. Method of down-regulating gene expression
GB9501465D0 (en) 1995-01-25 1995-03-15 King S College London Nucleoside phosphorothioate derivatives,synthesis and use thereof
DE19502912A1 (de) 1995-01-31 1996-08-01 Hoechst Ag G-Cap Stabilisierte Oligonucleotide
IT1276642B1 (it) 1995-03-03 1997-11-03 Consiglio Nazionale Ricerche Trascritto antisenso presente in linfociti b ed oligodeossinucleotidi sintetici utili per inibirne l'azione
IT1275862B1 (it) 1995-03-03 1997-10-24 Consiglio Nazionale Ricerche Trascritto antisenso associato ad alcuni tipi di cellule tumorali ed oligodeossinucleotidi sintetici utili nella diagnosi e nel trattamento
US5739311A (en) 1995-06-07 1998-04-14 Gen-Probe Incorporated Enzymatic synthesis of phosphorothioate oligonucleotides using restriction endonucleases
US5569588A (en) 1995-08-09 1996-10-29 The Regents Of The University Of California Methods for drug screening
US5652356A (en) 1995-08-17 1997-07-29 Hybridon, Inc. Inverted chimeric and hybrid oligonucleotides
CZ243498A3 (cs) 1996-02-14 1999-09-15 Isis Pharmaceuticals, Inc. Oligonukleotidy s mezerou a modifikovaným cukrem
IL125839A0 (en) 1996-03-14 1999-04-11 Genentech Inc Uses of gdnf and gdnf receptor
AU2733697A (en) 1996-04-17 1997-11-07 Aronex Pharmaceuticals, Inc. Antisense inhibitors of vascular endothelial growth factor (vegf/vpf) expression
US5786213A (en) 1996-04-18 1998-07-28 Board Of Regents, The University Of Texas System Inhibition of endogenous gastrin expression for treatment of colorectal cancer
JPH10212241A (ja) 1996-05-27 1998-08-11 Sumitomo Pharmaceut Co Ltd Bdnfを安定に含有する製剤
US5756710A (en) 1996-06-05 1998-05-26 The Trustees Of Columbia University In City Of New York Phosphorothioate oligonucleotides that bind to the V3-loop and uses thereof
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US5690039A (en) 1996-06-17 1997-11-25 Rjm Corporation Method and apparatus for reducing nitrogen oxides using spatially selective cooling
US5849902A (en) 1996-09-26 1998-12-15 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
US5739119A (en) 1996-11-15 1998-04-14 Galli; Rachel L. Antisense oligonucleotides specific for the muscarinic type 2 acetylcholine receptor MRNA
US7008776B1 (en) 1996-12-06 2006-03-07 Aventis Pharmaceuticals Inc. Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein AI very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol
US7235653B2 (en) 1996-12-31 2007-06-26 Isis Pharmaceuticals, Inc. Oligonucleotide compositions and methods for the modulation of the expression of B7 protein
JP3756313B2 (ja) 1997-03-07 2006-03-15 武 今西 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体
US6013786A (en) 1997-08-22 2000-01-11 Hybridon, Inc. MDM2-specific antisense oligonucleotides
US7572582B2 (en) 1997-09-12 2009-08-11 Exiqon A/S Oligonucleotide analogues
NZ503765A (en) 1997-09-12 2002-04-26 Exiqon As Bi-cyclic and tri-cyclic nucleotide analogues
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
US7285288B1 (en) 1997-10-03 2007-10-23 Board Of Regents, The University Of Texas System Inhibition of Bcl-2 protein expression by liposomal antisense oligodeoxynucleotides
US6147109A (en) * 1997-10-14 2000-11-14 The General Hospital Corporation Upregulation of Type III endothelial cell Nitric Oxide Synthase by HMG-CoA reductase inhibitors
US6034883A (en) 1998-01-29 2000-03-07 Tinney; Charles E. Solid state director for beams
US6175409B1 (en) 1999-04-02 2001-01-16 Symyx Technologies, Inc. Flow-injection analysis and variable-flow light-scattering methods and apparatus for characterizing polymers
US20040186071A1 (en) 1998-04-13 2004-09-23 Bennett C. Frank Antisense modulation of CD40 expression
US7321828B2 (en) 1998-04-13 2008-01-22 Isis Pharmaceuticals, Inc. System of components for preparing oligonucleotides
US6221587B1 (en) 1998-05-12 2001-04-24 Isis Pharmceuticals, Inc. Identification of molecular interaction sites in RNA for novel drug discovery
AU757724B2 (en) 1998-05-26 2003-03-06 Icn Pharmaceuticals, Inc. Novel nucleosides having bicyclic sugar moiety
US6833361B2 (en) 1998-05-26 2004-12-21 Ribapharm, Inc. Nucleosides having bicyclic sugar moiety
US20030139359A1 (en) 2001-12-04 2003-07-24 Isis Pharmaceuticals Inc. Antisense modulation of phospholipid scramblase 3 expression
US6100090A (en) 1999-06-25 2000-08-08 Isis Pharmaceuticals Inc. Antisense inhibition of PI3K p85 expression
US6242589B1 (en) 1998-07-14 2001-06-05 Isis Pharmaceuticals, Inc. Phosphorothioate oligonucleotides having modified internucleoside linkages
US6867294B1 (en) 1998-07-14 2005-03-15 Isis Pharmaceuticals, Inc. Gapped oligomers having site specific chiral phosphorothioate internucleoside linkages
US6214986B1 (en) 1998-10-07 2001-04-10 Isis Pharmaceuticals, Inc. Antisense modulation of bcl-x expression
WO2000027424A2 (en) 1998-11-06 2000-05-18 Alcon Laboratories, Inc. Upregulation of endogenous prostaglandins to lower intraocular pressure
US5985663A (en) 1998-11-25 1999-11-16 Isis Pharmaceuticals Inc. Antisense inhibition of interleukin-15 expression
ES2377749T3 (es) 1999-01-27 2012-03-30 Coda Therapeutics, Inc. Formulaciones que comprenden nucleótidos antisentidos para conexinas
BRPI0008131B8 (pt) 1999-02-12 2021-05-25 Daiichi Sankyo Co Ltd composto ou um sal deste, análogo de oligonucleotídeo, composição farmacêutica, sonda para um gene,iniciador para começar a amplificação, uso de um análogo de oligonucleotídeo ou de um sal deste farmacologicamente aceitável, agente antisentido, e, agente antígeno
EP1163254B1 (en) 1999-02-26 2008-01-30 The University of British Columbia Trpm-2 antisense therapy
DE1100895T1 (de) 1999-03-15 2001-09-06 Univ British Columbia Abc1 polypeptide und verfahren und reagenzien zur modulation des cholesterolgehalts
US20040137423A1 (en) 1999-03-15 2004-07-15 Hayden Michael R. Compositions and methods for modulating HDL cholesterol and triglyceride levels
WO2000056916A2 (en) 1999-03-18 2000-09-28 Exiqon A/S Detection of mutations in genes by specific lna primers
US7084125B2 (en) 1999-03-18 2006-08-01 Exiqon A/S Xylo-LNA analogues
JP4768132B2 (ja) 1999-03-24 2011-09-07 エクシコン エ/エス [2.2.1]ビシクロヌクレオシドの改良された製法
US6734291B2 (en) 1999-03-24 2004-05-11 Exiqon A/S Synthesis of [2.2.1]bicyclo nucleosides
MXPA01009727A (es) 1999-03-26 2002-07-22 Aventis Pharma Inc Composiciones y metodos para afectar los niveles de colesterol asociado a lipoproteina de alta densidad (hdl) y a apolipoproteina a1, colesterol asociado a lipoproteina de muy baja densidad (vldl) y colesterol asociado a lipoproteina de baja densidad
ES2300261T3 (es) 1999-04-08 2008-06-16 Novartis Vaccines And Diagnostics, Inc. Potenciacion de la respuesta inmune para aplicaciones de vacunas y terapia genetica.
US5998148A (en) * 1999-04-08 1999-12-07 Isis Pharmaceuticals Inc. Antisense modulation of microtubule-associated protein 4 expression
US6977295B2 (en) 1999-04-21 2005-12-20 Invitrogen Corporation Locked nucleic acid hybrids and methods of use
CA2372085C (en) 1999-05-04 2009-10-27 Exiqon A/S L-ribo-lna analogues
US6525191B1 (en) 1999-05-11 2003-02-25 Kanda S. Ramasamy Conformationally constrained L-nucleosides
DE19925073C2 (de) 1999-06-01 2001-07-19 Stefan Weiss Nucleinsäuremoleküle mit spezifischer Erkennung von nativem PrP·S··c·, Herstellung und Verwendung
US6656730B1 (en) 1999-06-15 2003-12-02 Isis Pharmaceuticals, Inc. Oligonucleotides conjugated to protein-binding drugs
WO2001000669A2 (en) 1999-06-25 2001-01-04 Genset A bap28 gene and protein
US20040006031A1 (en) 2002-07-02 2004-01-08 Isis Pharmaceuticals Inc. Antisense modulation of HMG-CoA reductase expression
US6147200A (en) 1999-08-19 2000-11-14 Isis Pharmaceuticals, Inc. 2'-O-acetamido modified monomers and oligomers
EP1218411A4 (en) 1999-09-20 2004-09-01 Millennium Pharm Inc SECRETED PROTEINS AND THEIR USES
US6617442B1 (en) 1999-09-30 2003-09-09 Isis Pharmaceuticals, Inc. Human Rnase H1 and oligonucleotide compositions thereof
US6528262B1 (en) 1999-10-06 2003-03-04 Quark Biotech, Inc. Method for enrichment of natural antisense messenger RNA
US6986988B2 (en) 1999-10-06 2006-01-17 Quark Biotech, Inc. Method for enrichment of natural antisense messenger RNA
AU2778801A (en) 2000-01-07 2001-07-24 Baylor University Antisense compositions and methods
WO2001051490A1 (en) 2000-01-14 2001-07-19 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Methanocarba cycloalkyl nucleoside analogues
US6303374B1 (en) 2000-01-18 2001-10-16 Isis Pharmaceuticals Inc. Antisense modulation of caspase 3 expression
JP2001247459A (ja) 2000-03-03 2001-09-11 Oakland Uniservices Ltd 癌の組み合わせ療法
OA12240A (en) 2000-03-27 2006-05-10 Univ Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides.
US6936467B2 (en) 2000-03-27 2005-08-30 University Of Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
US7402434B2 (en) 2000-05-08 2008-07-22 Newman Stuart A Splice choice antagonists as therapeutic agents
US6713276B2 (en) 2000-06-28 2004-03-30 Scios, Inc. Modulation of Aβ levels by β-secretase BACE2
EP1294754A1 (en) 2000-06-29 2003-03-26 Pharma Pacific Pty. Ltd. Interferon-alpha induced gene
JP2004505047A (ja) 2000-07-28 2004-02-19 キャンサー・リサーチ・テクノロジー・リミテッド 複合治療による癌治療
WO2002018388A1 (fr) 2000-08-29 2002-03-07 Takeshi Imanishi Analogues de nucleosides et derives d'oligonucleotides renfermant ces analogues
US20050209179A1 (en) * 2000-08-30 2005-09-22 Sirna Therapeutics, Inc. RNA interference mediated treatment of Alzheimer's disease using short interfering nucleic acid (siNA)
US20030190635A1 (en) * 2002-02-20 2003-10-09 Mcswiggen James A. RNA interference mediated treatment of Alzheimer's disease using short interfering RNA
ATE385505T1 (de) 2000-09-02 2008-02-15 Gruenenthal Gmbh Antisense oligonukleotide gegen vr 1
US6444464B1 (en) 2000-09-08 2002-09-03 Isis Pharmaceuticals, Inc. Antisense modulation of E2F transcription factor 2 expression
WO2002024717A1 (en) 2000-09-20 2002-03-28 Isis Pharmaceuticals, Inc. Antisense modulation of flip-c expression
AU2002210295A1 (en) 2000-10-13 2002-04-22 Institut De Cardiologie De Montreal Antisense oligonucleotide directed toward mammalian vegf receptor genes and uses thereof
WO2002047466A2 (en) * 2000-10-27 2002-06-20 The Johns Hopkins University School Of Medicine Beta-secretase transgenic organisms, anti-beta-secretase antibodies, and methods of use thereof
US20030228618A1 (en) 2000-11-24 2003-12-11 Erez Levanon Methods and systems for identifying naturally occurring antisense transcripts and methods, kits and arrays utilizing same
ES2728168T3 (es) * 2000-12-01 2019-10-22 Max Planck Gesellschaft Moléculas pequeñas de ARN que median en la interferencia de ARN
US20050222029A1 (en) 2001-01-04 2005-10-06 Myriad Genetics, Incorporated Compositions and methods for treating diseases
US7423142B2 (en) 2001-01-09 2008-09-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US20020147165A1 (en) 2001-02-22 2002-10-10 Isis Pharmaceuticals, Inc. Antisense modulation of calreticulin expression
AU2002234755A1 (en) 2001-02-26 2002-09-12 Pharma Pacific Pty Ltd Interferon-alpha induced gene
WO2002085308A2 (en) 2001-04-24 2002-10-31 Epigenesis Pharmaceuticals, Inc. Antisense and anti-inflammatory based compositions to treat respiratory disorders
AUPR497101A0 (en) 2001-05-14 2001-06-07 Queensland University Of Technology Polynucleotides and polypeptides linked to cancer and/or tumorigenesi
IL143379A (en) 2001-05-24 2013-11-28 Yissum Res Dev Co Oligonucleotide against human ache isoform r and its uses
US7053195B1 (en) 2001-06-12 2006-05-30 Syngenta Participatious Ag Locked nucleic acid containing heteropolymers and related methods
US7153954B2 (en) 2001-07-12 2006-12-26 Santaris Pharma A/S Method for preparation of LNA phosphoramidites
CA2453183C (en) 2001-07-12 2016-05-10 University Of Massachusetts In vivo production of small interfering rnas that mediate gene silencing
US7425545B2 (en) 2001-07-25 2008-09-16 Isis Pharmaceuticals, Inc. Modulation of C-reactive protein expression
US20030096772A1 (en) 2001-07-30 2003-05-22 Crooke Rosanne M. Antisense modulation of acyl CoA cholesterol acyltransferase-2 expression
US7259150B2 (en) 2001-08-07 2007-08-21 Isis Pharmaceuticals, Inc. Modulation of apolipoprotein (a) expression
AU2002334307A1 (en) 2001-09-04 2003-03-18 Exiqon A/S Novel lna compositions and uses thereof
US20040214766A1 (en) 2001-10-01 2004-10-28 Kari Alitalo VEGF-C or VEGF-D materials and methods for treatment of neuropathologies
JP4276945B2 (ja) 2001-10-10 2009-06-10 ソシエテ・デ・プロデュイ・ネスレ・エス・アー α−D−ガラクトシダーゼ活性が低下したコーヒー植物
AR037699A1 (es) 2001-12-04 2004-12-01 Monsanto Technology Llc Maiz transgenico con fenotipo mejorado
US7125982B1 (en) 2001-12-05 2006-10-24 Frayne Consultants Microbial production of nuclease resistant DNA, RNA, and oligo mixtures
US6965025B2 (en) 2001-12-10 2005-11-15 Isis Pharmaceuticals, Inc. Antisense modulation of connective tissue growth factor expression
CA2365811A1 (en) 2001-12-21 2003-06-21 Institut De Cardiologie A new gene therapy using antisense strategy to estrogen receptors (er .alpha. and/or er .beta.) to optimize vascular healing and cardioprotection after vascular injury
KR20030056538A (ko) 2001-12-28 2003-07-04 주식회사 웰진 리본형 안티센스 올리고뉴클레오티드에 의한 형질전이성장 인자-β1의 효과적 저해제 개발
US20030191075A1 (en) 2002-02-22 2003-10-09 Cook Phillip Dan Method of using modified oligonucleotides for hepatic delivery
AU2003212729A1 (en) 2002-02-25 2003-09-09 Gunnar Norstedt Vitamin d upregulated protein 1 (vdup-1) methods and uses thereof
WO2003072741A2 (en) 2002-02-26 2003-09-04 Southern Illinois University Therapeutic regulation of deoxyribonuclease-1-like-3 activity
AU2003225701A1 (en) 2002-03-08 2003-09-22 Glen Research Corporation Fluorescent nitrogenous base and nucleosides incorporating same
GB2386836B (en) 2002-03-22 2006-07-26 Cancer Res Ventures Ltd Anti-cancer combinations
US7169916B2 (en) 2002-04-01 2007-01-30 Isis Pharmaceuticals, Inc. Chloral-free DCA in oligonucleotide synthesis
US20050215504A1 (en) 2002-04-02 2005-09-29 Bennett C F Antisense modulation of sterol regulatory element-binding protein-1 expression
DK2264172T3 (da) 2002-04-05 2017-11-27 Roche Innovation Ct Copenhagen As Oligomerforbindelser til modulering af HIF-1á-ekspression
US7569575B2 (en) 2002-05-08 2009-08-04 Santaris Pharma A/S Synthesis of locked nucleic acid derivatives
US6808906B2 (en) 2002-05-08 2004-10-26 Rigel Pharmaceuticals, Inc. Directionally cloned random cDNA expression vector libraries, compositions and methods of use
US7199107B2 (en) 2002-05-23 2007-04-03 Isis Pharmaceuticals, Inc. Antisense modulation of kinesin-like 1 expression
US7148342B2 (en) 2002-07-24 2006-12-12 The Trustees Of The University Of Pennyslvania Compositions and methods for sirna inhibition of angiogenesis
US20040033480A1 (en) 2002-08-15 2004-02-19 Wong Norman C.W. Use of resveratrol to regulate expression of apolipoprotein A1
WO2004024079A2 (en) 2002-09-10 2004-03-25 The Samuel Roberts Noble Foundation, Inc. Methods and compositions for production of flavonoid and isoflavonoid nutraceuticals
US20060211640A1 (en) 2002-09-25 2006-09-21 Kane Christopher D Antisense modulation of farnesoid X receptor expression
EP1549767A4 (en) 2002-09-26 2006-06-07 Amgen Inc MODULATION OF FORKHEAD BOX O1A GENE EXPRESSION
GB2394658A (en) 2002-11-01 2004-05-05 Cancer Rec Tech Ltd Oral anti-cancer composition
KR20050083855A (ko) 2002-11-01 2005-08-26 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 HIF-1 알파의 siRNA 억제를 위한 조성물 및 방법
AU2003261405A1 (en) 2002-11-01 2004-06-07 University Of Massachusetts Regulation of transcription elongation factors
AU2003290596B2 (en) 2002-11-05 2011-05-12 Isis Pharmaceuticals, Inc. Sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
AU2003291753B2 (en) 2002-11-05 2010-07-08 Isis Pharmaceuticals, Inc. Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
US20060009410A1 (en) 2002-11-13 2006-01-12 Crooke Rosanne M Effects of apolipoprotein B inhibition on gene expression profiles in animals
CA2994089A1 (en) 2002-11-18 2004-06-03 Roche Innovation Center Copenhagen A/S Antisense gapmer oligonucleotides
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
US20050048641A1 (en) * 2002-11-26 2005-03-03 Medtronic, Inc. System and method for delivering polynucleotides to the central nervous system
DK1891966T3 (da) 2002-12-20 2012-04-02 Lundbeck & Co As H Modulation af neurotrophinaktivitet; fremgangsmåde til screening
US7713738B2 (en) 2003-02-10 2010-05-11 Enzon Pharmaceuticals, Inc. Oligomeric compounds for the modulation of survivin expression
US7598227B2 (en) 2003-04-16 2009-10-06 Isis Pharmaceuticals Inc. Modulation of apolipoprotein C-III expression
US7339051B2 (en) 2003-04-28 2008-03-04 Isis Pharmaceuticals, Inc. Compositions and methods for the treatment of severe acute respiratory syndrome (SARS)
WO2004108081A2 (en) 2003-06-02 2004-12-16 Isis Pharmaceuticals, Inc. Oligonucleotide synthesis with alternative solvents
WO2005002507A2 (en) 2003-06-03 2005-01-13 Isis Pharmaceuticals, Inc. Modulation of survivin expression
US7683036B2 (en) * 2003-07-31 2010-03-23 Regulus Therapeutics Inc. Oligomeric compounds and compositions for use in modulation of small non-coding RNAs
US7825235B2 (en) 2003-08-18 2010-11-02 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 2 expression
BRPI0413930A (pt) 2003-09-18 2006-10-24 Isis Pharmaceuticals Inc composto oligomérico ou sal farmaceuticamente aceitável deste, composição farmacêutica ou veterinária, métodos para inibir a expressão de eif4e em uma célula, tecido ou órgão, para diminuir a proliferação de uma célula em que eif4e é expressado, e para prevenir ou tratar uma condição ou doença métodos para prevenir ou diminuir a angiogênese, e o crescimento de tumor em um paciente, oligonucleotìdeo de anti-sentido, composição farmacêutica ou veterinária, e, uso de um composto oligomérico ou sal farmaceuticamente aceitável deste
US8258105B2 (en) 2003-10-07 2012-09-04 Isis Pharmaceuticals, Inc. Antisense oligonucleotides optimized for kidney targeting
WO2005045034A2 (en) 2003-10-23 2005-05-19 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED TREATMENT OF PARKINSON DISEASE USING SHORT INTERERING NUCLEIC ACID (siNA)
DE602004027163D1 (de) 2003-12-23 2010-06-24 Santaris Pharma As Oligomere verbindungen zur modulation von bcl-2
NZ548447A (en) 2004-01-12 2010-04-30 Univ Pennsylvania Up-regulation of bone morphogenetic protein (BMP) gene expression in bone cells by electromagnetic signals
US7468431B2 (en) 2004-01-22 2008-12-23 Isis Pharmaceuticals, Inc. Modulation of eIF4E-BP2 expression
GB0403041D0 (en) 2004-02-11 2004-03-17 Milner Anne J Induction of apoptosis
EP1566202A1 (en) 2004-02-23 2005-08-24 Sahltech I Göteborg AB Use of resistin antagonists in the treatment of rheumatoid arthritis
US7402574B2 (en) 2004-03-12 2008-07-22 Avi Biopharma, Inc. Antisense composition and method for treating cancer
US8394947B2 (en) 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
WO2006085987A2 (en) 2004-07-09 2006-08-17 University Of Iowa Research Foundation Rna interference in respiratory epitheial cells
US7427675B2 (en) 2004-08-23 2008-09-23 Isis Pharmaceuticals, Inc. Compounds and methods for the characterization of oligonucleotides
WO2006050734A2 (en) 2004-11-09 2006-05-18 Santaris Pharma A/S Potent lna oligonucleotides for the inhibition of hif-1a expression
US7220549B2 (en) 2004-12-30 2007-05-22 Helicos Biosciences Corporation Stabilizing a nucleic acid for nucleic acid sequencing
AU2006261732B2 (en) 2005-06-27 2011-09-15 Alnylam Pharmaceuticals, Inc. RNAi modulation of HIF-1 and theraputic uses thereof
US20070213292A1 (en) 2005-08-10 2007-09-13 The Rockefeller University Chemically modified oligonucleotides for use in modulating micro RNA and uses thereof
US8501703B2 (en) 2005-08-30 2013-08-06 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds for modulation of splicing
EP1941059A4 (en) 2005-10-28 2010-11-03 Alnylam Pharmaceuticals Inc COMPOSITIONS AND METHODS FOR INHIBITING THE EXPRESSION OF THE HUNTINGTIN GENE
CA2626584A1 (en) 2005-11-04 2007-05-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of nav1.8 gene
AU2006336624B2 (en) 2005-11-17 2010-11-25 Board Of Regents, The University Of Texas System Modulation of gene expression by oligomers targeted to chromosomal DNA
US20070248590A1 (en) 2005-12-02 2007-10-25 Sirtris Pharmaceuticals, Inc. Modulators of CDC2-like kinases (CLKS) and methods of use thereof
CN100356377C (zh) 2005-12-20 2007-12-19 无锡永中科技有限公司 文档显示方法
US20070213274A1 (en) 2005-12-20 2007-09-13 Oy Jurilab Ltd Novel genes and markers associated with high-density lipoprotein-cholesterol (HDL-C)
US8288354B2 (en) 2005-12-28 2012-10-16 The Scripps Research Institute Natural antisense and non-coding RNA transcripts as drug targets
US7569686B1 (en) 2006-01-27 2009-08-04 Isis Pharmaceuticals, Inc. Compounds and methods for synthesis of bicyclic nucleic acid analogs
EP1984381B1 (en) 2006-01-27 2010-09-29 Isis Pharmaceuticals, Inc. 6-modified bicyclic nucleic acid analogs
CN101448849B (zh) 2006-03-31 2013-08-21 阿尔尼拉姆医药品有限公司 抑制Eg5基因表达的组合物和方法
JP5825754B2 (ja) 2006-05-05 2015-12-02 アイシス ファーマシューティカルズ, インコーポレーテッド Apobの発現を調節するための化合物および方法
NZ572666A (en) 2006-05-11 2010-11-26 Alnylam Pharmaceuticals Inc Compositions comprising double stranded rna and methods for inhibiting expression of the pcsk9 gene
US7666854B2 (en) 2006-05-11 2010-02-23 Isis Pharmaceuticals, Inc. Bis-modified bicyclic nucleic acid analogs
ES2389737T3 (es) 2006-05-11 2012-10-31 Isis Pharmaceuticals, Inc. Análogos de ácidos nucleicos bicíclicos modificados en 5'
EP1867338A1 (en) 2006-05-30 2007-12-19 Université Libre De Bruxelles Pharmaceutical composition comprising apolipoproteins for the treatment of human diseases
WO2008066672A2 (en) 2006-11-06 2008-06-05 Beth Israel Deaconess Medical Center Identification and use of small molecules to modulate transcription factor function and to treat transcription factor associated diseases
WO2008057556A2 (en) 2006-11-06 2008-05-15 Beth Israel Deaconess Medical Center Identification and use of small molecules to modulate ese-1 transcription factor function and to treat ese-1 transcription factor associated diseases
US8093222B2 (en) 2006-11-27 2012-01-10 Isis Pharmaceuticals, Inc. Methods for treating hypercholesterolemia
CA2675946A1 (en) 2007-01-19 2008-07-24 Lionel Navarro Methods and compositions for modulating the sirna and rna-directed-dna methylation pathways
US20080234197A1 (en) 2007-03-19 2008-09-25 Undurti N Das Method(s) of stabilizing and potentiating the actions and administration of brain-derived neurotrophic factor (BDNF)
CA2686933A1 (en) 2007-04-06 2008-10-16 The Johns Hopkins University Methods and compositions for the treatment of cancer
US20080293142A1 (en) 2007-04-19 2008-11-27 The Board Of Regents For Oklahoma State University Multiple shRNA Expression Vectors and Methods of Construction
US7644098B2 (en) 2007-04-24 2010-01-05 Yahoo! Inc. System and method for identifying advertisements responsive to historical user queries
CA2704418A1 (en) 2007-10-30 2009-05-07 Neurologix, Inc. A novel gene therapy approach for treating the metabolic disorder obesity
US20090214637A1 (en) 2007-10-30 2009-08-27 Neurologix, Inc. Novel Gene Therapy Approach For Treating The Metabolic Disorder Obesity
WO2009120978A2 (en) 2008-03-27 2009-10-01 The Ohio State University Treatment of metabolic-related disorders using hypothalamic gene transfer of bdnf and compositions therfor
WO2010002984A1 (en) 2008-07-01 2010-01-07 Monsanto Technology, Llc Recombinant dna constructs and methods for modulating expression of a target gene
EP2352830B1 (en) 2008-10-03 2019-01-16 CuRNA, Inc. Treatment of apolipoprotein-a1 related diseases by inhibition of natural antisense transcript to apolipoprotein-a1
EP2177615A1 (en) 2008-10-10 2010-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for a genome wide identification of expression regulatory sequences and use of genes and molecules derived thereof for the diagnosis and therapy of metabolic and/or tumorous diseases
US20110274718A1 (en) 2008-10-29 2011-11-10 The Ohio State University System for Modulating Expression of Hypothalmic Brain-Derived Neurotrophic Factor (BDNF)
US8606289B2 (en) 2008-11-10 2013-12-10 Qualcomm Incorporated Power headroom-sensitive scheduling
EP2358382A2 (en) 2008-11-22 2011-08-24 The University of Bristol NOVEL USES OF VEGFxxxB
ES2762610T3 (es) 2009-02-12 2020-05-25 Curna Inc Tratamiento de enfermedades relacionadas con el factor neurotrófico derivado de cerebro (BDNF) por inhibición de transcrito antisentido natural para BDNF
KR101138048B1 (ko) 2009-11-06 2012-04-23 성균관대학교산학협력단 Bdnf의 발현을 증가시키는 신규 펩타이드 및 이를 포함하는 알츠하이머병 또는 파킨슨병의 예방 및 치료용 약학 조성물
US10000752B2 (en) 2010-11-18 2018-06-19 Curna, Inc. Antagonat compositions and methods of use
TWI552751B (zh) 2011-06-20 2016-10-11 H 朗德貝克公司 投予4-((1r,3s)-6-氯-3-苯基-二氫茚-1-基)-1,2,2-三甲基-哌及其鹽用於治療精神分裂症的方法
HUE040179T2 (hu) 2012-03-15 2019-02-28 Curna Inc Agyi eredetû neutrotróf faktorral (Brain-derived neurotrophic factor, BDNF) összefüggõ betegségek kezelése a BDNF-fel kapcsolatos természetes antiszensz transzkriptumok gátlása révén

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Antisense Transcription in the Mammalian Transcriptome;S. Katayama, et al.;《Science》;20050902;第309卷;1564-1566 *
S. Katayama, et al..Antisense Transcription in the Mammalian Transcriptome.《Science》.2005,第309卷1564-1566.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894129B (zh) * 2009-09-11 2020-07-10 Ionis制药公司 亨廷顿表达的调节

Also Published As

Publication number Publication date
CN103301475B (zh) 2016-08-03
WO2007087113A2 (en) 2007-08-02
JP2015017104A (ja) 2015-01-29
US20130053428A1 (en) 2013-02-28
JP2009521934A (ja) 2009-06-11
EP1976567A2 (en) 2008-10-08
JP6422463B2 (ja) 2018-11-14
CN101437933A (zh) 2009-05-20
EP1976567B1 (en) 2020-05-13
US9803195B2 (en) 2017-10-31
CN103301475A (zh) 2013-09-18
US8288354B2 (en) 2012-10-16
US20090258925A1 (en) 2009-10-15
WO2007087113A3 (en) 2008-12-24
JP5713377B2 (ja) 2015-05-07
JP6163467B2 (ja) 2017-07-12
JP2016175920A (ja) 2016-10-06
US20180148721A1 (en) 2018-05-31
EP1976567A4 (en) 2011-11-16
US10472627B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
CN101437933B (zh) 作为药物靶标的天然反义和非编码的rna转录物
KR20200051808A (ko) 진핵 세포에서 유전자 발현을 침묵시키기 위한 비-암호화 rna 분자의 특이성의 변형
US9388466B2 (en) Precursor miRNA loop-modulated target regulation
CN102239260B (zh) 通过抑制针对载脂蛋白‑a1的天然反义转录物治疗载脂蛋白‑a1相关疾病
US20160264934A1 (en) METHODS FOR MODULATING AND ASSAYING m6A IN STEM CELL POPULATIONS
Menezes et al. 3′ RNA uridylation in epitranscriptomics, gene regulation, and disease
US20150152413A1 (en) Composition and Method for In Vivo and In Vitro Attenuation of Gene Expression Using Double Stranded RNA
WO2020077236A1 (en) Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues
AU2003254151B2 (en) Novel siRNA libraries and their production and use
US20120263740A1 (en) Aptamer-targeted sirna to inhibit nonsense mediated decay
Ohishi et al. A forward genetic screen to study mammalian RNA interference–essential role of RNase IIIa domain of Dicer1 in 3′ strand cleavage of dsRNA in vivo
US11674140B2 (en) Compositions and methods for treating facioscapulohumeral dystrophy
Brazane Functions of the ribose methyltransferase FTSJ1 in regulation of gene expression and neural development
Bury et al. Neuronal lineage tracing from progenitors in human cortical organoids reveals novel mechanisms of human neuronal production, diversity, and disease
Wienholds Reverse genetics and microRNAsin zebrafish
Montreau et al. Coupled amplification and degradation of exogenous RNA injected in amphibian oocytes
Turnbull Sequence and structure requirements of Y RNA-derived small RNA biogenesis
Hurschler The type II poly (A)-binding protein PABP-2 is a downstream target of the" let-7" microRNA in the heterochronic pathway of" Caenorhabditis elegans": mechanisms of microRNA-mediated gene silencing in" Caenorhabditis elegans"
Scamborova Determination of the sequence of Drosophila melanogaster U12 snRNA: Insights from splicing of the unique prospero twintron
Bobbs FGF signaling during gastrulation and cardiogenesis
Lu Small RNAs regulate stem cell function and regeneration in the planarian

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant