CN101416297B - 用于减小场效应晶体管中的接触电阻的外延硅锗 - Google Patents

用于减小场效应晶体管中的接触电阻的外延硅锗 Download PDF

Info

Publication number
CN101416297B
CN101416297B CN200780012220.4A CN200780012220A CN101416297B CN 101416297 B CN101416297 B CN 101416297B CN 200780012220 A CN200780012220 A CN 200780012220A CN 101416297 B CN101416297 B CN 101416297B
Authority
CN
China
Prior art keywords
channel transistor
groove
region
drain region
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780012220.4A
Other languages
English (en)
Other versions
CN101416297A (zh
Inventor
L·什夫伦
J·T·卡瓦利罗斯
S·M·塞亚
C·E·韦伯
J·K·布拉斯克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN101416297A publication Critical patent/CN101416297A/zh
Application granted granted Critical
Publication of CN101416297B publication Critical patent/CN101416297B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

描述了一种用凹陷部外延SiGe源区和漏区来选择性地减轻n沟道晶体管的沟道应力的方法。这可提高n沟道晶体管的电子迁移率,而不影响p沟道晶体管中的应变。SiGe在形成硅化物时提供较低的电阻。

Description

用于减小场效应晶体管中的接触电阻的外延硅锗
技术领域
本发明涉及场效应晶体管中的硅锗区域。
背景技术
在半导体器件中,通常在半导体区域上形成硅化物金属以减小电阻。在硅化物与半导体如硅之间的界面上,肖特基势垒是电阻的来源。这可通过降低带隙来减小,如在硅锗(SiGe)用作在其中形成硅化物(silicide)和自对准多晶硅化物(salicide)的材料时存在的带隙。在美国专利6949482中描述了SiGe源区和漏区以及硅化物金属镍(nickel silicide metal)的使用。该专利中的带隙图及相关文本描述了在SiGe上使用(特别是)硅化镍的优点。(参见图5、图6和图7及相关文本。)
已知,在单轴压缩应变从(例如)嵌入的SiGe源区和漏区直接施加于晶体管的沟道区时PMOS晶体管中的性能可得到改进。同样已知的是,将单轴拉伸应变施加于沟道时,可在NMOS晶体管中获得性能改善。在2005年12月29日提交的、转让给本申请受让人的“A Tensile Strained NMOS Transistor Using Group III-N Source/DrainRegions”的序号11/323688的申请中描述了这方面的内容。
附图说明
图1是其中形成了隔离沟槽的硅衬底上部的两段横截面正视图。
图2示出具有栅结构以及蚀刻到硅中的与栅结构相邻的凹陷部的图1的结构。
图3示出SiGe源区和漏区在凹陷部中生长后的图2的结构。
图4示出在遮蔽p沟道晶体管后n沟道晶体管的离子注入期间的图3的结构。
图5示出交替处理中的图3的结构,其中在遮蔽步骤之后,隔离沟槽中的部分材料被蚀刻。
图6示出在源区和漏区上形成硅化物后的图5的结构。
图7示出另一实施例,其中对于n沟道晶体管SiGe没有进入凹陷部。
具体实施方式
描述一种用于制造p沟道及n沟道晶体管的方法,其中使用硅锗(SiGe)源区和漏区,并且在这些区域形成硅化物。在以下描述中,阐明例如注入能级等大量具体细节,以达成对本发明的透彻了解。本领域的技术人员当明白,即使没有这些具体细节也可实施本发明。在其它情况下,没有详细描述众所周知的制造过程,以免不必要地影响对本发明的理解。
在图1中,示出单晶硅衬底的上部。示出衬底中标识为10a和10b的两个独立段。将要进行描述,在段10a,在区域15中形成n沟道晶体管。在衬底段10b,在区域16中制造p沟道晶体管。区域15由两个隔离沟槽11和12确定界限。类似地,区域16由两个隔离沟槽13和14确定界限。沟槽11-14是通过在衬底的上部区域进行蚀刻并用介质填充沟槽所形成的浅隔离沟槽。在一些情况下,在蚀刻了沟槽后,生长二氧化硅而在沟槽中形成介质衬垫。然后,这些沟槽可用例如沉积二氧化硅等材料来填充。
在图1中,四个沟槽11-14均只示出一半。将要进行论述,在下面描述的部分实施例中,蚀刻填充沟槽的材料。在一些情况下,在整个沟槽上蚀刻材料,而在其它情况下,在小于沟槽的整个宽度的范围进行蚀刻。附图所示的沟槽宽度不是按比例绘制的,例如就没有与栅结构成比例。为了方便起见,相对于栅结构而言,所图示的沟槽比实际集成电路中窄得多。
在衬底的区域15、16等区域形成栅结构。图2所示的所得到的每个栅结构包括将栅极20与衬底中的沟道区分隔开的栅介质21以及栅极20之上的硬掩模23。侧壁间隔22设在栅极20的两侧。在此没有描述例如n型和p型掺杂剂尖端注入(tip implant)以及侧壁间隔的形成等处理步骤。这些步骤是已知的现有技术。另外,所示的特定栅结构仅作为示例,并不是本发明之关键点。
在形成栅结构后,在n沟道及p沟道晶体管的源区和漏区的部位将凹陷部30蚀刻到硅衬底中。在图2中,凹陷部30大致从栅结构延伸到隔离沟槽。注意,各种情况下的凹陷部30略低于侧壁间隔而延伸,并由隔离沟槽确定界限。
现在,用外延生长来生长n沟道及p沟道晶体管的SiGe源区和漏区。源区和漏区可提升到高于衬底的原高度,如图所示。注意,这些区域直接邻接于隔离沟槽。
凹陷部中SiGe的生长引起n沟道及p沟道晶体管双方的压缩应变沟道区域。在p沟道晶体管的情况下,这种应变是有益的,因为它可改善晶体管中的空穴迁移率。然而,在n沟道晶体管的情况下,同样的应变会使电子迁移率变差。但是,一旦形成了硅化物或自对准多晶硅化物,则n沟道及p沟道晶体管双方都将获益于与SiGe关联的较低的硅化物势垒高度。
图4示出的过程,用以减轻n沟道晶体管的沟道区上的应变而在p沟道晶体管上留下应变。首先,在p沟道晶体管上形成可为光致抗蚀剂41的掩模(masking member),覆盖这些晶体管的源区和漏区。然后,如图4所示,将离子40注入n沟道晶体管的SiGe源区和漏区,以造成充当SiGe内松弛位的位错缺陷。这减小沟道区上的应变,因而改进沟道区中的电子迁移率。离子轰击可以比较浅,因为n沟道晶体管的沟道区靠近硅表面(直接在栅绝缘体之下),因此,不需要破坏凹陷部深处的晶体点阵。被注入的离子不是名义上的截流子,因此不影响源区和漏区的半导体属性。例如可使用碳。0.5-1.5Kev的注入能级是足够的,采用的剂量约为1E16-5E16原子/平方厘米。
在这种注入后,以一般方式例如用镍来形成硅化物。与p沟道晶体管的漏区和漏区相比,对n沟道源区和漏区的晶格破坏有助于硅化物的形成。
如图4所示,整个隔离沟槽13包含在掩模下,而只有一半隔离沟槽14处于掩模41下。这表明,掩模与隔离区的对齐对于此实施例不是关键点。重要的是,保护p沟道晶体管的SiGe源区和漏区不受注入。
在一个备选实施例中,通过去除隔离沟槽中的部分或全部材料,来减轻n沟道晶体管中的应力。参照图5,同样将掩模(掩模50)置于p沟道晶体管之上。限定n沟道晶体管的沟槽(如图5的沟槽11和12)至少部分地外露。然后,用各向同性或各向异性蚀刻工序从光路蚀刻掉沟槽中的材料,如二氧化硅。如图5的开口52和53所示,并不需要蚀刻掉沟槽底部的所有材料。只是沟道区中靠近表面的应变需要减轻。
在隔离沟槽将n沟道晶体管与p沟道晶体管分隔开的情况下,蚀刻沟槽的整个宽度可减轻p沟道及n沟道晶体管双方的应变。这将消除在p沟道晶体管中使用SiGe的益处之一,具体说就是由应变沟道导致的较高空穴迁移率。
在这种情况下,掩模应当防止整个沟槽被蚀刻。例如,图5的掩模51保护沟槽11中的材料的一部分。类似地,掩模50保护沟槽14的一部分。具体来说是在使用各向异性蚀刻剂时,掩模50和51分别防止填充沟槽14、11的所有材料被蚀刻掉。因此,如果p沟道晶体管设置在隔离区11的与图5所示的n沟道晶体管相对的一侧,则其沟道中的应变不会被减轻。类似地,开口55会减轻设置在沟槽14的与区域16相对一侧的n沟道晶体管的应变。在p沟道晶体管没有与n沟道晶体管共用隔离沟槽的情况下,或者在由于某种原因可蚀刻整个沟槽的情况下,掩模无需落到沟槽上。这种情况在图5中由沟槽12表示。
如图6所示,一旦应变已经从n沟道晶体管的沟道区减轻了应变,则可在SiGe表面形成硅化物57。随后,例如用层间介质(ILD)重新填充沟槽。沟槽的这种重新填充没有在沟道上建立应变。注意,在图6中,已经用介质58重新填充开口52和53。
在图7中,示出一个附加实施例。不对n沟道晶体管形成凹陷部,而是对硅进行掺杂,如衬底段10a上的n沟道晶体管的源区和漏区62所示。对于p沟道晶体管,对图7的实施例蚀刻例如图2所示的凹陷部。然后,外延生长SiGe,从而形成p沟道晶体管的区域60以及n沟道晶体管的区域63。区域63高于沟道区的高度,因此没有在n沟道晶体管的沟道区上引起应变。如其它实施例中的情况那样,同样在SiGe表面形成硅化物65。从而获得在其它实施例中得到的降低硅/硅化物电阻的优点。
因此,以上描述了用以减轻使用SiGe源/漏区的n沟道晶体管中的应变的各工序。这使得在p沟道及n沟道晶体管双方使用SiGe形成的硅化物的优势得以发挥。

Claims (12)

1.一种制造n沟道及p沟道晶体管的方法,包括:
在硅衬底中形成凹陷部,用于n沟道及p沟道晶体管的与栅结构相邻的源区和漏区;
在所述凹陷部中生长SiGe,以形成所述n沟道及p沟道晶体管的源区和漏区;以及
通过从设于所述n沟道晶体管的源区的一侧和漏区的一侧的隔离沟槽中蚀刻介质材料来减轻所述n沟道晶体管的沟道区中因所述SiGe的生长而导致的应变,但不影响所述p沟道晶体管的沟道区中的应变。
2.如权利要求1所述的方法,其中,不是所有沟槽中的所有介质均被蚀刻。
3.如权利要求1所述的方法,包括在所述源区和漏区上形成金属硅化物。
4.如权利要求3所述的方法,其中,所述金属硅化物包括镍。
5.一种形成n沟道晶体管的方法,包括:
在硅衬底中形成用介质材料填充的隔离沟槽;
在与所述隔离沟槽相邻的所述衬底中形成的凹陷部中生长SiGe外延源区和漏区;
从所述沟槽的至少一部分沟槽中蚀刻所述介质材料,以缓和所述SiGe源区和漏区中的应变;以及
在所述源区和漏区上形成金属硅化物。
6.如权利要求5所述的方法,其中,所述金属硅化物用镍形成。
7.如权利要求6所述的方法,其中,所述沟槽中的所述介质材料是二氧化硅。
8.如权利要求5所述的方法,包括:遮蔽所述沟槽中至少一个沟槽的一部分,使得在所述沟槽的外露部分被蚀刻时所述沟槽的被遮蔽部分不被蚀刻。
9.一种具有n沟道及p沟道晶体管的集成电路,包括:
应变引致装置,用于在所述n沟道及p沟道晶体管双方的源区和漏区中均引起应变;以及
应变减轻装置,用于防止所述n沟道晶体管的源区和漏区中的应变引起所述n沟道晶体管的沟道区上的应变,而不阻止所述p沟道晶体管的沟道区中的应变,所述应变减轻装置包括相对于设于所述p沟道晶体管的源区的一侧和漏区的一侧的隔离沟槽而凹陷的,设于所述n沟道晶体管的源区的一侧和漏区的一侧的隔离沟槽。
10.如权利要求9所述的集成电路,其中,所述应变引致装置是SiGe源区和漏区。
11.如权利要求9所述的集成电路,包括所述n沟道及p沟道晶体管的源区和漏区上的金属硅化物。
12.如权利要求10所述的集成电路,包括所述n沟道及p沟道晶体管的SiGe源区和漏区上的金属硅化物。
CN200780012220.4A 2006-03-31 2007-03-29 用于减小场效应晶体管中的接触电阻的外延硅锗 Expired - Fee Related CN101416297B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/395,939 2006-03-31
US11/395,939 US7566605B2 (en) 2006-03-31 2006-03-31 Epitaxial silicon germanium for reduced contact resistance in field-effect transistors
PCT/US2007/007707 WO2007126909A1 (en) 2006-03-31 2007-03-29 Epitaxial silicon germanium for reduced contact resistance in field-effect transistors

Publications (2)

Publication Number Publication Date
CN101416297A CN101416297A (zh) 2009-04-22
CN101416297B true CN101416297B (zh) 2013-10-23

Family

ID=38559671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780012220.4A Expired - Fee Related CN101416297B (zh) 2006-03-31 2007-03-29 用于减小场效应晶体管中的接触电阻的外延硅锗

Country Status (8)

Country Link
US (2) US7566605B2 (zh)
JP (1) JP5203350B2 (zh)
KR (1) KR101017477B1 (zh)
CN (1) CN101416297B (zh)
DE (1) DE112007000662B4 (zh)
GB (1) GB2448258B (zh)
HK (1) HK1131469A1 (zh)
WO (1) WO2007126909A1 (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1638606B1 (en) 2003-06-27 2016-01-06 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
DE102005041225B3 (de) * 2005-08-31 2007-04-26 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung vertiefter verformter Drain/Source-Gebiete in NMOS- und PMOS-Transistoren
JP2009032986A (ja) * 2007-07-27 2009-02-12 Toshiba Corp 半導体装置およびその製造方法
US8796084B2 (en) * 2007-09-28 2014-08-05 Taiwan Semiconductor Manufacturing Company Ltd. Method for removing hard masks on gates in semiconductor manufacturing process
US7833848B2 (en) * 2007-09-28 2010-11-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method for removing hard masks on gates in semiconductor manufacturing process
DE102007052053B4 (de) * 2007-10-31 2012-02-02 Advanced Micro Devices, Inc. Eine Zugverformungsquelle unter Anwendung von Silizium/Germanium-Material in global verformtem Silizium
US7749847B2 (en) * 2008-02-14 2010-07-06 International Business Machines Corporation CMOS integration scheme employing a silicide electrode and a silicide-germanide alloy electrode
US8779477B2 (en) * 2008-08-14 2014-07-15 Intel Corporation Enhanced dislocation stress transistor
US8110877B2 (en) * 2008-12-19 2012-02-07 Intel Corporation Metal-insulator-semiconductor tunneling contacts having an insulative layer disposed between source/drain contacts and source/drain regions
US7670934B1 (en) * 2009-01-26 2010-03-02 Globalfoundries Inc. Methods for fabricating MOS devices having epitaxially grown stress-inducing source and drain regions
DE102009006800B4 (de) * 2009-01-30 2013-01-31 Advanced Micro Devices, Inc. Verfahren zur Herstellung von Transistoren und entsprechendes Halbleiterbauelement
US8313999B2 (en) * 2009-12-23 2012-11-20 Intel Corporation Multi-gate semiconductor device with self-aligned epitaxial source and drain
US8936976B2 (en) 2009-12-23 2015-01-20 Intel Corporation Conductivity improvements for III-V semiconductor devices
TWI585861B (zh) * 2010-02-10 2017-06-01 格羅方德半導體公司 具有磊晶成長之應力引發源極與汲極區之金氧半導體裝置的製造方法
KR101730939B1 (ko) 2010-06-09 2017-05-12 삼성전자 주식회사 반도체 소자 및 그 제조방법
CN102299092B (zh) * 2010-06-22 2013-10-30 中国科学院微电子研究所 一种半导体器件及其形成方法
DE102010030768B4 (de) * 2010-06-30 2012-05-31 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG Herstellverfahren für ein Halbleiterbauelement als Transistor mit eingebettetem Si/Ge-Material mit geringerem Abstand und besserer Gleichmäßigkeit und Transistor
KR101673908B1 (ko) 2010-07-14 2016-11-09 삼성전자주식회사 반도체 소자 및 그 제조 방법
DE102010038746B4 (de) * 2010-07-30 2013-11-14 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG Verfahren zum Reduzieren der Topographie in Isolationsgebieten eines Halbleiterbauelements durch Anwenden einer Abscheide/Ätzsequenz vor der Herstellung des Zwischenschichtdielektrikums
KR101776926B1 (ko) 2010-09-07 2017-09-08 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8558279B2 (en) * 2010-09-23 2013-10-15 Intel Corporation Non-planar device having uniaxially strained semiconductor body and method of making same
CN102468164B (zh) * 2010-10-29 2014-10-08 中国科学院微电子研究所 晶体管及其制造方法
DE102010064287B4 (de) 2010-12-28 2014-05-08 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG Verfahren zum zuverlässigen Einbetten von Metallsilizidkontaktgebieten in stark dotierte Drain- und Sourcegebiete durch eine Silizidstoppschicht und entsprechendes Halbleiterbauelement
US10490459B2 (en) * 2017-08-25 2019-11-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method for source/drain contact formation in semiconductor devices
EP2562347B1 (de) 2011-08-23 2019-05-22 BAUER Maschinen GmbH Unterwasser-arbeitsanordnung und verfahren zu ihrer verankerung
CN102983079B (zh) * 2011-09-06 2017-12-19 联华电子股份有限公司 半导体工艺
CN106847805B (zh) * 2011-12-23 2020-08-21 英特尔公司 具有包含不同材料取向或组成的纳米线或半导体主体的共衬底半导体器件
US8847281B2 (en) 2012-07-27 2014-09-30 Intel Corporation High mobility strained channels for fin-based transistors
US8836041B2 (en) * 2012-11-16 2014-09-16 Stmicroelectronics, Inc. Dual EPI CMOS integration for planar substrates
US9129842B2 (en) 2014-01-17 2015-09-08 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of silicide contacts in semiconductor devices
US9318582B2 (en) 2014-03-17 2016-04-19 International Business Machines Corporation Method of preventing epitaxy creeping under the spacer
US9837533B2 (en) * 2014-07-01 2017-12-05 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
KR102155327B1 (ko) 2014-07-07 2020-09-11 삼성전자주식회사 전계 효과 트랜지스터 및 그 제조 방법
US9716160B2 (en) * 2014-08-01 2017-07-25 International Business Machines Corporation Extended contact area using undercut silicide extensions
US9647073B2 (en) 2014-10-29 2017-05-09 Globalfoundries Inc. Transistor structures and fabrication methods thereof
WO2017052591A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Resistance reduction under transistor spacers
US20170141228A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistor and manufacturing method thereof
CN107039521A (zh) * 2016-02-04 2017-08-11 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
US9905692B2 (en) 2016-05-20 2018-02-27 Globalfoundries Inc. SOI FinFET fins with recessed fins and epitaxy in source drain region
JP6951903B2 (ja) * 2016-08-10 2021-10-20 東京エレクトロン株式会社 半導体素子のための拡張領域
US20200212227A1 (en) * 2016-08-17 2020-07-02 Boe Technology Group Co., Ltd. Thin film transistor, manufacturing method thereof, array substrate, display device
US10217707B2 (en) 2016-09-16 2019-02-26 International Business Machines Corporation Trench contact resistance reduction
US9917060B1 (en) 2016-10-21 2018-03-13 International Business Machines Corporation Forming a contact for a semiconductor device
US10008497B2 (en) * 2016-11-29 2018-06-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155571A (en) * 1990-08-06 1992-10-13 The Regents Of The University Of California Complementary field effect transistors having strained superlattice structure
US6066520A (en) * 1997-11-06 2000-05-23 Nec Corporation Method of manufacturing a BiCMOS semiconductor device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006520A (en) 1997-10-06 1999-12-28 General Motors Corporation Pneumatic assisted brake apply system
US7205604B2 (en) * 2001-03-13 2007-04-17 International Business Machines Corporation Ultra scalable high speed heterojunction vertical n-channel MISFETs and methods thereof
US6555880B2 (en) * 2001-06-07 2003-04-29 International Business Machines Corporation Self-aligned silicide process utilizing ion implants for reduced silicon consumption and control of the silicide formation temperature and structure formed thereby
AU2002319801A1 (en) 2001-08-09 2003-02-24 Amberwave Systems Corporation Optimized buried-channel fets based on sige heterostructures
US6657276B1 (en) * 2001-12-10 2003-12-02 Advanced Micro Devices, Inc. Shallow trench isolation (STI) region with high-K liner and method of formation
JP2004014878A (ja) * 2002-06-07 2004-01-15 Sharp Corp 半導体基板の製造方法及び半導体装置
JP2004063591A (ja) * 2002-07-25 2004-02-26 Sony Corp 半導体装置とその製造方法
JP2004111479A (ja) * 2002-09-13 2004-04-08 Toshiba Corp 半導体装置及びその製造方法
JP2004172389A (ja) 2002-11-20 2004-06-17 Renesas Technology Corp 半導体装置およびその製造方法
US6717216B1 (en) 2002-12-12 2004-04-06 International Business Machines Corporation SOI based field effect transistor having a compressive film in undercut area under the channel and a method of making the device
DE10261145A1 (de) * 2002-12-27 2004-07-22 Advanced Micro Devices, Inc., Sunnyvale Verbesserter Transistor mit abgesenktem Gate und ein Verfahren zur Herstellung desselben
US6825086B2 (en) 2003-01-17 2004-11-30 Sharp Laboratories Of America, Inc. Strained-silicon channel CMOS with sacrificial shallow trench isolation oxide liner
JP2004281964A (ja) * 2003-03-19 2004-10-07 Toshiba Corp 半導体集積回路装置とその製造方法
US6882025B2 (en) * 2003-04-25 2005-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Strained-channel transistor and methods of manufacture
TWI242232B (en) * 2003-06-09 2005-10-21 Canon Kk Semiconductor substrate, semiconductor device, and method of manufacturing the same
US20050026342A1 (en) * 2003-07-28 2005-02-03 Ka-Hing Fung Semiconductor device having improved short channel effects, and method of forming thereof
US7057216B2 (en) * 2003-10-31 2006-06-06 International Business Machines Corporation High mobility heterojunction complementary field effect transistors and methods thereof
US6872626B1 (en) * 2003-11-21 2005-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a source/drain and a transistor employing the same
US6949482B2 (en) 2003-12-08 2005-09-27 Intel Corporation Method for improving transistor performance through reducing the salicide interface resistance
US7053400B2 (en) * 2004-05-05 2006-05-30 Advanced Micro Devices, Inc. Semiconductor device based on Si-Ge with high stress liner for enhanced channel carrier mobility
GB2442995B (en) * 2004-05-28 2010-06-30 Advanced Micro Devices Inc Technique for creating different mechanical stress in different channel regions by forming an etch stop layer having differently modified intrinsic stress
JP4102334B2 (ja) * 2004-06-16 2008-06-18 株式会社東芝 半導体装置及びその製造方法
KR100642747B1 (ko) * 2004-06-22 2006-11-10 삼성전자주식회사 Cmos 트랜지스터의 제조방법 및 그에 의해 제조된cmos 트랜지스터
US7413957B2 (en) * 2004-06-24 2008-08-19 Applied Materials, Inc. Methods for forming a transistor
DE102005041225B3 (de) 2005-08-31 2007-04-26 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung vertiefter verformter Drain/Source-Gebiete in NMOS- und PMOS-Transistoren
DE102005052054B4 (de) 2005-10-31 2010-08-19 Advanced Micro Devices, Inc., Sunnyvale Halbleiterbauteil mit Transistoren mit verformten Kanalgebieten und Verfahren zu seiner Herstellung
US7592213B2 (en) * 2005-12-29 2009-09-22 Intel Corporation Tensile strained NMOS transistor using group III-N source/drain regions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155571A (en) * 1990-08-06 1992-10-13 The Regents Of The University Of California Complementary field effect transistors having strained superlattice structure
US6066520A (en) * 1997-11-06 2000-05-23 Nec Corporation Method of manufacturing a BiCMOS semiconductor device

Also Published As

Publication number Publication date
GB0812725D0 (en) 2008-08-20
CN101416297A (zh) 2009-04-22
US20070231983A1 (en) 2007-10-04
HK1131469A1 (en) 2010-01-22
DE112007000662T5 (de) 2009-04-30
US7851291B2 (en) 2010-12-14
US7566605B2 (en) 2009-07-28
JP2009529803A (ja) 2009-08-20
US20090230480A1 (en) 2009-09-17
GB2448258A (en) 2008-10-08
GB2448258B (en) 2011-08-17
KR101017477B1 (ko) 2011-02-25
WO2007126909A1 (en) 2007-11-08
JP5203350B2 (ja) 2013-06-05
KR20080108496A (ko) 2008-12-15
DE112007000662B4 (de) 2010-09-23

Similar Documents

Publication Publication Date Title
CN101416297B (zh) 用于减小场效应晶体管中的接触电阻的外延硅锗
US9123568B2 (en) Encapsulation of closely spaced gate electrode structures
US7560755B2 (en) Self aligned gate JFET structure and method
US7339215B2 (en) Transistor device containing carbon doped silicon in a recess next to MDD to create strain in channel
US8409947B2 (en) Method of manufacturing semiconductor device having stress creating layer
US20140024188A1 (en) Method of Manufacturing Strained Source/Drain Structures
US8138050B2 (en) Transistor device comprising an asymmetric embedded semiconductor alloy
US9472642B2 (en) Method of forming a semiconductor device structure and such a semiconductor device structure
US8324031B2 (en) Diffusion barrier and method of formation thereof
CN107039506A (zh) 对改进型晶体管的源/漏延伸控制
KR20040096276A (ko) 트렌치 게이트를 갖는 매몰 채널형 트랜지스터 및 그제조방법
US8338274B2 (en) Transistor device comprising an embedded semiconductor alloy having an asymmetric configuration
US6830980B2 (en) Semiconductor device fabrication methods for inhibiting carbon out-diffusion in wafers having carbon-containing regions
JP3394408B2 (ja) 半導体装置及びその製造方法
US6696729B2 (en) Semiconductor device having diffusion regions with different junction depths
JP2005033098A (ja) 半導体装置及びその製造方法
KR100837555B1 (ko) 반도체 소자 및 그 제조 방법
JP5821174B2 (ja) 半導体装置の製造方法
US8377781B2 (en) Transistor with asymmetric silicon germanium source region
US20050045924A1 (en) Low resistance integrated circuit MOS transistor
US9029919B2 (en) Methods of forming silicon/germanium protection layer above source/drain regions of a transistor and a device having such a protection layer
KR100942952B1 (ko) 반도체 소자의 제조방법
JPH0637309A (ja) 半導体装置の製造方法
KR20050101030A (ko) 반도체 장치의 트렌지스터 형성 방법
KR100903467B1 (ko) 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1131469

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1131469

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131023

Termination date: 20210329