JP2004281964A - 半導体集積回路装置とその製造方法 - Google Patents

半導体集積回路装置とその製造方法 Download PDF

Info

Publication number
JP2004281964A
JP2004281964A JP2003074820A JP2003074820A JP2004281964A JP 2004281964 A JP2004281964 A JP 2004281964A JP 2003074820 A JP2003074820 A JP 2003074820A JP 2003074820 A JP2003074820 A JP 2003074820A JP 2004281964 A JP2004281964 A JP 2004281964A
Authority
JP
Japan
Prior art keywords
formation region
mis formation
type mis
trench
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003074820A
Other languages
English (en)
Inventor
Takeshi Watanabe
健 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003074820A priority Critical patent/JP2004281964A/ja
Publication of JP2004281964A publication Critical patent/JP2004281964A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】電流駆動能力が高く、且つ、高集積化に好適な構造を有する半導体集積回路装置およびその製造方法を提供する。
【解決手段】半導体基板12のn型およびp型MIS形成領域A、Bの各領域が、トレンチ15内に埋め込まれた絶縁分離膜16により電気的に分離され、n型およびp型MIS形成領域A、Bにn型およびp型MISFET13、14がそれぞれ形成されている。そして、n型MIS形成領域Aを取り囲むトレンチ15の上端部の側壁からn型MIS形成領域A内部にかけて第1の酸化物17が形成され、一方p型MIS形成領域を取り囲むトレンチ15の下端部の側壁からp型MIS形成領域Bの内部にかけて第2の酸化物18が形成されている。従って、n型MIS形成領域Aには、この第1の酸化物17により引っ張り応力が与えられ、かつp型MIS形成領域Bには、第2の酸化物により圧縮応力が与えられている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁ゲート構造を有する半導体集積回路装置に係わり、特にMIS型電界効果トランジスタ(以下、MISFETという)の電流駆動能力を向上させ、かつ高集積化に好適な構造を有する半導体集積回路装置およびその製造方法に関する。
【0002】
【従来の技術】
近年、半導体素子(トランジスタ)の微細化により、半導体集積回路装置の高速化、低消費電力化、高集積化が図られ、その性能が著しく向上してきている。
【0003】
半導体素子の微細化技術には、ゲート長の微細化、ゲート酸化膜の薄膜化があり、素子のチャンネル形成領域およびその近傍の不純物濃度プロフィルを精密に制御することで、素子の駆動能力の向上や寄生容量の低減が図られている。
【0004】
一般に、n型MISFETとp型MISFETで構成されるCMOS回路からなる半導体集積回路装置の動作速度は、次段の論理ゲートの容量性負荷を前段の論理ゲートの出力段が駆動する充電速度によって決定される。したがって、容量性負荷の逆数および電流駆動能力(オン時の電流とオフ時の電流の比)に動作速度は比例することになる。
【0005】
このCMOS回路が形成される基板には、バルクシリコンからなるシリコン基板またはSOI(Silicon On Insulator)基板があり、MISFETの素子分離方法には、LOCOS(Local Oxidation of Silicon)法、またはSTI(Shallow Trench Isolation)法などがある。
【0006】
ところで、LOCOS法による素子分離のフィールド酸化膜を備えたMISFETでは、熱酸化膜の成長の際に体積膨張によりMISFETの素子形成領域に大きな圧縮応力が生じる。この圧縮応力により、p型MISFETではホールの移動度が向上し、逆にn型MISFETでは電子の移動度が低下することが知られている。
【0007】
これにより、p型MISFETの電流駆動力は向上し、逆にn型MISFETの電流駆動力は低下するが、特に、n型MISFETの電流駆動力が低下することは、n型MISFETとp型MISFETで構成されるCMOS回路の電流駆動能力の向上は期待できない。
【0008】
さらに、LOCOS法では、厚いフィールド酸化膜が必要なため素子分離領域の面積が大きくなり、高集積化に適さない問題がある。
【0009】
これに対して、STI法はLOCOS法に比べて素子分離領域の面積が小さく、集積度が高く出来る利点がある。しかし、STI法による素子分離でも、LOCOS法に比べて応力は少ないとされているが、トレンチに絶縁膜を埋め込む際に、シリコンと絶縁膜との熱膨張率の違いにより圧縮応力が発生する。
【0010】
例えば、図36に示すように、シリコン基板101にパッド酸化膜102を堆積して、トレンチ103を形成した後、トレンチ103に絶縁膜104を埋め込んでなるSTI構造の場合、図37に示す2次元応力シミュレーションよれば、圧縮応力が、トレンチ103の両側の素子形成領域に生じている。
【0011】
上述したように、従来のLOCOS法あるいはSTI法により素子分離されたCMOS回路では、素子形成領域に圧縮応力が発生し、特に電子の移動度が低下してn型MISFETの電流駆動能力が低下するため、n型MISFETとp型MISFETで構成されるCMOS回路の電流駆動能力の向上は図れなかった。
【0012】
この問題を解決するCMOS回路の製造方法が知られている(例えば、特許文献1、または特許文献2参照。)。
【0013】
これらの特許文献に開示された半導体集積回路装置について、図を用いて説明する。図38は、その半導体集積回路装置の要部を示す断面図である。
【0014】
図38に示すように、SOI基板114は、酸化膜を介して2枚のシリコン基板をボンディングして形成され、ベース基板111上に埋め込み酸化膜112を介して半導体層113が形成されている。このSOI基板114のn型MISFET115を形成する領域(以下、単にn型MIS形成領域という)Aには、STI法によりトレンチに絶縁膜を埋め込んでなる第1フィールド酸化膜116を形成し、p型MISFET117を形成する領域(以下、単にn型MIS形成領域という)Bには、LOCOS法により第2フィールド酸化膜118を形成している。
【0015】
そして、n型MISFET115はn型MIS形成領域Aに形成し、p型MISFET117はp型MIS形成領域Bに形成している。ここでn型MISFET115およびp型MISFET117はゲート酸化膜119、ゲート電極120、ソース領域121、ドレイン領域122を有している。
【0016】
このように、p型MISFET117にはLOCOS法による第2フィールド酸化膜118により強い圧縮応力を生じさせ、ホールの移動度を向上させている。
【0017】
一方、n型MISFET115にはSTI法による第1フイールド酸化膜116により、LOCOS法より圧縮応力を低減させることで電子の移動度の低下を少なくしている。
【0018】
しかしながら、これらの特許文献に開示された方法では、ホールと電子の移動度を同時にバルクシリコンにおける移動度より向上させることはできず、n型MISFETとp型MISFETで構成されるCMOS回路の電流駆動能力の向上には限界がある。
【0019】
さらに、LOCOS法とSTI法の両方を用いるため、製造工程が複雑になり、また、素子の集積度も上がらないという問題がある。
【0020】
【特許文献1】
特開2000−36605号公報(4頁、図8)
【0021】
【特許文献2】
特開2001−244468号公報(3頁、図1)
【0022】
【発明が解決しようとする課題】
上述した、LOCOS法あるいはSTI法により素子分離されたCMOS回路では、高い電流駆動能力が得られない。一方、特許文献に開示されるようにp型MISFETをLOCOS法による素子分離で形成し、n型MISFETをSTI法による素子分離で形成したCMOS回路においては、電流駆動能力は向上しても高集積化に問題がある。
【0023】
即ち、従来のCMOS回路においては、電流駆動能力の向上と高集積化を同時に満足することは困難であった。
【0024】
本発明は、上記問題点を解決するためになされたもので、電流駆動能力が高く、かつ高集積化に好適な構造を有する半導体集積回路装置およびその製造方法を提供することを目的とする。
【0025】
【課題を解決するための手段】
上記目的を達成するために、本発明の半導体集積回路装置では、n型MIS形成領域およびp型MIS形成領域が互に離間形成された半導体基板と、この各MIS形成領域を取り囲むトレンチおよびこのトレンチ内に埋め込まれた絶縁分離膜を有する絶縁分離領域と、前記n型MIS形成領域に形成されたn型MISFETと、前記p型MIS形成領域に形成されたp型MISFETと、前記n型MIS形成領域を取り囲むトレンチの上端部の側壁からこのn型MIS形成領域内部にかけて形成された第1の酸化物と、前記p型MIS形成領域を取り囲むトレンチの下端部の側壁からこのp型MIS形成領域内部にかけて形成された第2の酸化物とを具備し、前記n型MIS形成領域は、前記第1の酸化物により引っ張り応力が与えられ、かつ前記p型MIS形成領域は、前記第2の酸化物により圧縮応力が与えられていることを特徴としている。
【0026】
また、上記目的を達成するために、本発明の別の半導体集積回路装置では、n型MIS形成領域およびp型MIS形成領域が互に離間形成された半導体基板と、この各MIS形成領域を取り囲むトレンチおよびこのトレンチ内に埋め込まれた絶縁分離膜を有する絶縁分離領域と、前記n型MIS形成領域に形成されたn型MISFETと、前記p型MIS形成領域に形成されたp型MISFETと、前記n型MIS形成領域およびp型MIS形成領域の各領域を取り囲むトレンチの上端部の側壁から各MIS形成領域内部にかけてそれぞれ形成された第1の酸化物とを具備し、前記n型MIS形成領域および前記p型MIS形成領域は、ともに前記第1の酸化物により引っ張り応力が与えられていることを特徴としている。
【0027】
更に、上記目的を達成するために、本発明の別の半導体集積回路装置では、ベース基体上に絶縁膜を介して形成され、かつ互に離間形成されたn型MIS形成領域およびp型MIS形成領域を有する半導体基板と、この各MIS形成領域を取り囲むトレンチおよびこのトレンチ内に埋め込まれた絶縁分離膜を有する絶縁分離領域と、前記n型MIS形成領域に形成されたn型MISFETと、前記p型MIS形成領域に形成されたp型MISFETと、前記n型MIS形成領域および前記p型MIS形成領域を取り囲むトレンチの上端部の側壁から各MIS形成領域内部にかけてそれぞれ形成された第1の酸化物とを具備し、前記n型MIS形成領域および前記p型MIS形成領域は、ともに前記第1の酸化物により引っ張り応力が与えられていることを特徴としている。
【0028】
更に、また、上記目的を達成するために、本発明の別の半導体集積回路装置では、ベース基体上に絶縁膜を介して形成され、かつ互に離間形成された複数のn型MIS形成領域および複数のp型MIS形成領域を有する半導体基板と、この各MIS形成領域を取り囲むトレンチおよびこのトレンチ内に埋め込まれた絶縁分離膜を有する絶縁分離領域と、前記複数のn型MIS形成領域にそれぞれ形成された複数n型MISFETと、前記複数のp型MIS形成領域にそれぞれ形成された複数のp型MISFETと、前記複数のp型MIS形成領域を取り囲む各トレンチの下端部の側壁からこのp型MIS形成領域内部にかけてそれぞれ形成された複数の第3の酸化物とを具備し、前記複数のp型MIS形成領域は、ともに各第3の酸化物により圧縮応力が与えられていることを特徴としている。
【0029】
上記の目的を達成するために、本発明の半導体集積回路装置の製造方法では、半導体基板のn型MIS形成領域とp型MIS形成領域を電気的に分離するためのトレンチを形成する工程と、前記n型MIS形成領域に引っ張り応力を生じさせるように、このn型MIS形成領域を取り囲むトレンチの上端部の側壁からこのn型MIS形成領域内部にかけて第1の酸化物を選択的に形成する工程と、前記p型MIS形成領域に圧縮応力を生じさせるように、このp型MIS形成領域を取り囲むトレンチの下端部の側壁からこのp型MIS形成領域内部にかけて第2の酸化物を選択的に形成する工程と、前記トレンチ内部に絶縁分離膜を埋め込む工程と、前記n型MIS形成領域および前記p型MIS形成領域にn型MISFETおよびp型MISFETをそれぞれ形成する工程とを有することを特徴としている。
【0030】
上記の目的を達成するために、本発明の半導体集積回路装置の製造方法では、半導体基板のn型MIS形成領域とp型MIS形成領域を電気的に分離するためのトレンチを形成する工程と、前記n型MIS形成領域およびp型MIS形成領域に引っ張り応力を生じせしめるように、この各MIS形成領域を取囲むトレンチの上端部の側壁から各MIS形成領域内部にかけて第1の酸化物をそれぞれ選択的に形成する工程と、前記n型MIS形成領域およびp型MIS形成領域にn型MISFETおよびp型MISFETをそれぞれ形成する工程とを有することを特徴としている。
【0031】
上記の目的を達成するために、本発明の半導体集積回路装置の製造方法では、ベース基体上に絶縁膜を介してn型MIS形成領域とp型MIS形成領域が形成された半導体基板に、このn型MIS形成領域とp型MIS形成領域を電気的に分離するためのトレンチを形成する工程と、前記n型MIS形成領域およびp型MIS形成領域に引っ張り応力を生じさせるように、この各MIS形成領域を取囲むトレンチの上端部の側壁からこの各MIS形成領域内部にかけて第1の酸化物をそれぞれ選択的に形成する工程と、前記トレンチ内部に絶縁分離膜を埋め込む工程と、前記n型MIS形成領域およびp型MIS形成領域にn型MISFETおよびp型MISFETをそれぞれ形成する工程とを有することを特徴としている。
【0032】
上記の目的を達成するために、本発明の半導体集積回路装置の製造方法では、ベース基体上に絶縁膜を介して複数のn型MIS形成領域と複数のp型MIS形成領域が形成された半導体基板に、この複数のMIS形成領域をそれぞれ電気的に分離するためのトレンチを形成する工程と、前記複数のp型MIS形成領域に圧縮応力を生じさせるために、各p型MIS形成領域を取囲むトレンチの下端部の側壁からこの各p型MIS形成領域内部にかけて第3の酸化物をそれぞれ選択的に形成する工程と、前記トレンチ内部に絶縁分離膜を埋め込む工程と、前記n型MIS形成領域およびp型MIS形成領域にn型MISFETおよびp型MISFETをそれぞれ形成する工程とを有することを特徴としている。
【0033】
本発明によれば、CMOS回路の電流駆動能力が高く、且つ、集積度の高い半導体集積回路装置が得られる。
【0034】
【発明の実施の形態】
以下本発明の半導体集積回路装置の実施の形態について、図面を参照しながら説明する。
【0035】
(第1の実施の形態)
図1は本発明の第1の実施の形態に係わる半導体集積回路装置の要部を示す断面図、図2は本発明の第1の実施の形態に係わる半導体集積回路装置のトレンチと酸化物の位置関係を示す図、図3は2次元応力シミュレーションによるトレンチ側壁から素子形成領域にかけての応力分布を示す図である。
【0036】
図1および図2に示すように、本実施の形態の半導体集積回路装置11では、シリコン基板12にn型MISFETが形成されるn型MIS形成領域Aとp型MISFETが形成されるp型MIS領域Bが互に離間形成され、このn型MIS形成領域Aとp型MIS形成領域Bは、トレンチ素子分離法によってシリコン基板12に形成したトレンチ15およびこのトレンチ内に埋め込まれた絶縁分離膜16を有する絶縁分離領域によって取り囲まれて電気的に絶縁分離されている。
【0037】
そして、トレンチ15の開口部、すなわち上端部の側壁15aの近傍のn型MIS形成領域Aには第1の酸化物17が形成され、トレンチ15の底面部、すなわち下端部の側壁15bの近傍のp型MIS形成領域Bには第2の酸化物18が形成されている。
【0038】
この第1の酸化物17は、シリコン基板12のシリコンと酸素が結合して体積が膨張した酸化物からなる。そして、この第1の酸化物17は、トレンチ15の上端部の側壁15aからこのトレンチ15側壁と直交方向におけるn型MIS形成領域Aの内部の所定部分M1にかけてトレンチ側壁15の全周に形成されている。また、この第1の酸化物17は、n型MIS形成領域Aの表面に設けられたパッド酸化膜19と接触形成されている。
【0039】
同じく、第2の酸化物18は、シリコン基板12のシリコンと酸素が結合して体積が膨張した酸化物からなる。この第2の酸化物18は、トレンチ15の下端部の側壁15bからこのトレンチ15側壁と直交方向におけるp型MIS形成領域Bの内部の所定部分M2にかけてトレンチ側壁15の全周に形成されている。
【0040】
そして、n型MIS形成領域A及びp型MIS形成領域B上にそれぞれゲート絶縁膜20が形成され、このゲート絶縁膜20上にゲート電極21がそれぞれ形成され、このゲート電極21に対して自己整合的にソース領域22、ドレイン領域23がそれぞれ形成されて、n型MISFET13及びp型MISFET14がそれぞれ形成され、これによりCMOS回路(図示せず)が構成されている。
【0041】
上述した構成の半導体集積回路装置11では、図3に示す2次元応力シミュレーションから明らかなように、図37に示した従来のSTI構造における素子形成領域に生じる圧縮応力(−100MPa〜−200Mpa)に比べて、n型MIS形成領域13では圧縮応力が低減して引っ張り応力(−100MPa〜+100Mpa)が生じ、p型MIS形成領域14ではより大きな圧縮応力(−200MPa〜−400Mpa)が生じている。
【0042】
このように、第1の酸化物17によりn型MIS形成領域Aに引っ張り応力が生じるのは、後述する半導体集積回路装置11の製造工程において、シリコン基板12に熱酸化のマクスとなる厚いパッド窒化膜が形成された状態で熱酸化することにより、n型MIS形成領域Aの表面近傍で第1の酸化物17の体積が膨張してパッド窒化膜が反り上がり、それに引かれてパッド窒化膜の下に位置するn型MIS形成領域Aの表面近傍に引っ張り応力が生じる。
【0043】
その状態でトレンチ15に絶縁分離膜16が埋め込まれると、その後の製造工程でパッド窒化膜が剥離されても絶縁分離膜16が支持体となり、引っ張り応力が残存するためと推察される。
【0044】
一方、第2の酸化物18によりp型MIS形成領域Bに圧縮応力が生じるのは、p型MIS形成領域Bの下側で第2の酸化物18の体積が膨張して内部圧力が高まり、それに押されて第2の酸化物18の上方に位置するp型MIS形成領域Bに圧縮応力が生じるためと推察される。
【0045】
これにより、第1の酸化物17の膨張した体積が大きいほど大きな引っ張り応力が得られ、第2の酸化物18の膨張した体積が大きいほど大きな圧縮応力が得られることになる。
【0046】
そして、n型MISFET13は、第1の酸化物17の横方向距離L1が近いほど大きな引っ張り応力が得られ、p型MISFET14は、第2の酸化物18の横方向距離L2が近いほど大きな圧縮応力が得られることになる。
【0047】
また、p型MIS形成領域14は、第2の酸化物の縦方向距離D2が大き過ぎると圧縮応力は小さくなり、小さ過ぎると引っ張り応力成分が生じるため、圧縮応力を最大にする適当な距離にする必要がある。
【0048】
従って、第1または第2の酸化物17,18の体積や形成位置を変えることにより引っ張り応力または圧縮応力の大きさを変えることが可能である。
【0049】
例えば、上記第1および第2の酸化物17、18は、必ずしも、トレンチ15の全周にわたって形成する必要はなく、図4に示すように、n型MIS形成領域Aおよびp型MIS形成領域Bの各領域を挟むように対向する紙面上の左右、または上下のトレンチ15側壁にそれぞれ形成しても構わない。
【0050】
以上説明したように、第1の実施の形態の半導体集積回路装置では、第1の酸化物17を形成してn型MIS形成領域Aに引っ張り応力を生じさせ、第2の酸化物18を形成してp型MIS形成領域Bに圧縮応力を生じさせている。
【0051】
これにより、n型MISFET13では電子の移動度がバルクシリコンにおける移動度より向上し、p型MISFET14ではホールの移動度がバルクシリコンにおける移動度より向上する。
【0052】
従って、n型MISFETおよびp型MISFETの電流駆動能力が向上して、CMOS回路の電流駆動能力が向上する。実験によれば、上述の応力範囲ではCMOS回路の電流駆動能力が10%以上向上した。
【0053】
(第2の実施の形態)
図5は本発明の第2の実施の形態に係わる半導体集積回路装置の要部を示す断面図、図6は本発明の第2の実施の形態に係わる半導体集積回路装置のトレンチと酸化物の位置関係を示す図である。本実施の形態において、上記第1の実施の形態と同一の構成部分には、同一符号を付して、その説明を省略する。
【0054】
図5および図6に示すように、本実施の形態が第1の実施の形態と異なる点は、p型MIS形成領域Bに、第1の酸化物25を設けたことにある。
【0055】
即ち、シリコン基板12のシリコンが酸素と結合して体積が膨張した酸化物からなる第1の酸化物25を、トレンチ15の上端部の側壁15aからこのトレンチ15側壁と直交方向におけるp型MIS形成領域Bの内部の所定部分M3にかけてトレンチ15側壁の全周に形成している。よって、第1の酸化物17と同様に、p型MIS形成領域Bには、引っ張り応力が生じている。
【0056】
なお、トレンチ15の底面部の第4の酸化物26は、後述する半導体集積回路装置11の製造工程において、トレンチ15の底面部を熱酸化のマクスとなる窒化膜で保護していないために形成されたものである。
【0057】
この第4の酸化物26はトレンチ15の底面部の側壁まで達しておらず、n型MIS形成領域Aおよびp型MIS形成領域Bを押し上げようとする力は働かない。そのため、この第4の酸化物26はn型MIS形成領域Aおよびp型MIS形成領域Bに圧縮応力を与えない。
【0058】
以上説明したように、第2の実施の形態の半導体集積回路装置では、ホールの移動度は引っ張り応力においても向上することを利用して、n型MIS形成領域Aと同様に、第1の酸化物25をp型MIS形成領域Bを取り囲むトレンチ15の上端部の側壁15aからp型MIS形成領域B内部にかけて形成して、p型MIS形成領域Bに引っ張り応力を生じさせている。
【0059】
これにより、n型MISFET13では電子の移動度がバルクシリコンにおける移動度より向上し、p型MISFET14ではホールの移動度がバルクシリコンにおける移動度より向上する。
【0060】
従って、n型MISFETおよびp型MISFETの電流駆動能力が向上して、CMOS回路の電流駆動能力が向上する。
【0061】
また、第1の酸化物17、25は同一製造工程で同時に製造されるので、第1の実施の形態に比べて製造工程が短縮でき、半導体集積回路装置の製造が容易になるという利点がある。
【0062】
ここで、上述した第1の酸化物17、25は、n型MIS形成領域Aおよびp型MIS形成領域Bを挟むように対向する左右、または上下のトレンチ15の側壁にそれぞれ形成しても構わない。
【0063】
(第3の実施の形態)
図7は本発明の第3の実施の形態に係わる半導体集積回路装置の要部を示す断面図、図8は本発明の第3の実施の形態に係わる半導体集積回路装置のトレンチと酸化物の位置関係を示す図である。
【0064】
図7および図8に示すように、本実施の形態の半導体集積回路装置31では、半導体基板としてSOI基板32を用いたもので、このSOI基板32は、シリコン基板からなるベース基板37上に埋め込み酸化膜38を介してシリコン基板からなる半導体層39の積層構造を有している。このSOI基板32としては、SIMOX(Separation by IMplantation of OXygen)基板等が使用できる。
【0065】
この半導体層39には、n型MISFETが形成されるn型MIS形成領域Aとp型MISFETが形成されるp型MIS領域Bが互に離間形成されている。このn型MIS形成領域Aとp型MIS領域Bは、トレンチ素子分離法によってSOI基板32に形成したトレンチ35およびこのトレンチ内に埋め込まれた絶縁分離膜36を有する絶縁分離領域によって取り囲まれてそれぞれ電気的に絶縁分離されている。
【0066】
このn型MIS形成領域Aを取り囲むトレンチ35の開口部、すなわち上端部の側壁35a近傍のn型MIS形成領域Aには、第1の酸化物40aが形成され、同じく、p型MIS領域Bを取り囲むトレンチ35の上端部の側壁35b近傍のp型MIS形成領域Bには、第1の酸化物40bが形成されている。
【0067】
この第1の酸化物40a、40bは、SOI基板32の半導体層39のシリコンと酸素が結合して体積が膨張した酸化物からなる。そして、この第1の酸化物40a、40bは、トレンチ35の上端部の側壁35a、35bからトレンチ側壁と直交方向におけるn型MIS形成領域Aおよびp型MIS形成領域Bの内部の所定部分M4、M5にかけて、トレンチ15の全周にわたってそれぞれ形成されている。
【0068】
そして、n型MIS形成領域Aおよびp型MIS形成領域B上にゲート絶縁膜41がそれぞれ形成され、このゲート絶縁膜41上にゲート電極42がそれぞれ形成され、このゲート電極42に対して自己整合的にソース領域43、ドレイン領域44がそれぞれ形成されて、n型MISFET33およびp型MISFET34がそれぞれ形成され、これによりCMOS回路(図示せず)が構成されている。
【0069】
このように構成された半導体集積回路装置では、n型MIS形成領域Aおよびp型MIS形成領域Bは、ともに引っ張り応力を生じている。
【0070】
以上説明したように、第3の実施の形態の半導体集積回路装置では、ホールの移動度は引っ張り応力においても向上することを利用して、第1の酸化物40a、40bを、n型MIS形成領域Aおよびp型MIS形成領域Bを取り囲むトレンチ15の上端部の側壁35a、35bから各MIS形成領域33、34の内部の所定部分にかけて設け、n型MIS形成領域Aおよびp型MIS形成領域Bに、ともに引っ張り応力を生じさせている。
【0071】
これにより、n型MISFET33では電子の移動度がバルクシリコンにおける移動度より向上し、p型MISFET34ではホールの移動度がバルクシリコンにおける移動度より向上する。
【0072】
従って、n型MISFETおよびp型MISFETの電流駆動能力が向上して、CMOS回路の電流駆動能力が向上する。
【0073】
ここで、上述した第1の酸化物40a、40bは、n型MIS形成領域Aおよびp型MIS形成領域Bを挟むように対向する左右、または上下のトレンチ側壁にそれぞれ形成しても構わない。
【0074】
(第4の実施の形態)
図9は本発明の第4の実施の形態に係わる半導体集積回路装置の要部を示す断面図、図10は本発明の第4の実施の形態に係わる半導体集積回路装置のトレンチと酸化物の位置関係を示す図、図11は2次元応力シミュレーションによるトレンチ側壁から素子形成領域にかけての応力分布を示す図である。本実施の形態において、上記第3の実施の形態と同一の構成部分には、同一符号を付してその説明を省略する。
【0075】
図9および図10に示すように、本実施の形態が第3の実施の形態と異なる点は、n型MIS形成領域Aおよびp型MIS領域Bにそれぞれ複数のn型MISFETおよびp型MISFETが形成された半導体集積回路装置において、p型MIS形成領域Ba、Bbにのみ、第3の酸化物48a、48bを設けたことにある。
【0076】
即ち、SOI基板32には、複数のn型MIS形成領域Aa、Abと複数のp型MIS領域Ba、Bbが形成され、このn型MIS形成領域Aa,Abおよびp型MIS形成領域Ba,Bbの各MIS形成領域は、トレンチ素子分離法によってSOI基板32に形成したトレンチ47a、47bおよびこのトレンチ47a、47b内に埋め込まれた絶縁分離膜36a、36bを有する絶縁分離領域によってそれぞれ取り囲まれて電気的に絶縁分離されている。
【0077】
このトレンチ47aで取り囲まれたn型MIS形成領域Aa、Abには、n型MISFET33a、33bがそれぞれ形成され、トレンチ47bで取り囲まれたp型MIS領域Ba、Bbには、p型MISFET34a、34bがそれぞれ形成され、さらにこれによりCMOS回路(図示せず)が構成されている。
【0078】
このトレンチ47bの下端部の側壁近傍のp型MIS形成領域Ba、Bbには、第3の酸化物48a、48bが形成されている。
【0079】
この第3の酸化物48a、48bは、SOI基板32の半導体層39のシリコンと酸素が結合して体積が膨張した酸化物からなる。この第3の酸化物48a、48bは、トレンチ47bの下端部の側壁47c、47dからこのトレンチ側壁と直交方向におけるp型MIS形成領域Ba、Bbの内部の所定部分M6、M7にかけてトレンチ47bの全周にわたって形成されている。
【0080】
このように構成された半導体集積回路装置では、p型MIS形成領域Ba、Bbにのみ強い圧縮応力を生じさせている。
【0081】
図11に示した2次元応力シミュレーションによれば、図37に示した従来のSTI構造の圧縮応力(−100MPa〜−200Mpa)に比べて、p型MIS形成領域Ba、Bbに非常に大きな圧縮応力(−600MPa〜−1000Mpa)が生じている。
【0082】
以上説明したように、第4の実施の形態の半導体集積回路装置では、第3の酸化物48a、48bをトレンチ47bの下端部の側壁47c、47dからp型MIS形成領域Ba、Bbの内部の所定部分にかけて形成し、p型MIS形成領域Ba、Bbに圧縮応力を生じさせている。
【0083】
これにより、ホールの移動度がバルクシリコンに対する移動度より向上する。従って、p型MISFETの電流駆動能力が向上して、CMOS回路の電流駆動能力が向上する。
【0084】
ここで、上述した第3の酸化物48a、48bは、p型MIS形成領域Ba、Bbを挟むように対向する左右、または上下のトレンチ側壁にそれぞれ形成しても構わない。
【0085】
また、上述した第3の実施の形態のように、n型MIS形成領域Aa、Bbにも、トレンチ47aの上端部の側壁からn型MIS形成領域Aa、Abの内部の所定部分にかけて酸化物を形成し、n型MIS形成領域Aa、Abに引っ張り応力を生じさせるようにしても構わない。
【0086】
次に、本発明の半導体集積回路装置の製造方法に係わる実施の形態について、図面を参照しながら説明する。
【0087】
(第5の実施の形態)
図12乃至図20は、上述の第1の実施の形態に係わる半導体集積回路装置の製造方法を工程順に示す断面図である。各図は、図1のn型およびp型MIS形成領域とその領域間の絶縁分離領域部分を示している。
【0088】
図12に示すように、シリコン基板51の表面に、例えば、パッド酸化膜52を厚さ6nm、パッド窒化膜53を厚さ100nmおよびパッドTEOS膜54を厚さ50nmに順次堆積する。そして、レジスト等をマスクにして、フォトリソグラフィー技術により素子分離パターンを形成し、例えば、幅450nm、深さ300nmのトレンチ55をRIE(Reactive Ion Etching)法により形成する。
【0089】
次に、図13に示すように、例えば、プラズマCVD法により窒化膜を厚さ100nmに堆積させ、RIE法でシリコン基板51表面およびトレンチ55の底面部に堆積した窒化膜を除去して、トレンチ55の側壁に選択酸化のマスクとなる第1の窒化膜56a、56bを形成する。
【0090】
次に、図14に示すように、トレンチ55の上端部の第1の窒化膜56a、56b部分を、例えば、RIE法でエッチングして除去し、シリコン基板51の一部を露出させ、シリコン基板露出部57を形成する。このシリコン基板露出部57の露出量は、トレンチ55の深さの1/10から1/2程度が適当であり、1/6程度がより好ましい。
【0091】
次に、図15に示すように、n型MIS形成領域A側のトレンチ側壁の第1の窒化膜56bをレジストマクス58で保護し、p型MIS形成領域B側のトレンチ側壁の第1の窒化膜56aを、例えば、熱リン酸でエッチングして除去する。
【0092】
次に、図16に示すように、レジストマスク58をアッシャーなどで除去して、プラズマCVD法により第2の窒化膜59を厚さ10nmに堆積する。そして、p型MIS形成領域B側のトレンチ側壁の第2の窒化膜59をレジストマクス(図示せず)で保護し、n型MIS形成領域A側のトレンチ側壁の第2の窒化膜(図示せず)を、例えば、熱リン酸で10nmエッチングし、シリコン基板露出部57を再度露出させる。
【0093】
次に、図17に示すように、シリコン基板露出部57とシリコン基板51が露出したトレンチ55の底面部を、第1の窒化膜56bおよび第2の窒化膜59をマスクとして、例えば、1000℃で100nm酸化される条件でドライ酸化する。
【0094】
これにより、シリコン基板露出部57からトレンチ55側壁と直交方向におけるn型MIS形成領域Aの内部にかけて第1の酸化物60bが形成され、またトレンチ55の底面部からトレンチ55側壁と直交方向におけるp型MIS形成領域14の内部にかけて第2の酸化物60aが形成される。
【0095】
この第1の酸化物60bおよび第2の酸化物60aは、シリコンと酸素が結合して体積が膨張した酸化物からなり、n型MIS形成領域Aおよびp型MIS形成領域Bの凡そ60nmの領域にかけて形成される。
【0096】
次に、図18に示すように、第2の窒化膜59とパッド窒化膜53の一部を、例えば、熱リン酸で10nmエッチングして除去し、更に、p型MIS形成領域A側のトレンチ側壁をレジスト等のマクス(図示せず)を形成して保護し、n型MIS形成領域A側のトレンチ側壁の第1の窒化膜56bを、例えば、熱リン酸で100nmエッチングして除去する。
【0097】
その後、例えばプラズマCVD法により、絶縁分離膜61、例えば高密度無添加ケイ酸塩ガラスHDPUSG(High Density Plasma Un−doped Silicate Glass)を厚さ500nmに堆積し、トレンチ55を埋め込む。
【0098】
次に、図19に示すように、パッド窒化膜53をストッパーとして化学的機械的研磨(CMP)法により絶縁分離膜61、パッドTEOS膜54を研磨した後、パッド窒化膜53の一部を研磨してシリコン基板51表面を平坦化してトレンチによる素子分離工程が完成する。
【0099】
次に、図20に示すように、パッド窒化膜53を熱リン酸によりエッチングして除去し、n型MIS形成領域Aおよびp型MIS形成領域1Bが完成する。
【0100】
最後に、図1に示すように、n型MIS形成領域Aおよびp型MIS形成領域Bに所望のゲート酸化膜20、ゲート電極21、ソース領域22、ドレイン領域23をそれぞれ形成して、n型MISFET13およびp型MISFET14を有するCMOS回路からなる半導体集積回路装置が完成する。
【0101】
以上説明したように、第5実施の形態に係わる半導体集積回路装置の製造方法によれば、n型MIS形成領域Aを取り囲むトレンチ55の上端部の側壁からn型MIS形成領域Aの内部の所定部分にかけて第1の酸化物60bが形成され、p型MIS形成領域Bを取り囲むトレンチ55の下端部の側壁からp型MIS形成領域Bの内部の所定部分にかけて第2の酸化物60aが形成される。
【0102】
これによって、n型MIS形成領域Aに引っ張り応力が生じ、またp型MIS形成領域Bに圧縮応力が生じる。そして、n型MISFET13では電子の移動度がバルクシリコンにおける移動度より向上し、p型MISFET14ではホールの移動度がバルクシリコンにおける移動度より向上する。
【0103】
従って、n型MISFETおよびp型MISFETの相互コンダクタンス(gm)が向上して電流駆動能力が向上するので、CMOS回路の電流駆動能力が向上する。
【0104】
(第6の実施の形態)
図21乃至図26は、上述の第2の実施の形態に係わる半導体集積回路装置の製造方法を工程順に示す断面図である。各図は、図5のn型およびp型MIS形成領域とその領域間の絶縁分離領域部分を示している。なお、本実施の形態において、上記第5の実施の形態と同一の構成部分には同一符号を付して、その説明を省略する。
【0105】
図21および図26に示すように、本実施の形態が第5の実施の形態と異なる点は、n型MIS形成領域Aおよびp型MIS形成領域Bに、ともに第1の酸化物を同時に形成するようにしたことである。
【0106】
まず、図21に示すように、第5の実施の形態に係わる図12乃至図14と同様の工程により、トレンチ55の上端部の側壁にシリコン露出部57を形成するように第1の窒化膜56a、56bを設ける。
【0107】
次に、図22に示すように、シリコン露出部57を、例えば、1000℃でシリコンが100nm酸化する条件でドライ酸化し、n型MIS形成領域Aとp型MIS形成領域Bに、第1の酸化物60b、60cを形成する。
【0108】
この第1の酸化物60b、60cは、シリコンと酸素が結合して体積が膨張した酸化物からなり、n型MIS形成領域Aおよびp型MIS形成領域Bの凡そ60nmの領域にかけて形成される。
【0109】
このとき、トレンチ55の底面部にも第4の酸化物60dが形成される。この第4の酸化物60dは本発明の効果には直接影響しないが、予めトレンチ55の底面部にマクスとなる窒化膜を形成して、酸化されないようにしても構わない。
【0110】
即ち、この第4の酸化物60dはトレンチ55の底面部の側壁まで達しておらず、n型MIS形成領域Aおよびp型MIS形成領域Bを押し上げようとする力は働かない。そのため、この第4の酸化物60dはn型MIS形成領域Aおよびp型MIS形成領域Bに圧縮応力を与えない。
【0111】
次に、図23に示すように、パッド窒化膜53の一部と第1の窒化膜56a、56bを、例えば、熱リン酸でエッチングして除去する。
【0112】
次に、図24に示すように、例えばプラズマCVD法により、絶縁分離膜61、例えば高密度無添加ケイ酸塩ガラスHDPUSG(High Density Plasma Un−doped Silicate Glass)を厚さ500nmに堆積し、トレンチ55を埋め込む。
【0113】
次に、図25に示すように、パッド窒化膜53をストッパーとして化学的機械的研磨(CMP)法により、シリコン基板51表面を平坦化して素子分離工程が完成する。
【0114】
次に、図26に示すように、パッド窒化膜53を熱リン酸によりエッチングして剥離し、n型MIS形成領域Aおよびp型MIS形成領域Bが完成する。
【0115】
最後に、図5に示すように、n型MIS形成領域Aおよびp型MIS形成領域Bに所望のゲート酸化膜20、ゲート電極21、ソース領域22、ドレイン領域23をそれぞれ形成して、n型MISFET13およびp型MISFET14を有するCMOS回路からなる半導体集積回路装置が完成する。
【0116】
以上説明したように、第6の実施の形態に係わる半導体集積回路装置の製造方法によれば、n型MIS形成領域Aを取り囲むトレンチ55の上端部の側壁部分からn型MIS形成領域Aの内部の所定部分にかけて第1の酸化物60bが形成され、同様に、p型MIS形成領域Bを取り囲むトレンチ55の上端部の側壁部分からp型MIS形成領域Bの内部の所定部分にかけて第1の酸化物60cが形成さる。
【0117】
これにより、n型MIS形成領域Aおよびp型MIS形成領域Bがともに引っ張り応力が生じている。そして、n型MISFET13では電子の移動度がバルクシリコンにおける移動度より向上し、p型MISFET14ではホールの移動度がバルクシリコンにおける移動度より向上する。
【0118】
従って、n型MISFETおよびp型MISFETの相互コンダクタンス(gm)が向上して電流駆動能力が向上するので、CMOS回路の電流駆動能力が向上する。
【0119】
(第7の実施の形態)
図27乃至図30は、上述の第3の実施の形態に係わる半導体集積回路装置の製造方法を工程順に示す断面図である。各図は、図7のn型およびp型MIS形成領域とその領域間の絶縁分離領域部分を示している。
【0120】
図27に示すように、本実施の形態はSOI基板71を用いて半導体集積回路装置を製造する方法の例である。
【0121】
このSOI基板71としては、ベース基板72、埋め込み酸化膜73、半導体層74からなり、酸化膜を介して2枚のシリコン基板をボンディングしてなる基板や、SIMOX(Separation by IMplantation of OXygen)基板等が使用できる。
【0122】
まず、シリコンからなる半導体層74を所定の厚さ、例えば、熱酸化とフッ化アンモニウム(NH4F)によるステップエッチングにより160nmの厚さに調整する。なお、この半導体層74は、n型MIS形成領域Aおよびp型MIS形成領域Bを有する。
【0123】
次に、半導体層74の表面に、例えば、パッド酸化膜75を厚さ6nm、パッド窒化膜76を厚さ100nmおよびパッドTEOS膜77を厚さ50nmに形成する。
【0124】
そして、レジストをマスクにして、フォトリソグラフィー技術により素子分離パターンを形成し、n型MIS形成領域Aおよびp型MIS形成領域Bの各領域を取り囲むように、例えば、幅200nm、深さ160nmのトレンチ78をRIE法により形成する。
【0125】
次に、例えば、プラズマCVD法により窒化膜を厚さ10nmに堆積させる。続いて、RIE法により、SOI基板71の表面に堆積した窒化膜を除去して、トレンチ78の側壁および底面に選択酸化のマスクとなる第3の窒化膜79を形成する。
【0126】
次に、第3窒化膜79のトレンチ78の上端部の側壁部分を、例えば、RIE法でエッチングして除去し、半導体層74の一部を露出させ、半導体層露出部80を形成する。この半導体層露出部80の露出量は、トレンチ78の深さの1/10から1/2程度が適当であり、1/6程度がより好ましい。
【0127】
次に、図28に示すように、半導体層露出部80を、例えば、1000℃でシリコンが100nm酸化する条件でドライ酸化し、n型MIS形成領域Aとp型MIS形成領域Bに、第1の酸化物81a、81bを形成する。
【0128】
この第1の酸化物81a、81bは、シリコンと酸素が結合して体積が膨張した酸化物からなり、n型MIS形成領域Aおよびp型MIS形成領域Bの凡そ60nmの領域にかけて形成される。
【0129】
次に、図29に示すように、パッド窒化膜76の一部と第3の窒化膜79の全部を、例えば、熱リン酸でエッチングして剥離し、例えばプラズマCVD法により、絶縁分離膜82、例えば高密度無添加ケイ酸塩ガラスHDPUSG(High Density Plasma Un−doped Silicate Glass)を厚さ500nm堆積し、トレンチ78を埋め込む。
【0130】
次に、図30に示すように、パッド窒化膜76をストッパーとして化学的機械的研磨(CMP)法によりSOI基板71表面を平坦化して素子分離工程が完成する。
【0131】
続いて、パッド窒化膜76を熱リン酸によりエッチングして除去し、n型MIS形成領域Aおよびp型MIS形成領域Bが完成する。
【0132】
最後に、図7に示すようにn型MIS形成領域Aおよびp型MIS形成領域Bに所望のゲート酸化膜41、ゲート電極42、ソース領域43、ドレイン領域44をそれぞれ形成して、複数のn型MISFET33および複数のp型MISFET34を有するCMOS回路からなる半導体集積回路装置が完成する。
【0133】
以上説明したように、第7の実施の形態に係わる半導体集積回路装置の製造方法によれば、n型MIS形成領域Aを取り囲むトレンチ78の上端部の側壁部分からn型MIS形成領域Aの内部の所定部分にかけて第1の酸化物81aが形成され、同様に、p型MIS形成領域Bを取り囲むトレンチ78の上端部の側壁部分からp型MIS形成領域Bの内部の所定部分にかけて第1の酸化物81bが形成される。
【0134】
これにより、n型MIS形成領域Aおよびp型MIS形成領域Bにともに引っ張り応力が生じる。そして、n型MISFET33では電子の移動度がバルクシリコンにおける移動度より向上し、p型MISFET34ではホールの移動度がバルクシリコンにおける移動度より向上する。
【0135】
従って、n型MISFETおよびp型MISFETの相互コンダクタンス(gm)が向上して電流駆動能力が向上するので、CMOS回路の電流駆動能力が向上する。
【0136】
(第8の実施の形態)
図31乃至図35は、上述の第4の実施の形態に係わる半導体集積回路装置の製造方法を工程順に示す断面図である。各図は、図9のn型およびp型MIS形成領域とその領域完の絶縁分離領域部分を示している。
【0137】
本実施の形態において、上記第7の実施の形態と同一の構成部分には同一符号を付して、その説明を省略する。
【0138】
図31および図35に示すように、本実施の形態が第7の実施の形態と異なる点は、n型MIS形成領域Aおよびp型MIS領域Bにそれぞれ複数のn型MISFETおよびp型MISFETが形成された半導体集積回路装置において、p型MIS形成領域Ba、Bbにのみ、第3の酸化物48a、48bを形成することにある。
【0139】
まず、図31に示すように、まず、シリコンからなる半導体層74を所定の厚さ、例えば、熱酸化とフッ化アンモニウム(NH4F)によるステップエッチングにより160nmの厚さに調整する。
【0140】
次に、半導体層74の表面に、例えば、パッド酸化膜75を厚さ6nm、パッド窒化膜76を厚さ100nmおよびパッドTEOS膜77を厚さ50nmに形成する。
【0141】
そして、レジストをマスクにして、フォトリソグラフィー技術により素子分離パターンを形成し、n型MIS形成領域Aa、Abおよびp型MIS形成領域Ba、Bbの各領域を取り囲むように、例えば、幅200nm、深さ160nmのトレンチ78をRIE法により形成する。
【0142】
次に、図32に示すように、例えば、プラズマCVD法により窒化膜を厚さ10nmに堆積させる。続いて、RIE法により、p型MIS形成領域Ba、Bbに、SOI基板表面およびトレンチ78の底面部に堆積した窒化膜を除去して、トレンチ78の側壁に選択酸化のマスクとなる第4の窒化膜85a、85bを形成する。
【0143】
一方、n型MIS形成領域形成領域Aa、Abの窒化膜は、予めレジスト、酸化膜等のマスク(図示せず)で保護しておく。
【0144】
次に、図33に示すように、例えば1000℃でシリコンが100nm酸化する条件でドライ酸化すると埋め込み酸化膜73を介して酸素が半導体層74に浸入し、半導体層74のシリコンが酸化されてp型MIS形成領域Ba、Bbのトレンチ78下端部の側壁部分に第3の酸化物86a、86bが形成される。
【0145】
この第3の酸化物86a、86bは、シリコンと酸素が結合して体積が膨張した酸化物からなり、p型MIS形成領域34a、34bの凡そ60nmの領域にかけて形成される。
【0146】
次に、図34に示すように、パッド窒化膜76の一部と第4の窒化膜85a、85bの全部を、例えば、熱リン酸でエッチングして剥離し、例えばプラズマCVD法により、分離絶縁膜87、例えば高密度無添加ケイ酸塩ガラスHDPUSG(High Density Plasma Un−doped Silicate Glass)を厚さ500nm堆積し、トレンチ78を埋め込む。
【0147】
次に、図35示すように、パッド窒化膜76をストッパーとして化学的機械的研磨(CMP)法によりSOI基板71表面を平坦化して素子分離工程が完成する。
【0148】
続いて、パッド窒化膜76を熱リン酸によりエッチングして除去し、n型MIS形成領域Aa、Abおよびp型MIS形成領域Ba、Bbが完成する。
【0149】
最後に、図9に示すようにn型MIS形成領域Aa、Abおよびp型MIS形成領域Ba、Bbに所望のゲート酸化膜41、ゲート電極42、ソース領域43、ドレイン領域44をそれぞれ形成して、n型MISFET33a、33bおよびp型MISFET34a、34bを有するCMOS回路からなる半導体集積回路装置が完成する。
【0150】
以上説明したように、第8の実施の形態に係わる半導体集積回路装置の製造方法によれば、p型MIS形成領域Ba、Bbを取り囲むトレンチ78の下端部の側壁部分からp型MIS形成領域Ba、Bbの内部の所定部分にかけて第4の酸化物86a、86bが形成される。
【0151】
これによって、複数のp型MISFET34a、34bにともに圧縮応力を生じ、ホールの移動度がバルクシリコンにおける移動度より向上する。
【0152】
従って、n型MISFETおよびp型MISFETの相互コンダクタンス(gm)が向上して電流駆動能力が向上するので、CMOS回路の電流駆動能力が向上する。
【0153】
上述の実施の形態において、基板としてシリコン基板を用いた場合について説明したが、本発明はこれに限定されるものではなく、シリコン基板にエピタキシャル成長されたSiGe(C)基板でも構わない。
【0154】
また、SOI基板に替えて、SGOI基板(Silicon Germanium On Insulator)やSOS基板(Silicon On Sapphire)にも適用しても構わない。
【0155】
更に、素子分離法としてSTI法を用いる場合について説明したが、トレンチに絶縁膜を埋め込む前に素子形成領域に素子を形成するメサ型素子分離法に適用しても構わない。
【0156】
要するに、本発明の主旨を逸脱しない範囲で、その他種々変形して実施することができる。
【0157】
【発明の効果】
以上説明したように、本発明の半導体集積回路装置およびその製造方法によれば、電流駆動力能力が高く、且つ集積度の高い半導体集積回路装置が得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる半導体集積回路装置の要部を示す断面図。
【図2】本発明の第1の実施の形態に係わる半導体集積回路装置のトレンチと酸化物の位置関係を示す図。
【図3】本発明の第1の実施の形態に係わる半導体集積回路装置の2次元シミュレータによるトレンチ近傍の応力分布を示す図。
【図4】本発明の第1の実施の形態に係わる半導体集積回路装置のトレンチと酸化物の別の位置関係を示す図。
【図5】本発明の第2の実施の形態に係わる半導体集積回路装置の要部を示す断面図。
【図6】本発明の第2の実施の形態に係わる半導体集積回路装置のトレンチと酸化物の位置関係を示す図。
【図7】本発明の第3の実施の形態に係わる半導体集積回路装置の要部を示す断面図。
【図8】本発明の第3の実施の形態に係わる半導体集積回路装置のトレンチと酸化物の位置関係を示す図。
【図9】本発明の第4の実施の形態に係わる半導体集積回路装置の要部を示す断面図。
【図10】本発明の第4の実施の形態に係わる半導体集積回路装置のトレンチと酸化物の位置関係を示す図。
【図11】本発明の第4の実施の形態に係わる半導体集積回路装置の2次元シミュレータによるトレンチ近傍の応力分布を示す図。
【図12】本発明の第5の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図13】本発明の第5の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図14】本発明の第5の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図15】本発明の第5の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図16】本発明の第5の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図17】本発明の第5の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図18】本発明の第5の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図19】本発明の第5の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図20】本発明の第5の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図21】本発明の第6の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図22】本発明の第6の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図23】本発明の第6の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図24】本発明の第6の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図25】本発明の第6の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図26】本発明の第6の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図27】本発明の第7の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図28】本発明の第7の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図29】本発明の第7の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図30】本発明の第7の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図31】本発明の第8の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図32】本発明の第8の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図33】本発明の第8の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図34】本発明の第8の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図35】本発明の第8の実施の形態に係わる半導体集積回路装置の製造工程を示す断面図。
【図36】トレンチによる素子分離を示す断面図。
【図37】2次元シミュレータによるトレンチ近傍の応力分布を示す図。
【図38】従来の半導体集積回路装置の要部を示す断面図。
【符号の説明】
11、31 半導体集積回路装置
12、51 シリコン基板
13、13a、13b、33、33a、33b、115 n型MISFET
14、14a、14b、34、34a、34b、117 p型MISFET
15、35、35a、35b、55、78 トレンチ
15a、15b、35a、35b、47c、47d トレンチ側壁
16、36、36a、36b、61、82、87 絶縁分離膜
17、25、40a、40b、60b、60c、81a、81b 第1の酸化物
18、60a 第2の酸化物
19、45、52、75 パッド酸化膜
20、41、119 ゲート酸化膜
21、42、120 ゲート電極
22、43、121 ソース領域
23、44、122 ドレイン領域
26、60d 第4の酸化物
32、71、114 SOI基板
37、72、111 ベース基板
38、73、112 埋め込み酸化膜
39、74、113 半導体層
45、52、75 パッド酸化膜
48a、48b、86a、86b 第3の酸化物
53、76 パッド窒化膜
54、77 パッドTEOS膜
56a、56b 第1の窒化膜
57 シリコン基板露出部
58 レジストマクス
59 第2の窒化膜
79 第3の窒化膜
80 半導体層露出部
85a、85b 第4の窒化膜
116 第1フィールド酸化膜
118 第2フィールド酸化膜
A、Aa、Ab n型MIS形成領域
B、Ba、Bb p型MIS形成領域

Claims (18)

  1. n型MIS形成領域およびp型MIS形成領域が互いに離間形成された半導体基板と、
    この各MIS形成領域を取り囲むトレンチおよびこのトレンチ内に埋め込まれた絶縁分離膜を有する素子分離領域と、
    前記n型MIS形成領域に形成されたn型MISFETと、
    前記p型MIS形成領域に形成されたp型MISFETと、
    前記n型MIS形成領域を取り囲むトレンチ上端部の側壁からこのn型MIS形成領域の内部にかけて形成された第1の酸化物と、
    前記p型MIS形成領域を取り囲むトレンチ下端部の側壁からこのp型MIS形成領域の内部にかけて形成された第2の酸化物と、
    を具備し、
    前記n型MIS形成領域は、前記第1の酸化物により引っ張り応力が与えられ、かつ前記p型MIS形成領域は、前記第2の酸化物により圧縮応力が与えられていることを特徴とする半導体集積回路装置。
  2. 前記第1の酸化物は、前記n型MIS形成領域に引っ張り応力を与えるように、このn型MIS形成領域のトレンチの上端部の側壁からこのトレンチ側壁と直交方向におけるこのn型MIS形成領域内部にかけて形成され、前記第2の酸化物は、前記p型MIS形成領域に圧縮応力を与えるように、このp型MIS形成領域のトレンチの下端部の側壁からこのトレンチ側壁と直交方向におけるこのp型MIS形成領域内部にかけて形成されていることを特徴とする請求項1記載の半導体集積回路装置。
  3. n型MIS形成領域およびp型MIS形成領域が互いに離間形成された半導体基板と、
    この各MIS形成領域を取り囲むトレンチおよびこのトレンチ内に埋め込まれた絶縁分離膜を有する絶縁分離領域と、
    前記n型MIS形成領域に形成されたn型MISFETと、
    前記p型MIS形成領域に形成されたp型MISFETと、
    前記n型MIS形成領域およびp型MIS形成領域の各領域を取り囲むトレンチの上端部の側壁から各MIS形成領域内部にかけてそれぞれ形成された第1の酸化物と、
    を具備し、
    前記n型MIS形成領域および前記p型MIS形成領域は、ともに前記第1の酸化物により引っ張り応力が与えられていることを特徴とする半導体集積回路装置。
  4. ベース基体上に絶縁膜を介して形成され、かつ互いに離間形成されたn型MIS形成領域およびp型MIS形成領域を有する半導体基板と、
    この各MIS形成領域を取り囲むトレンチおよびこのトレンチ内に埋め込まれた絶縁分離膜を有する絶縁分離領域と、
    前記n型MIS形成領域に形成されたn型MISFETと、
    前記p型MIS形成領域に形成されたp型MISFETと、
    前記n型MIS形成領域およびp型MIS形成領域を取り囲むトレンチの上端部の側壁から各MIS形成領域内部にかけてそれぞれ形成された第1の酸化物と、
    を具備し、
    前記n型MIS形成領域および前記p型MIS形成領域は、ともに前記第1の酸化物により引っ張り応力が与えられていることを特徴とする半導体集積回路装置。
  5. 前記第1の酸化物は、前記n型MIS形成領域および前記p型MIS形成領域に引っ張り応力を与えるように、このn型MIS形成領域および前記p型MIS形成領域のトレンチの上端部の側壁からこのトレンチ側壁と直交方向における各MIS形成領域内部にかけてそれぞれ形成されていることを特徴とする請求項3または請求項4記載の半導体集積回路装置。
  6. ベース基体上に絶縁膜を介して形成され、かつ互いに離間形成された複数のn型MIS形成領域および複数のp型MIS形成領域を有する半導体基板と、
    この各MIS形成領域を取り囲むトレンチおよびこのトレンチ内に埋め込まれた絶縁分離膜を有する絶縁分離領域と、
    前記複数のn型MIS形成領域にそれぞれ形成された複数のn型MISFETと、
    前記複数のp型MIS形成領域にそれぞれ形成された複数のp型MISFETと、
    前記複数のp型MIS形成領域を取囲む各トレンチの下端部の側壁からこのp型MIS形成領域内部にかけてそれぞれ形成された複数の第3の酸化物と、
    を具備し、
    前記複数のp型MIS形成領域は、ともに各第3の酸化物により圧縮応力が与えられていることを特徴とする半導体集積回路装置。
  7. 前記第3の化合物は、各p型MIS形成領域に圧縮応力を与えるように、このp型MIS形成領域のトレンチの下端部の側壁からこのトレンチ側壁と直交方向における各p型MIS形成領域内部にかけて形成されていることを特徴とする請求項6記載の半導体集積回路装置。
  8. 前記第1乃至第3の酸化物は、前記MIS形成領域のシリコンが酸素と結合して体積が膨張した酸化物であることを特徴とする請求項1乃至請求項7のいずれか1項に記載の半導体集積回路装置。
  9. 前記第1乃至第3の酸化物は、前記トレンチ全周にわたって形成されていることを特徴とする請求項1乃至8のいずれか1項に記載の半導体集積回路装置。
  10. 前記第1乃至第3の酸化物は、前記トレンチ全周の内の一部領域に形成されていることを特徴とする請求項1乃至8のいずれか1項に記載の半導体集積回路装置。
  11. 半導体基板のn型MIS形成領域とp型MIS形成領域を電気的に分離するためのトレンチを形成する工程と、
    前記n型MIS形成領域に引っ張り応力を生じさせるように、このn型MIS形成領域を取囲むトレンチの上端部の側壁からこのn型MIS形成領域内部にかけて第1の酸化物を選択的に形成する工程と、
    前記p型MIS形成領域に圧縮応力を生じさせるように、このp型MIS形成領域を取囲むトレンチの下端部の側壁からこのp型MIS形成領域内部にかけて第2の酸化物を選択的に形成する工程と、
    前記トレンチ内部に絶縁分離膜を埋め込む工程と、
    前記n型MIS形成領域および前記p型MIS形成領域に、n型MISFETおよびp型MISFETをそれぞれ形成する工程と、
    を有することを特徴とする半導体集積回路装置の製造方法。
  12. 半導体基板のn型MIS形成領域とp型MIS形成領域を電気的に分離するためのトレンチを形成する工程と、
    前記n型MIS形成領域およびp型MIS形成領域に引っ張り応力を生じせしめるように、この各MIS形成領域を取囲むトレンチの上端部の側壁から各MIS形成領域内部にかけて第1の酸化物をそれぞれ選択的に形成する工程と、
    前記n型MIS形成領域およびp型MIS形成領域にn型MISFETおよびp型MISFETをそれぞれ形成する工程と、
    を有することを特徴とする半導体集積回路装置の製造方法。
  13. ベース基体上に絶縁膜を介してn型MIS形成領域とp型MIS形成領域が形成された半導体基板に、このn型MIS形成領域とp型MIS形成領域を電気的に分離するためのトレンチを形成する工程と、
    前記n型MIS形成領域およびp型MIS形成領域に引っ張り応力を生じさせるように、この各MIS形成領域を取囲むトレンチの上端部の側壁から各MIS形成領域内部にかけて第1の酸化物をそれぞれ選択的に形成する工程と、
    前記トレンチ内部に絶縁分離膜を埋め込む工程と、
    前記n型MIS形成領域およびp型MIS形成領域にn型MISFETおよびp型MISFETをそれぞれ形成する工程と、
    を有することを特徴とする半導体集積回路装置の製造方法。
  14. ベース基体上に絶縁膜を介して複数のn型MIS形成領域と複数のp型MIS形成領域が形成された半導体基板に、この複数のMIS形成領域をそれぞれ電気的に分離するためのトレンチを形成する工程と、
    前記複数のp型MIS形成領域に圧縮応力を生じさせるために、各p型MIS形成領域を取囲むトレンチの下端部の側壁から各p型MIS形成領域内部にかけて第3の酸化物をそれぞれ選択的に形成する工程と、
    前記トレンチ内部に絶縁分離膜を埋め込む工程と、
    前記n型MIS形成領域およびp型MIS形成領域にn型MISFETおよびp型MISFETをそれぞれ形成する工程と、
    を有することを特徴とする半導体集積回路装置の製造方法。
  15. 前記第1の酸化物を形成する工程は、前記n型MIS形成領域またはp型MIS形成領域を取囲むトレンチ側壁に第1の保護膜を形成し、このトレンチ側壁の上端部の第1の保護膜をエッチングにより除去して、このトレンチの上端部の側壁を露出させる工程と、
    前記第1の保護膜をマスクとして、前記トレンチの上端部の側壁からこのトレンチ側壁と直交方向における前記n型MIS形成領域またはp型MIS形成領域内部にかけてこのMIS形成領域の半導体を熱酸化する工程と、
    を有することを特徴とする請求項11乃至13のいずれか1項に記載の半導体集積回路装置の製造方法。
  16. 前記第1の保護膜は、前記n型MIS形成領域およびp型MIS形成領域を取囲むトレンチの側壁および底面に形成した後、このトレンチ側壁の上端部の保護膜をエッチングにより除去して、このトレンチの上端部の側壁のを露出させるように形成することを特徴とする請求項15記載の半導体集積回路装置の製造方法。
  17. 前記第2の酸化物を形成する工程は、前記p型MIS形成領域を取囲むトレンチ内壁に第2の保護膜を形成し、このトレンチ底部の第2の保護膜をエッチングにより除去して、このトレンチ底部を露出させる工程と、
    この第2の保護膜をマスクとして、前記p型MIS形成領域のトレンチの下端部の側壁からこのトレンチ側壁と直交方向におけるこのp型MIS形成領域内部にかけてこのMIS形成領域の半導体を熱酸化する工程と、
    を有することを特徴とする請求項11記載の半導体集積回路装置の製造方法。
  18. 前記第3の酸化物を形成する工程は、各p型MIS形成領域を取囲むトレンチ内壁に第2の保護膜を形成し、このトレンチ底部の第2の保護膜をエッチングにより除去して、このトレンチ底部を露出させる工程と、
    この第2の保護膜をマスクとして、各p型MIS形成領域のトレンチの下端部の側壁からこのトレンチ側壁と直交方向におけるこのp型MIS形成領域内部にかけてこのMIS形成領域の半導体を熱酸化する工程と、
    を有することを特徴とする請求項14記載の半導体集積回路装置の製造方法。
JP2003074820A 2003-03-19 2003-03-19 半導体集積回路装置とその製造方法 Pending JP2004281964A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074820A JP2004281964A (ja) 2003-03-19 2003-03-19 半導体集積回路装置とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074820A JP2004281964A (ja) 2003-03-19 2003-03-19 半導体集積回路装置とその製造方法

Publications (1)

Publication Number Publication Date
JP2004281964A true JP2004281964A (ja) 2004-10-07

Family

ID=33290296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074820A Pending JP2004281964A (ja) 2003-03-19 2003-03-19 半導体集積回路装置とその製造方法

Country Status (1)

Country Link
JP (1) JP2004281964A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311000A (ja) * 2004-04-20 2005-11-04 Nec Electronics Corp 半導体装置及びその製造方法
JP2007019515A (ja) * 2005-07-07 2007-01-25 Infineon Technologies Ag 半導体装置、半導体装置の製造方法およびトランジスタ装置の操作方法
JP2007509492A (ja) * 2003-10-16 2007-04-12 インターナショナル・ビジネス・マシーンズ・コーポレーション 高性能の歪みcmosデバイス
JP2007123898A (ja) * 2005-10-27 2007-05-17 Internatl Business Mach Corp <Ibm> チップ、fet製造方法(誘電体ストレッサ要素を有するトランジスタ)
JP2007142429A (ja) * 2005-11-21 2007-06-07 Internatl Business Mach Corp <Ibm> せん断応力を加えるための、半導体表面から異なる深さに誘電体ストレッサ要素を有するトランジスタ
WO2007072537A1 (ja) * 2005-12-19 2007-06-28 Fujitsu Limited 半導体装置及びその半導体装置の製造方法
JP2007207992A (ja) * 2006-02-01 2007-08-16 Toshiba Corp 半導体装置及びその製造方法
JP2008053518A (ja) * 2006-08-25 2008-03-06 Sony Corp 半導体装置
JP2009529803A (ja) * 2006-03-31 2009-08-20 インテル コーポレイション 電界効果型トランジスタにおけるコンタクト抵抗を減少させるエピタキシャルシリコンゲルマニウム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509492A (ja) * 2003-10-16 2007-04-12 インターナショナル・ビジネス・マシーンズ・コーポレーション 高性能の歪みcmosデバイス
JP2005311000A (ja) * 2004-04-20 2005-11-04 Nec Electronics Corp 半導体装置及びその製造方法
JP4745620B2 (ja) * 2004-04-20 2011-08-10 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
JP2007019515A (ja) * 2005-07-07 2007-01-25 Infineon Technologies Ag 半導体装置、半導体装置の製造方法およびトランジスタ装置の操作方法
JP4675844B2 (ja) * 2005-07-07 2011-04-27 インフィネオン テクノロジーズ アクチエンゲゼルシャフト 半導体装置および半導体装置の製造方法
JP2007123898A (ja) * 2005-10-27 2007-05-17 Internatl Business Mach Corp <Ibm> チップ、fet製造方法(誘電体ストレッサ要素を有するトランジスタ)
JP2007142429A (ja) * 2005-11-21 2007-06-07 Internatl Business Mach Corp <Ibm> せん断応力を加えるための、半導体表面から異なる深さに誘電体ストレッサ要素を有するトランジスタ
US7834414B2 (en) 2005-12-19 2010-11-16 Fujitsu Limited Semiconductor device with tensile strain and compressive strain
WO2007072537A1 (ja) * 2005-12-19 2007-06-28 Fujitsu Limited 半導体装置及びその半導体装置の製造方法
JP5092751B2 (ja) * 2005-12-19 2012-12-05 富士通株式会社 半導体装置及びその半導体装置の製造方法
JP2007207992A (ja) * 2006-02-01 2007-08-16 Toshiba Corp 半導体装置及びその製造方法
JP2009529803A (ja) * 2006-03-31 2009-08-20 インテル コーポレイション 電界効果型トランジスタにおけるコンタクト抵抗を減少させるエピタキシャルシリコンゲルマニウム
JP2008053518A (ja) * 2006-08-25 2008-03-06 Sony Corp 半導体装置

Similar Documents

Publication Publication Date Title
US8587063B2 (en) Hybrid double box back gate silicon-on-insulator wafers with enhanced mobility channels
US8525292B2 (en) SOI device with DTI and STI
US7767546B1 (en) Low cost fabrication of double box back gate silicon-on-insulator wafers with built-in shallow trench isolation in back gate layer
US8877606B2 (en) Low cost fabrication of double box back gate silicon-on-insulator wafers with subsequent self aligned shallow trench isolation
US20060017137A1 (en) Semiconductor device and its manufacturing method
US20120104498A1 (en) Semiconductor device having localized extremely thin silicon on insulator channel region
JP2005252268A (ja) ベリード酸化膜を具備する半導体装置の製造方法及びこれを具備する半導体装置
JP2009302317A (ja) 半導体装置およびその製造方法
JP2001015734A (ja) トランジスタ素子製造におけるトレンチ分離構造を利用した高圧素子と低圧素子の整合方法
JP2004281964A (ja) 半導体集積回路装置とその製造方法
JP4902362B2 (ja) 半導体装置の製造方法
JP2007158295A (ja) 半導体装置および半導体装置の製造方法
JP2007043069A (ja) 半導体装置および半導体装置の製造方法
JP2008244229A (ja) 半導体装置の製造方法及び半導体装置
JP4360413B2 (ja) 半導体装置の製造方法
JP2006228950A (ja) 半導体装置およびその製造方法
JP2009164217A (ja) 半導体装置の製造方法及び半導体装置
JP4696640B2 (ja) 半導体装置の製造方法
JP2011049603A (ja) 半導体装置およびその製造方法
JPH1093101A (ja) 半導体装置及びその製造方法
JP2007042915A (ja) 半導体装置の製造方法
KR100548536B1 (ko) 에스 오 아이 기판에 형성되는 반도체 디바이스 및 그 제조방법
JP2007123689A (ja) 半導体装置および半導体装置の製造方法
JP2007207825A (ja) 半導体装置および半導体装置の製造方法
JP2007150018A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606