CN101385167A - 碳纳米管锂金属粉末电池 - Google Patents

碳纳米管锂金属粉末电池 Download PDF

Info

Publication number
CN101385167A
CN101385167A CNA2007800053721A CN200780005372A CN101385167A CN 101385167 A CN101385167 A CN 101385167A CN A2007800053721 A CNA2007800053721 A CN A2007800053721A CN 200780005372 A CN200780005372 A CN 200780005372A CN 101385167 A CN101385167 A CN 101385167A
Authority
CN
China
Prior art keywords
battery
anode
cnt
negative electrode
lithiumation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800053721A
Other languages
English (en)
Inventor
R·S·莫里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMC Corp
Original Assignee
FMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMC Corp filed Critical FMC Corp
Publication of CN101385167A publication Critical patent/CN101385167A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本文公开了一种高能锂电池体系。这种体系包含碳纳米管和/或其他用于阳极和阴极的纳米管状材料。阳极使用金属锂粉锂化。

Description

碳纳米管锂金属粉末电池
关于联邦政府赞助研究或开发的声明
本发明部分接受了合同号为N0014-03-M0092的来自海军研究所的美国政府支持而产生。美国政府对本发明可具有一定权利。
发明领域
本发明涉及储能装置。具体地说,本发明涉及具有两个由碳纳米管(CNT)材料构成的活性电极的锂离子电池,其中金属锂粉分散在阳极CNT材料中。
发明背景
未来消费者和军用的便携式能量需求将需要锂电池技术提供更大比能量和比功率。可以预期的是为了满足将来的能量需求,将需要锂电池展现大于400Wh/kg的持续比能量且在100Wh/kg下具有大于2kW/kg的脉冲功率容量。另外,将需要这种体系在广泛温度范围(-20℃到90℃)内有效操作且能够快速再充电。这些需求不能由常规电池或通过外推常规体系的能力得到满足。众所周知,常规锂离子电极材料易受物理化学约束,这限制了这些材料的锂储存能力。
常规工业用锂离子电池技术依靠锂化金属氧化物用于正极(阴极)且(各种形式的)碳作为负极(阳极)。锂离子电池在所有锂均处于阴极且充电时开始寿命损耗,一定百分数的这种锂移动到阳极且嵌入碳阳极中。当充电过程完成时,电池的开路电压为约4.2V。约1.15V的这种电池电压归因于金属氧化物电极的正电位。这两种材料化学性质的不同确保了高开路电位。然而,可以想得到使用具有类似化学的材料会影响类似结果。在二十世纪八十年代,由Lazzari和Scrosati提出“摇椅概念(rocking chair concept)”(即,使用两种基于金属氧化物或硫化物的插入化合物)(M.Lazzari和B.Scrosati,J.Electrochem.Soc.,简讯,1980年3月,它的全部教导内容都通过引用结合到本文中来)。描述了一种在1.8V平均电压下工作的LixWO2/LiyTiS2电池。虽然这种体系能够解决金属锂阳极的问题,但它不能提供使它成为现有可再充电体系的可行选择所需的实用能量密度。在这个初步报告之后,发现某些类型的碳能可逆地嵌入锂,工作人员改变使用两种金属氧化物电极的立场。大多数石墨碳提供化学计量的LiC6(375mAh/g),而无序碳通常为LixC6(x>1)(400mAh/g)。与锂化碳相比,金属锂阳极的理论容量大于3000mAh/g且实际容量为965mAh/g(Linden,D.和Reddy,T.B.,Handbook of Batteries,第3版,p34.8,McGraw-Hill,NY,2001,它的全部教导内容都通过引用结合到本文中来)。
碳纳米管作为可能的电极材料已引起注意。碳纳米管经常以紧密同心多层壳即多壁纳米管(MWNT)形式存在。纳米管还可形成为单壁纳米管(SWNT)形式。SWNT形成管束,这些管束具有紧密堆积的二维三角形晶格结构。MWNT和SWNT都已形成,这些材料的比容量已通过蒸气转移反应评估。参见,例如O.Zhou等,Defects in CarbonNanotubes(碳纳米管的缺陷),Science:263,第1744-47页,1994;R.S.Lee等,Conductivity Enhancement in Single-Walled Nanotube BundlesDoped with K and Br(掺K和Br的单壁碳纳米管束导电性的增加),Nature:388,第257-59页,1997;A.M.Rao等,Raman Scattering Studyof Charge Transfer in Doped Carbon Nanotube Bundles(掺杂碳纳米管束中电子转移的拉曼散射研究),Nature:388,257-59,1997;和C.Bower等,Synthesis and Structure of Pristine and Cesium IntercalatedSingle-Walled Carbon Nanotubes(嵌有Pristine和铯的单壁碳纳米管的合成及结果),Applied Physics:A67,第47-52页,1998年春,它们的全部教导内容都通过引用结合到本文中来。据报道这些纳米管材料的最高碱金属饱和值(alkali metal saturation value)为MC8(M=K、Rb、Cs)。这些值并不表示较现有工业用通行材料如石墨有显著提高。最新实验结果表明可对单壁碳纳米管中充至最高可达Li1C3和更高。实验上已确定原料的容量超过600mAh/g。这些容量开始接近纯锂的容量,但避免了对锂安全性的担忧。另外,像介晶相碳微珠(MCMB)一样,将锂可逆地嵌入,因此碳纳米管形成优于作为阳极材料的MCMB的惊人改进。显而易见,碳纳米管提供高能电池的新前景且可提供迄今用常规电极材料难以实现的崭新电池设计的新机遇。
在科学和专利文献中已报道锂化碳纳米管(CNT)为锂电池的高能非金属阳极物质。具体地说,美国专利第6,280,697号、第6,422,450号和第6,514,395号(它们的全部内容通过引用结合到本文中来)详细描述了制备激光产生的碳纳米管的方法和它们的锂化。然而,现有技术没有包括使用金属锂粉/CNT阳极和CNT阴极形成高能电池的概念。
发明概述
本发明涉及一种高能锂电池体系。根据本发明的一些实施方案,提供一种电池,所述电池包括与阴极电连接的阳极、分隔阳极与阴极的隔板和在阳极与阴极之间电连接的部件,其中阴极和阳极包括CNT,阳极被金属锂粉锂化且任选阴极被金属锂粉锂化。
在一些实施方案中,CNT电极可为单壁、多壁、纳米角、纳米铃铛(nanobell)、豆荚、巴克球等形式,或纳米结构碳材料的其他俗称或它们的任何组合。
本领域的技术人员在考虑以下描述本发明的优选和供选的实施方案的详细说明和附图的情况下,本发明的这些和其他特征将变得更加易于理解。
附图简述
本发明在结合附图进行理解时可更加易于确定以下发明说明书,其中:
图1为本发明一个实施方案的示意图;
图2为描绘本发明一个实施方案的半电池放电试验的曲线图;
图3为本发明一个实施方案的循环试验的曲线图;
图4为描绘本发明一个实施方案的循环试验的曲线图;
图5为描绘图4中所说明的实施方案的其他循环的曲线图;
图6为描绘本发明一个实施方案的循环试验的曲线图;
图7为描绘图6中所说明的实施方案的其他循环试验的曲线图;
图8为比较本发明的实施方案与现有技术材料的曲线图。
发明详述
本发明提供一种电池,所述电池包括与阴极电连接的阳极、分隔阳极与阴极的隔板和在阳极与阴极之间电连接的部件,其中阴极和阳极包括CNT,阳极被金属锂粉锂化且任选阴极被金属锂粉锂化。
应当理解的是,对于本发明的目的来说,术语“电池”可指并包括单个电化学电池即单电池和/或如本领域的技术人员所知的一个或多个串联和/或并联的电化学电池。此外,术语“电池”包括但不限于可再充电电池和/或二次电池和/或电化学电池。
根据本发明实施方案的电池可包括正极(阴极)和负极(阳极),其中两个电极都包括能够在电化学体系中吸附并脱附锂的碳纳米管(CNT)材料且其中金属锂粉分散在阳极CNT中和任选的阴极CNT中;分隔阴极与阳极的隔板和使阴极与阳极连接的电解质。
图1说明本发明的一个实施方案。所描绘的电池体系1包括阳极3、阴极5、隔板7和用于促进阳极3与阴极5之间电连接的部件8。在本实施方案的一方面,阳极3和阴极5由CNT材料的各种构造组成。CNT材料可为多壁、单壁、纳米角、纳米铃铛、豆荚、巴克球或任何其他已知纳米结构碳材料。隔板7包含具有液体或阳离子导电聚合物电解质的绝缘材料。用于阳极3与阴极5之间的电连接部件8包括本领域众所周知的便于阳极与阴极之间电连接的任何部件。这类部件包括但不限于合适的低电阻电线。
如下文详细描述,阴极和阳极包括CNT,其中阳极和任选的阴极包含分散在其中的金属锂粉。在本说明书中,应当理解的是通用术语CNT是指本领域的技术人员众所周知的全系列碳纳米管状材料。在一些实施方案中,CNT电极可为单壁、多壁、纳米角、纳米铃铛、豆荚、巴克球等或其他俗名的纳米结构碳材料或它们的任何组合。阳极和阴极可由相同类型的CNT形成,或它们可由不同类型的CNT形成。例如,在一个实施方案中,阴极可为单壁纳米管(SWNT),而阴极为多壁纳米管(MWNT)。此外,CNT可通过多种方法形成并加工。例如,CNT可通过激光、弧光或本领域已知的其他方法产生。CNT还可通过所属领域的技术人员已知的多种方法处理,包括用二氧化碳、一氧化氮等处理;卤化,包括氟化和氯化;和用有机导电材料处理。CNT还可替代炭黑和当前用作锂离子电池中的活性材料的金属氧化物材料而加入。这些处理方法将在下文进一步描述,且关于可用于本发明的CNT的其他信息可见于美国申请第2004/234844A1号,它的全部公开内容以引用的方式结合到本文中来。关于在阳极和任选的阴极中使用金属锂粉(LMP)的细节将在下文描述,但详细信息公开在Gao等的美国公开案第2005/0131143号中,它的全部公开内容以引用的方法结合到本文中来。
本发明的阴极包含CNT,但可具有多种构造。阴极可为锂化的或非锂化的,锂化可通过所属领域的技术人员已知的任何方法进行,包括使用LMP。例如,在一个实施方案中,阴极由使用纯锂对电极电化学锂化的SWNT和适当电解质和隔板形成。在一个实施方案中,所述材料以低速率(<100mA/cm2)锂化历时长时间(每0.5mg材料约20小时)。这种配置导致在充电之前电池电压为约3.0V,充满电的电池的电压为约3.2V。
在另一实施方案中,阴极包含经氟化或其他氧化处理如氯化化学改性的CNT。
在另一实施方案中,阴极包含经有机导电材料(例如导电聚合物,如聚(3-辛基噻吩))处理的CNT。还可用于此目的的其他导电聚合物包括:被取代的聚噻吩、被取代的聚吡咯、被取代的聚亚苯基亚乙烯基和被取代的聚苯胺。通过在烷基链末端加入磺酸基进行的这些材料的离子掺杂或自掺杂可提供p型导电聚合物。
在另一实施方案中,阴极结合有代替碳黑和当前用作锂离子电池的活性阴极材料的金属氧化物材料的锂化CNT。这可提供双重优势:1)纳米管可提供给所得复合电极更高导电率,从而改进阴极性能和2)锂化纳米管可提高阴极的容量。高电池电压可通过阴极中存在金属锂氧化物来保持。
在另一实施方案中,阴极为经LMP锂化的CNT,它可以包括下文对于CNT阳极材料所述的方法的任何方法锂化。在一些实施方案中,阴极和阳极包括相同的CNT/LMP材料。
就阳极来说,阳极可由能够在电化学体系中吸附并脱附锂的CNT形成,其中LMP分散在CNT中。金属锂优选以微细锂粉形式提供于阳极中。更通常的情况是,金属锂的平均粒度小于约60微米,更常小于约30微米,不过也可使用较大粒度。金属锂可以所谓的“稳定的金属锂粉”形式提供,即,通过用CO2处理金属锂粉而使它为低自燃性粉末且足够稳定以便操作。
CNT阳极能够在相对于锂金属大于0.0V到小于或等于1.5V的电化学电位下可逆地锂化和脱锂化。如果电化学电位相对于锂为0.0V或更低,那么金属锂在充电期间将不会再次进入阳极。或者,如果电化学电位相对于锂大于1.5V,那么电池电压会不合需要地低。阳极中金属锂的存在量优选仅为足以在电池充电时插入碳纳米管状材料中、与其形成混合物(alloy with)或被其吸附的最大量。
根据本发明的一些实施方案,阳极可通过提供能够在电化学体系中吸附并脱附锂的CNT、将LMP分散于CNT中且形成CNT并使分散在其中的金属锂进入阳极来制备。优选将LMP和CNT与非水液体和连接料一起混合且形成浆液。
根据本发明的实施方案形成阳极或其他类型电极如阴极可通过混合LMP、CNT、任选的连接料聚合物和用以形成浆液的溶剂来实现。在一些实施方案中,阳极是在将浆液涂布到集电器(如铜箔或网上)且使其干燥而形成。使集电器上的共同形成电极的干燥浆液受压以完成阳极的形成。干燥后使电极受压会使电极致密,因此活性材料可在阳极的体积内配合良好。
在本发明的一些实施方案中,可能需要使CNT材料预锂化。对于本发明的目的来说,术语“预锂化”在关于CNT使用时是指在使CNT与电解质接触之前使CNT锂化。CNT的预锂化可降低由伴随CNT的锂化所出现的电极中的金属锂粉粒子与电解质之间的不可逆反应所引起的电池容量的不可逆损失。
根据本发明的一些实施方案,CNT的预锂化优选通过使CNT与LMP接触而发生。例如,可使CNT与干燥LMP或悬浮在流体或溶液中的LMP接触。LMP与CNT之间的接触可使CNT锂化,从而使CNT预锂化。
在一些实施方案中,将CNT与干燥金属锂粉混合在一起以使至少一部分CNT与至少一部分金属锂粉接触。可使用强烈搅拌或其他搅动来促进CNT与金属锂粉之间的接触。金属锂粉与CNT之间的接触引起基质材料部分锂化,产生预锂化的CNT。
CNT的预锂化可在室温下进行。然而,在本发明的各种实施方案中,CNT的预锂化在高于约40℃的温度下进行。在高于室温或高于约40℃的温度下进行的预锂化增加LMP与CNT之间的相互作用和/或扩散,增加在给定时间段内可被锂化的CNT的量。
当暴露于高于室温的温度时,金属锂粉变得更软和/或更有延展性。当与其他物质混合时,较软的金属锂粉与和它混合的物质接触更多。例如,与如果混合物的温度被升高到高于室温时相比,在室温下处于搅动中的金属锂粉与CNT的混合物之间的相互作用和/或扩散较小。增加金属锂粉与活性物质如CNT之间的接触会增加活性物质的锂化量。因此,通过升高金属锂粉与CNT的混合物的温度,两种物质之间的相互作用和/或扩散增加,这又增加基质材料的锂化。
混合物的温度优选保持在锂的熔点下或低于锂的熔点。例如,可使金属锂粉与CNT的混合物的温度升到约180℃或更低以促进CNT的锂化。更优选可使金属锂粉与CNT的混合物的温度升到约40℃到约150℃以促进CNT的锂化。
在其他实施方案中,可将CNT引入含有金属锂粉的溶液中。所述溶液可包括例如矿物油和/或其他溶剂或液体,它们在溶液中优选对金属锂粉为惰性或无反应性。当与溶液混合时,溶液优选以一定方式搅动以促进CNT与金属锂粉之间的接触。CNT与金属锂粉之间的接触促进CNT的锂化,产生可用以形成阳极的预锂化CNT。
用于本发明的各种实施方案的金属锂可以稳定的锂粉(SLMP)形式提供。可对锂粉末进行处理或采用其他方法调制使其能在运输期间具有稳定性。例如,如通常所知,SLMP可在二氧化碳存在下形成。干燥的锂粉可用于本发明的各种实施方案。或者,SLMP可于悬浮液中如于矿物油溶液或其他溶剂的悬浮液中形成。锂粉形成溶剂悬浮液可促进形成较小金属锂粒子。在本发明的一些实施方案中,SLMP可在可用于本发明的各种实施方案中的溶剂中形成。在溶剂中的SLMP可在溶剂中运输。此外,SLMP和溶剂的混合物可用于本发明的实施方案中,它可消除电极生产工艺的混合步骤,因为溶剂和SLMP均可以单组分形式使用。这可降低生产成本且使得较小或较细金属锂粉粒子可用于本发明的实施方案中。
用于本发明的实施方案的溶剂还应与金属锂、连接料聚合物和CNT在阳极或阴极生产工艺中所用的温度下无反应性。溶剂或助溶剂优选具有足够挥发性以易于自浆液蒸发,从而促进施用到集电器上的浆液干燥。例如,溶剂可包括无环烃、环烃、芳族烃、对称醚、不对称醚和环醚。
本发明的实施方案所用的各种连接料聚合物和溶剂组合通过试验以确定连接料聚合物-溶剂对是否相容且稳定。此外,由连接料聚合物-溶剂对形成的阳极经试验以确保相容。用于形成本发明的一些实施方案的阳极和阴极的优选连接料聚合物-溶剂对列于表I中。
表I
 
连接料聚合物 合适溶剂
乙烯-丙烯-二烯三元聚合物或乙烯-丙烯-二烯单体     无环烃和环烃,包括正己烷、正庚烷、环己烷等;芳族烃,如甲苯、二甲苯、异丙苯(枯烯)等                              
聚偏二氟乙烯 对称醚、不对称醚和环醚,包括二正丁醚、甲基叔丁基醚、四氢呋喃等                                                  
乙烯-乙酸乙烯酯 芳族烃,如甲苯、二甲苯、异丙苯(枯烯)等
苯乙烯-丁二烯橡胶 芳族烃,如甲苯、二甲苯、异丙苯(枯烯)等;对称醚、不对称醚和环醚,包括二正丁醚、甲基叔丁基醚、四氢呋喃等          
应理解的是,根据本发明的实施方案,其他连接料聚合物-溶剂对也可使用或混合以形成浆液和阳极。
隔板和电解质可从许多本领域中众所周知的隔板和电解质中选择。在本发明中,液体/固体聚合物电解质赋予这种高能量体系增加的安全性。
研究工作已确定多磷酸盐和多膦酸盐(PEP)为用于制备聚合物电解质的良好候选物。另外,已用液态电解质体系和固态电解质体系获得成功。这些新型材料对于以单步工艺进行制备来说相对廉价且与聚环氧乙烷(PEO)的锂离子迁移数(transport property)为0.3相比,它具有更高的锂离子迁移数0.5。热稳定试验也得到前景乐观的结果(在>300℃下具有热稳定性)。为了使操作温度扩大到-20℃到+90℃,可将多磷酸盐液体电解质与碳酸丙二酯(PC)共混以增强多磷酸盐材料的低温性能。这些液体与极性液体如PC完全可以溶混。
PEP的合成是使生产成本减至最低的直接单步法。在合成聚合物之后,液体聚合物电解质(LPE)通过以1M浓度将锂盐溶解于流体聚合物中来制备。使用双-三氟甲烷磺酰亚胺锂(LiIm,3M Co.)作为这些电解质中的锂盐已相当成功。
以下实施例仅仅说明本发明,并不限制本发明。
实施例
对照物A:
首先,合成不含CNT的对照样品。将9.65g获自Osaka Gas Ltd.的介晶相碳微珠(MCMB)与0.35g PEO粉末(Aldrich,5×106MW)混合。紧接着,将26.25g无水对二甲苯(Aldrich)与0.975g Lectro
Figure A200780005372D0012165409QIETU
 Max稳定的金属锂粉(SLMP)混合。这使用顶部混合器以约300rpm混合5分钟。接着将MCMB/PEO混合物依次与在二甲苯中的SLMP混合。将所得混合物用锡箔覆盖以防止溶剂损失,将它加热到约55℃,且以约300rpm搅拌3小时。得到均匀黑色浆液,将它涂布到一块已轻微砂磨、用丙酮脱脂的铜箔上,且在使用前在烘箱(over)中干燥。这使得在手套箱中的加热板上干燥过夜。在从手套箱中取出时,切下一小方块这种材料,加压且保存在经充的拉密(ziplock)冷冻袋中以备用于试验。
对照物B:
所合成的第二对照物为由未经预处理的CNT形成的浆液。所用方法与对照物A所用方法类似,但将它按比例缩减以供应较小量的CNT。在使用前,将一些原样得到的Hipco SWNT材料在氩气下干燥过夜。正如对照物A,这种和所有其他样品制备都在手套箱中进行。遵循对照物A制备方法,不同之处在于省略PEO。如前所述,将0.02gSLMP与10ml二甲苯混合且充分混合。接着将Hipco SWNT(0.10g)加到二甲苯混合物中且在加热板上在约55℃下搅拌3小时。所得混合物为均匀的黑色稀薄的糊状材料,将它铺展到大铝盘上以干燥过夜。一旦变干,则在其粘着还不是很好时,就将材料从盘上刮下,将它放入小瓶中。
样品材料1
该第一样品材料掺有已在600℃下在N2O中燃烧20分钟且随后在750℃下用CO2处理1小时的激光形成的SWNT灰状物。混合CNT与SLMP的方法与对照物B所用方法相同,不同之处在于将17mgSWNT与13mg SLMP以及足够的二甲苯混合以形成流体混合物。不使用连接料。在完全混合之后,将材料在手套箱中的加热板上在55℃下干燥。收集样品且将它保存在小瓶中直到使用。
样品材料2
第二样品材料掺有经CO2处理的Hipco纳米管(10L/min CO2,在750℃下,1小时)。制备方法与关于样品材料1所提供的方法类似,不同之处在于使用50mg Hipco纳米管和38.5mg SLMP。加入足够的二甲苯以得到流体混合物。
样品材料3
第三样品材料掺有电弧产生的SWNT,所述SWNT已在600℃下用2L/min的N2O处理5分钟。制备方法与关于样品材料1所提供的方法类似,不同之处在于将22mg SWNT和10mg SLMP与15ml无水二甲苯混合。将混合物超声处理1小时,搅拌且再次超声处理1小时。所得混合物为均质油墨样悬浮液。将这种产物在手套箱中过滤以形成纳米管纸。
电化学结果:
半电池试验
-为了确定一些所制得材料的相对锂化质量,使各种产物相对于标准实验室电池中的锂箔对电极放电。一般说来,这些试验在本质上为定性的,因为没有测定被测材料的量。每种材料切一小方块,在不锈钢压丸机中使用液压千斤顶使它受压(不在手套箱中时所述压丸机保持在充氩的拉密袋中)以备用于试验。在图2中比较数种材料的放电曲线。
如从图2可见,对照物A的开路电压(OCV)相当低(相对于Li/Li+,120mV),这表明这种材料已高度锂化。在施加100μA放电电流时,电池电压逐渐增大,这表明锂从MCMB电极移除。
对照物B的放电曲线也表现在图2中。如相对较高的OCV(对于Li/Li+,约1.0V)和在施加放电电流时电池电压较高程度地极化(polarization)所表明,对照物B似乎比对照物A锂化程度低。虽然如此,对照物B电极达到2.5V也需要放电至少4小时。
紧接着试验样品材料2和3。如图2可见,如比较低的OCV和放电时缓慢极化所表明,样品材料2似乎为两种样品中锂化程度较高者。
在半电池试验之后,在全电池试验中使用不同电极材料组合进行一系列实验。第一试验设法确定SLMP CNT电极材料是否可用作先前已用于CNT/CNT电池中的电化学方法锂化阳极的替代材料。为此,使用样品材料A形成阳极,使用未锂化的经CO2处理的激光制备的SWNT巴克纸(buckypaper)形成阴极,且如图3所示使电池循环数次。
在这个试验中,充电在比放电高得多的速率下进行,以驱使锂回到阳极(在500μA下充电,在100μA下放电;53Wh/kg)。如此可见,典型电压坪值(voltage plateau)出现在约1.5V。
紧接着,进行由相同材料形成的两个电极的循环,以驱使所有稳定的金属锂粉从一个电极进入另一电极,从而扩大电池电压且提高两种材料的锂化。如图4所见,这个方案首先用对照物A进行试验。初始循环以高充电速率和低放电速率进行,以使锂从一个电极移动到另一电极(在500μA下充电,在100μA下放电)。电池(两个电极)中材料的总重量为38mg。如图4可见,在连续充电的情况下,电池的放电容量提高。到第三循环,在100微安下放电1小时后,电池的电压为705mV。这些结果表明这种电池为原始的(rudimentary)锂离子电池。
如图5所示的结果所证实,对照物A电池的进一步再循环似乎导致电池短路和电池故障。试图通过插入其他隔板来改善这个问题证明并没有效果,即电池再次短路。
随后制备第二试验电池,其中阳极与阴极都由样品材料2形成。这种电池中电极的总重量为8mg。这种电池的循环结果见图6。循环标准与对照物A相同(在500μA下充电,在100μA下放电),只是在相同数量的初始循环数之后,电池在第三次放电时展现比对照物A电池高的电压(1310mV)。因为与CNT样品材料2试验电池相比,在MCMB对照物A电池中存在多5倍的材料,所以看来样品材料2试验电池比对照物A电池更加有效。
此外,短路和电池故障的问题在用样品材料2试验电池时似乎会少得多,如图7所示,它运行大于20次循环(在200μA下充电和放电)。与对照物A电池相比,样品材料2试验电池的效率更大的进一步证据见图8,其中比较在第七循环中放电1小时各电池的容量。如图8可见,尽管两电池均不长时间放电,但CNT电池的容量比MCMB电池的容量大得多。
已经如此描述了本发明的某些实施方案,应理解附加权利要求限定的本发明不限于以上描述所说明的特定细节,因为它的许多明显的变化在不脱离下文所主张的本发明的精神或范围的情况下都是可能的。

Claims (8)

1.一种电池,所述电池包括与阴极电连接的阳极、分隔所述阳极与所述阴极的隔板、在所述阳极与所述阴极之间电连接的部件,其中所述阳极和所述阴极为碳纳米管且所述阳极为被金属锂粉锂化的碳纳米管。
2.权利要求1的电池,其中所述碳纳米管选自多壁纳米管、单壁纳米管、纳米角、纳米铃铛、豆荚、巴克球和它们的组合。
3.权利要求2的电池,其中所述碳纳米管包括单壁纳米管。
4.权利要求1的电池,其中所述隔板包含锂盐电解质。
5.权利要求4的电池,其中所述电解质为磷酸盐或多磷酸盐电解质。
6.权利要求1的电池,其中所述碳纳米管的可逆容量超过600mAh/g。
7.权利要求1的电池,其中所述碳纳米管的碱金属饱和值为MC8,其中M选自K、Rb和Cs。
8.权利要求1的电池,其中所述阴极由单壁纳米管组成,且其中所述阳极由多壁纳米管组成。
CNA2007800053721A 2006-02-15 2007-02-05 碳纳米管锂金属粉末电池 Pending CN101385167A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/354,738 2006-02-15
US11/354,738 US20070190422A1 (en) 2006-02-15 2006-02-15 Carbon nanotube lithium metal powder battery

Publications (1)

Publication Number Publication Date
CN101385167A true CN101385167A (zh) 2009-03-11

Family

ID=37980002

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800053721A Pending CN101385167A (zh) 2006-02-15 2007-02-05 碳纳米管锂金属粉末电池

Country Status (10)

Country Link
US (1) US20070190422A1 (zh)
EP (1) EP1994588A1 (zh)
JP (1) JP2009527095A (zh)
KR (1) KR20080094658A (zh)
CN (1) CN101385167A (zh)
CA (1) CA2629684A1 (zh)
DE (1) DE112007000185T5 (zh)
GB (1) GB2445341A (zh)
RU (1) RU2008136838A (zh)
WO (1) WO2007095013A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403922A (zh) * 2010-12-23 2013-11-20 纳米技术仪器公司 表面介导的锂离子交换能量存储装置
CN104025345A (zh) * 2011-09-13 2014-09-03 佐治亚技术研究公司 自充电电源组
CN112751022A (zh) * 2020-12-29 2021-05-04 无锡晶石新型能源股份有限公司 一种碳纳米管包覆锰酸锂的工艺方法
CN114188509A (zh) * 2021-12-01 2022-03-15 杭州电子科技大学 一种基于碳纳米管封装手段的硫化锂电极的制备方法

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968233B2 (en) 2004-02-18 2011-06-28 Solicore, Inc. Lithium inks and electrodes and batteries made therefrom
CN101409337B (zh) 2007-10-10 2011-07-27 清华大学 锂离子电池负极,其制备方法和应用该负极的锂离子电池
ES2379900T3 (es) * 2007-09-14 2012-05-04 Hong Fu Jin Precision Industry (Shenzhen) Co., (Shenzhen) Co., Ltd. Batería de litio y método para fabricar un ánodo de la misma
CN101388447B (zh) 2007-09-14 2011-08-24 清华大学 锂离子电池负极及其制备方法
CN101420021B (zh) * 2007-10-26 2011-07-27 清华大学 锂离子电池正极及其制备方法
US20090148769A1 (en) * 2007-12-06 2009-06-11 Ener1, Inc. Dendrite-free lithium electrode and method of making the same
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US10205166B2 (en) 2008-02-25 2019-02-12 Cf Traverse Llc Energy storage devices including stabilized silicon
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US9705136B2 (en) * 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
DE112009000443B4 (de) * 2008-02-25 2017-05-11 Ronald Anthony Rojeski Elektroden für wiederaufladbare Batterie mit hoher Kapazität
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US20090220408A1 (en) * 2008-02-29 2009-09-03 Korea University Industrial & Academic Foundation Method of cutting carbon nanotubes and carbon nanotubes prepared by the same
CN101576423B (zh) * 2008-05-07 2010-12-29 清华大学 电离规
CN102106025A (zh) * 2008-07-24 2011-06-22 加州理工学院 贮存氟离子的碳阴极
DE102008063552A1 (de) * 2008-12-05 2010-06-10 Varta Microbattery Gmbh Neues Elektrodenaktivmaterial für elektrochemische Elemente
US8241793B2 (en) * 2009-01-02 2012-08-14 Nanotek Instruments, Inc. Secondary lithium ion battery containing a prelithiated anode
US9406985B2 (en) * 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials
US20100178568A1 (en) * 2009-01-13 2010-07-15 Nokia Corporation Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US20100216023A1 (en) * 2009-01-13 2010-08-26 Di Wei Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US20140370380A9 (en) * 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
EP2577776A4 (en) * 2010-06-02 2014-07-23 Univ Florida State Res Found ELECTROCHEMICAL CAPACITORS OF HIGH ENERGY DENSITY
WO2012067943A1 (en) 2010-11-15 2012-05-24 Amprius, Inc. Electrolytes for rechargeable batteries
DE112011103839B4 (de) * 2010-11-19 2016-08-18 Central South University Verfahren und eine Vorrichtung zum Trennen des Lithiums von Magnesium und Anreicherung von Lithium in Salzlake
US9166252B2 (en) * 2010-12-23 2015-10-20 Nanotek Instruments, Inc. Surface-controlled lithium ion-exchanging energy storage device
US8859143B2 (en) * 2011-01-03 2014-10-14 Nanotek Instruments, Inc. Partially and fully surface-enabled metal ion-exchanging energy storage devices
US10326168B2 (en) 2011-01-03 2019-06-18 Nanotek Instruments, Inc. Partially and fully surface-enabled alkali metal ion-exchanging energy storage devices
TWI563707B (en) 2011-06-29 2016-12-21 Nitto Denko Corp Positive electrode sheet for non-aqueous electrolyte secondary battery
DE102011079026A1 (de) * 2011-07-12 2013-01-17 Robert Bosch Gmbh Elektrode, Verfahren zum Herstellen einer Elektrode und Energiespeicher umfassend eine Elektrode
US8914176B2 (en) * 2012-01-23 2014-12-16 Nanotek Instruments, Inc. Surface-mediated cell-powered vehicles and methods of operating same
US8895189B2 (en) * 2012-02-03 2014-11-25 Nanotek Instruments, Inc. Surface-mediated cells with high power density and high energy density
US9673447B2 (en) * 2012-04-12 2017-06-06 Nanotek Instruments, Inc. Method of operating a lithium-ion cell having a high-capacity cathode
ITSA20120011A1 (it) * 2012-07-12 2014-01-13 Univ Degli Studi Salerno Dosimetro di radiazione "in tempo reale" basato su nanomateriali di carbonio (carbon nanomaterials based real time radiation dosimeter).
DE102013225734A1 (de) * 2012-12-19 2014-06-26 Rockwood Lithium GmbH Lithiumpulveranode und galvanisches Element, das eine Lithiumpulveranode enthält
US9029013B2 (en) 2013-03-13 2015-05-12 Uchicago Argonne, Llc Electroactive compositions with poly(arylene oxide) and stabilized lithium metal particles
CN104810524B (zh) * 2014-01-23 2018-04-03 清华大学 锂离子电池
JP6445585B2 (ja) * 2014-03-21 2018-12-26 中国科学院蘇州納米技術与納米倣生研究所Suzhou Institute Of Nano−Tech And Nano−Bionics(Sinano),Chinese Academy Of Sciences 多孔質カーボンナノチューブミクロスフェア及びその製造方法と使用、金属リチウム‐骨格炭素複合材料及びその製造方法、負極、及び電池
EP3143657B1 (en) 2014-05-12 2019-07-10 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
JP6860125B2 (ja) * 2017-01-06 2021-04-14 学校法人早稲田大学 二次電池
US11264598B2 (en) 2018-03-22 2022-03-01 Fmc Lithium Usa Corp. Battery utilizing printable lithium
US11735764B2 (en) 2018-03-22 2023-08-22 Livent USA Corp. Printable lithium compositions
US11101495B2 (en) * 2019-02-13 2021-08-24 Robert Bosch Gmbh Phosphorous-based polyester electrolytes for high voltage lithium ion batteries
EP3942630A1 (en) * 2019-03-20 2022-01-26 FMC Lithium USA Corp. Printed lithium foil and film
EP3942631A1 (en) * 2019-03-20 2022-01-26 FMC Lithium USA Corp. Battery utilizing printable lithium
WO2021168063A1 (en) * 2020-02-19 2021-08-26 Fmc Lithium Usa Corp. Fast charging pre-lithiated silicon anode

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271196A (en) * 1961-11-08 1966-09-06 Leesona Corp Fuel cell electrodes
US3508967A (en) * 1967-09-22 1970-04-28 Gulton Ind Inc Negative lithium electrode and electrochemical battery containing the same
JPH0789483B2 (ja) * 1984-05-07 1995-09-27 三洋化成工業株式会社 二次電池
EP0205856B1 (en) * 1985-05-10 1991-07-17 Asahi Kasei Kogyo Kabushiki Kaisha Secondary battery
US5153082A (en) * 1990-09-04 1992-10-06 Bridgestone Corporation Nonaqueous electrolyte secondary battery
JP3162437B2 (ja) * 1990-11-02 2001-04-25 セイコーインスツルメンツ株式会社 非水電解質二次電池
US5244757A (en) * 1991-01-14 1993-09-14 Kabushiki Kaisha Toshiba Lithium secondary battery
DE4101533A1 (de) * 1991-01-19 1992-07-23 Varta Batterie Elektrochemisches sekundaerelement
DE69325006T2 (de) * 1992-12-07 1999-09-23 Honda Motor Co Ltd Alkalische Ionen absorbierendes/dessorbierendes kohlenstoffhaltiges Material, Elektrodenmaterial für Sekundärebatterie das dieses Material verwendet und Lithiumbatterie die dieses Elektrodematerial verwendet
US5312623A (en) * 1993-06-18 1994-05-17 The United States Of America As Represented By The Secretary Of The Army High temperature, rechargeable, solid electrolyte electrochemical cell
US5879836A (en) * 1993-09-10 1999-03-09 Hyperion Catalysis International Inc. Lithium battery with electrodes containing carbon fibrils
US5393621A (en) * 1993-10-20 1995-02-28 Valence Technology, Inc. Fire-resistant solid polymer electrolytes
CA2127621C (en) * 1994-07-08 1999-12-07 Alfred Macdonald Wilson Carbonaceous insertion compounds and use as anodes in rechargeable batteries
US5543021A (en) * 1994-09-01 1996-08-06 Le Carbone Lorraine Negative electrode based on pre-lithiated carbonaceous material for a rechargeable electrochemical lithium generator
US5707756A (en) * 1994-11-29 1998-01-13 Fuji Photo Film Co., Ltd. Non-aqueous secondary battery
US5595837A (en) * 1995-04-12 1997-01-21 Valence Technology, Inc. Process for prelithiation of carbon based anodes for lithium batteries
US5753387A (en) * 1995-11-24 1998-05-19 Kabushiki Kaisha Toshiba Lithium secondary battery
US5672446A (en) * 1996-01-29 1997-09-30 Valence Technology, Inc. Lithium ion electrochemical cell
US5958622A (en) * 1996-03-28 1999-09-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Negative electrode material for lithium secondary batteries
US6270926B1 (en) * 1996-07-16 2001-08-07 Murata Manufacturing Co., Ltd. Lithium secondary battery
US6265110B1 (en) * 1996-12-20 2001-07-24 Danionics A/S Lithium secondary battery with flake graphite negative electrode
CN1139142C (zh) * 1997-02-28 2004-02-18 旭化成株式会社 无水二次电池及其制造方法
US6156457A (en) * 1997-03-11 2000-12-05 Kabushiki Kaisha Toshiba Lithium secondary battery and method for manufacturing a negative electrode
US5807645A (en) * 1997-06-18 1998-09-15 Wilson Greatbatch Ltd. Discharge promoter mixture for reducing cell swelling in alkali metal electrochemical cells
US5948569A (en) * 1997-07-21 1999-09-07 Duracell Inc. Lithium ion electrochemical cell
JP3811353B2 (ja) * 1997-12-25 2006-08-16 三菱電機株式会社 リチウムイオン二次電池
KR100245808B1 (ko) * 1997-12-30 2000-03-02 박찬구 리튬이온 전지용 양극재료의 제조방법
US6168885B1 (en) * 1998-08-21 2001-01-02 Sri International Fabrication of electrodes and devices containing electrodes
US6280697B1 (en) * 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
KR100326457B1 (ko) * 1999-03-10 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
SE516891C2 (sv) * 1999-06-14 2002-03-19 Ericsson Telefon Ab L M Bindemedel och/eller elektrolytmateriel för en elektrod i en battericell, elektrod för en battericell samt förfarande för framställning av ett bindemedel och/eller elektrolytmaterial för en elektrod
JP4399904B2 (ja) * 1999-07-15 2010-01-20 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物およびその利用
US6541156B1 (en) * 1999-11-16 2003-04-01 Mitsubishi Chemical Corporation Negative electrode material for non-aqueous lithium secondary battery, method for manufacturing the same, and non-aqueous lithium secondary battery using the same
KR100350535B1 (ko) * 1999-12-10 2002-08-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
US7001690B2 (en) * 2000-01-18 2006-02-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6528033B1 (en) * 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US6334939B1 (en) 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
US8980477B2 (en) * 2000-12-22 2015-03-17 Fmc Corporation Lithium metal dispersion in secondary battery anodes
US7276314B2 (en) * 2000-12-22 2007-10-02 Fmc Corporation Lithium metal dispersion in secondary battery anodes
US6706447B2 (en) * 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
WO2003012908A2 (en) * 2001-07-27 2003-02-13 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US20030072942A1 (en) * 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
KR100433822B1 (ko) * 2002-01-17 2004-06-04 한국과학기술연구원 금속이 피복된 탄소 활물질, 이의 제조방법, 및 이를포함하는 금속-탄소 하이브리드 전극 및 리튬이차전지
KR100560208B1 (ko) * 2002-03-12 2006-03-10 에스케이씨 주식회사 상온에서 겔화가능한 겔 고분자 전해질용 조성물
US20040234844A1 (en) * 2003-05-20 2004-11-25 Phoenix Innovation, Inc. Novel carbon nanotube lithium battery
US20050130043A1 (en) * 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
CA2488981C (en) 2003-12-15 2008-06-17 Rohm And Haas Company Oil absorbing composition and process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403922A (zh) * 2010-12-23 2013-11-20 纳米技术仪器公司 表面介导的锂离子交换能量存储装置
CN103403922B (zh) * 2010-12-23 2016-10-12 纳米技术仪器公司 表面介导的锂离子交换能量存储装置
CN106252581A (zh) * 2010-12-23 2016-12-21 纳米技术仪器公司 表面介导的锂离子交换能量存储装置
CN106252581B (zh) * 2010-12-23 2021-01-22 纳米技术仪器公司 表面介导的锂离子交换能量存储装置
CN104025345A (zh) * 2011-09-13 2014-09-03 佐治亚技术研究公司 自充电电源组
CN104025345B (zh) * 2011-09-13 2017-05-03 佐治亚技术研究公司 自充电电源组
CN112751022A (zh) * 2020-12-29 2021-05-04 无锡晶石新型能源股份有限公司 一种碳纳米管包覆锰酸锂的工艺方法
CN112751022B (zh) * 2020-12-29 2022-04-08 无锡晶石新型能源股份有限公司 一种碳纳米管包覆锰酸锂的工艺方法
CN114188509A (zh) * 2021-12-01 2022-03-15 杭州电子科技大学 一种基于碳纳米管封装手段的硫化锂电极的制备方法
CN114188509B (zh) * 2021-12-01 2023-12-01 杭州电子科技大学 一种基于碳纳米管封装手段的硫化锂电极的制备方法

Also Published As

Publication number Publication date
JP2009527095A (ja) 2009-07-23
GB2445341A (en) 2008-07-02
WO2007095013A1 (en) 2007-08-23
GB0808334D0 (en) 2008-06-18
CA2629684A1 (en) 2007-08-23
US20070190422A1 (en) 2007-08-16
KR20080094658A (ko) 2008-10-23
DE112007000185T5 (de) 2008-12-24
RU2008136838A (ru) 2010-03-20
EP1994588A1 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
CN101385167A (zh) 碳纳米管锂金属粉末电池
Yu et al. Freestanding flexible Li2S paper electrode with high mass and capacity loading for high‐energy Li–S batteries
Guo et al. 3D CNTs/Graphene‐S‐Al3Ni2 cathodes for high‐sulfur‐loading and long‐life lithium–sulfur batteries
He et al. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery
CN105449186B (zh) 一种二次电池及其制备方法
Zhang et al. Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery
Zhang et al. Hollow Fe3O4/C spheres as superior lithium storage materials
Croce et al. Advanced, lithium batteries based on high-performance composite polymer electrolytes
Krause et al. Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black
Hou et al. An electrochemical study of Sb/acetylene black composite as anode for sodium-ion batteries
CN103022414B (zh) 锂离子电池及其负极极片
Sousa et al. High performance screen printable lithium-ion battery cathode ink based on C-LiFePO4
Yao et al. Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells
Yang et al. A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium–sulfur batteries
Li et al. The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode
Ma et al. Enhanced electrochemical performance of carbon and aluminum oxide co-coated Na3V2 (PO4) 2F3 cathode material for sodium ion batteries
JP5354893B2 (ja) リチウム電池
CN106856236B (zh) 一种二次电池负极材料,其制备方法及电池
CN101855756A (zh) 用于锂蓄电池的壳核型阳极活性材料及其制备方法以及包含所述材料的锂蓄电池
Kasinathan et al. Influence of the molecular weight of poly‐acrylic acid binder on performance of Si‐alloy/graphite composite anodes for lithium‐ion batteries
Kim et al. Uniform metal-ion flux through interface-modified membrane for highly stable metal batteries
Shen et al. Enhanced electrochemical performance of lithium iron (II) phosphate modified cooperatively via chemically reduced graphene oxide and polyaniline
Yin et al. Effect of polyvinyl alcohol/nano-carbon colloid on the electrochemical performance of negative plates of lead acid battery
Ruggeri et al. Carbonaceous catholyte for high energy density semi-solid Li/O2 flow battery
Pan et al. Ultrahigh-capacity semi-solid SiOx anolytes enabled by robust nanotube conductive networks for Li-ion flow batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication