WO2012065361A1 - 一种盐湖卤水镁锂分离及富集锂的方法和装置 - Google Patents

一种盐湖卤水镁锂分离及富集锂的方法和装置 Download PDF

Info

Publication number
WO2012065361A1
WO2012065361A1 PCT/CN2011/001896 CN2011001896W WO2012065361A1 WO 2012065361 A1 WO2012065361 A1 WO 2012065361A1 CN 2011001896 W CN2011001896 W CN 2011001896W WO 2012065361 A1 WO2012065361 A1 WO 2012065361A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
brine
chamber
ion sieve
salt
Prior art date
Application number
PCT/CN2011/001896
Other languages
English (en)
French (fr)
Other versions
WO2012065361A4 (zh
Inventor
赵中伟
刘旭恒
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010105521416A external-priority patent/CN102049237B/zh
Priority claimed from CN2010105521435A external-priority patent/CN101966986B/zh
Priority claimed from CN2010105559273A external-priority patent/CN102049238B/zh
Application filed by 中南大学 filed Critical 中南大学
Priority to DE112011103839.9T priority Critical patent/DE112011103839B4/de
Publication of WO2012065361A1 publication Critical patent/WO2012065361A1/zh
Publication of WO2012065361A4 publication Critical patent/WO2012065361A4/zh
Priority to US13/798,043 priority patent/US9062385B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes

Definitions

  • the invention belongs to the field of extraction metallurgy, and in particular relates to a method and a device for directly treating salt lake brine, separating magnesium lithium and enriching lithium.
  • Lithium is one of the lightest metals, and its metals and compounds have a wide range of applications, especially in the ceramics, glass, rubber, plastics, and pharmaceutical industries. Lithium consumption accounts for more than 70% of its total consumption. Meanwhile, lithium is also An important energy metal. Since the commercialization of lithium-ion batteries in Sony in 1990, lithium has become more and more important in modern industry. It is known as "new energy metal in the 21st century" due to its high energy density and very Long cycle life, lithium-ion batteries are widely used in electronic equipment, the market demand for lithium is expanding rapidly, and the exploitation of lithium resources is even more important.
  • lithium exists mainly in the form of ore and brine.
  • Most of the lithium resources are present in brines, especially salt lake brines, and their reserves account for more than 80% of the total lithium resource reserves.
  • the brine usually contains sodium, potassium, magnesium, calcium, boron, lithium chlorides, sulfates and carbonates, except for a few salt lakes such as Chile's Atacama salt lake brine, which has a relatively low magnesium to lithium ratio (about 6:1).
  • Most other salt lake brines have a magnesium to lithium ratio of more than 40.
  • Some salt lakes have a magnesium to lithium ratio of even more than 1800.
  • Lithium coexists with a large amount of alkaline earth metal ions. Due to the diagonal rule, the chemical properties of Mg 2+ and Li+ are very similar. The separation of magnesium and lithium is very difficult, and the cost of extracting lithium is greatly increased, which seriously restricts the extraction and application of lithium.
  • the extraction of lithium from high-magnesium-lithium than salt lake brines has always been a worldwide problem.
  • researchers have adopted techniques such as precipitation, carbonization, ion exchange, and solvent extraction to solve the technical problems of magnesium-lithium separation, thereby realizing the effective development and utilization of lithium resources in brine.
  • these methods are complicated in many processes, high in cost, severely corrosive to equipment, and low in product purity, which is not conducive to mass production.
  • An object of the present invention is to provide a method for separating lithium enriched lithium from salt lake brine directly and enriching lithium, and a matching device therefor. Efficient separation of lithium from other ions while achieving a lithium-rich solution.
  • the method has the advantages of short process, simple operation, low production cost, continuous operation and easy industrial application.
  • a method for separating and enriching lithium in a salt lake brine magnesium lithium comprising the following steps in sequence:
  • the electrodialysis cell of the electrodialysis device is separated into two regions of a lithium salt chamber and a brine chamber by an anion exchange membrane, the brine chamber is filled with salt lake brine, and the lithium salt chamber is filled with a supporting electrolyte solution containing no Mg 2+ .
  • a supporting electrolyte solution containing no Mg 2+ .
  • the ion sieve is selected from the group of materials capable of embedding Li+ in the brine of the brine chamber into the ion sieve to form a lithium-incorporated ion sieve driven by the external potential; the lithium-ion ion screening is driven by the external potential.
  • Li+ is released into the conductive solution, it is transformed into a material for forming an ion sieve; and Li+ is intercalated and deintercalated by an ion sieve and a lithium-incorporated ion sieve to realize separation of Li+ from Mg2+ and other cations in the brine chamber, and simultaneously Lithium is enriched in a lithium salt chamber to obtain a lithium rich solution.
  • Li + in the brine of the brine chamber is embedded in the ion sieve to form a lithium-incorporated ion sieve, and the lithium-ion ion sieve in the lithium salt chamber releases Li + to the conductive solution, and then returns to Ion sieve; so the two electrodes can be reused in exchange positions.
  • step (2) at least one of the following operations can be performed - the lithium-incorporated liquid in the brine chamber is discharged, the salt lake brine is re-added, and then the cathode 'and the anode are exchanged to continue electrodialysis.
  • At least one of the following operations may be performed to further separate Li+ from Mg 2+ and other cations while enriching lithium:
  • the salt chamber conversion function is used to continue electrodialysis. (Every time the above operation is repeated, the brine chamber and the lithium salt chamber are used once for the conversion function)
  • the lithium intercalation ion sieve is directly mixed with one or two of lithium iron phosphate and LiMn 2 0 4 ; or is externally potentiald by a mixture of one or more of iron phosphate, lithium titanate and Mn0 2 Under the driving, the Li+ in the brine of the brine chamber is embedded in the ion sieve and transformed.
  • the lithium iron of the acidity is one of LiFeP0 4 , Li x Me y FeP0 4 , LiFe x Me y P0 4 , LiFeP0 4 /C, Li x Me y FeP0 4 /C, LiFe x Me y P0 4 /C a mixture of one or more, wherein Me is a mixture of one or more of Mn, Co, Mo, Ti, Al, Ni, Nb, 0 ⁇ ⁇ ⁇ 1, 0 ⁇ y ⁇ lo
  • the lithium-ion ion sieve can also be obtained by the following process:
  • the electrodialysis device is separated into two regions of a lithium salt chamber and a brine chamber by an anion exchange membrane, and the brine chamber is filled with salt lake brine, and the lithium salt chamber is filled with no Mg 2+ .
  • Supporting electrolyte solution; ion screen which selectively adsorbs Li+ is coated on the conductive substrate, placed in the brine chamber of the electrodialysis device, the ion sieve is used as the cathode, and the inert electrode is used as the counter electrode for cathodic polarization.
  • the lithium ion in the brine is embedded in an ion sieve to obtain a lithium ion sieve.
  • the ion sieve of the present invention may be a mixture of one or more of iron phosphate, lithium titanate, Mn0 2 ; or driven by an external potential of lithium iron phosphate, one or a mixture of LiMn 2 0 4 Next, Li + is released into a conductive solution and converted to form.
  • the iron phosphate is preferably a mixture of one or two of Fe x Me x P0 4 , F ei _ x Me x P0 4 /C, wherein Me is Mn, Co, Mo, Ti, Al, Ni, Nb a mixture of one or more of them, the range of x is: 0 x 0.1; lithium titanate is one of Li 4 Ti 5 0 12 , Li x Me y Ti 5 0 12 , Li 4 Me m Ti n 0 12 a mixture of one or more; Me is a mixture of one or more of V, Fe, Co, Mn, Al, Ba, Ag, Zr, Sr, Nb, F; 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 4, 0 ⁇ m ⁇ 5, 0 ⁇ n ⁇ 5.
  • the iron phosphate can be obtained by the following process: The electrodialysis device is separated into two regions of a lithium salt chamber and a brine chamber by an anion exchange membrane, the brine chamber is filled with salt lake brine, and the lithium salt chamber is filled with support without Mg 2+ . Electrolyte solution; coating lithium iron phosphate on a conductive substrate, placing it in a lithium salt chamber of an electrodialysis device, using lithium iron phosphate as an anode, and anodizing the counter electrode with an inert electrode to make Li in lithium iron phosphate + Released into the solution, the lithium iron phosphate after delithiation is converted into iron phosphate.
  • the above-mentioned apparatus for separating and enriching lithium lithium salt of a salt lake brine comprises an electrodialysis device having an electrodialysis cell partitioned into two spaces by an anion exchange membrane, and a cathode and an anode, wherein the cathode and the anode are respectively arranged In the two separated spaces; the cathode is a conductive substrate coated with an ion sieve, and the anode is a conductive substrate coated with a lithium ion sieve.
  • the technical key of the present invention lies in that an ion sieve material which works stably in an aqueous solution and has a memory effect on Li+ is used, and by adjusting the potential of the system, Li+ in the solution is embedded in the crystal lattice of the ion sieve, and other ions remain in the solution.
  • the effective separation of lithium and other ions is realized; then the lithium ion-doped ion sieve is placed in a supporting electrolyte solution such as NaCl solution containing no Mg 2+ to adjust the potential of the system to make the lithium ion sieve Li + is released into the solution to obtain a lithium-rich solution, which enables efficient separation of lithium and lithium and enrichment of lithium.
  • the ion sieve and the lithium intercalation ion sieve can be converted into each other.
  • the lithium ion titanate is used for ion screening
  • the ion sieve is contacted with the lithium-containing solution or the salt lake brine, and the titanium in the ion sieve structure is reduced by adjusting the system potential by the voltage of the external circuit, and the lithium ion is used as the counter ion to enter the titanium.
  • the crystal lattice of lithium acid forms a lithium intercalation product; the lithium intercalation product is placed in a supporting electrolyte solution, and the potential of the system is adjusted to oxidize the titanium in the ion sieve structure, so that lithium ions enter the solution to separate Li+ from other elements.
  • the ion sieve is reconverted and restored and reused.
  • iron phosphate ion sieve When using iron phosphate ion sieve, it is contacted with lithium-containing solution or salt lake brine, and the potential of the system is adjusted by adding external voltage. The positive ferric iron in the ion sieve structure is reduced to positive divalent, and lithium ion is used as a match. The ion ions enter the lattice of iron phosphate to form lithium iron phosphate, and the generated lithium iron phosphate is placed in the supporting electrolyte solution, and the system potential is adjusted to oxidize the normal ferrous iron in the ion sieve structure to a positive trivalent, so that the lithium ions enter the solution. , Separation of Li+ from other elements; and simultaneous re-conversion of the ion sieve to iron phosphate.
  • the invention has the advantages that: during the operation of the electrodialysis device, lithium in the brine is embedded in the ion sieve, and the lithium-ion ion sieve removes lithium into the lithium salt chamber, thereby effectively reducing energy consumption and improving lithium. Extraction efficiency.
  • the specific steps of the method of the present invention are:
  • Lithium-lithium separation The ion sieve is coated on a conductive substrate and placed in a brine chamber containing brine as a cathode; the lithium-ion ion sieve is coated on a conductive substrate and added without Mg 2 + in the lithium salt chamber supporting the electrolyte solution, as the anode, driven by the external potential, the Li + in the brine of the brine chamber is embedded in the ion sieve to form the lithium ion sieve, and the lithium ion in the lithium salt chamber The sieve releases Li+ into the conductive solution.
  • the anion exchange membrane prevents the mutual migration of cations between the two regions of the brine chamber and the lithium salt chamber, the anion flows from the brine chamber through the exchange membrane into the lithium salt chamber to maintain charge balance, while the brine Li+ in the chamber is transferred to the lithium salt chamber by solid phase;
  • the electrode is prevented from being continuously exchanged between the brine chamber and the lithium salt chamber.
  • the above step (3) can also be operated as follows: After the step (2) is completed, the cathode and anode positions are fixed, and the brine is fixed. The lithium-incorporated liquid in the chamber is separately discharged, and the lithium-containing solution in the lithium salt chamber is transferred to the semi-dialysis tank (ie, the brine chamber) where the lithium-ion ion sieve is located, and the salt lake brine is added to the semi-dialysis tank where the ion sieve is located.
  • this new step (3) realizes the separation of Li+ and Mg 2+ and other cations in the brine, and at the same time obtains a lithium-rich solution; lithium enrichment can be achieved by repeating the above electrodialysis process, when rich When Li+ in a lithium solution reaches a certain concentration, it can be used for direct extraction of lithium.
  • lithium iron phosphate on a conductive substrate, placed in a conductive solution as an anode, using an inert electrode as a cathode; applying an external potential between the two electrodes, dissociating Li+ from lithium iron phosphate into the solution, Conversion of lithium iron phosphate to an iron phosphate ion sieve;
  • Lithium iron phosphate is one or more of LiFeP0 4 , LiFeP0 4 /C, Li x Me y FeP0 4 , Li x Me y FeP0 4 /C, LiFe x Me y P0 4 , LiFe x Me y P0 4 /C a mixture, wherein Me is a mixture of one or more of Mn, Co, Mo, Ti, Al, Ni, Nb, 0 ⁇ ⁇ ⁇ 1, 0 ⁇ y ⁇ l.
  • the salt lake brine includes one or more of a Li+ containing solution, an original brine in any salt lake, and an evaporated and concentrated brine and an evaporated old halogen.
  • the conductive substrate is one of a titanium-coated titanium mesh, a graphite plate, a Pt group metal and an alloy foil thereof, a carbon fiber cloth, and a graphite paper.
  • the temperature of the solution in the electrodialysis device is 0 to 80 ° C, and the pH is 2 to 12; the voltage between the electrodes in the electrodialysis device ranges from 0.5 to 2.0 V.
  • the invention has the following advantages - the ion sieve of the invention has good selectivity to Li+, has large adsorption capacity, good stability, and can recycle and enrich lithium in the brine;
  • This method can treat brines with different ratios of magnesium to lithium, especially the technical problem of efficiently separating magnesium and lithium in high magnesium and lithium brines;
  • the electrodialysis device designed by this method can simultaneously complete the insertion and extraction of lithium on the two working electrodes, realize the efficient selective extraction of lithium, and the tank voltage is low, and the energy consumption is low; after completing one cycle operation, pass Replacing the electrode or electrolyte solution to achieve continuous cycle operation;
  • the electrodialysis device designed by this method can simultaneously complete lithium enrichment while separating magnesium and lithium; and the electrodialysis device has simple structure and convenient operation, and can recycle salt lake brine; 4. This method is low in cost and easy to scale production.
  • FIG. 1 is a top plan view of an electrodialysis tank of the present invention
  • 1 is an anion exchange membrane
  • 2 is a cathode
  • 3 is an anode
  • 4 is a brine chamber
  • 5 is a lithium salt chamber.
  • Figure 3 is a graph showing changes in Li + concentration as a function of cycle coefficient in the present invention.
  • the apparatus of the present invention is shown in Fig. 1.
  • the electrodialysis tank of the electrodialysis unit is vertically separated into two spaces by an anion exchange membrane 1, that is, a brine chamber 4 and a lithium salt chamber 5, and the cathode 2 and the anode 3 are respectively disposed in two spaces separated.
  • the cathode 2 is a conductive substrate coated with an ion sieve
  • the anode 3 is a conductive substrate coated with a lithium-ion ion sieve.
  • the solution in the brine chamber and the lithium salt chamber is separately discharged, the lithium-plated iron phosphate ion sieve is placed in the lithium salt chamber, and 500 mL of a NaCl solution having a concentration of 20 g/L is added;
  • a 10g FePO 4 ion sieve is made into a lithium-free composite film of iron phosphate, and the composite membrane is placed in a brine chamber, and 2L salt lake brine is added, mainly The composition and content are still shown in the above table; the lithium-plated iron phosphate membrane is used as the cathode, and the lithium iron phosphate ion sieve is used as the anode.
  • the voltage of 0.8V is applied between the two electrodes at pH 2, 25 °C.
  • the Li+ concentration in the brine chamber was reduced to 345 mg/L
  • the Mg 2+ concentration was about 17995 mg/L
  • the iron phosphate ion sieve was adsorbed to Li+ at 31 mg/g
  • the adsorption amount to Mg 2+ was about It is 1 mg/g; at the same time, a lithium-rich solution with a Li+ concentration of 561 mg/L is obtained in the lithium salt chamber.
  • 9gFe Q 99 Mn Q1 P0 4 , 0.5g high-purity graphite and 0.5g PVDF are mixed at a weight ratio of 90:5:5, and the mixed powder is added to N-methylpyrrolidone (NMP) organic solvent.
  • NMP N-methylpyrrolidone
  • the slurry was ground and pulverized, and the slurry was sprayed or brushed on a titanium-coated titanium mesh, and dried under vacuum at 110 ° C for 10 hours, and after cooling, an iron phosphate ion sieve composite film was obtained.
  • the solution in the brine chamber and the lithium salt chamber is separately discharged, the lithium-plated iron phosphate ion sieve is placed in the lithium salt chamber, and 500 mL of a NaCl solution having a concentration of 50 g/L is added;
  • 9gFeP0 4 ion sieve is made into lithium phosphate composite membrane without lithium intercalation.
  • the composite membrane is placed in the brine chamber and 21 brine lake brine is added.
  • the main components and contents are shown in the above table;
  • the iron ion sieve membrane is a cathode, and the lithium iron phosphate ion sieve is used as an anode.
  • a voltage of 1.5 V is applied between the two electrodes, and electrodialysis is performed at a pH of 7, 50 ° C, and the lithium salt chamber is taken every lh.
  • the solution was analyzed for Li + concentration. The specific results are shown in Figure 2. After 10 h, the + concentration in the brine chamber was reduced to 55 mg/L, the Mg 2+ concentration was about 1254 mg/L, and the iron phosphate ion sieve was applied to Li+.
  • the adsorption amount is about 32.2 mg/g, and the adsorption amount to Mg 2+ is about 1.33 mg/g.
  • a lithium-rich solution having a Li+ concentration of 576 mg/L is obtained in the lithium salt chamber.
  • Example 2 3 g of Feo. ⁇ Coo. ⁇ PC was made into an iron phosphate composite membrane, and the iron phosphate composite membrane was placed in a brine chamber, and 500 mL of salt lake brine was added.
  • the composition and content of the salt lake brine were as follows:
  • Ca 2+ 90 Add 500 mL of 50g/L NaCl solution to the lithium salt chamber, use iron phosphate composite membrane as cathode, inert graphite as anode, apply 2.0V voltage, maintain at 80 °C for 10h, brine chamber
  • concentration of Li+ was reduced to 268.4 mg/L
  • concentration of Mg 2+ was 17991 mg/L
  • the adsorption amount of Fe Q . 98 CoQ.Q 2 P0 4 ion sieve to Li+ was 38.6 mg/g, adsorption of Mg 2+ .
  • the amount is 1.5 mg/g.
  • the brine chamber After electrodialysis, the brine chamber to decrease the concentration of Li + 269.1mg / L, the lithium salt solution chamber resulting lithium rich Li + concentration of 115mg / L.
  • the morphology of the lithium-ion ion sieve and the lithium-free ion sieve are mutually converted; keeping the positions of the two electrodes unchanged, the lithium-incorporated liquid in the electrodialysis device is discharged, and the lithium-rich solution is transferred to the reservoir.
  • 500 mL of salt lake brine was added to the new brine chamber (original lithium salt chamber), and a second electrodialysis was carried out under the same conditions. After the second electrodialysis, the Li+ concentration in the lithium-rich solution in the lithium salt chamber reached 229 mg/L.
  • Example 2 10 g of Mn0 2 was made into an ion sieve composite membrane, the Mn0 2 composite membrane was placed in a brine chamber, and 1 L of salt lake brine was added, and the composition and content of the salt lake brine were the same as in Example 3;
  • a lithium salt chamber 500 mL of a NaCl solution having a concentration of 20 g/L was added.
  • the Mn0 2 composite film was used as the cathode, the graphite electrode was used as the anode, and a voltage of 1.2 V was applied.
  • the concentration of Li+ in the brine chamber was reduced to 286 mg/L, and the concentration of Mg 2+ was 17982 mg/L.
  • the adsorption amount of Li+ by the Mn0 2 ion sieve was 21.4 mg/g, and the adsorption amount of X-inch Mg 2+ was 1.8 mg/g.
  • 10 g of MnO 2 ion sieve was formed into a lithium intercalated Mn 2 2 composite film.
  • the lithium intercalated iron phosphate composite membrane is placed in a brine chamber, and 1 L of salt lake brine is added to separate the lithium-incorporated Mn0 2
  • the sub-screen is placed in a lithium salt chamber, 500 mL of a NaCl solution having a concentration of 20 g/L is added, the lithium-state Mn0 2 ion sieve is used as an anode, and the lithium-free Mn0 2 ion sieve is used as a cathode, and a voltage of 1.2 V is applied between the electrodes. , maintained at 5 ° C for 12 h.
  • the concentration of Li+ in the brine chamber was reduced to 284.2 mg/L, and the concentration of Li+ in the lithium-rich chamber was 428.3 mg/L.
  • the morphology of the lithium-ion ion sieve and the non-lithium ion sieve are mutually converted; keeping the positions of the two electrodes unchanged, the lithium-incorporated liquid in the electrodialysis device is discharged, and the 500 mL lithium-rich solution is transferred to the storage tank.
  • the concentration of Li+ in the brine chamber was reduced to 286.3 mg/L, and the concentration of Li+ in the lithium-rich solution obtained in the lithium salt chamber was 855.1 mg/L.
  • Li 4 Ti 5 0 12 ion sieve was formed into an unimplanted ion sieve composite membrane.
  • the unfilled 1 ⁇ 4 0 12 composite film was placed in a brine chamber, 1 L salt lake brine was added, and the lithium ion sieve membrane was placed in a lithium salt chamber, and 500 mL concentration was added at 20 g/L.
  • K+ 780 uses lithium iron phosphate composite membrane as anode and iron silicate iron ion sieve as cathode.
  • concentration of Li+ in the brine chamber is reduced to 66.5mg/L after 15h.
  • concentration of Mg 2+ was 1257 mg/L
  • concentration of Li + in the lithium salt chamber was 267.4 mg/L.
  • LiFeP0 4 /C 2g of LiFeP0 4 /C was prepared into a lithium iron phosphate composite film in the same manner as in the embodiment, and the lithium iron composite film was placed in a lithium salt chamber of an electrodialysis device, and 1 L of a 50 g/L NaCl solution was added; The iron phosphate ion sieve is placed in a brine chamber, and 1 L of salt lake brine is added.
  • the composition and content of the brine are as follows:
  • the lithium iron phosphate composite membrane was used as the anode, the iron phosphate ion sieve was used as the cathode, and the voltage of 1.0 V was applied at pH 10 and 30 ° C. After 12 hours, the concentration of Li+ in the brine chamber was lowered to 442.3 mg/L. The concentration of Li + in the chamber was 57.8 mg/L. After the end of electrodialysis, after the electrodialysis is completed, the morphology of the lithium-ion ion sieve and the non-lithium ion sieve are mutually converted; the positions of the two electrodes are exchanged, that is, the phosphoric acid obtained by converting the lithium iron phosphate composite membrane in the lithium salt chamber.
  • the iron ion sieve is placed in the brine chamber as a cathode, and the lithium intercalation ion sieve obtained by converting the iron phosphate ion sieve in the brine chamber is placed in a lithium salt chamber as an anode, and electrodialysis is performed under the same conditions; after electrodialysis is finished, The concentration of Li + in the water chamber became 384.6 mg/L, and the concentration of Li + in the lithium salt chamber was raised to 115.7 mg/L.

Description

一种盐湖卤水镁锂分离及富集锂的方法和装置 技术领域
本发明属于提取冶金领域, 具体来说, 涉及一种用于直接处理盐湖卤水, 使之镁锂分 离, 进而富集锂的方法和装置。
背景技术
锂是一种最轻的金属, 其金属和化合物具有广泛的应用领域, 尤其在陶瓷、 玻璃、 橡 胶、 塑料、 医药行业, 锂的消费量占其总消费量的 70%以上; 同时, 锂也是一种重要的能 源金属, 自从 1990年锂离子电池被索尼公司商业化以来, 锂在现代工业中显得越来越重 要, 被誉为 "21世纪的新能源金属", 由于其高能量密度和很长的循环寿命, 锂离子电池被 广泛应用于电子设备中, 锂的市场需求急剧扩大, 锂资源的开采显得更加重要。
在自然界, 锂主要以矿石和卤水两种形式存在, 大部分锂资源存在于卤水尤其是盐湖 卤水中, 其储量占全部锂资源储量的 80%以上。 随着市场需求的增长, 矿物锂资源显得供 不应求, 且开采成本高, 人们开始开发盐湖卤水中的锂资源。 卤水中通常含有钠、 钾、 镁、 钙、 硼、 锂的氯化物、 硫酸盐和碳酸盐, 除少数盐湖如智利阿塔卡玛盐湖卤水的镁锂比相 对较低 (约 6:1), 其他大部分盐湖卤水中的镁锂比都在 40以上, 有些盐湖的镁锂比甚至高达 1800以上, 锂与大量的碱土金属离子共存。 由于对角线规则的原因, Mg2+与 Li+的化学性 质非常相似, 镁锂分离非常困难, 有效提取锂的成本大幅度提高, 严重制约了锂的提取和 应用。 一直以来, 从高镁锂比盐湖卤水中提取锂成为一个世界性难题。 针对这一世界性难 题, 广大研究者们采用沉淀法、 碳化法、 离子交换法、 溶剂萃取法等技术以期解决镁锂分 离的技术难题, 由此来实现卤水中的锂资源的有效开发利用, 但这些方法 多过程复杂, 成本高, 对设备腐蚀严重, 且产品纯度不高, 不利于大规模生产。
发明内容
本发明的目的在于, 提出一种用于直接从盐湖卤水中将镁锂分离, 富集锂的方法及其 配套的装置。 高效实现锂与其他离子的分离, 同时获得富锂溶液。 本方法流程短, 操作简 单, 生产成本低, 可连续操作, 易于工业化应用。
一种盐湖卤水镁锂分离及富集锂的方法, 依次包括如下步骤:
( 1 )用阴离子交换膜将电渗析装置的电渗析槽隔成锂盐室和卤水室两个区域, 卤水室 内充入盐湖卤水,锂盐室内充入不含 Mg2+的支持电解质溶液.,如 NaCl、KCl、NH4Cl、Na2S04、 K2S04、 NaN03、 KN03溶液。 (2)将涂覆有离子筛的导电基体置于卤水室中作为阴极; 将涂.覆有嵌锂态离子筛的导 电基体置于锂盐室中作为阳极,, 进行电渗析; 所述的离子筛是选自能在外电势的驱动下, 使卤水室卤水中的 Li+嵌入到离子筛中转化形成嵌锂态离子筛的材料; 所述的嵌锂态离子 筛选自能在外电势的驱动下, 将 Li+释放到导电溶液后, 转化形成离子筛的材料; 经离子 筛与嵌锂态离子筛的对 Li+嵌入和脱嵌作用,实现卤水室中的 Li+与 Mg2+及其他阳离子的分 离, 同时锂在锂盐室中富集, 得到富锂溶液。
经过上述步骤 (2 ) 的操作, 卤水室卤水中的 Li+嵌入到离子筛中形成嵌锂态离子筛, 同时锂盐室中的嵌锂态离子筛将 Li+释放到导电溶液后, 恢复为离子筛; 所以两个电极可 以交换位置重复使用。
因此, 步骤 (2 ) 完成后, 至少还可以进行一次以下操作- 将卤水室中的嵌锂后液排出, 重新加入盐湖卤水, 然后将阴极'和阳极交换放置, 继续 进行电渗析。
或者步骤 (2)完成后, 为了避免每次交换阴极和阳极, 还可以至少进行一次以下操作, 进一步使 Li+与 Mg2+及其他阳离子分离, 同时富集锂:
保持阳极和阴极位置固定, 将卤水室中的嵌锂后液排出, 将锂盐室中的含锂溶液转移 到卤水室中, 将新的盐湖卤水加入到锂盐室中; 即将卤水室和锂盐室转换功能使用, 继续 进行电渗析。 (即每重复一次上述操作, 卤水室和锂盐室就转换功能使用一次)
所述的嵌锂态离子筛直接采用磷酸铁锂、 LiMn204中的一种或两种混合;或是由磷酸铁、 钛酸锂、 Mn02中的一种或几种的混合物在外电势的驱动下使卤水室卤水中的 Li+嵌入到离 子筛中, 转化形成。所述的憐酸铁锂为 LiFeP04、 LixMeyFeP04、 LiFexMeyP04、 LiFeP04/C、 LixMeyFeP04/C、 LiFexMeyP04/C中的一种或几种的混合物, 其中 Me为 Mn、 Co、 Mo、 Ti、 Al、 Ni、 Nb中的一种或几种的混合, 0<χ< 1, 0<y< l o
当然嵌锂态离子筛也可以通过如下过程得到: 用阴离子交换膜将电渗析装置隔成锂盐 室和卤水室两个区域,卤水室内充入盐湖卤水,锂盐室内充入不含 Mg2+的支持电解质溶液; 将对 Li+有选择性吸附作用的离子筛涂覆在导电基体上, 置于电渗析装置的卤水室中, 以 离子筛为阴极, 以惰性电极为对电极进行阴极极化, 使卤水中的 Li+嵌入到离子筛中得到 嵌锂态离子筛。
本发明所述的离子筛可以为磷酸铁、钛酸锂、 Mn02中的一种或几种的混合物; 或是由 磷酸铁锂、 LiMn204的一种或两种混合物在外电势的驱动下, 将 Li+释放到导电溶液后转化 形成。 所述的磷酸铁优选为 Fe xMexP04、 Fei_xMexP04/C中的一种或两种的混合, 其中 Me为 Mn、 Co、 Mo、 Ti、 Al、 Ni、 Nb中的一种或几种的混合, x的范围为: 0 x 0.1 ; 钛酸锂 为 Li4Ti5012、 LixMeyTi5012、 Li4MemTin012中的一种或几种的混合物; Me为 V、 Fe、 Co、 Mn、 Al、 Ba、 Ag、 Zr、 Sr、 Nb、 F中的一种或几种的混合; 0<x<4, 0<y<4, 0<m<5, 0<n<5。
所述的磷酸铁可以通过如下过程得到: 用阴离子交换膜将电渗析装置隔成锂盐室和卤 水室两个区域, 卤水室内充入盐湖卤水, 锂盐室内充入不含 Mg2+的支持电解质溶液; 将磷 酸铁锂涂覆在导电基体上, 置于电渗析装置的锂盐室中, 以磷酸铁锂为阳极, 以惰性电极 为对电极进行阳极极化, 使磷酸铁锂中的 Li+释放到溶液中, 脱锂后的磷酸铁锂转化成为 磷酸铁。
上述的盐湖卤水镁锂分离及富集锂的方法的配套装置, 包括具有被阴离子交换膜分隔 成两个空间的电渗析槽的电渗析装置, 以及阴极和阳极, 所述的阴极和阳极分别设置于隔 成的两个空间内; 所述的阴极为涂覆有离子筛的导电基体, 阳极为涂覆有嵌锂态离子筛的 导电基体。
本发明的技术关健在于, 采用在水溶液中稳定工作并对 Li+有记忆效应的离子筛材料, 通过调整体系电势, 使溶液中的 Li+嵌入到离子筛的晶格中, 其他离子留在溶液中, 通过 这一过程实现锂与其他离子的有效分离;再将嵌锂态的离子筛置于不含 Mg2+的支持电解质 溶液如 NaCl溶液中, 调整体系的电势, 使嵌锂态离子筛中的 Li+释放到溶液中, 得到富锂 溶液, 实现镁锂的高效分离和锂的富集。 离子筛与嵌锂态离子筛之间可以互相转化得到。 如离子筛选用的是钛酸锂时, 将离子筛与含锂溶液或盐湖卤水接触, 通过由外电路电压来 调整体系电势使离子筛结构中的钛被还原, 锂离子作为配衡离子进入钛酸锂的晶格生成嵌 锂产物; 将嵌锂产物置于支持电解质溶液中, 并调整体系电势再使离子筛结构中的钛被氧 化, 使锂离子进入溶液实现 Li+与其他元素的分离, 同时离子筛重新转化复原, 重复利用。 又如: 采用磷酸铁离子筛时, 使其与含锂溶液或盐湖卤水接触, 通过加入外电路.电压来调 整体系电势使离子筛结构中的正三价铁被还原为正二价, 锂离子作为配衡离子进入磷酸铁 的晶格生成磷酸铁锂, 将生成的磷酸铁锂置于支持电解质溶液中, 并调整体系电势再使离 子筛结构中的正二价铁氧化为正三价, 使锂离子进入溶液, 实现 Li+与其他元素的分离; 同时离子筛重新转化为磷酸铁重复使用。
本发明的优点在于: 在电渗析装置运行过程中, 卤水中的锂嵌入到离子筛的同时, 嵌 锂态离子筛脱锂到锂盐室, 这一过程有效降低了能耗, 提高了锂的提取效率。 本发明的方法具体的步骤为:
(1) . 离子筛的初始嵌锂: 用阴离子交换膜将电渗析装置隔成锂盐室和卤水室两个区域, 卤水室内充入盐湖卤水, 锂盐室内充入不含 Mg2+的支持电解质溶液; 将对 Li+有选择性吸 附作用的离子筛涂覆在导电基体上, 置于电渗析装置的卤水室中, 使其与盐湖卤水充分接 触, 以离子筛材料为阴极, 以惰性阳极为对电极进行阴极极化, 使卤水中的 Li+嵌入到离 子筛中得到嵌锂态离子筛;
(2) . 镁锂分离: 将离子筛涂覆在导电基体上, 置于装有卤水的卤水室中, 作为阴极; 将嵌锂态离子筛涂覆在导电基体上置于加入不含 Mg2+的支持电解质溶液的锂盐室中,作为 阳极, 在外电势的驱动下, 使卤水室卤水中的 Li+嵌入到离子筛中形成嵌锂态离子筛, 而 锂盐室中的嵌锂态离子筛将 Li+释放到导,电溶液中, 由于阴离子交换膜阻止卤水室和锂盐 室两个区域之间阳离子的相互迁移, 阴离子从卤水室透过交换膜进入锂盐室维持电荷平 衡, 而卤水室中的 Li+通过固相转移到锂盐室中;
(3) .步骤 (2)完成后, 为进一步使 Li+与 Mg2+及其他阳离子分离, 同时富集锂, 还可以进 行如下操作:
将卤水室中的嵌锂后液排出, 重新加入盐湖卤水, 将步骤 (2)锂盐室中所得的离子筛导 电基体置于卤水室中作为阴极, 将卤水室中所得的嵌锂态离子筛导电基体置于锂盐室中作 为阳极, 进行电渗析, 使卤水中的 Li+嵌入到离子筛中, 而嵌锂态离子筛中的 Li+释放到锂 盐室的溶液中, 使卤水室中的 Li+通过固相转移到锂盐室中的溶液中, 进一步实现了卤水 室中的 Li+与 Mg2+及其他阳离子的分离, 同时锂在锂盐室中富集, 得到富锂溶液; 按上述 电渗析过程重复循环操作即可实现锂的富集, 当富锂溶液中的 Li+达到一定浓度时即可用 于直接提取锂。
为简化上述操作, 避免电极在卤水室和锂盐室之间不断调换, 上述的步骤 (3)还可以按 如下方式进行操作: 步骤 (2)完成后, 阴极和阳极位置固定不变, 将卤水室中的嵌锂后液分 别排出, 将锂盐室中的含锂溶液转移到嵌锂态离子筛所在的半渗析槽 (即卤水室) 中, 将 盐湖卤水加入到离子筛所在的半渗析槽 (即锂盐室) 中; 使原卤水室转换为新的锂盐室, 原锂盐室转换为新的卤水室 (即将卤水室和锂盐室转换功能使用), 继续进行电渗析, 重 复上述这种新的步骤(3 ) 的操作, 实现了卤水中的 Li+与 Mg2+及其他阳离子的分离, 同时 得到富锂溶液; 按上述电渗析过程重复操作即可实现锂的富集, 当富锂溶液中的 Li+达到 一定浓度时即可用于直接提取锂。
使用本发明方法, 并采用磯酸铁为离子筛进行镁锂分离及富集锂时, 可以按如下方式 进行:
(1). 将磷酸铁锂涂覆在导电基体上, 置于导电溶液中作为阳极, 以惰性电极为阴极; 在两电极间施加外电势, 使磷酸铁锂中的 Li+脱嵌到溶液中, 磷酸铁锂转化为磷酸铁离子 筛;
(2). 镁锂分离: 将步骤 (1)脱锂所得的磷酸铁离子筛电极, 置于装有卤水的卤水室中, 作为 ^月极; 将磷酸铁锂涂覆在导电基体上, 置于装有不含 Mg2+的支持电解质溶液的锂盐室 中, 作为阳极, 在外电势的驱动下, 使卤水室卤水中的 Li+嵌入到磷酸铁离子筛中形成嵌 锂态离子筛, 而同时锂盐室中的磷酸铁锂将 Li+释放到导电溶液中; 由于阴离子交换膜阻 止卤水室和锂盐室两个区域之间阳离子的相互迁移, 阴离子从卤水室透过交换膜进入锂盐 室维持电荷平衡; 步骤 (1)和 (2)总的效果相当于卤水室中的 Li+先转移到固相离子筛, 进而 转移到锂盐室中, 从而使锂与镁分离;
磷酸铁锂为 LiFeP04、 LiFeP04/C、 LixMeyFeP04、 LixMeyFeP04/C、 LiFexMeyP04、 LiFexMeyP04/C中的一种或几种的混合物, 其中 Me为 Mn、 Co、 Mo、 Ti、 Al、 Ni、 Nb中 的一种或几种的混合, 0<χ< 1, 0<y< l。
本发明的以上技术方案中: 所述的盐湖卤水包括任意含 Li+的溶液、任意盐湖中的原始 卤水及其蒸发浓缩后的卤水和提钾后的蒸发老卤中的一种或几种。
所述的导电基体为涂钌钛网、 石墨板、 Pt族金属及其合金箔、 碳纤维布、 石墨纸中的 一种。
所述的电渗析装置中溶液的温度为 0~80°C, pH值为 2~12; 电渗析装置中两电极间的 电压范围为 0.5~2.0V。
本发明具有如下优点- 本发明所述的离子筛对 Li+具有很好的选择性, 且吸附量大, 稳定性好, 能循环富集卤 水中的锂;
1、 此方法能处理不同镁锂比的卤水,特别是能高效解决高镁锂比卤水中镁锂分离的 技术难题;
2、 此方法所设计的电渗析装置可以同时完成两个工作电极上锂的嵌入和脱出,实现 锂的高效选择性提取, 且槽电压低, 能耗低; 在完成一个周期的操作后, 通过调 换电极或者电解质溶液来实现连续循环工作;
3、 此方法所设计的电渗析装置在镁锂分离的同时可以同步完成锂的富集;且电渗析 装置结构简单, 操作方便, 能循环处理盐湖卤水; 4、 此方法成本低, 易于规模化生产。
附图说明
图 1为本发明的电渗析槽俯视示意图;
图中 1为阴离子交换膜, 2为阴极, 3为阳极, 4为卤水室, 5为锂盐室
图 2为本发明 Li+浓度随电渗析时间的变化图;
图 3为本发明 Li+浓度随循环系数的变化图。
具体实施方式
为了更详细地解释本发明, 列举以下实施例进行说明, 但本发明不局限于这些实施例。 本发明装置参见图 1, 电渗析装置的电渗析槽用阴离子交换膜 1垂直隔离成两个空间, 即卤水室 4和锂盐室 5, 阴极 2和阳极 3分别设置于隔成的两个空间内; 阴极 2为涂覆有离子 筛的导电基体, 阳极 3为涂覆有嵌锂态离子筛的导电基体。
实施例 1
按 20:1:1的重量比将 10gFePO4离子筛、 0.5g高纯石墨和 0.5gPVDF混合均匀, 将 N-甲基吡 咯烷酮 (NMP)有机溶剂加入到混合好的粉末中研磨调浆, 将桨状物涂覆在石墨板上, 在 110 °C的真空箱内保温干燥 12小时, 冷却后得到磷酸铁离子筛复合膜; 将磷酸铁复合膜置于电 渗析装置中的卤水室, 电渗析装置的俯视示意图如图 1所示; 将 2L某盐湖卤水加入卤水室, 盐湖卤水的主要成分及含量如下表所示:
成 分 浓 度 (mg/L)
Li+ 500
Na+ 2350
Mg2+ 18000
K+ 950
Ca2+ 90 将 500mL浓度为 20g/L的 NaCl溶液加入到电渗析装置的锂盐室中;以磷酸铁离子筛为阴 极, 以锂盐室中的惰性石墨为阳极, 在电极两端施加 0.5V的电压, 在 25°C下维持 15h后, 卤 水室中的 Li+浓度降低至 358mg/L, Mg2+的浓度为约 17994mg/L, 磷酸铁离子筛对 Li+的吸附 量约为 28.4mg/g, 对 Mg2+的吸附量约为 1.2mg/g;
初始嵌锂结束后, 将卤水室和锂盐室中的溶液分别排出, 将嵌锂态磷酸铁离子筛置于 锂盐室中, 加入 500mL浓度为 20g/L的 NaCl溶液; 按照此实施例中相同的方法, 将 10gFePO4 离子筛制作成未嵌锂的磷酸铁复合膜, 将此复合膜置于卤水室, 加入 2L盐湖卤水, 其主要 成分及含量仍见上表; 以未嵌锂的磷酸铁离子筛膜为阴极, 以嵌锂态磷酸铁离子筛为阳极, 在两电极间施加 0.8V的电压, 在 pH为 2、 25 °C下维持 12h后, 卤水室中的 Li+浓度降低至 345mg/L, Mg2+的浓度为约 17995mg/L, 磷酸铁离子筛对 Li+的吸附量为 31mg/g, 对 Mg2+的 吸附量约为 1 mg/g; 同时锂盐室中得到 Li+浓度为 561 mg/L的富锂溶液。
实施例 2
按 90:5:5的重量比将 9gFeQ.99Mn Q1P04、 0.5g高纯石墨和 0.5gPVDF混合均勾,将混合好的 粉末加入到 N-甲基吡咯垸酮 (NMP)有机溶剂中研磨调浆,将浆状物喷涂或刷在涂钌钛网上, 在真空条件下于 110°C保温干燥 10小时, 冷却后得到磷酸铁离子筛复合膜。
将磷酸铁复合膜置于卤水室中, 加入 2L盐湖卤水, 卤水的成分及含量如下表所示:
成 分 浓 度 (mg/L)
Li+ 200
Na+ 2580
Mg2+ 1260
K+ 780 将 200mL浓度为 50g/L的 NaCl溶液加入到电渗析装置的锂盐室中;以磷酸铁离子筛为阴 极, 以锂盐室中的 Pt电极为阳极, 在电极两端施加 1.0V的电压, 在 50°C下维持 10h后, 卤水 室中 Li+的浓度降低至 55.1mg/L, Mg2+的浓度为 1254mg/L, 磷酸铁离子筛对 Li+的吸附量为 32.2mg/g, 对 Mg2+的吸附量为 1.33mg/g
初始嵌锂结束后, 将卤水室和锂盐室中的溶液分别排出, 将嵌锂态磷酸铁离子筛置于 锂盐室中, 加入 500mL浓度为 50g/L的 NaCl溶液; 按照此实施例中相同的方法, 将 9gFeP04 离子筛制作成未嵌锂的磷酸铁复合膜, 将此复合膜置于卤水室, 加入 21^盐湖卤水, 其主要 成分及含量见上表; 以未嵌锂的磷酸铁离子筛膜为阴极, 以嵌锂态磷酸铁离子筛为阳极, 在两电极间施加 1.5V的电压, 在 pH为 7、 50°C下进行电渗析, 每隔 lh取锂盐室中的溶液分 析其中 Li+的浓度, 具体结果如图 2所示; 维持 10h后, 卤水室中的 +浓度降低至 55mg/L, Mg2+的浓度为约 1254mg/L,磷酸铁离子筛对 Li+的吸附量约为 32.2mg/g,对 Mg2+的吸附量约 为 1.33mg/g; 同时锂盐室中得到 Li+浓度为 576mg/L的富锂溶液。
实施例 3
按实施例 2的方法将 3g Feo.^Coo.^PC制成磷酸铁复合膜, 将磷酸铁复合膜置于卤水室, 加入 500mL盐湖卤水, 盐湖卤水的成分及含量如下表所示:
成 分 浓 度 (mg/L) Li+ 500
Na+ 2350
Mg2+ 18000
K+ 950
Ca2+ 90 将 500mL浓度为 50g/L的 NaCl溶液加入锂盐室中, 以磷酸铁复合膜为阴极, 惰性石墨为 阳极, 施加 2.0V的电压, 在 80°C下维持 10h后, 卤水室中 Li+的浓度降低至 268.4mg/L, Mg2+ 的浓度为 17991mg/L, FeQ.98CoQ.Q2P04离子筛对 Li+的吸附量为 38.6mg/g, 对 Mg2+的吸附量为 1.5mg/g。
按照此实施例中相同的方法,将 3g Fe 98COQ.Q2P04离子筛制作成未嵌锂的磷酸铁复合膜。 初始嵌锂结束后, 将未嵌锂的磯酸铁复合膜置于卤水室中, 加入 500mL盐湖卤水, 将嵌锂 态离子筛置于锂盐室中, 加入 500mL浓度为 50g/L的 NaCl溶液, 以嵌锂态离子筛为阳极, 未 嵌锂的离子筛为阴极, 在电极间施加 2.0V的电压, 在 pH为 12、 80°C下维持 10h。 电渗析结 束后, 卤水室中 Li+的浓度降低至 269.1mg/L, 锂盐室得到富锂溶液中 Li+的浓度为 115mg/L。 此电渗析过程结束后, 嵌锂态离子筛和未嵌锂的离子筛的形态发生相互转化; 保持两电极 位置不变, 将电渗析装置中的嵌锂后液排出, 富锂溶液转移到储槽后重新加入到原卤水室 中, 将 500mL盐湖卤水加入到新的卤水室 (原锂盐室), 在相同条件下进行第二次电渗析。 第二次电渗析结束后, 锂盐室富锂溶液中的 Li+浓度达到 229mg/L。
以此方式进行数个循环的嵌锂 /脱嵌的电渗析过程, 在第 3次电渗析后, 锂盐室中富锂溶 液的 Li+浓度为 351mg/L, 在第 4次电渗析后富锂溶液 Li+浓度增加至 465mg/L; 在相同条件下 连续进行了 10次电渗析, 在第 10次电渗析结束后, 富锂溶液中 Li+浓度达到 1162mg/L, 其具 体的变化情况如图 3所示;
实施例 4
按实施例 2的方法将 10g Mn02制成离子筛复合膜, 将 Mn02复合膜置于卤水室中, 加入 1L盐湖卤水, 盐湖卤水的成分及含量与实施例 3—致; 将石墨电极置于锂盐室中, 加入 500mL浓度为 20g/L的 NaCl溶液。 以 Mn02复合膜为阴极, 石墨电极为阳极, 施加 1.2V的电 压, 在 5 °C下维持 12h后, 卤水室中 Li+的浓度降低至 286mg/L, Mg2+的浓度为 17982mg/L, Mn02离子筛对 Li+的吸附量为 21.4mg/g, X寸 Mg2+的吸附量为 1.8mg/g。
按照此实施例中相同的方法, 将 10g MnO2离子筛制作成未嵌锂的 Mn02复合膜。 初始嵌 锂结束后, 将未嵌锂的磷酸铁复合膜置于卤水室中, 加入 1L盐湖卤水, 将嵌锂态 Mn02离 子筛置于锂盐室中, 加入 500mL浓度为 20g/L的 NaCl溶液, 以嵌锂态 Mn02离子筛为阳极, 未嵌锂的 Mn02离子筛为阴极,在电极间施加 1.2V的电压,在 5°C下维持 12h。电渗析结束后, 卤水室中 Li+的浓度降低至 284.2mg/L, 锂盐室得到富锂溶液中 Li+的浓度为 428.3mg/L。
电渗析结束后, 嵌锂态离子筛和未嵌锂离子筛的形态发生相互转化; 保持两电极位置 不变, 将电渗析装置中的嵌锂后液排出, 500mL富锂溶液转移到储槽后重新加入到原卤水 室中, 将 1L盐湖卤水加入到新的卤水室 (原锂盐室), 在相同条件下进行第二次电渗析。 第二次电渗析结束后, 卤水室中 Li+的浓度降低至 286.3mg/L, 锂盐室得到的二次富锂溶液 中 Li+的浓度为 855.1mg/L。
实施例 5
按 8 : 1 : 1的重量比将2§ 41¾012、 0.25g乙炔黑和 0.25gPVDF混合均勾, 将混合好的粉末 加入到 N-甲基吡咯垸酮 (NMP)有机溶剂中研磨调浆, 将浆状物涂在石墨纸上, 在真空条件 下于 120°C保温干燥 12小时, 冷却后得到 Li4Ti5012离子筛复合膜; 将 Li4Ti5012离子筛膜置于 电渗析装置中的卤水室, 加入 1L盐湖卤水, 卤水的成分及含量如下表所示:
成 分 浓 度 (mg/L)
Li+ 200
Na+ 2580
Mg2+ 1260
K+ 780 将石墨电极置于电渗析装置中的锂盐室, 加入 20g/L的 NaCl溶液 500ml; 以石墨电极为 阳极, 1^41¾012离子筛为阴极, 在两电极间施加 0.8V的电压, 于 25°C下维持 10h后, 卤水室 中 Li+的浓度降低至 157.6mg/L, Mg2+的浓度基本上没有变化, 1^4 012离子筛对 Li+的吸附 量为 21.2mg/g。
按照此实施例中相同的方法, 将 2g Li4Ti5012离子筛制作成未嵌锂的离子筛复合膜。 初 始嵌锂结束后, 将未嵌锂的 1^4 012复合膜置于卤水室中, 加入 1L盐湖卤水, 将嵌锂态离 子筛膜置于锂盐室中, 加入 500mL浓度为 20g/L的 NaCl溶液, 以嵌锂态 Li4Ti5012离子筛为阳 极,未嵌锂的 1^4¾012离子筛为阴极,在电极间施加 0.8V的电压,在 pH为 5、 5°C下维持 10h。 电渗析结束后, 卤水室中 Li+的浓度降低至 155.4mg/L, 锂盐室得到富锂溶液中 Li+的浓度为 实施例 6
按 8 : l : l的重量比将4gLiFe 99Mn Q1P04/C、 0.5g高纯石墨和 0.5gPVDF混合均匀, 加入 N-甲基吡咯垸酮 (NMP)有机溶剂研磨调成浆状流体, 将浆状物涂覆在石墨纸上, 在真空条 件下, 升温至 110°C保温 12小时, 冷却后得到磷酸铁锂复合膜; 以磷酸铁锂复合膜为阳极, 以泡沫镍为阴极, 置于 1L浓度为 30g/L的 NaCl溶液中, 在电极两 施加 1.1V的电压 10h, 磷酸铁锂复合膜转化为磷酸铁离子筛;
按此实施例中相同的方法将 4gLiFeQ.99MnaQ1P04/C制作成磷酸铁锂复合膜, 将磷酸铁锂 复合膜置于电渗析装置的锂盐室中, 加入 30g/L的 NaCl溶液 500ml; 将所得的磷酸铁离子筛 置于卤水室中, 加入 1L盐湖卤水, 卤水的成分及含量如下表所示:
成 分 浓 度 (mg/L)
Li+ 200
Na+ 2580
Mg2+ 1260
K+ 780 以磷酸铁锂复合膜为阳极, 磯酸铁离子筛为阴极, 在 pH为 8、 25°C下施加 1.0V的电压, 维持 15h后, 卤水室中 Li+的浓度降低至 66.5mg/L, Mg2+的浓度为 1257mg/L, 锂盐室中 Li+ 的浓度为 267.4mg/L。
实施例 7
按 8 : 1 : 1的重量比将2§1^6?04/。、 0.25g高纯石墨和 0.25gPVDF混合均勾, 加入 N-甲基 吡咯垸酮 (NMP)有机溶剂研磨调成浆状流体, 将浆状物涂覆在碳纤维布上, 置于真空干燥 箱中抽真空后, 升温至 110°C保温 12小时, 冷却后得到磷酸铁锂复合膜; 以憐酸铁锂复合膜 为阳极, 以泡沫镍为阴极, 置于 1L浓度为 20g/L的 NaCl溶液中, 在电极两端施加 1.0V的电 压 12h, 磷酸铁锂复合膜转化为磷酸铁离子筛;
按此实施例中相同的方法将 2gLiFeP04/C制作成磷酸铁锂复合膜,将憐酸铁锂复合膜置 于电渗析装置的锂盐室中, 加入 50g/L的 NaCl溶液 1L; 将所得的磷酸铁离子筛置于卤水室 中, 加入 1L盐湖卤水, 卤水的成分及含量如下表所示:
成 分 浓 度 (mg/L)
Li+ 500
Na+ 2350
Mg2+ 18000
K+ 950
Ca2+ 90 以磷酸铁锂复合膜为阳极, 磷酸铁离子筛为阴极, 在 pH为 10、 30°C下施加 1.0V的电压, 维持 12h后, 卤水室中 Li+的浓度降低至 442.3mg/L, 锂盐室中 Li+的浓度为 57.8mg/L。 电渗析 结束后, 电渗析结束后, 嵌锂态离子筛和未嵌锂离子筛的形态发生相互转化; 将上述两电 极的位置调换, 即将锂盐室中的磷酸铁锂复合膜转化所得的磷酸铁离子筛置于卤水室中作 为阴极, 将卤水室中的磷酸铁离子筛转化所得的嵌锂态离子筛置于锂盐室中作为阳极, 在 相同条件下进行电渗析; 电渗析结束后, 水室中 Li+的浓度变为 384.6mg/L, 锂盐室中 Li+ 的浓度升高至 115.7mg/L。
按此方式进行数次循环, 在第 6次电渗析结束后, 卤水室中 Li+的浓度变为 153.5mg/L, 锂盐室中 Li+的浓度升高至 346.8mg/L。

Claims

权 利 要 求
1、 一种盐湖卤水镁锂分离及富集锂的方法, 其特征在于, 依次包括如下步骤-
( 1 ) 用阴离子交换膜将电渗析装置的电渗析槽垂直分隔成锂盐室和卤水室两个区域, 卤水室内充入盐湖卤水, 锂盐室内充入不含 Mg2+的支持电解质溶液;
(2)将涂覆有离子筛的导电基体置于卤水室中作为阴极, 涂覆有嵌锂态离子筛的导电 基体置于锂盐室中作为阳极, 进行电渗析; 所述的离子筛是选自能在外电势的驱动下, 使 卤水室卤水中的 Li+嵌入到离子筛中转化形成嵌锂态离子筛的材料,; 所述的嵌锂态离子筛 是选自能在外电势的驱动下将 Li+释放到导电溶液后, 转化形成离子筛的材料; 经离子筛 与嵌锂态离子筛的对 Li+嵌入和脱嵌作用, 实现卤水室中的 Li+与 Mg2+及其他阳离子的分 离, 同时锂在锂盐室中富集, 得到富锂溶液。
2、 如权利要求 1所述的方法, 其特征在于,
步骤 (2) 完成后, 至少进行一次以下操作:
将卤水室中的嵌锂后液排出, 重新加入盐湖卤水, 然后将阴极和阳极交换放置, 继续 进行电渗析。
3、 .如权利要求 1所述的方法, 其特征在于,
步骤 (2)完成后, 至少进行一次以下操作:
保持阳极和阴极位置固定, 将卤水室中的嵌锂后液排出, 将锂盐室中的含锂溶液转移 到卤水室中, 将新的盐湖卤水加入到锂盐室中; 即将卤水室和锂盐室转换功能使用, 继续 进行电渗析。
4、 如权利要求 1或 2或 3所述的方法, 其特征在于, 所述的盐湖卤水包括任意含 Li+ 的溶液、 任意盐湖中的原始卤水及其蒸发浓缩后的卤水和提钾后的蒸发老卤中的一种或几 种。
5、 如权利要求 1或 2或 3所述的方法, 其特征在于, 步骤 (2) 所述的导电基体为涂 钌钛网、 石墨板、 Pt族金属及其合金箔、 碳纤维布、 石墨纸中的一种。
6、如权利要求 1或 2或 3所述的方法,其特征在于, 电渗析装置中溶液的温度为 0〜80 V , pH值为 2~12; 电渗析装置中两电极间的电压范围为 0.5~2.0Vb
7、如权利要求 1或 2或 3所述的方法, 其特征在于, 所述的离子筛为磷酸铁、钛酸锂、 Mn02中的一种或几种的混合物。
8、 如权利要求 7所述的方法, 其特征在于, 所述的嵌锂态离子筛为磷酸铁、 钛酸锂、 Mn02中的一种或几种的混合物在外电势的驱动下使卤水室卤水中的 Li+嵌入到离子筛中,. 转化形成。
9、如权利要求 7所述的方法,其特征在于,所述的磷酸铁为 Fei.xMexP04、 Fe,.xMexP04/C 中的一种或两种的混合, 其中 Me为 Mn、 Co、 Mo、 Ti、 Al、 Ni、 Nb中的一种或几种的混 合, x的范围为: 0 x 0.1 ; 钕酸锂为 Li4Ti5012、 LixMeyTi5012、 Li4MemTin012中的一种或 几种的混合物; ^^为 、 Fe、 Co、 Mn、 Al、 Ba、 Ag、 Zr、 Sr、 Nb、 F中的一种或几种的 混合; 0<x<4, 0<y<4, 0<m<5, 0<n<5。
10、 如权利要求 1或 2或 3所述的方法, 其特征在于, 所述的嵌锂态离子筛采用磷酸 铁锂、 LiMn204的一种或两种混合物。
11、 如权利要求 10所述的方法, 其特征在于, 所述的离子筛是由磷酸铁锂、 LiMn204 的一种或两种混合物在外电势的驱动下, 将 Li+释放到导电溶液后转化形成。
12、如权利要求 10所述的方法,其特征在于,所述的磷酸铁锂为 LiFeP04、 LiFeP04/C、 LixMeyFeP04、 LixMeyFeP04/C、 LiFexMeyP04、 LiFexMeyP04/C中的一种或几种的混合物, 其中 Me为 Mn、 Co、 Mo、 Ti、 Al、 Ni、 Nb中的一种或几种的混合, 0<χ< 1, 0<y< l。
13、 权利要求 1 所述的盐湖卤水镁锂分离及富集锂的方法的配套装置, 其特征在于, 包括具有被阴离子交换膜分隔成两个空间的电渗析槽的电渗析装置, 以及阴极和阳极, 所 述的阴极和阳极分别设置于隔成的两个空间内; 所述的阴极为涂覆有离子筛的导电基体, 阳极为涂覆有嵌锂态离子筛的导电基体。
PCT/CN2011/001896 2010-11-19 2011-11-11 一种盐湖卤水镁锂分离及富集锂的方法和装置 WO2012065361A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011103839.9T DE112011103839B4 (de) 2010-11-19 2011-11-11 Verfahren und eine Vorrichtung zum Trennen des Lithiums von Magnesium und Anreicherung von Lithium in Salzlake
US13/798,043 US9062385B2 (en) 2010-11-19 2013-03-12 Method and device for extracting and enriching lithium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201010555927.3 2010-11-19
CN2010105521416A CN102049237B (zh) 2010-11-19 2010-11-19 一种选择性提取锂的磷酸铁离子筛及其应用
CN201010552141.6 2010-11-19
CN201010552143.5 2010-11-19
CN2010105521435A CN101966986B (zh) 2010-11-19 2010-11-19 锂离子电池用磷酸铁锂正极材料的制备方法
CN2010105559273A CN102049238B (zh) 2010-11-19 2010-11-19 一种选择性提取锂的离子筛及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/798,043 Continuation-In-Part US9062385B2 (en) 2010-11-19 2013-03-12 Method and device for extracting and enriching lithium

Publications (2)

Publication Number Publication Date
WO2012065361A1 true WO2012065361A1 (zh) 2012-05-24
WO2012065361A4 WO2012065361A4 (zh) 2012-08-09

Family

ID=46083493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001896 WO2012065361A1 (zh) 2010-11-19 2011-11-11 一种盐湖卤水镁锂分离及富集锂的方法和装置

Country Status (3)

Country Link
US (1) US9062385B2 (zh)
DE (1) DE112011103839B4 (zh)
WO (1) WO2012065361A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074502A (zh) * 2013-01-29 2013-05-01 中国科学院青海盐湖研究所 用于从高镁锂比的盐湖卤水分离锂的盐湖卤水处理方法
US20150252485A1 (en) * 2012-09-19 2015-09-10 Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) Method and electrochemical device for low environmental impact lithium recovery from aqueous solutions
CN106345439A (zh) * 2016-09-23 2017-01-25 北京碧水源膜科技有限公司 一种电驱动法再生钾离子筛装置及其用途
CN114014416A (zh) * 2021-11-23 2022-02-08 中国华能集团清洁能源技术研究院有限公司 一种海水多级浓缩电解提锂装置及方法
CN115779851A (zh) * 2022-12-05 2023-03-14 南京大学 一种包覆结构的锰酸锂离子筛吸附剂的合成方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201402666D0 (en) * 2014-02-14 2014-04-02 Univ Southampton Sequestration of lithium
CN103943864B (zh) * 2014-04-15 2016-06-29 中南大学 磷酸铁锂基复合正极材料及其制备方法和应用
CN105895895B (zh) * 2016-04-28 2018-11-09 深圳市力为锂能科技有限公司 一种钛酸锂负极材料及其制备方法
CN110510641A (zh) * 2016-08-26 2019-11-29 湖南金源新材料股份有限公司 磷酸铁锂电池废料浸出锂液增浓的方法
CN106636673B (zh) * 2016-12-23 2018-08-31 江西合纵锂业科技有限公司 一种采用萃取法从盐湖卤水中提取锂的方法
CN108160023A (zh) * 2018-01-14 2018-06-15 天津市职业大学 一种复合偏锑酸锂离子筛填料及其制备方法
CN110459828B (zh) * 2019-08-23 2022-08-30 贵州红星电子材料有限公司 废旧磷酸铁锂电池正极材料综合回收方法
WO2021053514A1 (en) * 2019-09-16 2021-03-25 InCoR Lithium Selective lithium extraction from brines
CN111018061B (zh) * 2019-12-30 2021-08-24 江苏大学 一种在含锂的水溶液中提取锂的电解池用离子筛阴极及其制造方法
CN112678875B (zh) * 2020-12-25 2022-09-13 中国科学院青海盐湖研究所 一种尖晶石型Li1.6Mn1.6O4微球粉体的制备方法
CN112795940B (zh) * 2020-12-28 2022-06-28 北京化工大学 一种盐水电化学提锂抑制共存阳离子干扰的方法
DE102021108464A1 (de) 2021-04-01 2022-10-06 Leibniz-Institut Für Neue Materialien Gemeinnützige Gesellschaft Mit Beschränkter Haftung Stabilisierte Elektroden
WO2023168539A1 (en) * 2022-03-10 2023-09-14 Saltworks Technologies Inc. System and process for extracting lithium from a saltwater
CN114752785B (zh) * 2022-04-12 2023-09-29 厦门世达膜科技有限公司 一种无机吸附剂与连续流体分离组合工艺在卤水提锂中的应用
CN115364672B (zh) * 2022-09-28 2023-11-03 广东邦普循环科技有限公司 一种用于盐湖提锂的四通道电渗析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2058910A1 (en) * 1970-11-30 1972-05-31 Selective alkali metal ion sieves - produced from hydrated manganese dioxide, used for inds waste or saline water
CN1451771A (zh) * 2003-05-09 2003-10-29 武汉理工大学 用离子筛从废旧锂离子电池中分离回收锂的方法
CN101654741A (zh) * 2009-03-09 2010-02-24 大连理工大学 一种从锂离子电池中分离回收锂和钴的方法
CN102049238A (zh) * 2010-11-19 2011-05-11 中南大学 一种选择性提取锂的离子筛及其应用
CN102049237A (zh) * 2010-11-19 2011-05-11 中南大学 一种选择性提取锂的磷酸铁离子筛及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636295A (en) * 1985-11-19 1987-01-13 Cominco Ltd. Method for the recovery of lithium from solutions by electrodialysis
GB9012186D0 (en) * 1990-05-26 1990-07-18 Atomic Energy Authority Uk Electrochemical ion exchange
JP2000195553A (ja) * 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP3714259B2 (ja) * 2002-02-04 2005-11-09 ソニー株式会社 非水電解質二次電池
US8129052B2 (en) * 2005-09-02 2012-03-06 Polyplus Battery Company Polymer adhesive seals for protected anode architectures
US20070190422A1 (en) * 2006-02-15 2007-08-16 Fmc Corporation Carbon nanotube lithium metal powder battery
FR2902576B1 (fr) * 2006-06-16 2009-05-29 Univ Technologie De Varsovie Procede de modification de la resistance interfaciale d'une electrode de lithium metallique.
US8911893B2 (en) * 2008-10-31 2014-12-16 Galen J. Suppes Convection battery configuration for connective carbon matrix electrode
DE102009010264B4 (de) * 2009-02-24 2015-04-23 Süd-Chemie Ip Gmbh & Co. Kg Verfahren zur Aufreinigung lithiumhaltiger Abwässer bei der kontinuierlichen Herstellung von Lithiumübergangsmetallphosphaten
US8859143B2 (en) * 2011-01-03 2014-10-14 Nanotek Instruments, Inc. Partially and fully surface-enabled metal ion-exchanging energy storage devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2058910A1 (en) * 1970-11-30 1972-05-31 Selective alkali metal ion sieves - produced from hydrated manganese dioxide, used for inds waste or saline water
CN1451771A (zh) * 2003-05-09 2003-10-29 武汉理工大学 用离子筛从废旧锂离子电池中分离回收锂的方法
CN101654741A (zh) * 2009-03-09 2010-02-24 大连理工大学 一种从锂离子电池中分离回收锂和钴的方法
CN102049238A (zh) * 2010-11-19 2011-05-11 中南大学 一种选择性提取锂的离子筛及其应用
CN102049237A (zh) * 2010-11-19 2011-05-11 中南大学 一种选择性提取锂的磷酸铁离子筛及其应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150252485A1 (en) * 2012-09-19 2015-09-10 Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) Method and electrochemical device for low environmental impact lithium recovery from aqueous solutions
CN103074502A (zh) * 2013-01-29 2013-05-01 中国科学院青海盐湖研究所 用于从高镁锂比的盐湖卤水分离锂的盐湖卤水处理方法
CN106345439A (zh) * 2016-09-23 2017-01-25 北京碧水源膜科技有限公司 一种电驱动法再生钾离子筛装置及其用途
CN114014416A (zh) * 2021-11-23 2022-02-08 中国华能集团清洁能源技术研究院有限公司 一种海水多级浓缩电解提锂装置及方法
CN115779851A (zh) * 2022-12-05 2023-03-14 南京大学 一种包覆结构的锰酸锂离子筛吸附剂的合成方法
CN115779851B (zh) * 2022-12-05 2024-03-19 南京大学 一种包覆结构的锰酸锂离子筛吸附剂的合成方法

Also Published As

Publication number Publication date
DE112011103839B4 (de) 2016-08-18
US20130186760A1 (en) 2013-07-25
DE112011103839T5 (de) 2013-09-26
US9062385B2 (en) 2015-06-23
WO2012065361A4 (zh) 2012-08-09

Similar Documents

Publication Publication Date Title
WO2012065361A1 (zh) 一种盐湖卤水镁锂分离及富集锂的方法和装置
Zhao et al. Review on the electrochemical extraction of lithium from seawater/brine
CN102382984B (zh) 一种盐湖卤水镁锂分离及富集锂的方法
Chen et al. Dual-ions electrochemical deionization: a desalination generator
Zhao et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries
Lawagon et al. Li1− xNi0. 33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine
Wu et al. Lithium recovery using electrochemical technologies: Advances and challenges
Cheng et al. Hybrid network CuS monolith cathode materials synthesized via facile in situ melt-diffusion for Li-ion batteries
Liu et al. Effect of Na+ on Li extraction from brine using LiFePO4/FePO4 electrodes
Chen et al. NaTi2 (PO4) 3-Ag electrodes based desalination battery and energy recovery
CN107226475B (zh) 一种钾离子电池正极材料及其制备方法和钾离子电池
Zhao et al. Recent progress on key materials and technical approaches for electrochemical lithium extraction processes
CN202181336U (zh) 一种盐湖卤水镁锂分离及富集锂的装置
CN109267086B (zh) 一种盐湖卤水中镁/锂分离及富集锂的装置及方法
Hu et al. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization
CN102049237B (zh) 一种选择性提取锂的磷酸铁离子筛及其应用
CN109609977B (zh) 提取锂的电极结构及其制造方法和应用
Niu et al. An electrically switched ion exchange system with self-electrical-energy recuperation for efficient and selective LiCl separation from brine lakes
Huang et al. Boosting efficient and low-energy solid phase regeneration for single crystal LiNi0. 6Co0. 2Mn0. 2O2 via highly selective leaching and its industrial application
Fan et al. 2D Fe2O3 nanosheets with bi-continuous pores inherited from Fe-MOF precursors: an advanced anode material for Li-ion half/full batteries
Guo et al. Development of electrochemical lithium extraction based on a rocking chair system of LiMn2O4/Li1-xMn2O4: Self-driven plus external voltage driven
Jia et al. Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery
Han et al. Green recovery of low concentration of lithium from geothermal water by a novel FPO/KNiFC ion pump technique
Luo et al. Electrochemical lithium ion pumps for lithium recovery: A systematic review and influencing factors analysis
KR20140040007A (ko) 전기화학법을 이용하여 간수부터 리튬을 회수하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011103839

Country of ref document: DE

Ref document number: 1120111038399

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842051

Country of ref document: EP

Kind code of ref document: A1