CN101385126B - 包括外延生长在单晶衬底上的石墨烯层的器件 - Google Patents

包括外延生长在单晶衬底上的石墨烯层的器件 Download PDF

Info

Publication number
CN101385126B
CN101385126B CN2007800056306A CN200780005630A CN101385126B CN 101385126 B CN101385126 B CN 101385126B CN 2007800056306 A CN2007800056306 A CN 2007800056306A CN 200780005630 A CN200780005630 A CN 200780005630A CN 101385126 B CN101385126 B CN 101385126B
Authority
CN
China
Prior art keywords
area
graphene
layer
graphene layer
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800056306A
Other languages
English (en)
Other versions
CN101385126A (zh
Inventor
L·N·普菲菲尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of CN101385126A publication Critical patent/CN101385126A/zh
Application granted granted Critical
Publication of CN101385126B publication Critical patent/CN101385126B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Abstract

一种电子器件包括本体,所述本体包括所述本体的主要表面上的单晶区域。所述单晶区域具有与石墨烯基本晶格匹配的六边形晶体点阵,并且在所述单晶区域上设置至少一个石墨烯外延层。在目前优选实施例中,所述单晶区域包括多层六边形BN。一种制造这种电子器件的方法包括以下步骤:(a)提供本体,所述本体包括在所述本体的主要表面上的单晶区域。所述单晶区域具有与石墨烯基本晶格匹配的六边形晶体点阵,以及(b)在所述区域上外延形成至少一个石墨烯层。在目前优选实施例中,步骤(a)进一步包括以下步骤:(a1)提供单晶石墨衬底,以及(a2)在所述衬底上外延形成多层单晶六边形BN。所述六边形BN层具有与石墨烯基本晶格匹配的表面区域,并且步骤(b)包括在所述六边形BN层的所述表面区域上外延形成至少一个石墨烯层。描述了对FET的应用。

Description

包括外延生长在单晶衬底上的石墨烯层的器件
技术领域
本发明涉及包括石墨烯(graphene)层的电子器件。
背景技术
在Physics Today中的最近的文章中,M.Wilson评论了被称为石墨烯的独特的二维凝聚态物质体系,一种以蜂巢状六边形晶格设置的碳原子的单一的、一个原子厚的层(即单层)。石墨烯是所有其它维数的石墨状碳材料的结构单元。[见″Electrons in Atomically Thin CarbonSheets Behave like Massless Particles,″Phys.Today,p.21(Jan2006),在此引入其以作为参考。]
Wilson指出,石墨烯具有非凡的特性。首先,在环境条件下它稳定、在化学性质上不活泼、并且是结晶状的。第二,它是半金属,因为它的导带和价带正好在布里渊区中的离散点汇合。第三,石墨烯中的电子具有零有效质量并且行为比常规大粒子更象光子。第四,它可以携带巨大的电流密度-大约108A/cm2,大约比铜大两个数量级。
最近几年科学家努力制造游离状态的单2D石墨烯层。例如,一个组使用胶带从石墨晶体剥离弱束缚层,对着氧化的硅表面轻轻地摩擦那些新层,并且然后在肉眼可见的屑中识别相对较少的单层小片。[例如,见K.S.Novoselov等人,Science,Vol.306,p.666(2004),在此引入其以作为参考。]另一个组通过SiC表面的热分解制造超薄碳膜,通常是三个石墨烯层。仅仅加热SiC到足以从表面蒸发Si,留下薄的碳膜。[见C.Berger等人,J.Phys.Chem.B,Vol.108,p.19912(2004),在此引入其以作为参考。]
然而,根据Wilson,生长单层片石墨烯仍存在问题-当在典型的制造工艺期间被加热时,碳的单层最容易受到损害。
另外,尽管Berger等人认为它们的碳膜是“外延生长”在SiC上,但是它们的工艺实际上仅包括Si的蒸发;它并不包括“生长”,因为所述术语按照惯例被用来描述标准制造技术例如分子束外延(MBE)和化学汽相淀积(CVD)中的外延淀积。实际上,SiC和石墨烯具有大约20%的相对较大的晶格失配,对于在SiC衬底上淀积器件质量的外延石墨层而言所述20%的晶格失配通常太大。
在器件电势的初步示范中,Berger等人介绍,大面积选通石墨沟道FET结构在制冷温度(4K)下的电阻调制相当小(仅2%),因为栅极仅覆盖源和漏电极之间的石墨膜的一部分,剩下大的未选通的泄漏路径。
Berger等人的器件也被W.A.DeHeer等人在2004年12月16日公布的美国专利申请No.2005/0253820中进行了描述。
因此,本领域中仍然存在对基于石墨烯的器件的需要,在所述基于石墨烯的器件中石墨烯被外延淀积在合适的、晶格匹配的衬底上。
发明内容
根据本发明的一个方面,一种电子器件包括:本体,所述本体包括在本体的主要表面上的单晶区域,所述区域具有与石墨烯基本晶格匹配的六边形晶体点阵;以及设置在所述区域上的至少一个石墨烯外延层。在目前优选实施例中,单晶表面区域包括多层六边形BN,所述多层六边形BN在每层内具有必要的六边形晶体点阵并且具有对石墨烯的小于大约2%的晶格失配。另外,也优选在所述区域上仅设置单层石墨烯。根据本发明的另一个方面,一种制造电子器件的方法包括以下步骤:(a)提供本体,所述本体包括在本体的主要表面上的单晶区域,所述区域具有与石墨烯基本晶格匹配的六边形晶体点阵,并且(b)在所述区域上外延形成至少一个石墨烯层。在目前优选实施例中,步骤(a)进一步包括以下步骤:(a1)提供单晶石墨衬底,以及(a2)在衬底上外延形成单晶六边形BN。六边形BN具有表面区域,其在每层内具有多层的六边形晶体点阵,并且与石墨烯基本晶格匹配,以及步骤(b)包括在六边形BN表面区域上外延形成石墨烯层。
附图说明
从下列结合附图的更详细的描述可以容易地理解本发明及其各个特征和优点,其中:
图1是根据本发明的一个实施例的电子器件10的截面示意图;
图2是根据本发明的另一个实施例的电子器件20的截面示意图;
图3是根据本发明的一个实施例的FET 30的截面示意图;
图4是根据本发明的又一个实施例的FET 40的示意性顶视图;
图5示出石墨的多层结晶结构。为了简单和清楚起见,仅示出三层石墨烯。石墨可以具有多于或少于三个石墨烯层;以及
图6示出多层单晶六边形氮化硼(BN)的多层结晶结构。为了简单和清楚起见,仅示出三层六边形BN。六边形BN可以具有多于或少于三个石墨烯层。
正如在此所用的,“在...中”的意思包括“在...中”和“在...上”,并且“在...上”的意思包括“在...上”和“在...中”。
具体实施方式
现在参考图1,电子器件10包括本体12,所述本体12具有在本体12的主要表面上的单晶区域12.1。区域12.1具有与石墨烯基本晶格匹配的六边形晶体点阵,以及外延地设置在区域12.1上的至少一个石墨烯层14。优选地,在区域12.1上仅形成单层石墨烯。单石墨烯层避免了与多层之间的缺陷相关的复杂性。然而,本发明打算在衬底上设置一层以上的石墨烯。多个石墨烯层是否实用很大程度上取决于预期的器件应用。例如,在其中多个石墨烯层可能必须被耗尽(例如当石墨烯层的一部分形成FET沟道时)的器件(例如以下讨论的FET)中,石墨烯的半金属性质使得它难以在多于例如两个或三个的石墨烯层中实现充分的耗尽。
本体12可以完全是单晶材料,或它可以是单晶和非单晶材料的合成物,只要表面区域12.1是单晶的并且具有必要的晶格匹配和六边形晶体点阵。更具体地说,图5示出石墨的结晶结构,其呈现两个主要的特征:首先,它由石墨烯的多重叠层(即平面或片)A1、B1、A2等构成;并且其次,每层具有碳原子的六边形晶体点阵(开环),一个在六边形的每个顶点处。如所示,晶体尺寸a=2.455
Figure G2007800056306D00031
是在每个六边形中不相邻的碳原子对之间(即奇数原子之间或偶数原子之间)的距离,键长b=1.42
Figure G2007800056306D00032
是邻近原子之间的距离,并且d=3.345
Figure G2007800056306D00033
是邻近石墨烯层之间的距离。
因此,单晶区域12.1的结晶结构应当基本等同于石墨的结晶结构。如上所述,首先,其优选是与石墨的层A1、B1、A2等相同或非常类似方式的多层;第二,它应当在每层内具有六边形晶体点阵;并且第三,它应当具有相同或非常类似的键长,特别是晶体尺寸a的大小。优选地,单晶区域12.1应当属于与石墨烯相同的结晶空间群(即,石墨的P63/mmc群)。
通过要求石墨烯层14和区域12.1基本上彼此晶格匹配,我们的意思是它们之间晶格失配不超过大约2%。由于石墨的晶格常数ag并且因此石墨烯的晶格常数ag是大约2.455±0.002
Figure G2007800056306D00041
[见″Crystal Data,Determinative Tables,″3rdEd.,I.D.H.Donnay等人,US Departmentof Commerce,National Bureau of Standards(1973)],区域12.1的相应晶格常数ar应当大约是
0.98ag≤ar≤1.02ag;(1)
即,
2.4059≤ar≤2.5041  (2)
如图6中所示,多层六边形氮化硼(BN)具有几乎与石墨相同的六边形晶格,并且它属于与石墨相同的空间群(P63/mmc)。另外,它具有晶格常数ab=2.50399±0.00005(根据Donnay等人的后两个特性,见上),其满足不等式(2)。此外,该形状的六边形BN具有键长b=1.45
Figure G2007800056306D00043
以及层间隔d=3.33
Figure G2007800056306D00044
所述两个常数都非常接近石墨烯的常数。因此,该类型BN可以被用来形成区域12.1,只要它可以被制造为单晶。
六边形的多层单晶BN在题名为″Synthesis of Boron Nitride fromOxide Precursors,″的文章中被M.Hubacek描述,其可以在因特网上URLhttp://hubacek.ip/bn/bn.htm,pp.1-10(Feb 2006)处找到并且在此被引入以作为参考。
可替换地,并且根据本发明的另一方面,晶体学要求被提出如下。参考图2,通过首先提供单晶石墨衬底26来制造电子器件20。优选地,衬底26是高度有序的石墨(称作HOG),其中到邻近石墨平面的法线基本平行;即,邻近法线之间的角不超过0.40,并且优选不超过0.20。利用标准的CVD技术,在石墨衬底26上外延淀积六边形BN层22。该步骤结果形成多层六边形BN,所述多层六边形BN具有与下面的石墨衬底26基本相同的六边形晶体点阵。然后,在对应于图1的表面区域12.1的单晶六边形BN层22的顶部主要表面22.1上外延淀积石墨烯层24。可以通过几个众所周知的技术中的任何一个淀积石墨烯层24;例如通过MBE,所述MBE利用me和K.W.West在2005年4月26日提交的共同未决的美国专利申请序列号No.11/114,828(在此引入其以作为参考)中所描述类型的玻璃状碳源提供对层厚的亚单层控制;或通过CVD。低压CVD(LPCVD)提供比其它形式的CVD更好的厚度控制,因此可以是优选的。
一旦已经生长多层单晶六边形BN层22,就可以部分或全部除去石墨衬底26。然而,可以延迟石墨衬底26的这种除去直到完成另外的处理步骤;例如,在石墨烯层24已经生长在六边形BN层22上之后,或在可选的绝缘层28已经淀积在石墨烯层24上之后。
在这一点上,注意,因为石墨烯层仅为一个单层厚,所以在仅仅几层石墨烯的生长期间会形成任何大量位错的风险(如果有的话)很小。即,Matthews-Blakeslee理论预测,无位错的层厚相反地与生长层和下面的衬底之间的晶格失配相关。因此,例如,如果晶格失配是1%,则层可以生长100厚而不形成位错,但是如果失配加倍到2%,则层可以生长仅40
Figure G2007800056306D00052
厚而没有位错。[见J.Y.Tsao,″Materials Fundamentalsof Molecular Beam Epitaxy,″p.167,Academic Press,Inc.(1993)。]但是,因为石墨烯层标称仅大约2
Figure G2007800056306D00053
厚,所以可以足够容许2%的晶格失配。
尽管可以在任何晶格匹配的材料上外延生长石墨烯层,但是对于许多电子应用而言,区域12.1、22.1的材料优选不是高度导电的;例如,它是绝缘体或具有相对大的带隙的半导体。六边形BN属于该范畴。在许多FET设计中,例如在图3-4中所示的那些,石墨烯层34、44分别生长在绝缘层32、42上并且与绝缘层32、42晶格匹配。
另外,在许多电子器件的设计中可选的绝缘层28是重要的;例如在制造图3中所示类型的FET的栅极结构(特别是栅绝缘体38.1)中。优选地,绝缘层28外延沉积在石墨烯层24上并且具有与层22相同的结晶特性。因此,对于制造层28而言多层单晶六边形BN是优选材料,并且它可以利用用于层22的相同技术被淀积。另外,然而,许多应用,包括图3的FET,需要图案化层28,或者在它正被淀积时(例如通过众所周知的遮光掩蔽(shadow masking))或在它已经被淀积后(例如通过众所周知的剥离或光刻刻蚀)。
使用多层单晶六边形BN用于绝缘层22和28减小了这些层和石墨烯层24之间的可能电活性的界面态的数目,一个在许多FET的工作中特别重要的特征。
更具体地说,在图3中,FET 30由包括单晶绝缘层32和外延形成在其上的石墨烯层34的叠层形成。层34的单独部分形成源区34.2和漏区34.3。示意性地示出的源和漏电极Vs和Vd分别与源和漏区34.2和34.3电接触。层34的第三部分形成沟道区34.1,所述沟道区34.1使源和漏区彼此耦合。众所周知,在半导体和石墨烯器件领域中,通过栅极区域38控制沟道区34.1的电阻/电导。后者包括设置在沟道区34.1上的图案化栅绝缘体38.1和形成在栅绝缘体38.1上的栅电极38.2。栅绝缘体可以从任何绝缘体被图案化,或它可以从外延生长在石墨烯层34上的大面积绝缘体被图案化,或它可以在它利用标准遮光板(shadowmask)被淀积时被图案化,如上参考图2的层28所讨论的。最后,公共(通常接地的)电极37形成在绝缘层32的底部上。注意,图3是示意性的截面,其并不反映这样的事实:除在栅极区域38下面和通过沟道区34.1的通路以外在源和漏区之间不存在导电通路。
在操作中,当适当的电压Vs和Vd分别被施加到源和漏电极时,电流从源区34.2流到漏区34.3或被禁止从源区34.2流到漏区34.3(或相反地),这取决于施加在电极38.2和37之间的栅电压。当栅电压Vg通过耗尽沟道区34.1足以减少电子传输时,沟道电阻增加并且电流减小,以及相反地。
另一方面,在图4中FET 40通过外延形成在绝缘层42上的图案化的石墨烯层44以平面方式形成。在该实施例中,矩形源区44.2和矩形漏区44.3通过带状沟道区44.1彼此耦合,其全部都是石墨烯层44的图案化部分。在该情形下,T形栅电极49也是石墨烯层44的图案化部分。(除了矩形、带形和T形以外的形状也可以是合适的。)栅电极49具有延伸得与沟道区44.1很接近的段49.1。绝缘体区域48是绝缘层42的表面部分,所述绝缘体区域48充当隔离沟道区域44.1与栅电极段49.1的栅绝缘体。
在操作中,除了不需要公共电极(类似于图3的电极37)之外,图4的实施例遵循与图3的实施例相同的原则。更确切地说,栅电压Vg可以被施加在栅电极49与源或漏区44.2、44.3之间。
要理解的是,上述设置仅仅说明可以被设计来表示本发明的应用原理的许多可能的具体实施例。在不脱离本发明的精神和范围的情况下,本领域技术人员可以根据这些原理设计许多并且变化的其它设置。
特别地,如较早讨论的,图3-4的FET不限于使用单石墨烯层来形成沟道,尽管该设计是目前优选的。可以使用几个(例如两个或三个)石墨烯层,只要它们可以被充分地耗尽以控制源极和漏极之间的电流流动。
另外,可以通过电子束光刻在石墨烯层34、44上形成电极,随后是Au/Cf的蒸发,正如Y.Zhang等人在Nature,Vol.438,No.10,p.201(Nov 2005)中所描述的,在此引入其以作为参考。

Claims (8)

1.一种具有石墨烯层的器件,包括:
本体,所述本体包括在所述本体的主表面上的单晶电绝缘的第一区域,所述第一区域具有六边形晶体点阵,以及
设置在所述本体的所述第一区域上的至少一个石墨烯外延层;以及
设置在所述至少一个石墨烯层上的多层单晶电绝缘的第二区域,所述第二区域在其每层内具有六边形晶体点阵,所述第一区域和第二区域与石墨烯晶格匹配,使得所述第一区域和第二区域与所述至少一个石墨烯层晶格失配小于2%。
2.如权利要求1所述的器件,其中所述第一区域包括多层单晶绝缘体或宽带隙半导体。
3.如权利要求2所述的器件,其中所述绝缘体包括单晶六边形BN。
4.如权利要求2所述的器件,其中所述本体进一步包括单晶石墨衬底,所述第一区域设置在所述石墨衬底的主表面上。
5.如权利要求1所述的器件,其中所述第一区域和所述至少一个石墨烯层具有相同的结晶空间群。
6.一种场效应晶体管,包括:
源区、漏区、和使所述源区和漏区彼此耦合的沟道区,以及
栅极区,所述栅极区被配置为施加电压到所述沟道区,由此控制所述源区和漏区之间的电流的流动,以及
权利要求1所述的器件,其中所述沟道区包括所述至少一个石墨烯层的一部分。
7.一种制造具有石墨烯层的器件的方法,包括以下步骤:
(a)提供本体,所述本体包括在所述本体的表面上的单晶电绝缘的第一区域,所述第一区域具有六边形晶体点阵,以及
(b)在所述第一区域上外延淀积至少一个石墨烯层;以及
(c)在所述至少一个石墨烯层上形成多层单晶电绝缘的第二区域,所述第二区域在其每层内具有六边形晶体点阵,所述第一区域和第二区域与石墨烯晶格匹配,使得所述第一区域和第二区域与所述至少一个石墨烯层晶格失配小于2%。
8.如权利要求7所述的方法,其中步骤(a)进一步包括以下步骤:(a1)提供单晶石墨衬底,以及(a2)在所述衬底上将所述第一区域外延形成为多层单晶六边形BN,所述六边形BN具有所述第一区域,并且步骤(b)包括在所述六边形BN层的所述第一区域上外延淀积所述至少一个石墨烯层。
CN2007800056306A 2006-02-16 2007-02-13 包括外延生长在单晶衬底上的石墨烯层的器件 Expired - Fee Related CN101385126B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/355,360 2006-02-16
US11/355,360 US7619257B2 (en) 2006-02-16 2006-02-16 Devices including graphene layers epitaxially grown on single crystal substrates
PCT/US2007/003667 WO2007097938A1 (en) 2006-02-16 2007-02-13 Devices including graphene layers epitaxially grown on single crystal substrates

Publications (2)

Publication Number Publication Date
CN101385126A CN101385126A (zh) 2009-03-11
CN101385126B true CN101385126B (zh) 2012-02-29

Family

ID=38198463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800056306A Expired - Fee Related CN101385126B (zh) 2006-02-16 2007-02-13 包括外延生长在单晶衬底上的石墨烯层的器件

Country Status (6)

Country Link
US (2) US7619257B2 (zh)
EP (1) EP1984941B1 (zh)
JP (1) JP5265385B2 (zh)
KR (1) KR101351691B1 (zh)
CN (1) CN101385126B (zh)
WO (1) WO2007097938A1 (zh)

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120660A (ja) * 2006-11-16 2008-05-29 Toshio Sugita カーボンチューブ製造用グラフェンシート、およびグラフェンシート形成品用グラフェンシート
JP5135825B2 (ja) * 2007-02-21 2013-02-06 富士通株式会社 グラフェントランジスタ及びその製造方法
JP4669957B2 (ja) * 2007-03-02 2011-04-13 日本電気株式会社 グラフェンを用いる半導体装置及びその製造方法
WO2009008929A2 (en) 2007-04-09 2009-01-15 Northeastern University Bistable nanoswitch
KR101443215B1 (ko) * 2007-06-13 2014-09-24 삼성전자주식회사 앰비폴라 물질을 이용한 전계효과 트랜지스터 및 논리회로
US7732859B2 (en) * 2007-07-16 2010-06-08 International Business Machines Corporation Graphene-based transistor
US8698481B2 (en) * 2007-09-12 2014-04-15 President And Fellows Of Harvard College High-resolution molecular sensor
US7960259B2 (en) * 2007-09-26 2011-06-14 International Technology Center Semiconductor structure with coincident lattice interlayer
US20090174435A1 (en) * 2007-10-01 2009-07-09 University Of Virginia Monolithically-Integrated Graphene-Nano-Ribbon (GNR) Devices, Interconnects and Circuits
US8043978B2 (en) * 2007-10-11 2011-10-25 Riken Electronic device and method for producing electronic device
WO2009059193A1 (en) * 2007-10-31 2009-05-07 The Trustees Of Columbia University In The City Of New York Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials
US8659009B2 (en) * 2007-11-02 2014-02-25 The Trustees Of Columbia University In The City Of New York Locally gated graphene nanostructures and methods of making and using
CN101442105B (zh) * 2007-11-21 2010-06-09 中国科学院化学研究所 一种有机场效应晶体管及其专用源漏电极与制备方法
US7781061B2 (en) * 2007-12-31 2010-08-24 Alcatel-Lucent Usa Inc. Devices with graphene layers
WO2009113472A1 (ja) * 2008-03-10 2009-09-17 国立大学法人東北大学 グラフェンまたはグラファイト薄膜、その製造方法、薄膜構造および電子デバイス
US8647436B2 (en) * 2008-04-02 2014-02-11 Raytheon Company Carbon ion beam growth of isotopically-enriched graphene and isotope-junctions
KR100973697B1 (ko) 2008-05-29 2010-08-04 한국과학기술연구원 다이아몬드의 고온 처리를 통한 aa 적층그라핀-다이아몬드 하이브리드 물질 및 그 제조 방법
KR101490111B1 (ko) * 2008-05-29 2015-02-06 삼성전자주식회사 에피택셜 그래핀을 포함하는 적층구조물, 상기적층구조물의 형성방법 및 상기 적층구조물을 포함하는전자 소자
US20100218801A1 (en) * 2008-07-08 2010-09-02 Chien-Min Sung Graphene and Hexagonal Boron Nitride Planes and Associated Methods
CN102143908A (zh) * 2008-07-08 2011-08-03 宋健民 石墨烯与六方氮化硼薄片及其相关方法
EP2320456A4 (en) * 2008-07-25 2014-08-06 Univ Tohoku DEVICE WITH COMPLEMENTARY LOGIC DOOR
US7993986B2 (en) * 2008-08-29 2011-08-09 Advanced Micro Devices, Inc. Sidewall graphene devices for 3-D electronics
US8465799B2 (en) * 2008-09-18 2013-06-18 International Business Machines Corporation Method for preparation of flat step-free silicon carbide surfaces
US20100085713A1 (en) * 2008-10-03 2010-04-08 Balandin Alexander A Lateral graphene heat spreaders for electronic and optoelectronic devices and circuits
KR101480082B1 (ko) * 2008-10-09 2015-01-08 삼성전자주식회사 그라핀을 이용한 양자 간섭 트랜지스터와 그 제조 및 동작 방법
US8487296B2 (en) 2008-11-26 2013-07-16 New Jersey Institute Of Technology Graphene deposition and graphenated substrates
WO2010065517A1 (en) 2008-12-01 2010-06-10 The Trustees Of Columbia University In The City Of New York Electromechanical devices and methods for fabrication of the same
DE102008055100A1 (de) 2008-12-22 2010-07-01 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Unipolarer Hetero-Junction-Sperrschicht-Transistor
EP2221874A1 (en) * 2009-02-24 2010-08-25 S.a.r.l. FIRMUS Method for manufacturing nano electronic devices made from 2D carbon crystals like graphene and devices obtained with this method
FI122511B (fi) 2009-02-26 2012-02-29 Valtion Teknillinen Grafeenia sisältävät hiutaleet ja menetelmä grafeenin eksfoliaatiota varten
US20100255984A1 (en) * 2009-04-03 2010-10-07 Brookhaven Science Associates, Llc Monolayer and/or Few-Layer Graphene On Metal or Metal-Coated Substrates
KR101156620B1 (ko) 2009-04-08 2012-06-14 한국전자통신연구원 그라핀 채널층을 가지는 전계 효과 트랜지스터
CN101550003B (zh) * 2009-04-22 2012-10-03 湖南大学 纳米石墨烯基复合吸波材料及其制备方法
US20100323113A1 (en) * 2009-06-18 2010-12-23 Ramappa Deepak A Method to Synthesize Graphene
US8409366B2 (en) * 2009-06-23 2013-04-02 Oki Data Corporation Separation method of nitride semiconductor layer, semiconductor device, manufacturing method thereof, semiconductor wafer, and manufacturing method thereof
US9035281B2 (en) 2009-06-30 2015-05-19 Nokia Technologies Oy Graphene device and method of fabricating a graphene device
US20110014457A1 (en) * 2009-07-17 2011-01-20 Nathaniel J Quitoriano Graphene Layer With An Engineered Stress Supported On A Substrate
WO2011046655A2 (en) * 2009-07-21 2011-04-21 Cornell University Transfer-free batch fabrication of single layer graphene devices
US8445893B2 (en) 2009-07-21 2013-05-21 Trustees Of Columbia University In The City Of New York High-performance gate oxides such as for graphene field-effect transistors or carbon nanotubes
US10167572B2 (en) * 2009-08-07 2019-01-01 Guardian Glass, LLC Large area deposition of graphene via hetero-epitaxial growth, and products including the same
US8158200B2 (en) * 2009-08-18 2012-04-17 University Of North Texas Methods of forming graphene/(multilayer) boron nitride for electronic device applications
US8053782B2 (en) * 2009-08-24 2011-11-08 International Business Machines Corporation Single and few-layer graphene based photodetecting devices
JP5569769B2 (ja) * 2009-08-31 2014-08-13 独立行政法人物質・材料研究機構 グラフェンフィルム製造方法
US8426309B2 (en) 2009-09-10 2013-04-23 Lockheed Martin Corporation Graphene nanoelectric device fabrication
US8227842B2 (en) * 2009-09-21 2012-07-24 Hitachi Global Storage Technologies Netherlands B.V. Quantum well graphene structure
KR101694877B1 (ko) 2009-10-16 2017-01-11 삼성전자주식회사 그라핀 소자 및 그 제조 방법
KR20110042952A (ko) * 2009-10-20 2011-04-27 삼성전자주식회사 레이저 광을 이용한 그라핀의 힐링방법 및 전자소자 제조방법
KR101603771B1 (ko) * 2009-10-21 2016-03-16 삼성전자주식회사 2차원 시트 물질을 이용한 전자 소자 및 그 제조 방법
US8492747B2 (en) * 2009-10-26 2013-07-23 Samsung Electronics Co., Ltd. Transistor and flat panel display including thin film transistor
US9105793B2 (en) * 2009-10-30 2015-08-11 The Regents Of The University Of California Graphene device and method of using graphene device
US8796668B2 (en) * 2009-11-09 2014-08-05 International Business Machines Corporation Metal-free integrated circuits comprising graphene and carbon nanotubes
US20110108854A1 (en) * 2009-11-10 2011-05-12 Chien-Min Sung Substantially lattice matched semiconductor materials and associated methods
KR101652787B1 (ko) * 2009-11-12 2016-09-01 삼성전자주식회사 대면적 그라핀의 제조방법 및 전사방법
WO2011058651A1 (ja) * 2009-11-13 2011-05-19 富士通株式会社 半導体装置及びその製造方法
CN104934300B (zh) * 2009-11-13 2018-08-14 富士通株式会社 半导体装置及其制造方法
KR101611414B1 (ko) 2009-11-23 2016-04-11 삼성전자주식회사 분자빔 에피탁시 방법을 이용한 그라핀 제조방법
US9306099B2 (en) * 2009-12-01 2016-04-05 Samsung Electronics Co., Ltd. Material including graphene and an inorganic material and method of manufacturing the material
KR20110061245A (ko) * 2009-12-01 2011-06-09 삼성전자주식회사 그라펜을 이용한 유기발광소자
US20110163298A1 (en) * 2010-01-04 2011-07-07 Chien-Min Sung Graphene and Hexagonal Boron Nitride Devices
CN102134469A (zh) * 2010-01-26 2011-07-27 宋健民 含六方氮化硼的导热绝缘胶
US8563965B2 (en) * 2010-02-02 2013-10-22 The Invention Science Fund I, Llc Doped graphene electronic materials
US8426842B2 (en) * 2010-02-02 2013-04-23 The Invention Science Fund I, Llc Doped graphene electronic materials
US8354323B2 (en) 2010-02-02 2013-01-15 Searete Llc Doped graphene electronic materials
US8455981B2 (en) * 2010-02-02 2013-06-04 The Invention Science Fund I, Llc Doped graphene electronic materials
US8278643B2 (en) * 2010-02-02 2012-10-02 Searete Llc Doped graphene electronic materials
US8450779B2 (en) * 2010-03-08 2013-05-28 International Business Machines Corporation Graphene based three-dimensional integrated circuit device
US8890277B2 (en) 2010-03-15 2014-11-18 University Of Florida Research Foundation Inc. Graphite and/or graphene semiconductor devices
US8603303B2 (en) 2010-03-15 2013-12-10 International Business Machines Corporation Nanopore based device for cutting long DNA molecules into fragments
JP5440295B2 (ja) * 2010-03-18 2014-03-12 富士通株式会社 圧力センサとその製造方法
US20110233513A1 (en) * 2010-03-29 2011-09-29 International Business Machines Corporation Enhanced bonding interfaces on carbon-based materials for nanoelectronic devices
JP5513955B2 (ja) * 2010-03-31 2014-06-04 株式会社東芝 半導体装置およびその製造方法
US9024300B2 (en) * 2010-05-13 2015-05-05 Nokia Corporation Manufacture of graphene-based apparatus
US8445320B2 (en) 2010-05-20 2013-05-21 International Business Machines Corporation Graphene channel-based devices and methods for fabrication thereof
PL213291B1 (pl) * 2010-06-07 2013-02-28 Inst Tech Material Elekt Sposób wytwarzania grafenu
KR101781552B1 (ko) 2010-06-21 2017-09-27 삼성전자주식회사 보론 및 질소로 치환된 그라핀 및 제조방법과, 이를 구비한 트랜지스터
KR20120000338A (ko) * 2010-06-25 2012-01-02 삼성전자주식회사 그라펜 층수 제어방법
US8946903B2 (en) * 2010-07-09 2015-02-03 Micron Technology, Inc. Electrically conductive laminate structure containing graphene region
US8632633B2 (en) 2010-08-25 2014-01-21 Raytheon Company In-situ growth of engineered defects in graphene by epitaxial reproduction
TW201212289A (en) * 2010-09-01 2012-03-16 Chien-Min Sung Graphene transparent electrode, graphene light emitting diode, and method of fabricating the graphene light emitting diode
CN102385212B (zh) * 2010-09-02 2013-09-25 宋健民 电子装置
CN102054869B (zh) * 2010-09-17 2012-12-19 中国科学院微电子研究所 一种石墨烯器件及其制造方法
WO2012036537A2 (ko) * 2010-09-17 2012-03-22 한국과학기술원 플래쉬 램프 또는 레이저 빔을 이용한 그래핀 제조장치, 제조방법 및 이를 이용하여 제조된 그래핀
US8492753B2 (en) * 2010-09-28 2013-07-23 Empire Technology Development Llc Directionally recrystallized graphene growth substrates
US8597738B2 (en) * 2010-10-11 2013-12-03 Qingkai Yu Fabrication of single-crystalline graphene arrays
CN102468333B (zh) * 2010-10-29 2014-05-28 中国科学院微电子研究所 一种石墨烯器件及其制造方法
GB2485559A (en) * 2010-11-18 2012-05-23 Univ Plymouth Graphene based electronic device
US8609458B2 (en) 2010-12-10 2013-12-17 California Institute Of Technology Method for producing graphene oxide with tunable gap
WO2012088334A1 (en) * 2010-12-21 2012-06-28 Kenneth Shepard Electrical devices with graphene on boron nitride
US8409957B2 (en) 2011-01-19 2013-04-02 International Business Machines Corporation Graphene devices and silicon field effect transistors in 3D hybrid integrated circuits
US8748871B2 (en) 2011-01-19 2014-06-10 International Business Machines Corporation Graphene devices and semiconductor field effect transistors in 3D hybrid integrated circuits
US8986524B2 (en) 2011-01-28 2015-03-24 International Business Machines Corporation DNA sequence using multiple metal layer structure with different organic coatings forming different transient bondings to DNA
US20120193231A1 (en) 2011-01-28 2012-08-02 International Business Machines Corporation Dna sequencing using multiple metal layer structure with organic coatings forming transient bonding to dna bases
US8852407B2 (en) 2011-01-28 2014-10-07 International Business Machines Corporation Electron beam sculpting of tunneling junction for nanopore DNA sequencing
US8969779B2 (en) 2011-02-11 2015-03-03 Nokia Corporation Photodetecting structure with photon sensing graphene layer(s) and vertically integrated graphene field effect transistor
CN103313936B (zh) 2011-03-09 2016-04-06 英派尔科技开发有限公司 石墨烯形成
US8530886B2 (en) * 2011-03-18 2013-09-10 International Business Machines Corporation Nitride gate dielectric for graphene MOSFET
WO2012127244A2 (en) * 2011-03-22 2012-09-27 The University Of Manchester Transistor device and materials for making
GB201104824D0 (en) 2011-03-22 2011-05-04 Univ Manchester Structures and methods relating to graphene
JP6019640B2 (ja) * 2011-03-23 2016-11-02 富士通株式会社 電子デバイス及びその製造方法
KR101878730B1 (ko) 2011-03-31 2018-07-16 삼성전자주식회사 3차원 그래핀 구조체, 그의 제조방법 및 전사방법
CN102769081A (zh) * 2011-05-03 2012-11-07 山东华光光电子有限公司 一种以石墨烯作为缓冲层外延GaN的结构及其制备方法
KR101993382B1 (ko) 2011-05-06 2019-06-27 삼성전자주식회사 기판상의 그래핀 및 상기 기판상 그래핀의 제조방법
US8785911B2 (en) 2011-06-23 2014-07-22 International Business Machines Corporation Graphene or carbon nanotube devices with localized bottom gates and gate dielectric
US8492748B2 (en) 2011-06-27 2013-07-23 International Business Machines Corporation Collapsable gate for deposited nanostructures
KR101957339B1 (ko) * 2011-07-08 2019-03-13 삼성전자주식회사 그래핀을 채용한 고주파 회로 및 그의 구동방법
US20140212671A1 (en) * 2011-07-14 2014-07-31 Jeffry Kelber Direct Growth of Graphene by Molecular Beam Epitaxy for the Formation of Graphene Heterostructures
US8394682B2 (en) * 2011-07-26 2013-03-12 Micron Technology, Inc. Methods of forming graphene-containing switches
WO2013016601A1 (en) * 2011-07-27 2013-01-31 P-Brane, Llc Graphene-based solid state devices capable of emitting electromagnetic radiation and improvements thereof
CN102290333A (zh) * 2011-08-02 2011-12-21 复旦大学 一种适用于石墨烯基器件的栅氧介质的形成方法
CN102629035A (zh) * 2011-09-29 2012-08-08 京东方科技集团股份有限公司 薄膜晶体管阵列基板及其制造方法
KR101878745B1 (ko) * 2011-11-02 2018-08-20 삼성전자주식회사 에어갭을 구비한 그래핀 트랜지스터, 그를 구비한 하이브리드 트랜지스터 및 그 제조방법
US9368581B2 (en) 2012-02-20 2016-06-14 Micron Technology, Inc. Integrated circuitry components, switches, and memory cells
DE102012204539B4 (de) 2012-03-21 2023-12-07 Robert Bosch Gmbh Leistungstransistor und Verfahren zur Herstellung eines Leistungstransistors
KR101890703B1 (ko) 2012-03-23 2018-08-22 삼성전자주식회사 무선 주파수를 이용한 센싱 장치 및 이의 제조 방법
US20130256139A1 (en) * 2012-03-30 2013-10-03 International Business Machines Corporation Functionalized graphene or graphene oxide nanopore for bio-molecular sensing and dna sequencing
US10029915B2 (en) 2012-04-04 2018-07-24 International Business Machines Corporation Functionally switchable self-assembled coating compound for controlling translocation of molecule through nanopores
CN102623508B (zh) * 2012-04-17 2014-03-26 北京大学 石墨烯场效应晶体管及其制备方法
CN103378238B (zh) * 2012-04-25 2016-01-20 清华大学 发光二极管
KR20140028602A (ko) * 2012-08-29 2014-03-10 삼성전자주식회사 그래핀을 포함하는 나노 센서 및 이의 제조 방법
US10256368B2 (en) * 2012-12-18 2019-04-09 Sk Siltron Co., Ltd. Semiconductor substrate for controlling a strain
KR101920720B1 (ko) * 2012-12-27 2018-11-21 삼성전자주식회사 그래핀 전사 방법 및 이를 이용한 소자의 제조방법
US10266963B2 (en) * 2013-03-08 2019-04-23 The United States Of America, As Represented By The Secretary Of The Navy Growth of crystalline materials on two-dimensional inert materials
WO2014150587A1 (en) * 2013-03-15 2014-09-25 Solan, LLC Heterogeneous graphene-based devices
KR20140114199A (ko) 2013-03-18 2014-09-26 삼성전자주식회사 이종 적층 구조체 및 그 제조방법, 및 상기 이종 적층 구조체를 구비하는 전기소자
US9046511B2 (en) 2013-04-18 2015-06-02 International Business Machines Corporation Fabrication of tunneling junction for nanopore DNA sequencing
EP4293707A3 (en) * 2013-05-09 2024-03-27 GlobalWafers Co., Ltd. Direct and sequential formation of monolayers of boron nitride and graphene on substrates
US9188578B2 (en) 2013-06-19 2015-11-17 Globalfoundries Inc. Nanogap device with capped nanowire structures
US9182369B2 (en) 2013-06-19 2015-11-10 Globalfoundries Inc. Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition
US8901666B1 (en) * 2013-07-30 2014-12-02 Micron Technology, Inc. Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures
WO2015021479A1 (en) * 2013-08-09 2015-02-12 The Trustees Of Columbia University In The City Of New York Systems and methods for assembling two-dimensional materials
US9525053B2 (en) 2013-11-01 2016-12-20 Samsung Electronics Co., Ltd. Integrated circuit devices including strained channel regions and methods of forming the same
US20150207254A1 (en) * 2014-01-22 2015-07-23 Apple Inc. Molded Plastic Structures With Graphene Signal Paths
KR102207923B1 (ko) 2014-01-28 2021-01-26 삼성전자주식회사 다층 그래핀 구조체의 형성 방법
JP6350983B2 (ja) * 2014-04-18 2018-07-04 青山 隆 電界印加による薄膜の作成方法とこれを用いた薄膜半導体装置
US9548394B2 (en) 2014-04-22 2017-01-17 Uchicago Argonne, Llc All 2D, high mobility, flexible, transparent thin film transistor
WO2016002386A1 (ja) * 2014-07-02 2016-01-07 富士電機株式会社 炭化珪素半導体素子の製造方法
US9859513B2 (en) 2014-11-25 2018-01-02 University Of Kentucky Research Foundation Integrated multi-terminal devices consisting of carbon nanotube, few-layer graphene nanogaps and few-layer graphene nanoribbons having crystallographically controlled interfaces
CN108140552A (zh) 2015-09-08 2018-06-08 麻省理工学院 基于石墨烯的层转移的系统和方法
KR101692514B1 (ko) * 2015-09-21 2017-01-03 한국과학기술연구원 기재 위에 대면적, 단결정, 단일층의 h-BN 박막을 형성하는 방법 및 그로부터 제조된 h-BN 박막 적층체
JP2020500424A (ja) 2016-11-08 2020-01-09 マサチューセッツ インスティテュート オブ テクノロジー 層転写のための転位フィルタ処理のためのシステムおよび方法
US10181521B2 (en) * 2017-02-21 2019-01-15 Texas Instruments Incorporated Graphene heterolayers for electronic applications
US9793214B1 (en) 2017-02-21 2017-10-17 Texas Instruments Incorporated Heterostructure interconnects for high frequency applications
US20180254318A1 (en) * 2017-03-02 2018-09-06 William B Pohlman, III Graphene based in-plane micro-supercapacitors
KR101979225B1 (ko) * 2017-10-27 2019-08-28 한국생명공학연구원 기능화된 n-헤테로사이클릭 카벤 화합물을 포함하는 그래핀 트랜지스터 및 그 제조방법, 이를 포함하는 바이오 센서
JP6988710B2 (ja) * 2018-06-18 2022-01-05 日本電信電話株式会社 2次元材料デバイスの作製方法
WO2020072867A1 (en) * 2018-10-05 2020-04-09 Massachusetts Institute Of Technology Methods, apparatus, and systems for remote epitaxy using stitched graphene
JP7063495B1 (ja) * 2020-10-30 2022-05-09 音羽電機工業株式会社 電界強度を測定可能なセンサ装置
US11749718B2 (en) * 2021-03-05 2023-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method thereof
WO2023097017A1 (en) 2021-11-23 2023-06-01 Government Of The United States Of America, As Represented By The Secretary Of Commerce Analyte probe and determining water vapor transmission rate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075030A (zh) * 1992-01-16 1993-08-04 财团法人半导体研究振兴会 金属氧化物半导体混成静态感应半导体闸流管
CN1101755A (zh) * 1993-08-19 1995-04-19 株式会社日立制作所 半导体元件和采用其的半导体存储器件

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US186059A (en) * 1877-01-09 Improvement in lamp-extinguishers
US5155566A (en) * 1990-03-27 1992-10-13 Kabushiki Kaisha Toshiba Organic thin film element
US5142350A (en) * 1990-07-16 1992-08-25 General Motors Corporation Transistor having cubic boron nitride layer
US5739563A (en) * 1995-03-15 1998-04-14 Kabushiki Kaisha Toshiba Ferroelectric type semiconductor device having a barium titanate type dielectric film and method for manufacturing the same
JP2919306B2 (ja) * 1995-05-31 1999-07-12 日本電気株式会社 低抵抗タンタル薄膜の製造方法及び低抵抗タンタル配線並びに電極
US20020157818A1 (en) 2001-04-04 2002-10-31 Julian Norley Anisotropic thermal solution
US6952040B2 (en) * 2001-06-29 2005-10-04 Intel Corporation Transistor structure and method of fabrication
US20030186059A1 (en) * 2002-02-08 2003-10-02 Masukazu Hirata Structure matter of thin film particles having carbon skeleton, processes for the production of the structure matter and the thin-film particles and uses thereof
JP3714364B2 (ja) * 2002-10-30 2005-11-09 富士ゼロックス株式会社 カーボンナノチューブの製造装置および製造方法
EP1636829B1 (en) 2003-06-12 2016-11-23 Georgia Tech Research Corporation Patterned thin film graphite devices
JP2005285822A (ja) * 2004-03-26 2005-10-13 Fujitsu Ltd 半導体装置および半導体センサ
US20050238810A1 (en) * 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
JP2006008454A (ja) 2004-06-25 2006-01-12 Fuji Xerox Co Ltd 炭素微粒子構造体とその製造方法、およびこれを製造するための炭素微粒子転写体と炭素微粒子構造体製造用溶液、並びに炭素微粒子構造体を用いた炭素微粒子構造体電子素子とその製造方法、そして集積回路
US7091096B2 (en) * 2004-07-29 2006-08-15 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method of fabricating carbon nanotube field-effect transistors through controlled electrochemical modification
US7226818B2 (en) * 2004-10-15 2007-06-05 General Electric Company High performance field effect transistors comprising carbon nanotubes fabricated using solution based processing
US8362525B2 (en) * 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7170120B2 (en) * 2005-03-31 2007-01-30 Intel Corporation Carbon nanotube energy well (CNEW) field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075030A (zh) * 1992-01-16 1993-08-04 财团法人半导体研究振兴会 金属氧化物半导体混成静态感应半导体闸流管
CN1101755A (zh) * 1993-08-19 1995-04-19 株式会社日立制作所 半导体元件和采用其的半导体存储器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OSHIMA C ET AL.A hetero-epitaxial-double-atomic-layer system of monolayergraphene/monolayer h-BN on Ni(111).SOLID STATE COMMUNICATIONS,OXFORD,GB116 1.2000,37-40.
OSHIMA C ET AL.A hetero-epitaxial-double-atomic-layer system of monolayergraphene/monolayer h-BN on Ni(111).SOLID STATE COMMUNICATIONS,OXFORD,GB116 1.2000,37-40. *

Also Published As

Publication number Publication date
JP2009527127A (ja) 2009-07-23
US7927978B2 (en) 2011-04-19
US7619257B2 (en) 2009-11-17
JP5265385B2 (ja) 2013-08-14
EP1984941B1 (en) 2019-06-19
WO2007097938A1 (en) 2007-08-30
KR101351691B1 (ko) 2014-01-14
US20100051907A1 (en) 2010-03-04
KR20080100430A (ko) 2008-11-18
CN101385126A (zh) 2009-03-11
EP1984941A1 (en) 2008-10-29
US20070187694A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
CN101385126B (zh) 包括外延生长在单晶衬底上的石墨烯层的器件
JP2542448B2 (ja) 電界効果トランジスタおよびその製造方法
US7777254B2 (en) Normally-off field-effect semiconductor device
CN107039245B (zh) 提高氧化镓材料导热性的方法
CN102449732A (zh) 制造碳化硅衬底的方法和碳化硅衬底
Chen et al. Epitaxial lift-off of flexible GaN-based HEMT arrays with performances optimization by the piezotronic effect
KR20090124330A (ko) 에피택셜 그래핀을 포함하는 적층구조물, 상기적층구조물의 형성방법 및 상기 적층구조물을 포함하는전자 소자
KR20100055098A (ko) 대면적 그래핀 층을 포함하는 전자 장치 및 이의 제조방법
CN113690298A (zh) 半导体复合衬底、半导体器件及制备方法
CN105951055A (zh) 一种二维锡烯材料的制备方法
Ganguly et al. Plasma MBE growth conditions of AlGaN/GaN high-electron-mobility transistors on silicon and their device characteristics with epitaxially regrown ohmic contacts
CN102224581A (zh) 场效应晶体管
US5491348A (en) Highly-oriented diamond film field-effect transistor
CN106783997B (zh) 一种高迁移率晶体管及其制备方法
JP5596653B2 (ja) 電界効果トランジスタおよびその製造方法
JP6774452B2 (ja) グラフェン含有構造体、半導体装置、およびグラフェン含有構造体の製造方法
JP7159080B2 (ja) 積層体および半導体装置
JP5596652B2 (ja) 窒化物半導体装置およびその製造方法
CN112259604B (zh) 一种氮化镓复合基板、氮化镓器件及其制备方法
JP5876386B2 (ja) 窒化物半導体装置の製造方法
Lin et al. Synthesis and Properties of 2D Semiconductors
US11651958B2 (en) Two-dimensional material device and method for manufacturing same
TW202343799A (zh) 電晶體及製造電晶體之方法
CN113555441A (zh) 一种SiC基MIS器件及其制备方法
CN115224126A (zh) 一种空间转移掺杂p型高迁移率耗尽型氢终端金刚石场效应管及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120229

Termination date: 20200213

CF01 Termination of patent right due to non-payment of annual fee